huge_memory.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <asm/tlb.h>
  19. #include <asm/pgalloc.h>
  20. #include "internal.h"
  21. /*
  22. * By default transparent hugepage support is enabled for all mappings
  23. * and khugepaged scans all mappings. Defrag is only invoked by
  24. * khugepaged hugepage allocations and by page faults inside
  25. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  26. * allocations.
  27. */
  28. unsigned long transparent_hugepage_flags __read_mostly =
  29. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  30. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  31. #endif
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  33. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  34. #endif
  35. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  37. /* default scan 8*512 pte (or vmas) every 30 second */
  38. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  39. static unsigned int khugepaged_pages_collapsed;
  40. static unsigned int khugepaged_full_scans;
  41. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  42. /* during fragmentation poll the hugepage allocator once every minute */
  43. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  44. static struct task_struct *khugepaged_thread __read_mostly;
  45. static DEFINE_MUTEX(khugepaged_mutex);
  46. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  47. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  48. /*
  49. * default collapse hugepages if there is at least one pte mapped like
  50. * it would have happened if the vma was large enough during page
  51. * fault.
  52. */
  53. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  54. static int khugepaged(void *none);
  55. static int mm_slots_hash_init(void);
  56. static int khugepaged_slab_init(void);
  57. static void khugepaged_slab_free(void);
  58. #define MM_SLOTS_HASH_HEADS 1024
  59. static struct hlist_head *mm_slots_hash __read_mostly;
  60. static struct kmem_cache *mm_slot_cache __read_mostly;
  61. /**
  62. * struct mm_slot - hash lookup from mm to mm_slot
  63. * @hash: hash collision list
  64. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  65. * @mm: the mm that this information is valid for
  66. */
  67. struct mm_slot {
  68. struct hlist_node hash;
  69. struct list_head mm_node;
  70. struct mm_struct *mm;
  71. };
  72. /**
  73. * struct khugepaged_scan - cursor for scanning
  74. * @mm_head: the head of the mm list to scan
  75. * @mm_slot: the current mm_slot we are scanning
  76. * @address: the next address inside that to be scanned
  77. *
  78. * There is only the one khugepaged_scan instance of this cursor structure.
  79. */
  80. struct khugepaged_scan {
  81. struct list_head mm_head;
  82. struct mm_slot *mm_slot;
  83. unsigned long address;
  84. } khugepaged_scan = {
  85. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  86. };
  87. static int set_recommended_min_free_kbytes(void)
  88. {
  89. struct zone *zone;
  90. int nr_zones = 0;
  91. unsigned long recommended_min;
  92. extern int min_free_kbytes;
  93. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  94. &transparent_hugepage_flags) &&
  95. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  96. &transparent_hugepage_flags))
  97. return 0;
  98. for_each_populated_zone(zone)
  99. nr_zones++;
  100. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  101. recommended_min = pageblock_nr_pages * nr_zones * 2;
  102. /*
  103. * Make sure that on average at least two pageblocks are almost free
  104. * of another type, one for a migratetype to fall back to and a
  105. * second to avoid subsequent fallbacks of other types There are 3
  106. * MIGRATE_TYPES we care about.
  107. */
  108. recommended_min += pageblock_nr_pages * nr_zones *
  109. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  110. /* don't ever allow to reserve more than 5% of the lowmem */
  111. recommended_min = min(recommended_min,
  112. (unsigned long) nr_free_buffer_pages() / 20);
  113. recommended_min <<= (PAGE_SHIFT-10);
  114. if (recommended_min > min_free_kbytes)
  115. min_free_kbytes = recommended_min;
  116. setup_per_zone_wmarks();
  117. return 0;
  118. }
  119. late_initcall(set_recommended_min_free_kbytes);
  120. static int start_khugepaged(void)
  121. {
  122. int err = 0;
  123. if (khugepaged_enabled()) {
  124. int wakeup;
  125. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  126. err = -ENOMEM;
  127. goto out;
  128. }
  129. mutex_lock(&khugepaged_mutex);
  130. if (!khugepaged_thread)
  131. khugepaged_thread = kthread_run(khugepaged, NULL,
  132. "khugepaged");
  133. if (unlikely(IS_ERR(khugepaged_thread))) {
  134. printk(KERN_ERR
  135. "khugepaged: kthread_run(khugepaged) failed\n");
  136. err = PTR_ERR(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. wakeup = !list_empty(&khugepaged_scan.mm_head);
  140. mutex_unlock(&khugepaged_mutex);
  141. if (wakeup)
  142. wake_up_interruptible(&khugepaged_wait);
  143. set_recommended_min_free_kbytes();
  144. } else
  145. /* wakeup to exit */
  146. wake_up_interruptible(&khugepaged_wait);
  147. out:
  148. return err;
  149. }
  150. #ifdef CONFIG_SYSFS
  151. static ssize_t double_flag_show(struct kobject *kobj,
  152. struct kobj_attribute *attr, char *buf,
  153. enum transparent_hugepage_flag enabled,
  154. enum transparent_hugepage_flag req_madv)
  155. {
  156. if (test_bit(enabled, &transparent_hugepage_flags)) {
  157. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  158. return sprintf(buf, "[always] madvise never\n");
  159. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  160. return sprintf(buf, "always [madvise] never\n");
  161. else
  162. return sprintf(buf, "always madvise [never]\n");
  163. }
  164. static ssize_t double_flag_store(struct kobject *kobj,
  165. struct kobj_attribute *attr,
  166. const char *buf, size_t count,
  167. enum transparent_hugepage_flag enabled,
  168. enum transparent_hugepage_flag req_madv)
  169. {
  170. if (!memcmp("always", buf,
  171. min(sizeof("always")-1, count))) {
  172. set_bit(enabled, &transparent_hugepage_flags);
  173. clear_bit(req_madv, &transparent_hugepage_flags);
  174. } else if (!memcmp("madvise", buf,
  175. min(sizeof("madvise")-1, count))) {
  176. clear_bit(enabled, &transparent_hugepage_flags);
  177. set_bit(req_madv, &transparent_hugepage_flags);
  178. } else if (!memcmp("never", buf,
  179. min(sizeof("never")-1, count))) {
  180. clear_bit(enabled, &transparent_hugepage_flags);
  181. clear_bit(req_madv, &transparent_hugepage_flags);
  182. } else
  183. return -EINVAL;
  184. return count;
  185. }
  186. static ssize_t enabled_show(struct kobject *kobj,
  187. struct kobj_attribute *attr, char *buf)
  188. {
  189. return double_flag_show(kobj, attr, buf,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. }
  193. static ssize_t enabled_store(struct kobject *kobj,
  194. struct kobj_attribute *attr,
  195. const char *buf, size_t count)
  196. {
  197. ssize_t ret;
  198. ret = double_flag_store(kobj, attr, buf, count,
  199. TRANSPARENT_HUGEPAGE_FLAG,
  200. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  201. if (ret > 0) {
  202. int err = start_khugepaged();
  203. if (err)
  204. ret = err;
  205. }
  206. if (ret > 0 &&
  207. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  208. &transparent_hugepage_flags) ||
  209. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  210. &transparent_hugepage_flags)))
  211. set_recommended_min_free_kbytes();
  212. return ret;
  213. }
  214. static struct kobj_attribute enabled_attr =
  215. __ATTR(enabled, 0644, enabled_show, enabled_store);
  216. static ssize_t single_flag_show(struct kobject *kobj,
  217. struct kobj_attribute *attr, char *buf,
  218. enum transparent_hugepage_flag flag)
  219. {
  220. if (test_bit(flag, &transparent_hugepage_flags))
  221. return sprintf(buf, "[yes] no\n");
  222. else
  223. return sprintf(buf, "yes [no]\n");
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. if (!memcmp("yes", buf,
  231. min(sizeof("yes")-1, count))) {
  232. set_bit(flag, &transparent_hugepage_flags);
  233. } else if (!memcmp("no", buf,
  234. min(sizeof("no")-1, count))) {
  235. clear_bit(flag, &transparent_hugepage_flags);
  236. } else
  237. return -EINVAL;
  238. return count;
  239. }
  240. /*
  241. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  242. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  243. * memory just to allocate one more hugepage.
  244. */
  245. static ssize_t defrag_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return double_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  250. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  251. }
  252. static ssize_t defrag_store(struct kobject *kobj,
  253. struct kobj_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. return double_flag_store(kobj, attr, buf, count,
  257. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  259. }
  260. static struct kobj_attribute defrag_attr =
  261. __ATTR(defrag, 0644, defrag_show, defrag_store);
  262. #ifdef CONFIG_DEBUG_VM
  263. static ssize_t debug_cow_show(struct kobject *kobj,
  264. struct kobj_attribute *attr, char *buf)
  265. {
  266. return single_flag_show(kobj, attr, buf,
  267. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  268. }
  269. static ssize_t debug_cow_store(struct kobject *kobj,
  270. struct kobj_attribute *attr,
  271. const char *buf, size_t count)
  272. {
  273. return single_flag_store(kobj, attr, buf, count,
  274. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  275. }
  276. static struct kobj_attribute debug_cow_attr =
  277. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  278. #endif /* CONFIG_DEBUG_VM */
  279. static struct attribute *hugepage_attr[] = {
  280. &enabled_attr.attr,
  281. &defrag_attr.attr,
  282. #ifdef CONFIG_DEBUG_VM
  283. &debug_cow_attr.attr,
  284. #endif
  285. NULL,
  286. };
  287. static struct attribute_group hugepage_attr_group = {
  288. .attrs = hugepage_attr,
  289. };
  290. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  291. struct kobj_attribute *attr,
  292. char *buf)
  293. {
  294. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  295. }
  296. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  297. struct kobj_attribute *attr,
  298. const char *buf, size_t count)
  299. {
  300. unsigned long msecs;
  301. int err;
  302. err = strict_strtoul(buf, 10, &msecs);
  303. if (err || msecs > UINT_MAX)
  304. return -EINVAL;
  305. khugepaged_scan_sleep_millisecs = msecs;
  306. wake_up_interruptible(&khugepaged_wait);
  307. return count;
  308. }
  309. static struct kobj_attribute scan_sleep_millisecs_attr =
  310. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  311. scan_sleep_millisecs_store);
  312. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  313. struct kobj_attribute *attr,
  314. char *buf)
  315. {
  316. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  317. }
  318. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  319. struct kobj_attribute *attr,
  320. const char *buf, size_t count)
  321. {
  322. unsigned long msecs;
  323. int err;
  324. err = strict_strtoul(buf, 10, &msecs);
  325. if (err || msecs > UINT_MAX)
  326. return -EINVAL;
  327. khugepaged_alloc_sleep_millisecs = msecs;
  328. wake_up_interruptible(&khugepaged_wait);
  329. return count;
  330. }
  331. static struct kobj_attribute alloc_sleep_millisecs_attr =
  332. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  333. alloc_sleep_millisecs_store);
  334. static ssize_t pages_to_scan_show(struct kobject *kobj,
  335. struct kobj_attribute *attr,
  336. char *buf)
  337. {
  338. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  339. }
  340. static ssize_t pages_to_scan_store(struct kobject *kobj,
  341. struct kobj_attribute *attr,
  342. const char *buf, size_t count)
  343. {
  344. int err;
  345. unsigned long pages;
  346. err = strict_strtoul(buf, 10, &pages);
  347. if (err || !pages || pages > UINT_MAX)
  348. return -EINVAL;
  349. khugepaged_pages_to_scan = pages;
  350. return count;
  351. }
  352. static struct kobj_attribute pages_to_scan_attr =
  353. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  354. pages_to_scan_store);
  355. static ssize_t pages_collapsed_show(struct kobject *kobj,
  356. struct kobj_attribute *attr,
  357. char *buf)
  358. {
  359. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  360. }
  361. static struct kobj_attribute pages_collapsed_attr =
  362. __ATTR_RO(pages_collapsed);
  363. static ssize_t full_scans_show(struct kobject *kobj,
  364. struct kobj_attribute *attr,
  365. char *buf)
  366. {
  367. return sprintf(buf, "%u\n", khugepaged_full_scans);
  368. }
  369. static struct kobj_attribute full_scans_attr =
  370. __ATTR_RO(full_scans);
  371. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  372. struct kobj_attribute *attr, char *buf)
  373. {
  374. return single_flag_show(kobj, attr, buf,
  375. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  376. }
  377. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return single_flag_store(kobj, attr, buf, count,
  382. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  383. }
  384. static struct kobj_attribute khugepaged_defrag_attr =
  385. __ATTR(defrag, 0644, khugepaged_defrag_show,
  386. khugepaged_defrag_store);
  387. /*
  388. * max_ptes_none controls if khugepaged should collapse hugepages over
  389. * any unmapped ptes in turn potentially increasing the memory
  390. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  391. * reduce the available free memory in the system as it
  392. * runs. Increasing max_ptes_none will instead potentially reduce the
  393. * free memory in the system during the khugepaged scan.
  394. */
  395. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  396. struct kobj_attribute *attr,
  397. char *buf)
  398. {
  399. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  400. }
  401. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  402. struct kobj_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. int err;
  406. unsigned long max_ptes_none;
  407. err = strict_strtoul(buf, 10, &max_ptes_none);
  408. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  409. return -EINVAL;
  410. khugepaged_max_ptes_none = max_ptes_none;
  411. return count;
  412. }
  413. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  414. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  415. khugepaged_max_ptes_none_store);
  416. static struct attribute *khugepaged_attr[] = {
  417. &khugepaged_defrag_attr.attr,
  418. &khugepaged_max_ptes_none_attr.attr,
  419. &pages_to_scan_attr.attr,
  420. &pages_collapsed_attr.attr,
  421. &full_scans_attr.attr,
  422. &scan_sleep_millisecs_attr.attr,
  423. &alloc_sleep_millisecs_attr.attr,
  424. NULL,
  425. };
  426. static struct attribute_group khugepaged_attr_group = {
  427. .attrs = khugepaged_attr,
  428. .name = "khugepaged",
  429. };
  430. #endif /* CONFIG_SYSFS */
  431. static int __init hugepage_init(void)
  432. {
  433. int err;
  434. #ifdef CONFIG_SYSFS
  435. static struct kobject *hugepage_kobj;
  436. #endif
  437. err = -EINVAL;
  438. if (!has_transparent_hugepage()) {
  439. transparent_hugepage_flags = 0;
  440. goto out;
  441. }
  442. #ifdef CONFIG_SYSFS
  443. err = -ENOMEM;
  444. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  445. if (unlikely(!hugepage_kobj)) {
  446. printk(KERN_ERR "hugepage: failed kobject create\n");
  447. goto out;
  448. }
  449. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  450. if (err) {
  451. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  452. goto out;
  453. }
  454. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  455. if (err) {
  456. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  457. goto out;
  458. }
  459. #endif
  460. err = khugepaged_slab_init();
  461. if (err)
  462. goto out;
  463. err = mm_slots_hash_init();
  464. if (err) {
  465. khugepaged_slab_free();
  466. goto out;
  467. }
  468. start_khugepaged();
  469. set_recommended_min_free_kbytes();
  470. out:
  471. return err;
  472. }
  473. module_init(hugepage_init)
  474. static int __init setup_transparent_hugepage(char *str)
  475. {
  476. int ret = 0;
  477. if (!str)
  478. goto out;
  479. if (!strcmp(str, "always")) {
  480. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  481. &transparent_hugepage_flags);
  482. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  483. &transparent_hugepage_flags);
  484. ret = 1;
  485. } else if (!strcmp(str, "madvise")) {
  486. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  487. &transparent_hugepage_flags);
  488. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  489. &transparent_hugepage_flags);
  490. ret = 1;
  491. } else if (!strcmp(str, "never")) {
  492. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  493. &transparent_hugepage_flags);
  494. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  495. &transparent_hugepage_flags);
  496. ret = 1;
  497. }
  498. out:
  499. if (!ret)
  500. printk(KERN_WARNING
  501. "transparent_hugepage= cannot parse, ignored\n");
  502. return ret;
  503. }
  504. __setup("transparent_hugepage=", setup_transparent_hugepage);
  505. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  506. struct mm_struct *mm)
  507. {
  508. assert_spin_locked(&mm->page_table_lock);
  509. /* FIFO */
  510. if (!mm->pmd_huge_pte)
  511. INIT_LIST_HEAD(&pgtable->lru);
  512. else
  513. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  514. mm->pmd_huge_pte = pgtable;
  515. }
  516. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  517. {
  518. if (likely(vma->vm_flags & VM_WRITE))
  519. pmd = pmd_mkwrite(pmd);
  520. return pmd;
  521. }
  522. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  523. struct vm_area_struct *vma,
  524. unsigned long haddr, pmd_t *pmd,
  525. struct page *page)
  526. {
  527. int ret = 0;
  528. pgtable_t pgtable;
  529. VM_BUG_ON(!PageCompound(page));
  530. pgtable = pte_alloc_one(mm, haddr);
  531. if (unlikely(!pgtable)) {
  532. mem_cgroup_uncharge_page(page);
  533. put_page(page);
  534. return VM_FAULT_OOM;
  535. }
  536. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  537. __SetPageUptodate(page);
  538. spin_lock(&mm->page_table_lock);
  539. if (unlikely(!pmd_none(*pmd))) {
  540. spin_unlock(&mm->page_table_lock);
  541. mem_cgroup_uncharge_page(page);
  542. put_page(page);
  543. pte_free(mm, pgtable);
  544. } else {
  545. pmd_t entry;
  546. entry = mk_pmd(page, vma->vm_page_prot);
  547. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  548. entry = pmd_mkhuge(entry);
  549. /*
  550. * The spinlocking to take the lru_lock inside
  551. * page_add_new_anon_rmap() acts as a full memory
  552. * barrier to be sure clear_huge_page writes become
  553. * visible after the set_pmd_at() write.
  554. */
  555. page_add_new_anon_rmap(page, vma, haddr);
  556. set_pmd_at(mm, haddr, pmd, entry);
  557. prepare_pmd_huge_pte(pgtable, mm);
  558. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  559. spin_unlock(&mm->page_table_lock);
  560. }
  561. return ret;
  562. }
  563. static inline gfp_t alloc_hugepage_gfpmask(int defrag)
  564. {
  565. return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
  566. }
  567. static inline struct page *alloc_hugepage_vma(int defrag,
  568. struct vm_area_struct *vma,
  569. unsigned long haddr)
  570. {
  571. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
  572. HPAGE_PMD_ORDER, vma, haddr);
  573. }
  574. #ifndef CONFIG_NUMA
  575. static inline struct page *alloc_hugepage(int defrag)
  576. {
  577. return alloc_pages(alloc_hugepage_gfpmask(defrag),
  578. HPAGE_PMD_ORDER);
  579. }
  580. #endif
  581. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  582. unsigned long address, pmd_t *pmd,
  583. unsigned int flags)
  584. {
  585. struct page *page;
  586. unsigned long haddr = address & HPAGE_PMD_MASK;
  587. pte_t *pte;
  588. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  589. if (unlikely(anon_vma_prepare(vma)))
  590. return VM_FAULT_OOM;
  591. if (unlikely(khugepaged_enter(vma)))
  592. return VM_FAULT_OOM;
  593. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  594. vma, haddr);
  595. if (unlikely(!page))
  596. goto out;
  597. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  598. put_page(page);
  599. goto out;
  600. }
  601. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  602. }
  603. out:
  604. /*
  605. * Use __pte_alloc instead of pte_alloc_map, because we can't
  606. * run pte_offset_map on the pmd, if an huge pmd could
  607. * materialize from under us from a different thread.
  608. */
  609. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  610. return VM_FAULT_OOM;
  611. /* if an huge pmd materialized from under us just retry later */
  612. if (unlikely(pmd_trans_huge(*pmd)))
  613. return 0;
  614. /*
  615. * A regular pmd is established and it can't morph into a huge pmd
  616. * from under us anymore at this point because we hold the mmap_sem
  617. * read mode and khugepaged takes it in write mode. So now it's
  618. * safe to run pte_offset_map().
  619. */
  620. pte = pte_offset_map(pmd, address);
  621. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  622. }
  623. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  624. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  625. struct vm_area_struct *vma)
  626. {
  627. struct page *src_page;
  628. pmd_t pmd;
  629. pgtable_t pgtable;
  630. int ret;
  631. ret = -ENOMEM;
  632. pgtable = pte_alloc_one(dst_mm, addr);
  633. if (unlikely(!pgtable))
  634. goto out;
  635. spin_lock(&dst_mm->page_table_lock);
  636. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  637. ret = -EAGAIN;
  638. pmd = *src_pmd;
  639. if (unlikely(!pmd_trans_huge(pmd))) {
  640. pte_free(dst_mm, pgtable);
  641. goto out_unlock;
  642. }
  643. if (unlikely(pmd_trans_splitting(pmd))) {
  644. /* split huge page running from under us */
  645. spin_unlock(&src_mm->page_table_lock);
  646. spin_unlock(&dst_mm->page_table_lock);
  647. pte_free(dst_mm, pgtable);
  648. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  649. goto out;
  650. }
  651. src_page = pmd_page(pmd);
  652. VM_BUG_ON(!PageHead(src_page));
  653. get_page(src_page);
  654. page_dup_rmap(src_page);
  655. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  656. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  657. pmd = pmd_mkold(pmd_wrprotect(pmd));
  658. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  659. prepare_pmd_huge_pte(pgtable, dst_mm);
  660. ret = 0;
  661. out_unlock:
  662. spin_unlock(&src_mm->page_table_lock);
  663. spin_unlock(&dst_mm->page_table_lock);
  664. out:
  665. return ret;
  666. }
  667. /* no "address" argument so destroys page coloring of some arch */
  668. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  669. {
  670. pgtable_t pgtable;
  671. assert_spin_locked(&mm->page_table_lock);
  672. /* FIFO */
  673. pgtable = mm->pmd_huge_pte;
  674. if (list_empty(&pgtable->lru))
  675. mm->pmd_huge_pte = NULL;
  676. else {
  677. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  678. struct page, lru);
  679. list_del(&pgtable->lru);
  680. }
  681. return pgtable;
  682. }
  683. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  684. struct vm_area_struct *vma,
  685. unsigned long address,
  686. pmd_t *pmd, pmd_t orig_pmd,
  687. struct page *page,
  688. unsigned long haddr)
  689. {
  690. pgtable_t pgtable;
  691. pmd_t _pmd;
  692. int ret = 0, i;
  693. struct page **pages;
  694. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  695. GFP_KERNEL);
  696. if (unlikely(!pages)) {
  697. ret |= VM_FAULT_OOM;
  698. goto out;
  699. }
  700. for (i = 0; i < HPAGE_PMD_NR; i++) {
  701. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  702. vma, address);
  703. if (unlikely(!pages[i] ||
  704. mem_cgroup_newpage_charge(pages[i], mm,
  705. GFP_KERNEL))) {
  706. if (pages[i])
  707. put_page(pages[i]);
  708. mem_cgroup_uncharge_start();
  709. while (--i >= 0) {
  710. mem_cgroup_uncharge_page(pages[i]);
  711. put_page(pages[i]);
  712. }
  713. mem_cgroup_uncharge_end();
  714. kfree(pages);
  715. ret |= VM_FAULT_OOM;
  716. goto out;
  717. }
  718. }
  719. for (i = 0; i < HPAGE_PMD_NR; i++) {
  720. copy_user_highpage(pages[i], page + i,
  721. haddr + PAGE_SHIFT*i, vma);
  722. __SetPageUptodate(pages[i]);
  723. cond_resched();
  724. }
  725. spin_lock(&mm->page_table_lock);
  726. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  727. goto out_free_pages;
  728. VM_BUG_ON(!PageHead(page));
  729. pmdp_clear_flush_notify(vma, haddr, pmd);
  730. /* leave pmd empty until pte is filled */
  731. pgtable = get_pmd_huge_pte(mm);
  732. pmd_populate(mm, &_pmd, pgtable);
  733. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  734. pte_t *pte, entry;
  735. entry = mk_pte(pages[i], vma->vm_page_prot);
  736. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  737. page_add_new_anon_rmap(pages[i], vma, haddr);
  738. pte = pte_offset_map(&_pmd, haddr);
  739. VM_BUG_ON(!pte_none(*pte));
  740. set_pte_at(mm, haddr, pte, entry);
  741. pte_unmap(pte);
  742. }
  743. kfree(pages);
  744. mm->nr_ptes++;
  745. smp_wmb(); /* make pte visible before pmd */
  746. pmd_populate(mm, pmd, pgtable);
  747. page_remove_rmap(page);
  748. spin_unlock(&mm->page_table_lock);
  749. ret |= VM_FAULT_WRITE;
  750. put_page(page);
  751. out:
  752. return ret;
  753. out_free_pages:
  754. spin_unlock(&mm->page_table_lock);
  755. mem_cgroup_uncharge_start();
  756. for (i = 0; i < HPAGE_PMD_NR; i++) {
  757. mem_cgroup_uncharge_page(pages[i]);
  758. put_page(pages[i]);
  759. }
  760. mem_cgroup_uncharge_end();
  761. kfree(pages);
  762. goto out;
  763. }
  764. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  765. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  766. {
  767. int ret = 0;
  768. struct page *page, *new_page;
  769. unsigned long haddr;
  770. VM_BUG_ON(!vma->anon_vma);
  771. spin_lock(&mm->page_table_lock);
  772. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  773. goto out_unlock;
  774. page = pmd_page(orig_pmd);
  775. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  776. haddr = address & HPAGE_PMD_MASK;
  777. if (page_mapcount(page) == 1) {
  778. pmd_t entry;
  779. entry = pmd_mkyoung(orig_pmd);
  780. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  781. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  782. update_mmu_cache(vma, address, entry);
  783. ret |= VM_FAULT_WRITE;
  784. goto out_unlock;
  785. }
  786. get_page(page);
  787. spin_unlock(&mm->page_table_lock);
  788. if (transparent_hugepage_enabled(vma) &&
  789. !transparent_hugepage_debug_cow())
  790. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  791. vma, haddr);
  792. else
  793. new_page = NULL;
  794. if (unlikely(!new_page)) {
  795. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  796. pmd, orig_pmd, page, haddr);
  797. put_page(page);
  798. goto out;
  799. }
  800. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  801. put_page(new_page);
  802. put_page(page);
  803. ret |= VM_FAULT_OOM;
  804. goto out;
  805. }
  806. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  807. __SetPageUptodate(new_page);
  808. spin_lock(&mm->page_table_lock);
  809. put_page(page);
  810. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  811. mem_cgroup_uncharge_page(new_page);
  812. put_page(new_page);
  813. } else {
  814. pmd_t entry;
  815. VM_BUG_ON(!PageHead(page));
  816. entry = mk_pmd(new_page, vma->vm_page_prot);
  817. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  818. entry = pmd_mkhuge(entry);
  819. pmdp_clear_flush_notify(vma, haddr, pmd);
  820. page_add_new_anon_rmap(new_page, vma, haddr);
  821. set_pmd_at(mm, haddr, pmd, entry);
  822. update_mmu_cache(vma, address, entry);
  823. page_remove_rmap(page);
  824. put_page(page);
  825. ret |= VM_FAULT_WRITE;
  826. }
  827. out_unlock:
  828. spin_unlock(&mm->page_table_lock);
  829. out:
  830. return ret;
  831. }
  832. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  833. unsigned long addr,
  834. pmd_t *pmd,
  835. unsigned int flags)
  836. {
  837. struct page *page = NULL;
  838. assert_spin_locked(&mm->page_table_lock);
  839. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  840. goto out;
  841. page = pmd_page(*pmd);
  842. VM_BUG_ON(!PageHead(page));
  843. if (flags & FOLL_TOUCH) {
  844. pmd_t _pmd;
  845. /*
  846. * We should set the dirty bit only for FOLL_WRITE but
  847. * for now the dirty bit in the pmd is meaningless.
  848. * And if the dirty bit will become meaningful and
  849. * we'll only set it with FOLL_WRITE, an atomic
  850. * set_bit will be required on the pmd to set the
  851. * young bit, instead of the current set_pmd_at.
  852. */
  853. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  854. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  855. }
  856. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  857. VM_BUG_ON(!PageCompound(page));
  858. if (flags & FOLL_GET)
  859. get_page(page);
  860. out:
  861. return page;
  862. }
  863. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  864. pmd_t *pmd)
  865. {
  866. int ret = 0;
  867. spin_lock(&tlb->mm->page_table_lock);
  868. if (likely(pmd_trans_huge(*pmd))) {
  869. if (unlikely(pmd_trans_splitting(*pmd))) {
  870. spin_unlock(&tlb->mm->page_table_lock);
  871. wait_split_huge_page(vma->anon_vma,
  872. pmd);
  873. } else {
  874. struct page *page;
  875. pgtable_t pgtable;
  876. pgtable = get_pmd_huge_pte(tlb->mm);
  877. page = pmd_page(*pmd);
  878. pmd_clear(pmd);
  879. page_remove_rmap(page);
  880. VM_BUG_ON(page_mapcount(page) < 0);
  881. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  882. VM_BUG_ON(!PageHead(page));
  883. spin_unlock(&tlb->mm->page_table_lock);
  884. tlb_remove_page(tlb, page);
  885. pte_free(tlb->mm, pgtable);
  886. ret = 1;
  887. }
  888. } else
  889. spin_unlock(&tlb->mm->page_table_lock);
  890. return ret;
  891. }
  892. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  893. unsigned long addr, unsigned long end,
  894. unsigned char *vec)
  895. {
  896. int ret = 0;
  897. spin_lock(&vma->vm_mm->page_table_lock);
  898. if (likely(pmd_trans_huge(*pmd))) {
  899. ret = !pmd_trans_splitting(*pmd);
  900. spin_unlock(&vma->vm_mm->page_table_lock);
  901. if (unlikely(!ret))
  902. wait_split_huge_page(vma->anon_vma, pmd);
  903. else {
  904. /*
  905. * All logical pages in the range are present
  906. * if backed by a huge page.
  907. */
  908. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  909. }
  910. } else
  911. spin_unlock(&vma->vm_mm->page_table_lock);
  912. return ret;
  913. }
  914. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  915. unsigned long addr, pgprot_t newprot)
  916. {
  917. struct mm_struct *mm = vma->vm_mm;
  918. int ret = 0;
  919. spin_lock(&mm->page_table_lock);
  920. if (likely(pmd_trans_huge(*pmd))) {
  921. if (unlikely(pmd_trans_splitting(*pmd))) {
  922. spin_unlock(&mm->page_table_lock);
  923. wait_split_huge_page(vma->anon_vma, pmd);
  924. } else {
  925. pmd_t entry;
  926. entry = pmdp_get_and_clear(mm, addr, pmd);
  927. entry = pmd_modify(entry, newprot);
  928. set_pmd_at(mm, addr, pmd, entry);
  929. spin_unlock(&vma->vm_mm->page_table_lock);
  930. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  931. ret = 1;
  932. }
  933. } else
  934. spin_unlock(&vma->vm_mm->page_table_lock);
  935. return ret;
  936. }
  937. pmd_t *page_check_address_pmd(struct page *page,
  938. struct mm_struct *mm,
  939. unsigned long address,
  940. enum page_check_address_pmd_flag flag)
  941. {
  942. pgd_t *pgd;
  943. pud_t *pud;
  944. pmd_t *pmd, *ret = NULL;
  945. if (address & ~HPAGE_PMD_MASK)
  946. goto out;
  947. pgd = pgd_offset(mm, address);
  948. if (!pgd_present(*pgd))
  949. goto out;
  950. pud = pud_offset(pgd, address);
  951. if (!pud_present(*pud))
  952. goto out;
  953. pmd = pmd_offset(pud, address);
  954. if (pmd_none(*pmd))
  955. goto out;
  956. if (pmd_page(*pmd) != page)
  957. goto out;
  958. /*
  959. * split_vma() may create temporary aliased mappings. There is
  960. * no risk as long as all huge pmd are found and have their
  961. * splitting bit set before __split_huge_page_refcount
  962. * runs. Finding the same huge pmd more than once during the
  963. * same rmap walk is not a problem.
  964. */
  965. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  966. pmd_trans_splitting(*pmd))
  967. goto out;
  968. if (pmd_trans_huge(*pmd)) {
  969. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  970. !pmd_trans_splitting(*pmd));
  971. ret = pmd;
  972. }
  973. out:
  974. return ret;
  975. }
  976. static int __split_huge_page_splitting(struct page *page,
  977. struct vm_area_struct *vma,
  978. unsigned long address)
  979. {
  980. struct mm_struct *mm = vma->vm_mm;
  981. pmd_t *pmd;
  982. int ret = 0;
  983. spin_lock(&mm->page_table_lock);
  984. pmd = page_check_address_pmd(page, mm, address,
  985. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  986. if (pmd) {
  987. /*
  988. * We can't temporarily set the pmd to null in order
  989. * to split it, the pmd must remain marked huge at all
  990. * times or the VM won't take the pmd_trans_huge paths
  991. * and it won't wait on the anon_vma->root->lock to
  992. * serialize against split_huge_page*.
  993. */
  994. pmdp_splitting_flush_notify(vma, address, pmd);
  995. ret = 1;
  996. }
  997. spin_unlock(&mm->page_table_lock);
  998. return ret;
  999. }
  1000. static void __split_huge_page_refcount(struct page *page)
  1001. {
  1002. int i;
  1003. unsigned long head_index = page->index;
  1004. struct zone *zone = page_zone(page);
  1005. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1006. spin_lock_irq(&zone->lru_lock);
  1007. compound_lock(page);
  1008. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1009. struct page *page_tail = page + i;
  1010. /* tail_page->_count cannot change */
  1011. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1012. BUG_ON(page_count(page) <= 0);
  1013. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1014. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1015. /* after clearing PageTail the gup refcount can be released */
  1016. smp_mb();
  1017. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1018. page_tail->flags |= (page->flags &
  1019. ((1L << PG_referenced) |
  1020. (1L << PG_swapbacked) |
  1021. (1L << PG_mlocked) |
  1022. (1L << PG_uptodate)));
  1023. page_tail->flags |= (1L << PG_dirty);
  1024. /*
  1025. * 1) clear PageTail before overwriting first_page
  1026. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1027. */
  1028. smp_wmb();
  1029. /*
  1030. * __split_huge_page_splitting() already set the
  1031. * splitting bit in all pmd that could map this
  1032. * hugepage, that will ensure no CPU can alter the
  1033. * mapcount on the head page. The mapcount is only
  1034. * accounted in the head page and it has to be
  1035. * transferred to all tail pages in the below code. So
  1036. * for this code to be safe, the split the mapcount
  1037. * can't change. But that doesn't mean userland can't
  1038. * keep changing and reading the page contents while
  1039. * we transfer the mapcount, so the pmd splitting
  1040. * status is achieved setting a reserved bit in the
  1041. * pmd, not by clearing the present bit.
  1042. */
  1043. BUG_ON(page_mapcount(page_tail));
  1044. page_tail->_mapcount = page->_mapcount;
  1045. BUG_ON(page_tail->mapping);
  1046. page_tail->mapping = page->mapping;
  1047. page_tail->index = ++head_index;
  1048. BUG_ON(!PageAnon(page_tail));
  1049. BUG_ON(!PageUptodate(page_tail));
  1050. BUG_ON(!PageDirty(page_tail));
  1051. BUG_ON(!PageSwapBacked(page_tail));
  1052. lru_add_page_tail(zone, page, page_tail);
  1053. }
  1054. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1055. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1056. ClearPageCompound(page);
  1057. compound_unlock(page);
  1058. spin_unlock_irq(&zone->lru_lock);
  1059. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1060. struct page *page_tail = page + i;
  1061. BUG_ON(page_count(page_tail) <= 0);
  1062. /*
  1063. * Tail pages may be freed if there wasn't any mapping
  1064. * like if add_to_swap() is running on a lru page that
  1065. * had its mapping zapped. And freeing these pages
  1066. * requires taking the lru_lock so we do the put_page
  1067. * of the tail pages after the split is complete.
  1068. */
  1069. put_page(page_tail);
  1070. }
  1071. /*
  1072. * Only the head page (now become a regular page) is required
  1073. * to be pinned by the caller.
  1074. */
  1075. BUG_ON(page_count(page) <= 0);
  1076. }
  1077. static int __split_huge_page_map(struct page *page,
  1078. struct vm_area_struct *vma,
  1079. unsigned long address)
  1080. {
  1081. struct mm_struct *mm = vma->vm_mm;
  1082. pmd_t *pmd, _pmd;
  1083. int ret = 0, i;
  1084. pgtable_t pgtable;
  1085. unsigned long haddr;
  1086. spin_lock(&mm->page_table_lock);
  1087. pmd = page_check_address_pmd(page, mm, address,
  1088. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1089. if (pmd) {
  1090. pgtable = get_pmd_huge_pte(mm);
  1091. pmd_populate(mm, &_pmd, pgtable);
  1092. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1093. i++, haddr += PAGE_SIZE) {
  1094. pte_t *pte, entry;
  1095. BUG_ON(PageCompound(page+i));
  1096. entry = mk_pte(page + i, vma->vm_page_prot);
  1097. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1098. if (!pmd_write(*pmd))
  1099. entry = pte_wrprotect(entry);
  1100. else
  1101. BUG_ON(page_mapcount(page) != 1);
  1102. if (!pmd_young(*pmd))
  1103. entry = pte_mkold(entry);
  1104. pte = pte_offset_map(&_pmd, haddr);
  1105. BUG_ON(!pte_none(*pte));
  1106. set_pte_at(mm, haddr, pte, entry);
  1107. pte_unmap(pte);
  1108. }
  1109. mm->nr_ptes++;
  1110. smp_wmb(); /* make pte visible before pmd */
  1111. /*
  1112. * Up to this point the pmd is present and huge and
  1113. * userland has the whole access to the hugepage
  1114. * during the split (which happens in place). If we
  1115. * overwrite the pmd with the not-huge version
  1116. * pointing to the pte here (which of course we could
  1117. * if all CPUs were bug free), userland could trigger
  1118. * a small page size TLB miss on the small sized TLB
  1119. * while the hugepage TLB entry is still established
  1120. * in the huge TLB. Some CPU doesn't like that. See
  1121. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1122. * Erratum 383 on page 93. Intel should be safe but is
  1123. * also warns that it's only safe if the permission
  1124. * and cache attributes of the two entries loaded in
  1125. * the two TLB is identical (which should be the case
  1126. * here). But it is generally safer to never allow
  1127. * small and huge TLB entries for the same virtual
  1128. * address to be loaded simultaneously. So instead of
  1129. * doing "pmd_populate(); flush_tlb_range();" we first
  1130. * mark the current pmd notpresent (atomically because
  1131. * here the pmd_trans_huge and pmd_trans_splitting
  1132. * must remain set at all times on the pmd until the
  1133. * split is complete for this pmd), then we flush the
  1134. * SMP TLB and finally we write the non-huge version
  1135. * of the pmd entry with pmd_populate.
  1136. */
  1137. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1138. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1139. pmd_populate(mm, pmd, pgtable);
  1140. ret = 1;
  1141. }
  1142. spin_unlock(&mm->page_table_lock);
  1143. return ret;
  1144. }
  1145. /* must be called with anon_vma->root->lock hold */
  1146. static void __split_huge_page(struct page *page,
  1147. struct anon_vma *anon_vma)
  1148. {
  1149. int mapcount, mapcount2;
  1150. struct anon_vma_chain *avc;
  1151. BUG_ON(!PageHead(page));
  1152. BUG_ON(PageTail(page));
  1153. mapcount = 0;
  1154. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1155. struct vm_area_struct *vma = avc->vma;
  1156. unsigned long addr = vma_address(page, vma);
  1157. BUG_ON(is_vma_temporary_stack(vma));
  1158. if (addr == -EFAULT)
  1159. continue;
  1160. mapcount += __split_huge_page_splitting(page, vma, addr);
  1161. }
  1162. /*
  1163. * It is critical that new vmas are added to the tail of the
  1164. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1165. * and establishes a child pmd before
  1166. * __split_huge_page_splitting() freezes the parent pmd (so if
  1167. * we fail to prevent copy_huge_pmd() from running until the
  1168. * whole __split_huge_page() is complete), we will still see
  1169. * the newly established pmd of the child later during the
  1170. * walk, to be able to set it as pmd_trans_splitting too.
  1171. */
  1172. if (mapcount != page_mapcount(page))
  1173. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1174. mapcount, page_mapcount(page));
  1175. BUG_ON(mapcount != page_mapcount(page));
  1176. __split_huge_page_refcount(page);
  1177. mapcount2 = 0;
  1178. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1179. struct vm_area_struct *vma = avc->vma;
  1180. unsigned long addr = vma_address(page, vma);
  1181. BUG_ON(is_vma_temporary_stack(vma));
  1182. if (addr == -EFAULT)
  1183. continue;
  1184. mapcount2 += __split_huge_page_map(page, vma, addr);
  1185. }
  1186. if (mapcount != mapcount2)
  1187. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1188. mapcount, mapcount2, page_mapcount(page));
  1189. BUG_ON(mapcount != mapcount2);
  1190. }
  1191. int split_huge_page(struct page *page)
  1192. {
  1193. struct anon_vma *anon_vma;
  1194. int ret = 1;
  1195. BUG_ON(!PageAnon(page));
  1196. anon_vma = page_lock_anon_vma(page);
  1197. if (!anon_vma)
  1198. goto out;
  1199. ret = 0;
  1200. if (!PageCompound(page))
  1201. goto out_unlock;
  1202. BUG_ON(!PageSwapBacked(page));
  1203. __split_huge_page(page, anon_vma);
  1204. BUG_ON(PageCompound(page));
  1205. out_unlock:
  1206. page_unlock_anon_vma(anon_vma);
  1207. out:
  1208. return ret;
  1209. }
  1210. int hugepage_madvise(unsigned long *vm_flags)
  1211. {
  1212. /*
  1213. * Be somewhat over-protective like KSM for now!
  1214. */
  1215. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1216. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1217. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1218. VM_MIXEDMAP | VM_SAO))
  1219. return -EINVAL;
  1220. *vm_flags |= VM_HUGEPAGE;
  1221. return 0;
  1222. }
  1223. static int __init khugepaged_slab_init(void)
  1224. {
  1225. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1226. sizeof(struct mm_slot),
  1227. __alignof__(struct mm_slot), 0, NULL);
  1228. if (!mm_slot_cache)
  1229. return -ENOMEM;
  1230. return 0;
  1231. }
  1232. static void __init khugepaged_slab_free(void)
  1233. {
  1234. kmem_cache_destroy(mm_slot_cache);
  1235. mm_slot_cache = NULL;
  1236. }
  1237. static inline struct mm_slot *alloc_mm_slot(void)
  1238. {
  1239. if (!mm_slot_cache) /* initialization failed */
  1240. return NULL;
  1241. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1242. }
  1243. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1244. {
  1245. kmem_cache_free(mm_slot_cache, mm_slot);
  1246. }
  1247. static int __init mm_slots_hash_init(void)
  1248. {
  1249. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1250. GFP_KERNEL);
  1251. if (!mm_slots_hash)
  1252. return -ENOMEM;
  1253. return 0;
  1254. }
  1255. #if 0
  1256. static void __init mm_slots_hash_free(void)
  1257. {
  1258. kfree(mm_slots_hash);
  1259. mm_slots_hash = NULL;
  1260. }
  1261. #endif
  1262. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1263. {
  1264. struct mm_slot *mm_slot;
  1265. struct hlist_head *bucket;
  1266. struct hlist_node *node;
  1267. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1268. % MM_SLOTS_HASH_HEADS];
  1269. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1270. if (mm == mm_slot->mm)
  1271. return mm_slot;
  1272. }
  1273. return NULL;
  1274. }
  1275. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1276. struct mm_slot *mm_slot)
  1277. {
  1278. struct hlist_head *bucket;
  1279. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1280. % MM_SLOTS_HASH_HEADS];
  1281. mm_slot->mm = mm;
  1282. hlist_add_head(&mm_slot->hash, bucket);
  1283. }
  1284. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1285. {
  1286. return atomic_read(&mm->mm_users) == 0;
  1287. }
  1288. int __khugepaged_enter(struct mm_struct *mm)
  1289. {
  1290. struct mm_slot *mm_slot;
  1291. int wakeup;
  1292. mm_slot = alloc_mm_slot();
  1293. if (!mm_slot)
  1294. return -ENOMEM;
  1295. /* __khugepaged_exit() must not run from under us */
  1296. VM_BUG_ON(khugepaged_test_exit(mm));
  1297. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1298. free_mm_slot(mm_slot);
  1299. return 0;
  1300. }
  1301. spin_lock(&khugepaged_mm_lock);
  1302. insert_to_mm_slots_hash(mm, mm_slot);
  1303. /*
  1304. * Insert just behind the scanning cursor, to let the area settle
  1305. * down a little.
  1306. */
  1307. wakeup = list_empty(&khugepaged_scan.mm_head);
  1308. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1309. spin_unlock(&khugepaged_mm_lock);
  1310. atomic_inc(&mm->mm_count);
  1311. if (wakeup)
  1312. wake_up_interruptible(&khugepaged_wait);
  1313. return 0;
  1314. }
  1315. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1316. {
  1317. unsigned long hstart, hend;
  1318. if (!vma->anon_vma)
  1319. /*
  1320. * Not yet faulted in so we will register later in the
  1321. * page fault if needed.
  1322. */
  1323. return 0;
  1324. if (vma->vm_file || vma->vm_ops)
  1325. /* khugepaged not yet working on file or special mappings */
  1326. return 0;
  1327. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1328. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1329. hend = vma->vm_end & HPAGE_PMD_MASK;
  1330. if (hstart < hend)
  1331. return khugepaged_enter(vma);
  1332. return 0;
  1333. }
  1334. void __khugepaged_exit(struct mm_struct *mm)
  1335. {
  1336. struct mm_slot *mm_slot;
  1337. int free = 0;
  1338. spin_lock(&khugepaged_mm_lock);
  1339. mm_slot = get_mm_slot(mm);
  1340. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1341. hlist_del(&mm_slot->hash);
  1342. list_del(&mm_slot->mm_node);
  1343. free = 1;
  1344. }
  1345. if (free) {
  1346. spin_unlock(&khugepaged_mm_lock);
  1347. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1348. free_mm_slot(mm_slot);
  1349. mmdrop(mm);
  1350. } else if (mm_slot) {
  1351. spin_unlock(&khugepaged_mm_lock);
  1352. /*
  1353. * This is required to serialize against
  1354. * khugepaged_test_exit() (which is guaranteed to run
  1355. * under mmap sem read mode). Stop here (after we
  1356. * return all pagetables will be destroyed) until
  1357. * khugepaged has finished working on the pagetables
  1358. * under the mmap_sem.
  1359. */
  1360. down_write(&mm->mmap_sem);
  1361. up_write(&mm->mmap_sem);
  1362. } else
  1363. spin_unlock(&khugepaged_mm_lock);
  1364. }
  1365. static void release_pte_page(struct page *page)
  1366. {
  1367. /* 0 stands for page_is_file_cache(page) == false */
  1368. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1369. unlock_page(page);
  1370. putback_lru_page(page);
  1371. }
  1372. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1373. {
  1374. while (--_pte >= pte) {
  1375. pte_t pteval = *_pte;
  1376. if (!pte_none(pteval))
  1377. release_pte_page(pte_page(pteval));
  1378. }
  1379. }
  1380. static void release_all_pte_pages(pte_t *pte)
  1381. {
  1382. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1383. }
  1384. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1385. unsigned long address,
  1386. pte_t *pte)
  1387. {
  1388. struct page *page;
  1389. pte_t *_pte;
  1390. int referenced = 0, isolated = 0, none = 0;
  1391. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1392. _pte++, address += PAGE_SIZE) {
  1393. pte_t pteval = *_pte;
  1394. if (pte_none(pteval)) {
  1395. if (++none <= khugepaged_max_ptes_none)
  1396. continue;
  1397. else {
  1398. release_pte_pages(pte, _pte);
  1399. goto out;
  1400. }
  1401. }
  1402. if (!pte_present(pteval) || !pte_write(pteval)) {
  1403. release_pte_pages(pte, _pte);
  1404. goto out;
  1405. }
  1406. page = vm_normal_page(vma, address, pteval);
  1407. if (unlikely(!page)) {
  1408. release_pte_pages(pte, _pte);
  1409. goto out;
  1410. }
  1411. VM_BUG_ON(PageCompound(page));
  1412. BUG_ON(!PageAnon(page));
  1413. VM_BUG_ON(!PageSwapBacked(page));
  1414. /* cannot use mapcount: can't collapse if there's a gup pin */
  1415. if (page_count(page) != 1) {
  1416. release_pte_pages(pte, _pte);
  1417. goto out;
  1418. }
  1419. /*
  1420. * We can do it before isolate_lru_page because the
  1421. * page can't be freed from under us. NOTE: PG_lock
  1422. * is needed to serialize against split_huge_page
  1423. * when invoked from the VM.
  1424. */
  1425. if (!trylock_page(page)) {
  1426. release_pte_pages(pte, _pte);
  1427. goto out;
  1428. }
  1429. /*
  1430. * Isolate the page to avoid collapsing an hugepage
  1431. * currently in use by the VM.
  1432. */
  1433. if (isolate_lru_page(page)) {
  1434. unlock_page(page);
  1435. release_pte_pages(pte, _pte);
  1436. goto out;
  1437. }
  1438. /* 0 stands for page_is_file_cache(page) == false */
  1439. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1440. VM_BUG_ON(!PageLocked(page));
  1441. VM_BUG_ON(PageLRU(page));
  1442. /* If there is no mapped pte young don't collapse the page */
  1443. if (pte_young(pteval) || PageReferenced(page) ||
  1444. mmu_notifier_test_young(vma->vm_mm, address))
  1445. referenced = 1;
  1446. }
  1447. if (unlikely(!referenced))
  1448. release_all_pte_pages(pte);
  1449. else
  1450. isolated = 1;
  1451. out:
  1452. return isolated;
  1453. }
  1454. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1455. struct vm_area_struct *vma,
  1456. unsigned long address,
  1457. spinlock_t *ptl)
  1458. {
  1459. pte_t *_pte;
  1460. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1461. pte_t pteval = *_pte;
  1462. struct page *src_page;
  1463. if (pte_none(pteval)) {
  1464. clear_user_highpage(page, address);
  1465. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1466. } else {
  1467. src_page = pte_page(pteval);
  1468. copy_user_highpage(page, src_page, address, vma);
  1469. VM_BUG_ON(page_mapcount(src_page) != 1);
  1470. VM_BUG_ON(page_count(src_page) != 2);
  1471. release_pte_page(src_page);
  1472. /*
  1473. * ptl mostly unnecessary, but preempt has to
  1474. * be disabled to update the per-cpu stats
  1475. * inside page_remove_rmap().
  1476. */
  1477. spin_lock(ptl);
  1478. /*
  1479. * paravirt calls inside pte_clear here are
  1480. * superfluous.
  1481. */
  1482. pte_clear(vma->vm_mm, address, _pte);
  1483. page_remove_rmap(src_page);
  1484. spin_unlock(ptl);
  1485. free_page_and_swap_cache(src_page);
  1486. }
  1487. address += PAGE_SIZE;
  1488. page++;
  1489. }
  1490. }
  1491. static void collapse_huge_page(struct mm_struct *mm,
  1492. unsigned long address,
  1493. struct page **hpage,
  1494. struct vm_area_struct *vma)
  1495. {
  1496. pgd_t *pgd;
  1497. pud_t *pud;
  1498. pmd_t *pmd, _pmd;
  1499. pte_t *pte;
  1500. pgtable_t pgtable;
  1501. struct page *new_page;
  1502. spinlock_t *ptl;
  1503. int isolated;
  1504. unsigned long hstart, hend;
  1505. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1506. #ifndef CONFIG_NUMA
  1507. VM_BUG_ON(!*hpage);
  1508. new_page = *hpage;
  1509. #else
  1510. VM_BUG_ON(*hpage);
  1511. /*
  1512. * Allocate the page while the vma is still valid and under
  1513. * the mmap_sem read mode so there is no memory allocation
  1514. * later when we take the mmap_sem in write mode. This is more
  1515. * friendly behavior (OTOH it may actually hide bugs) to
  1516. * filesystems in userland with daemons allocating memory in
  1517. * the userland I/O paths. Allocating memory with the
  1518. * mmap_sem in read mode is good idea also to allow greater
  1519. * scalability.
  1520. */
  1521. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
  1522. if (unlikely(!new_page)) {
  1523. up_read(&mm->mmap_sem);
  1524. *hpage = ERR_PTR(-ENOMEM);
  1525. return;
  1526. }
  1527. #endif
  1528. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1529. up_read(&mm->mmap_sem);
  1530. put_page(new_page);
  1531. return;
  1532. }
  1533. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1534. up_read(&mm->mmap_sem);
  1535. /*
  1536. * Prevent all access to pagetables with the exception of
  1537. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1538. * handled by the anon_vma lock + PG_lock.
  1539. */
  1540. down_write(&mm->mmap_sem);
  1541. if (unlikely(khugepaged_test_exit(mm)))
  1542. goto out;
  1543. vma = find_vma(mm, address);
  1544. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1545. hend = vma->vm_end & HPAGE_PMD_MASK;
  1546. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1547. goto out;
  1548. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1549. goto out;
  1550. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1551. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1552. goto out;
  1553. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1554. pgd = pgd_offset(mm, address);
  1555. if (!pgd_present(*pgd))
  1556. goto out;
  1557. pud = pud_offset(pgd, address);
  1558. if (!pud_present(*pud))
  1559. goto out;
  1560. pmd = pmd_offset(pud, address);
  1561. /* pmd can't go away or become huge under us */
  1562. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1563. goto out;
  1564. anon_vma_lock(vma->anon_vma);
  1565. pte = pte_offset_map(pmd, address);
  1566. ptl = pte_lockptr(mm, pmd);
  1567. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1568. /*
  1569. * After this gup_fast can't run anymore. This also removes
  1570. * any huge TLB entry from the CPU so we won't allow
  1571. * huge and small TLB entries for the same virtual address
  1572. * to avoid the risk of CPU bugs in that area.
  1573. */
  1574. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1575. spin_unlock(&mm->page_table_lock);
  1576. spin_lock(ptl);
  1577. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1578. spin_unlock(ptl);
  1579. pte_unmap(pte);
  1580. if (unlikely(!isolated)) {
  1581. spin_lock(&mm->page_table_lock);
  1582. BUG_ON(!pmd_none(*pmd));
  1583. set_pmd_at(mm, address, pmd, _pmd);
  1584. spin_unlock(&mm->page_table_lock);
  1585. anon_vma_unlock(vma->anon_vma);
  1586. mem_cgroup_uncharge_page(new_page);
  1587. goto out;
  1588. }
  1589. /*
  1590. * All pages are isolated and locked so anon_vma rmap
  1591. * can't run anymore.
  1592. */
  1593. anon_vma_unlock(vma->anon_vma);
  1594. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1595. __SetPageUptodate(new_page);
  1596. pgtable = pmd_pgtable(_pmd);
  1597. VM_BUG_ON(page_count(pgtable) != 1);
  1598. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1599. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1600. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1601. _pmd = pmd_mkhuge(_pmd);
  1602. /*
  1603. * spin_lock() below is not the equivalent of smp_wmb(), so
  1604. * this is needed to avoid the copy_huge_page writes to become
  1605. * visible after the set_pmd_at() write.
  1606. */
  1607. smp_wmb();
  1608. spin_lock(&mm->page_table_lock);
  1609. BUG_ON(!pmd_none(*pmd));
  1610. page_add_new_anon_rmap(new_page, vma, address);
  1611. set_pmd_at(mm, address, pmd, _pmd);
  1612. update_mmu_cache(vma, address, entry);
  1613. prepare_pmd_huge_pte(pgtable, mm);
  1614. mm->nr_ptes--;
  1615. spin_unlock(&mm->page_table_lock);
  1616. #ifndef CONFIG_NUMA
  1617. *hpage = NULL;
  1618. #endif
  1619. khugepaged_pages_collapsed++;
  1620. out_up_write:
  1621. up_write(&mm->mmap_sem);
  1622. return;
  1623. out:
  1624. #ifdef CONFIG_NUMA
  1625. put_page(new_page);
  1626. #endif
  1627. goto out_up_write;
  1628. }
  1629. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1630. struct vm_area_struct *vma,
  1631. unsigned long address,
  1632. struct page **hpage)
  1633. {
  1634. pgd_t *pgd;
  1635. pud_t *pud;
  1636. pmd_t *pmd;
  1637. pte_t *pte, *_pte;
  1638. int ret = 0, referenced = 0, none = 0;
  1639. struct page *page;
  1640. unsigned long _address;
  1641. spinlock_t *ptl;
  1642. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1643. pgd = pgd_offset(mm, address);
  1644. if (!pgd_present(*pgd))
  1645. goto out;
  1646. pud = pud_offset(pgd, address);
  1647. if (!pud_present(*pud))
  1648. goto out;
  1649. pmd = pmd_offset(pud, address);
  1650. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1651. goto out;
  1652. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1653. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1654. _pte++, _address += PAGE_SIZE) {
  1655. pte_t pteval = *_pte;
  1656. if (pte_none(pteval)) {
  1657. if (++none <= khugepaged_max_ptes_none)
  1658. continue;
  1659. else
  1660. goto out_unmap;
  1661. }
  1662. if (!pte_present(pteval) || !pte_write(pteval))
  1663. goto out_unmap;
  1664. page = vm_normal_page(vma, _address, pteval);
  1665. if (unlikely(!page))
  1666. goto out_unmap;
  1667. VM_BUG_ON(PageCompound(page));
  1668. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1669. goto out_unmap;
  1670. /* cannot use mapcount: can't collapse if there's a gup pin */
  1671. if (page_count(page) != 1)
  1672. goto out_unmap;
  1673. if (pte_young(pteval) || PageReferenced(page) ||
  1674. mmu_notifier_test_young(vma->vm_mm, address))
  1675. referenced = 1;
  1676. }
  1677. if (referenced)
  1678. ret = 1;
  1679. out_unmap:
  1680. pte_unmap_unlock(pte, ptl);
  1681. if (ret)
  1682. /* collapse_huge_page will return with the mmap_sem released */
  1683. collapse_huge_page(mm, address, hpage, vma);
  1684. out:
  1685. return ret;
  1686. }
  1687. static void collect_mm_slot(struct mm_slot *mm_slot)
  1688. {
  1689. struct mm_struct *mm = mm_slot->mm;
  1690. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1691. if (khugepaged_test_exit(mm)) {
  1692. /* free mm_slot */
  1693. hlist_del(&mm_slot->hash);
  1694. list_del(&mm_slot->mm_node);
  1695. /*
  1696. * Not strictly needed because the mm exited already.
  1697. *
  1698. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1699. */
  1700. /* khugepaged_mm_lock actually not necessary for the below */
  1701. free_mm_slot(mm_slot);
  1702. mmdrop(mm);
  1703. }
  1704. }
  1705. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1706. struct page **hpage)
  1707. {
  1708. struct mm_slot *mm_slot;
  1709. struct mm_struct *mm;
  1710. struct vm_area_struct *vma;
  1711. int progress = 0;
  1712. VM_BUG_ON(!pages);
  1713. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1714. if (khugepaged_scan.mm_slot)
  1715. mm_slot = khugepaged_scan.mm_slot;
  1716. else {
  1717. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1718. struct mm_slot, mm_node);
  1719. khugepaged_scan.address = 0;
  1720. khugepaged_scan.mm_slot = mm_slot;
  1721. }
  1722. spin_unlock(&khugepaged_mm_lock);
  1723. mm = mm_slot->mm;
  1724. down_read(&mm->mmap_sem);
  1725. if (unlikely(khugepaged_test_exit(mm)))
  1726. vma = NULL;
  1727. else
  1728. vma = find_vma(mm, khugepaged_scan.address);
  1729. progress++;
  1730. for (; vma; vma = vma->vm_next) {
  1731. unsigned long hstart, hend;
  1732. cond_resched();
  1733. if (unlikely(khugepaged_test_exit(mm))) {
  1734. progress++;
  1735. break;
  1736. }
  1737. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1738. !khugepaged_always()) {
  1739. progress++;
  1740. continue;
  1741. }
  1742. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1743. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1744. khugepaged_scan.address = vma->vm_end;
  1745. progress++;
  1746. continue;
  1747. }
  1748. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1749. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1750. hend = vma->vm_end & HPAGE_PMD_MASK;
  1751. if (hstart >= hend) {
  1752. progress++;
  1753. continue;
  1754. }
  1755. if (khugepaged_scan.address < hstart)
  1756. khugepaged_scan.address = hstart;
  1757. if (khugepaged_scan.address > hend) {
  1758. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1759. progress++;
  1760. continue;
  1761. }
  1762. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1763. while (khugepaged_scan.address < hend) {
  1764. int ret;
  1765. cond_resched();
  1766. if (unlikely(khugepaged_test_exit(mm)))
  1767. goto breakouterloop;
  1768. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1769. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1770. hend);
  1771. ret = khugepaged_scan_pmd(mm, vma,
  1772. khugepaged_scan.address,
  1773. hpage);
  1774. /* move to next address */
  1775. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1776. progress += HPAGE_PMD_NR;
  1777. if (ret)
  1778. /* we released mmap_sem so break loop */
  1779. goto breakouterloop_mmap_sem;
  1780. if (progress >= pages)
  1781. goto breakouterloop;
  1782. }
  1783. }
  1784. breakouterloop:
  1785. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1786. breakouterloop_mmap_sem:
  1787. spin_lock(&khugepaged_mm_lock);
  1788. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1789. /*
  1790. * Release the current mm_slot if this mm is about to die, or
  1791. * if we scanned all vmas of this mm.
  1792. */
  1793. if (khugepaged_test_exit(mm) || !vma) {
  1794. /*
  1795. * Make sure that if mm_users is reaching zero while
  1796. * khugepaged runs here, khugepaged_exit will find
  1797. * mm_slot not pointing to the exiting mm.
  1798. */
  1799. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1800. khugepaged_scan.mm_slot = list_entry(
  1801. mm_slot->mm_node.next,
  1802. struct mm_slot, mm_node);
  1803. khugepaged_scan.address = 0;
  1804. } else {
  1805. khugepaged_scan.mm_slot = NULL;
  1806. khugepaged_full_scans++;
  1807. }
  1808. collect_mm_slot(mm_slot);
  1809. }
  1810. return progress;
  1811. }
  1812. static int khugepaged_has_work(void)
  1813. {
  1814. return !list_empty(&khugepaged_scan.mm_head) &&
  1815. khugepaged_enabled();
  1816. }
  1817. static int khugepaged_wait_event(void)
  1818. {
  1819. return !list_empty(&khugepaged_scan.mm_head) ||
  1820. !khugepaged_enabled();
  1821. }
  1822. static void khugepaged_do_scan(struct page **hpage)
  1823. {
  1824. unsigned int progress = 0, pass_through_head = 0;
  1825. unsigned int pages = khugepaged_pages_to_scan;
  1826. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1827. while (progress < pages) {
  1828. cond_resched();
  1829. #ifndef CONFIG_NUMA
  1830. if (!*hpage) {
  1831. *hpage = alloc_hugepage(khugepaged_defrag());
  1832. if (unlikely(!*hpage))
  1833. break;
  1834. }
  1835. #else
  1836. if (IS_ERR(*hpage))
  1837. break;
  1838. #endif
  1839. if (unlikely(kthread_should_stop() || freezing(current)))
  1840. break;
  1841. spin_lock(&khugepaged_mm_lock);
  1842. if (!khugepaged_scan.mm_slot)
  1843. pass_through_head++;
  1844. if (khugepaged_has_work() &&
  1845. pass_through_head < 2)
  1846. progress += khugepaged_scan_mm_slot(pages - progress,
  1847. hpage);
  1848. else
  1849. progress = pages;
  1850. spin_unlock(&khugepaged_mm_lock);
  1851. }
  1852. }
  1853. static void khugepaged_alloc_sleep(void)
  1854. {
  1855. DEFINE_WAIT(wait);
  1856. add_wait_queue(&khugepaged_wait, &wait);
  1857. schedule_timeout_interruptible(
  1858. msecs_to_jiffies(
  1859. khugepaged_alloc_sleep_millisecs));
  1860. remove_wait_queue(&khugepaged_wait, &wait);
  1861. }
  1862. #ifndef CONFIG_NUMA
  1863. static struct page *khugepaged_alloc_hugepage(void)
  1864. {
  1865. struct page *hpage;
  1866. do {
  1867. hpage = alloc_hugepage(khugepaged_defrag());
  1868. if (!hpage)
  1869. khugepaged_alloc_sleep();
  1870. } while (unlikely(!hpage) &&
  1871. likely(khugepaged_enabled()));
  1872. return hpage;
  1873. }
  1874. #endif
  1875. static void khugepaged_loop(void)
  1876. {
  1877. struct page *hpage;
  1878. #ifdef CONFIG_NUMA
  1879. hpage = NULL;
  1880. #endif
  1881. while (likely(khugepaged_enabled())) {
  1882. #ifndef CONFIG_NUMA
  1883. hpage = khugepaged_alloc_hugepage();
  1884. if (unlikely(!hpage))
  1885. break;
  1886. #else
  1887. if (IS_ERR(hpage)) {
  1888. khugepaged_alloc_sleep();
  1889. hpage = NULL;
  1890. }
  1891. #endif
  1892. khugepaged_do_scan(&hpage);
  1893. #ifndef CONFIG_NUMA
  1894. if (hpage)
  1895. put_page(hpage);
  1896. #endif
  1897. try_to_freeze();
  1898. if (unlikely(kthread_should_stop()))
  1899. break;
  1900. if (khugepaged_has_work()) {
  1901. DEFINE_WAIT(wait);
  1902. if (!khugepaged_scan_sleep_millisecs)
  1903. continue;
  1904. add_wait_queue(&khugepaged_wait, &wait);
  1905. schedule_timeout_interruptible(
  1906. msecs_to_jiffies(
  1907. khugepaged_scan_sleep_millisecs));
  1908. remove_wait_queue(&khugepaged_wait, &wait);
  1909. } else if (khugepaged_enabled())
  1910. wait_event_freezable(khugepaged_wait,
  1911. khugepaged_wait_event());
  1912. }
  1913. }
  1914. static int khugepaged(void *none)
  1915. {
  1916. struct mm_slot *mm_slot;
  1917. set_freezable();
  1918. set_user_nice(current, 19);
  1919. /* serialize with start_khugepaged() */
  1920. mutex_lock(&khugepaged_mutex);
  1921. for (;;) {
  1922. mutex_unlock(&khugepaged_mutex);
  1923. BUG_ON(khugepaged_thread != current);
  1924. khugepaged_loop();
  1925. BUG_ON(khugepaged_thread != current);
  1926. mutex_lock(&khugepaged_mutex);
  1927. if (!khugepaged_enabled())
  1928. break;
  1929. if (unlikely(kthread_should_stop()))
  1930. break;
  1931. }
  1932. spin_lock(&khugepaged_mm_lock);
  1933. mm_slot = khugepaged_scan.mm_slot;
  1934. khugepaged_scan.mm_slot = NULL;
  1935. if (mm_slot)
  1936. collect_mm_slot(mm_slot);
  1937. spin_unlock(&khugepaged_mm_lock);
  1938. khugepaged_thread = NULL;
  1939. mutex_unlock(&khugepaged_mutex);
  1940. return 0;
  1941. }
  1942. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1943. {
  1944. struct page *page;
  1945. spin_lock(&mm->page_table_lock);
  1946. if (unlikely(!pmd_trans_huge(*pmd))) {
  1947. spin_unlock(&mm->page_table_lock);
  1948. return;
  1949. }
  1950. page = pmd_page(*pmd);
  1951. VM_BUG_ON(!page_count(page));
  1952. get_page(page);
  1953. spin_unlock(&mm->page_table_lock);
  1954. split_huge_page(page);
  1955. put_page(page);
  1956. BUG_ON(pmd_trans_huge(*pmd));
  1957. }
  1958. static void split_huge_page_address(struct mm_struct *mm,
  1959. unsigned long address)
  1960. {
  1961. pgd_t *pgd;
  1962. pud_t *pud;
  1963. pmd_t *pmd;
  1964. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  1965. pgd = pgd_offset(mm, address);
  1966. if (!pgd_present(*pgd))
  1967. return;
  1968. pud = pud_offset(pgd, address);
  1969. if (!pud_present(*pud))
  1970. return;
  1971. pmd = pmd_offset(pud, address);
  1972. if (!pmd_present(*pmd))
  1973. return;
  1974. /*
  1975. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  1976. * materialize from under us.
  1977. */
  1978. split_huge_page_pmd(mm, pmd);
  1979. }
  1980. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  1981. unsigned long start,
  1982. unsigned long end,
  1983. long adjust_next)
  1984. {
  1985. /*
  1986. * If the new start address isn't hpage aligned and it could
  1987. * previously contain an hugepage: check if we need to split
  1988. * an huge pmd.
  1989. */
  1990. if (start & ~HPAGE_PMD_MASK &&
  1991. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1992. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  1993. split_huge_page_address(vma->vm_mm, start);
  1994. /*
  1995. * If the new end address isn't hpage aligned and it could
  1996. * previously contain an hugepage: check if we need to split
  1997. * an huge pmd.
  1998. */
  1999. if (end & ~HPAGE_PMD_MASK &&
  2000. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2001. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2002. split_huge_page_address(vma->vm_mm, end);
  2003. /*
  2004. * If we're also updating the vma->vm_next->vm_start, if the new
  2005. * vm_next->vm_start isn't page aligned and it could previously
  2006. * contain an hugepage: check if we need to split an huge pmd.
  2007. */
  2008. if (adjust_next > 0) {
  2009. struct vm_area_struct *next = vma->vm_next;
  2010. unsigned long nstart = next->vm_start;
  2011. nstart += adjust_next << PAGE_SHIFT;
  2012. if (nstart & ~HPAGE_PMD_MASK &&
  2013. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2014. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2015. split_huge_page_address(next->vm_mm, nstart);
  2016. }
  2017. }