firedtv-fw.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /*
  2. * FireDTV driver -- firewire I/O backend
  3. */
  4. #include <linux/device.h>
  5. #include <linux/errno.h>
  6. #include <linux/firewire.h>
  7. #include <linux/firewire-constants.h>
  8. #include <linux/highmem.h>
  9. #include <linux/kernel.h>
  10. #include <linux/list.h>
  11. #include <linux/slab.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/types.h>
  14. #include <asm/page.h>
  15. #include <dvb_demux.h>
  16. #include "firedtv.h"
  17. static LIST_HEAD(node_list);
  18. static DEFINE_SPINLOCK(node_list_lock);
  19. static inline struct fw_device *device_of(struct firedtv *fdtv)
  20. {
  21. return fw_device(fdtv->device->parent);
  22. }
  23. static int node_req(struct firedtv *fdtv, u64 addr, void *data, size_t len,
  24. int tcode)
  25. {
  26. struct fw_device *device = device_of(fdtv);
  27. int rcode, generation = device->generation;
  28. smp_rmb(); /* node_id vs. generation */
  29. rcode = fw_run_transaction(device->card, tcode, device->node_id,
  30. generation, device->max_speed, addr, data, len);
  31. return rcode != RCODE_COMPLETE ? -EIO : 0;
  32. }
  33. static int node_lock(struct firedtv *fdtv, u64 addr, __be32 data[])
  34. {
  35. return node_req(fdtv, addr, data, 8, TCODE_LOCK_COMPARE_SWAP);
  36. }
  37. static int node_read(struct firedtv *fdtv, u64 addr, void *data, size_t len)
  38. {
  39. return node_req(fdtv, addr, data, len, len == 4 ?
  40. TCODE_READ_QUADLET_REQUEST : TCODE_READ_BLOCK_REQUEST);
  41. }
  42. static int node_write(struct firedtv *fdtv, u64 addr, void *data, size_t len)
  43. {
  44. return node_req(fdtv, addr, data, len, TCODE_WRITE_BLOCK_REQUEST);
  45. }
  46. #define ISO_HEADER_SIZE 4
  47. #define CIP_HEADER_SIZE 8
  48. #define MPEG2_TS_HEADER_SIZE 4
  49. #define MPEG2_TS_SOURCE_PACKET_SIZE (4 + 188)
  50. #define MAX_PACKET_SIZE 1024 /* 776, rounded up to 2^n */
  51. #define PACKETS_PER_PAGE (PAGE_SIZE / MAX_PACKET_SIZE)
  52. #define N_PACKETS 64 /* buffer size */
  53. #define N_PAGES DIV_ROUND_UP(N_PACKETS, PACKETS_PER_PAGE)
  54. #define IRQ_INTERVAL 16
  55. struct firedtv_receive_context {
  56. struct fw_iso_context *context;
  57. struct fw_iso_buffer buffer;
  58. int interrupt_packet;
  59. int current_packet;
  60. char *packets[N_PACKETS];
  61. };
  62. static int queue_iso(struct firedtv_receive_context *ctx, int index)
  63. {
  64. struct fw_iso_packet p;
  65. int err;
  66. p.payload_length = MAX_PACKET_SIZE;
  67. p.interrupt = !(ctx->interrupt_packet & (IRQ_INTERVAL - 1));
  68. p.skip = 0;
  69. p.header_length = ISO_HEADER_SIZE;
  70. err = fw_iso_context_queue(ctx->context, &p, &ctx->buffer,
  71. index * MAX_PACKET_SIZE);
  72. if (!err)
  73. ctx->interrupt_packet++;
  74. return err;
  75. }
  76. static void handle_iso(struct fw_iso_context *context, u32 cycle,
  77. size_t header_length, void *header, void *data)
  78. {
  79. struct firedtv *fdtv = data;
  80. struct firedtv_receive_context *ctx = fdtv->backend_data;
  81. __be32 *h, *h_end;
  82. int i = ctx->current_packet, length, err;
  83. char *p, *p_end;
  84. for (h = header, h_end = h + header_length / 4; h < h_end; h++) {
  85. length = be32_to_cpup(h) >> 16;
  86. if (unlikely(length > MAX_PACKET_SIZE)) {
  87. dev_err(fdtv->device, "length = %d\n", length);
  88. length = MAX_PACKET_SIZE;
  89. }
  90. p = ctx->packets[i];
  91. p_end = p + length;
  92. for (p += CIP_HEADER_SIZE + MPEG2_TS_HEADER_SIZE; p < p_end;
  93. p += MPEG2_TS_SOURCE_PACKET_SIZE)
  94. dvb_dmx_swfilter_packets(&fdtv->demux, p, 1);
  95. err = queue_iso(ctx, i);
  96. if (unlikely(err))
  97. dev_err(fdtv->device, "requeue failed\n");
  98. i = (i + 1) & (N_PACKETS - 1);
  99. }
  100. ctx->current_packet = i;
  101. }
  102. static int start_iso(struct firedtv *fdtv)
  103. {
  104. struct firedtv_receive_context *ctx;
  105. struct fw_device *device = device_of(fdtv);
  106. char *p;
  107. int i, j, k, err;
  108. ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  109. if (!ctx)
  110. return -ENOMEM;
  111. ctx->context = fw_iso_context_create(device->card,
  112. FW_ISO_CONTEXT_RECEIVE, fdtv->isochannel,
  113. device->max_speed, ISO_HEADER_SIZE, handle_iso, fdtv);
  114. if (IS_ERR(ctx->context)) {
  115. err = PTR_ERR(ctx->context);
  116. goto fail_free;
  117. }
  118. err = fw_iso_buffer_init(&ctx->buffer, device->card,
  119. N_PAGES, DMA_FROM_DEVICE);
  120. if (err)
  121. goto fail_context_destroy;
  122. ctx->interrupt_packet = 1;
  123. ctx->current_packet = 0;
  124. for (i = 0, k = 0; k < N_PAGES; k++) {
  125. p = kmap(ctx->buffer.pages[k]);
  126. for (j = 0; j < PACKETS_PER_PAGE && i < N_PACKETS; j++, i++)
  127. ctx->packets[i] = p + j * MAX_PACKET_SIZE;
  128. }
  129. for (i = 0; i < N_PACKETS; i++) {
  130. err = queue_iso(ctx, i);
  131. if (err)
  132. goto fail;
  133. }
  134. err = fw_iso_context_start(ctx->context, -1, 0,
  135. FW_ISO_CONTEXT_MATCH_ALL_TAGS);
  136. if (err)
  137. goto fail;
  138. fdtv->backend_data = ctx;
  139. return 0;
  140. fail:
  141. fw_iso_buffer_destroy(&ctx->buffer, device->card);
  142. fail_context_destroy:
  143. fw_iso_context_destroy(ctx->context);
  144. fail_free:
  145. kfree(ctx);
  146. return err;
  147. }
  148. static void stop_iso(struct firedtv *fdtv)
  149. {
  150. struct firedtv_receive_context *ctx = fdtv->backend_data;
  151. fw_iso_context_stop(ctx->context);
  152. fw_iso_buffer_destroy(&ctx->buffer, device_of(fdtv)->card);
  153. fw_iso_context_destroy(ctx->context);
  154. kfree(ctx);
  155. }
  156. static const struct firedtv_backend backend = {
  157. .lock = node_lock,
  158. .read = node_read,
  159. .write = node_write,
  160. .start_iso = start_iso,
  161. .stop_iso = stop_iso,
  162. };
  163. static void handle_fcp(struct fw_card *card, struct fw_request *request,
  164. int tcode, int destination, int source, int generation,
  165. int speed, unsigned long long offset,
  166. void *payload, size_t length, void *callback_data)
  167. {
  168. struct firedtv *f, *fdtv = NULL;
  169. struct fw_device *device;
  170. unsigned long flags;
  171. int su;
  172. if ((tcode != TCODE_WRITE_QUADLET_REQUEST &&
  173. tcode != TCODE_WRITE_BLOCK_REQUEST) ||
  174. offset != CSR_REGISTER_BASE + CSR_FCP_RESPONSE ||
  175. length == 0 ||
  176. (((u8 *)payload)[0] & 0xf0) != 0) {
  177. fw_send_response(card, request, RCODE_TYPE_ERROR);
  178. return;
  179. }
  180. su = ((u8 *)payload)[1] & 0x7;
  181. spin_lock_irqsave(&node_list_lock, flags);
  182. list_for_each_entry(f, &node_list, list) {
  183. device = device_of(f);
  184. if (device->generation != generation)
  185. continue;
  186. smp_rmb(); /* node_id vs. generation */
  187. if (device->card == card &&
  188. device->node_id == source &&
  189. (f->subunit == su || (f->subunit == 0 && su == 0x7))) {
  190. fdtv = f;
  191. break;
  192. }
  193. }
  194. spin_unlock_irqrestore(&node_list_lock, flags);
  195. if (fdtv) {
  196. avc_recv(fdtv, payload, length);
  197. fw_send_response(card, request, RCODE_COMPLETE);
  198. }
  199. }
  200. static struct fw_address_handler fcp_handler = {
  201. .length = CSR_FCP_END - CSR_FCP_RESPONSE,
  202. .address_callback = handle_fcp,
  203. };
  204. static const struct fw_address_region fcp_region = {
  205. .start = CSR_REGISTER_BASE + CSR_FCP_RESPONSE,
  206. .end = CSR_REGISTER_BASE + CSR_FCP_END,
  207. };
  208. /* Adjust the template string if models with longer names appear. */
  209. #define MAX_MODEL_NAME_LEN ((int)DIV_ROUND_UP(sizeof("FireDTV ????"), 4))
  210. static size_t model_name(u32 *directory, __be32 *buffer)
  211. {
  212. struct fw_csr_iterator ci;
  213. int i, length, key, value, last_key = 0;
  214. u32 *block = NULL;
  215. fw_csr_iterator_init(&ci, directory);
  216. while (fw_csr_iterator_next(&ci, &key, &value)) {
  217. if (last_key == CSR_MODEL &&
  218. key == (CSR_DESCRIPTOR | CSR_LEAF))
  219. block = ci.p - 1 + value;
  220. last_key = key;
  221. }
  222. if (block == NULL)
  223. return 0;
  224. length = min((int)(block[0] >> 16) - 2, MAX_MODEL_NAME_LEN);
  225. if (length <= 0)
  226. return 0;
  227. /* fast-forward to text string */
  228. block += 3;
  229. for (i = 0; i < length; i++)
  230. buffer[i] = cpu_to_be32(block[i]);
  231. return length * 4;
  232. }
  233. static int node_probe(struct device *dev)
  234. {
  235. struct firedtv *fdtv;
  236. __be32 name[MAX_MODEL_NAME_LEN];
  237. int name_len, err;
  238. name_len = model_name(fw_unit(dev)->directory, name);
  239. fdtv = fdtv_alloc(dev, &backend, (char *)name, name_len);
  240. if (!fdtv)
  241. return -ENOMEM;
  242. err = fdtv_register_rc(fdtv, dev);
  243. if (err)
  244. goto fail_free;
  245. spin_lock_irq(&node_list_lock);
  246. list_add_tail(&fdtv->list, &node_list);
  247. spin_unlock_irq(&node_list_lock);
  248. err = avc_identify_subunit(fdtv);
  249. if (err)
  250. goto fail;
  251. err = fdtv_dvb_register(fdtv);
  252. if (err)
  253. goto fail;
  254. avc_register_remote_control(fdtv);
  255. return 0;
  256. fail:
  257. spin_lock_irq(&node_list_lock);
  258. list_del(&fdtv->list);
  259. spin_unlock_irq(&node_list_lock);
  260. fdtv_unregister_rc(fdtv);
  261. fail_free:
  262. kfree(fdtv);
  263. return err;
  264. }
  265. static int node_remove(struct device *dev)
  266. {
  267. struct firedtv *fdtv = dev_get_drvdata(dev);
  268. fdtv_dvb_unregister(fdtv);
  269. spin_lock_irq(&node_list_lock);
  270. list_del(&fdtv->list);
  271. spin_unlock_irq(&node_list_lock);
  272. fdtv_unregister_rc(fdtv);
  273. kfree(fdtv);
  274. return 0;
  275. }
  276. static void node_update(struct fw_unit *unit)
  277. {
  278. struct firedtv *fdtv = dev_get_drvdata(&unit->device);
  279. if (fdtv->isochannel >= 0)
  280. cmp_establish_pp_connection(fdtv, fdtv->subunit,
  281. fdtv->isochannel);
  282. }
  283. static struct fw_driver fdtv_driver = {
  284. .driver = {
  285. .owner = THIS_MODULE,
  286. .name = "firedtv",
  287. .bus = &fw_bus_type,
  288. .probe = node_probe,
  289. .remove = node_remove,
  290. },
  291. .update = node_update,
  292. .id_table = fdtv_id_table,
  293. };
  294. int __init fdtv_fw_init(void)
  295. {
  296. int ret;
  297. ret = fw_core_add_address_handler(&fcp_handler, &fcp_region);
  298. if (ret < 0)
  299. return ret;
  300. return driver_register(&fdtv_driver.driver);
  301. }
  302. void fdtv_fw_exit(void)
  303. {
  304. driver_unregister(&fdtv_driver.driver);
  305. fw_core_remove_address_handler(&fcp_handler);
  306. }