mmu.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <linux/srcu.h>
  31. #include <asm/page.h>
  32. #include <asm/cmpxchg.h>
  33. #include <asm/io.h>
  34. #include <asm/vmx.h>
  35. /*
  36. * When setting this variable to true it enables Two-Dimensional-Paging
  37. * where the hardware walks 2 page tables:
  38. * 1. the guest-virtual to guest-physical
  39. * 2. while doing 1. it walks guest-physical to host-physical
  40. * If the hardware supports that we don't need to do shadow paging.
  41. */
  42. bool tdp_enabled = false;
  43. #undef MMU_DEBUG
  44. #undef AUDIT
  45. #ifdef AUDIT
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  47. #else
  48. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  49. #endif
  50. #ifdef MMU_DEBUG
  51. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  52. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  53. #else
  54. #define pgprintk(x...) do { } while (0)
  55. #define rmap_printk(x...) do { } while (0)
  56. #endif
  57. #if defined(MMU_DEBUG) || defined(AUDIT)
  58. static int dbg = 0;
  59. module_param(dbg, bool, 0644);
  60. #endif
  61. static int oos_shadow = 1;
  62. module_param(oos_shadow, bool, 0644);
  63. #ifndef MMU_DEBUG
  64. #define ASSERT(x) do { } while (0)
  65. #else
  66. #define ASSERT(x) \
  67. if (!(x)) { \
  68. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  69. __FILE__, __LINE__, #x); \
  70. }
  71. #endif
  72. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  73. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  74. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  75. #define PT64_LEVEL_BITS 9
  76. #define PT64_LEVEL_SHIFT(level) \
  77. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  78. #define PT64_LEVEL_MASK(level) \
  79. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  80. #define PT64_INDEX(address, level)\
  81. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  82. #define PT32_LEVEL_BITS 10
  83. #define PT32_LEVEL_SHIFT(level) \
  84. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  85. #define PT32_LEVEL_MASK(level) \
  86. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  87. #define PT32_LVL_OFFSET_MASK(level) \
  88. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  89. * PT32_LEVEL_BITS))) - 1))
  90. #define PT32_INDEX(address, level)\
  91. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  92. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  93. #define PT64_DIR_BASE_ADDR_MASK \
  94. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  95. #define PT64_LVL_ADDR_MASK(level) \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  97. * PT64_LEVEL_BITS))) - 1))
  98. #define PT64_LVL_OFFSET_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT32_BASE_ADDR_MASK PAGE_MASK
  102. #define PT32_DIR_BASE_ADDR_MASK \
  103. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  104. #define PT32_LVL_ADDR_MASK(level) \
  105. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  106. * PT32_LEVEL_BITS))) - 1))
  107. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  108. | PT64_NX_MASK)
  109. #define PFERR_PRESENT_MASK (1U << 0)
  110. #define PFERR_WRITE_MASK (1U << 1)
  111. #define PFERR_USER_MASK (1U << 2)
  112. #define PFERR_RSVD_MASK (1U << 3)
  113. #define PFERR_FETCH_MASK (1U << 4)
  114. #define RMAP_EXT 4
  115. #define ACC_EXEC_MASK 1
  116. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  117. #define ACC_USER_MASK PT_USER_MASK
  118. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  119. #define CREATE_TRACE_POINTS
  120. #include "mmutrace.h"
  121. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  122. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  123. struct kvm_rmap_desc {
  124. u64 *sptes[RMAP_EXT];
  125. struct kvm_rmap_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. int level;
  131. u64 *sptep;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. struct kvm_unsync_walk {
  139. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  140. };
  141. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  142. static struct kmem_cache *pte_chain_cache;
  143. static struct kmem_cache *rmap_desc_cache;
  144. static struct kmem_cache *mmu_page_header_cache;
  145. static u64 __read_mostly shadow_trap_nonpresent_pte;
  146. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  147. static u64 __read_mostly shadow_base_present_pte;
  148. static u64 __read_mostly shadow_nx_mask;
  149. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  150. static u64 __read_mostly shadow_user_mask;
  151. static u64 __read_mostly shadow_accessed_mask;
  152. static u64 __read_mostly shadow_dirty_mask;
  153. static inline u64 rsvd_bits(int s, int e)
  154. {
  155. return ((1ULL << (e - s + 1)) - 1) << s;
  156. }
  157. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  158. {
  159. shadow_trap_nonpresent_pte = trap_pte;
  160. shadow_notrap_nonpresent_pte = notrap_pte;
  161. }
  162. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  163. void kvm_mmu_set_base_ptes(u64 base_pte)
  164. {
  165. shadow_base_present_pte = base_pte;
  166. }
  167. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  168. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  169. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  170. {
  171. shadow_user_mask = user_mask;
  172. shadow_accessed_mask = accessed_mask;
  173. shadow_dirty_mask = dirty_mask;
  174. shadow_nx_mask = nx_mask;
  175. shadow_x_mask = x_mask;
  176. }
  177. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  178. static int is_write_protection(struct kvm_vcpu *vcpu)
  179. {
  180. return vcpu->arch.cr0 & X86_CR0_WP;
  181. }
  182. static int is_cpuid_PSE36(void)
  183. {
  184. return 1;
  185. }
  186. static int is_nx(struct kvm_vcpu *vcpu)
  187. {
  188. return vcpu->arch.shadow_efer & EFER_NX;
  189. }
  190. static int is_shadow_present_pte(u64 pte)
  191. {
  192. return pte != shadow_trap_nonpresent_pte
  193. && pte != shadow_notrap_nonpresent_pte;
  194. }
  195. static int is_large_pte(u64 pte)
  196. {
  197. return pte & PT_PAGE_SIZE_MASK;
  198. }
  199. static int is_writeble_pte(unsigned long pte)
  200. {
  201. return pte & PT_WRITABLE_MASK;
  202. }
  203. static int is_dirty_gpte(unsigned long pte)
  204. {
  205. return pte & PT_DIRTY_MASK;
  206. }
  207. static int is_rmap_spte(u64 pte)
  208. {
  209. return is_shadow_present_pte(pte);
  210. }
  211. static int is_last_spte(u64 pte, int level)
  212. {
  213. if (level == PT_PAGE_TABLE_LEVEL)
  214. return 1;
  215. if (is_large_pte(pte))
  216. return 1;
  217. return 0;
  218. }
  219. static pfn_t spte_to_pfn(u64 pte)
  220. {
  221. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  222. }
  223. static gfn_t pse36_gfn_delta(u32 gpte)
  224. {
  225. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  226. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  227. }
  228. static void __set_spte(u64 *sptep, u64 spte)
  229. {
  230. #ifdef CONFIG_X86_64
  231. set_64bit((unsigned long *)sptep, spte);
  232. #else
  233. set_64bit((unsigned long long *)sptep, spte);
  234. #endif
  235. }
  236. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  237. struct kmem_cache *base_cache, int min)
  238. {
  239. void *obj;
  240. if (cache->nobjs >= min)
  241. return 0;
  242. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  243. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  244. if (!obj)
  245. return -ENOMEM;
  246. cache->objects[cache->nobjs++] = obj;
  247. }
  248. return 0;
  249. }
  250. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  251. {
  252. while (mc->nobjs)
  253. kfree(mc->objects[--mc->nobjs]);
  254. }
  255. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  256. int min)
  257. {
  258. struct page *page;
  259. if (cache->nobjs >= min)
  260. return 0;
  261. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  262. page = alloc_page(GFP_KERNEL);
  263. if (!page)
  264. return -ENOMEM;
  265. set_page_private(page, 0);
  266. cache->objects[cache->nobjs++] = page_address(page);
  267. }
  268. return 0;
  269. }
  270. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  271. {
  272. while (mc->nobjs)
  273. free_page((unsigned long)mc->objects[--mc->nobjs]);
  274. }
  275. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  276. {
  277. int r;
  278. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  279. pte_chain_cache, 4);
  280. if (r)
  281. goto out;
  282. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  283. rmap_desc_cache, 4);
  284. if (r)
  285. goto out;
  286. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  287. if (r)
  288. goto out;
  289. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  290. mmu_page_header_cache, 4);
  291. out:
  292. return r;
  293. }
  294. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  295. {
  296. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  297. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  298. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  299. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  300. }
  301. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  302. size_t size)
  303. {
  304. void *p;
  305. BUG_ON(!mc->nobjs);
  306. p = mc->objects[--mc->nobjs];
  307. return p;
  308. }
  309. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  310. {
  311. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  312. sizeof(struct kvm_pte_chain));
  313. }
  314. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  315. {
  316. kfree(pc);
  317. }
  318. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  319. {
  320. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  321. sizeof(struct kvm_rmap_desc));
  322. }
  323. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  324. {
  325. kfree(rd);
  326. }
  327. /*
  328. * Return the pointer to the largepage write count for a given
  329. * gfn, handling slots that are not large page aligned.
  330. */
  331. static int *slot_largepage_idx(gfn_t gfn,
  332. struct kvm_memory_slot *slot,
  333. int level)
  334. {
  335. unsigned long idx;
  336. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  337. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  338. return &slot->lpage_info[level - 2][idx].write_count;
  339. }
  340. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  341. {
  342. struct kvm_memory_slot *slot;
  343. int *write_count;
  344. int i;
  345. gfn = unalias_gfn(kvm, gfn);
  346. slot = gfn_to_memslot_unaliased(kvm, gfn);
  347. for (i = PT_DIRECTORY_LEVEL;
  348. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  349. write_count = slot_largepage_idx(gfn, slot, i);
  350. *write_count += 1;
  351. }
  352. }
  353. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  354. {
  355. struct kvm_memory_slot *slot;
  356. int *write_count;
  357. int i;
  358. gfn = unalias_gfn(kvm, gfn);
  359. for (i = PT_DIRECTORY_LEVEL;
  360. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  361. slot = gfn_to_memslot_unaliased(kvm, gfn);
  362. write_count = slot_largepage_idx(gfn, slot, i);
  363. *write_count -= 1;
  364. WARN_ON(*write_count < 0);
  365. }
  366. }
  367. static int has_wrprotected_page(struct kvm *kvm,
  368. gfn_t gfn,
  369. int level)
  370. {
  371. struct kvm_memory_slot *slot;
  372. int *largepage_idx;
  373. gfn = unalias_gfn(kvm, gfn);
  374. slot = gfn_to_memslot_unaliased(kvm, gfn);
  375. if (slot) {
  376. largepage_idx = slot_largepage_idx(gfn, slot, level);
  377. return *largepage_idx;
  378. }
  379. return 1;
  380. }
  381. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  382. {
  383. unsigned long page_size = PAGE_SIZE;
  384. struct vm_area_struct *vma;
  385. unsigned long addr;
  386. int i, ret = 0;
  387. addr = gfn_to_hva(kvm, gfn);
  388. if (kvm_is_error_hva(addr))
  389. return PT_PAGE_TABLE_LEVEL;
  390. down_read(&current->mm->mmap_sem);
  391. vma = find_vma(current->mm, addr);
  392. if (!vma)
  393. goto out;
  394. page_size = vma_kernel_pagesize(vma);
  395. out:
  396. up_read(&current->mm->mmap_sem);
  397. for (i = PT_PAGE_TABLE_LEVEL;
  398. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  399. if (page_size >= KVM_HPAGE_SIZE(i))
  400. ret = i;
  401. else
  402. break;
  403. }
  404. return ret;
  405. }
  406. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  407. {
  408. struct kvm_memory_slot *slot;
  409. int host_level, level, max_level;
  410. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  411. if (slot && slot->dirty_bitmap)
  412. return PT_PAGE_TABLE_LEVEL;
  413. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  414. if (host_level == PT_PAGE_TABLE_LEVEL)
  415. return host_level;
  416. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  417. kvm_x86_ops->get_lpage_level() : host_level;
  418. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  419. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  420. break;
  421. return level - 1;
  422. }
  423. /*
  424. * Take gfn and return the reverse mapping to it.
  425. * Note: gfn must be unaliased before this function get called
  426. */
  427. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  428. {
  429. struct kvm_memory_slot *slot;
  430. unsigned long idx;
  431. slot = gfn_to_memslot(kvm, gfn);
  432. if (likely(level == PT_PAGE_TABLE_LEVEL))
  433. return &slot->rmap[gfn - slot->base_gfn];
  434. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  435. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  436. return &slot->lpage_info[level - 2][idx].rmap_pde;
  437. }
  438. /*
  439. * Reverse mapping data structures:
  440. *
  441. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  442. * that points to page_address(page).
  443. *
  444. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  445. * containing more mappings.
  446. *
  447. * Returns the number of rmap entries before the spte was added or zero if
  448. * the spte was not added.
  449. *
  450. */
  451. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  452. {
  453. struct kvm_mmu_page *sp;
  454. struct kvm_rmap_desc *desc;
  455. unsigned long *rmapp;
  456. int i, count = 0;
  457. if (!is_rmap_spte(*spte))
  458. return count;
  459. gfn = unalias_gfn(vcpu->kvm, gfn);
  460. sp = page_header(__pa(spte));
  461. sp->gfns[spte - sp->spt] = gfn;
  462. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  463. if (!*rmapp) {
  464. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  465. *rmapp = (unsigned long)spte;
  466. } else if (!(*rmapp & 1)) {
  467. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  468. desc = mmu_alloc_rmap_desc(vcpu);
  469. desc->sptes[0] = (u64 *)*rmapp;
  470. desc->sptes[1] = spte;
  471. *rmapp = (unsigned long)desc | 1;
  472. } else {
  473. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  474. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  475. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  476. desc = desc->more;
  477. count += RMAP_EXT;
  478. }
  479. if (desc->sptes[RMAP_EXT-1]) {
  480. desc->more = mmu_alloc_rmap_desc(vcpu);
  481. desc = desc->more;
  482. }
  483. for (i = 0; desc->sptes[i]; ++i)
  484. ;
  485. desc->sptes[i] = spte;
  486. }
  487. return count;
  488. }
  489. static void rmap_desc_remove_entry(unsigned long *rmapp,
  490. struct kvm_rmap_desc *desc,
  491. int i,
  492. struct kvm_rmap_desc *prev_desc)
  493. {
  494. int j;
  495. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  496. ;
  497. desc->sptes[i] = desc->sptes[j];
  498. desc->sptes[j] = NULL;
  499. if (j != 0)
  500. return;
  501. if (!prev_desc && !desc->more)
  502. *rmapp = (unsigned long)desc->sptes[0];
  503. else
  504. if (prev_desc)
  505. prev_desc->more = desc->more;
  506. else
  507. *rmapp = (unsigned long)desc->more | 1;
  508. mmu_free_rmap_desc(desc);
  509. }
  510. static void rmap_remove(struct kvm *kvm, u64 *spte)
  511. {
  512. struct kvm_rmap_desc *desc;
  513. struct kvm_rmap_desc *prev_desc;
  514. struct kvm_mmu_page *sp;
  515. pfn_t pfn;
  516. unsigned long *rmapp;
  517. int i;
  518. if (!is_rmap_spte(*spte))
  519. return;
  520. sp = page_header(__pa(spte));
  521. pfn = spte_to_pfn(*spte);
  522. if (*spte & shadow_accessed_mask)
  523. kvm_set_pfn_accessed(pfn);
  524. if (is_writeble_pte(*spte))
  525. kvm_set_pfn_dirty(pfn);
  526. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  527. if (!*rmapp) {
  528. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  529. BUG();
  530. } else if (!(*rmapp & 1)) {
  531. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  532. if ((u64 *)*rmapp != spte) {
  533. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  534. spte, *spte);
  535. BUG();
  536. }
  537. *rmapp = 0;
  538. } else {
  539. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  540. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  541. prev_desc = NULL;
  542. while (desc) {
  543. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  544. if (desc->sptes[i] == spte) {
  545. rmap_desc_remove_entry(rmapp,
  546. desc, i,
  547. prev_desc);
  548. return;
  549. }
  550. prev_desc = desc;
  551. desc = desc->more;
  552. }
  553. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  554. BUG();
  555. }
  556. }
  557. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  558. {
  559. struct kvm_rmap_desc *desc;
  560. struct kvm_rmap_desc *prev_desc;
  561. u64 *prev_spte;
  562. int i;
  563. if (!*rmapp)
  564. return NULL;
  565. else if (!(*rmapp & 1)) {
  566. if (!spte)
  567. return (u64 *)*rmapp;
  568. return NULL;
  569. }
  570. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  571. prev_desc = NULL;
  572. prev_spte = NULL;
  573. while (desc) {
  574. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  575. if (prev_spte == spte)
  576. return desc->sptes[i];
  577. prev_spte = desc->sptes[i];
  578. }
  579. desc = desc->more;
  580. }
  581. return NULL;
  582. }
  583. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  584. {
  585. unsigned long *rmapp;
  586. u64 *spte;
  587. int i, write_protected = 0;
  588. gfn = unalias_gfn(kvm, gfn);
  589. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  590. spte = rmap_next(kvm, rmapp, NULL);
  591. while (spte) {
  592. BUG_ON(!spte);
  593. BUG_ON(!(*spte & PT_PRESENT_MASK));
  594. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  595. if (is_writeble_pte(*spte)) {
  596. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  597. write_protected = 1;
  598. }
  599. spte = rmap_next(kvm, rmapp, spte);
  600. }
  601. if (write_protected) {
  602. pfn_t pfn;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. pfn = spte_to_pfn(*spte);
  605. kvm_set_pfn_dirty(pfn);
  606. }
  607. /* check for huge page mappings */
  608. for (i = PT_DIRECTORY_LEVEL;
  609. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  610. rmapp = gfn_to_rmap(kvm, gfn, i);
  611. spte = rmap_next(kvm, rmapp, NULL);
  612. while (spte) {
  613. BUG_ON(!spte);
  614. BUG_ON(!(*spte & PT_PRESENT_MASK));
  615. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  616. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  617. if (is_writeble_pte(*spte)) {
  618. rmap_remove(kvm, spte);
  619. --kvm->stat.lpages;
  620. __set_spte(spte, shadow_trap_nonpresent_pte);
  621. spte = NULL;
  622. write_protected = 1;
  623. }
  624. spte = rmap_next(kvm, rmapp, spte);
  625. }
  626. }
  627. return write_protected;
  628. }
  629. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  630. unsigned long data)
  631. {
  632. u64 *spte;
  633. int need_tlb_flush = 0;
  634. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  635. BUG_ON(!(*spte & PT_PRESENT_MASK));
  636. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  637. rmap_remove(kvm, spte);
  638. __set_spte(spte, shadow_trap_nonpresent_pte);
  639. need_tlb_flush = 1;
  640. }
  641. return need_tlb_flush;
  642. }
  643. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  644. unsigned long data)
  645. {
  646. int need_flush = 0;
  647. u64 *spte, new_spte;
  648. pte_t *ptep = (pte_t *)data;
  649. pfn_t new_pfn;
  650. WARN_ON(pte_huge(*ptep));
  651. new_pfn = pte_pfn(*ptep);
  652. spte = rmap_next(kvm, rmapp, NULL);
  653. while (spte) {
  654. BUG_ON(!is_shadow_present_pte(*spte));
  655. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  656. need_flush = 1;
  657. if (pte_write(*ptep)) {
  658. rmap_remove(kvm, spte);
  659. __set_spte(spte, shadow_trap_nonpresent_pte);
  660. spte = rmap_next(kvm, rmapp, NULL);
  661. } else {
  662. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  663. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  664. new_spte &= ~PT_WRITABLE_MASK;
  665. new_spte &= ~SPTE_HOST_WRITEABLE;
  666. if (is_writeble_pte(*spte))
  667. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  668. __set_spte(spte, new_spte);
  669. spte = rmap_next(kvm, rmapp, spte);
  670. }
  671. }
  672. if (need_flush)
  673. kvm_flush_remote_tlbs(kvm);
  674. return 0;
  675. }
  676. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  677. unsigned long data,
  678. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  679. unsigned long data))
  680. {
  681. int i, j;
  682. int retval = 0;
  683. struct kvm_memslots *slots;
  684. slots = rcu_dereference(kvm->memslots);
  685. for (i = 0; i < slots->nmemslots; i++) {
  686. struct kvm_memory_slot *memslot = &slots->memslots[i];
  687. unsigned long start = memslot->userspace_addr;
  688. unsigned long end;
  689. end = start + (memslot->npages << PAGE_SHIFT);
  690. if (hva >= start && hva < end) {
  691. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  692. retval |= handler(kvm, &memslot->rmap[gfn_offset],
  693. data);
  694. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  695. int idx = gfn_offset;
  696. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  697. retval |= handler(kvm,
  698. &memslot->lpage_info[j][idx].rmap_pde,
  699. data);
  700. }
  701. }
  702. }
  703. return retval;
  704. }
  705. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  706. {
  707. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  708. }
  709. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  710. {
  711. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  712. }
  713. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  714. unsigned long data)
  715. {
  716. u64 *spte;
  717. int young = 0;
  718. /* always return old for EPT */
  719. if (!shadow_accessed_mask)
  720. return 0;
  721. spte = rmap_next(kvm, rmapp, NULL);
  722. while (spte) {
  723. int _young;
  724. u64 _spte = *spte;
  725. BUG_ON(!(_spte & PT_PRESENT_MASK));
  726. _young = _spte & PT_ACCESSED_MASK;
  727. if (_young) {
  728. young = 1;
  729. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  730. }
  731. spte = rmap_next(kvm, rmapp, spte);
  732. }
  733. return young;
  734. }
  735. #define RMAP_RECYCLE_THRESHOLD 1000
  736. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  737. {
  738. unsigned long *rmapp;
  739. struct kvm_mmu_page *sp;
  740. sp = page_header(__pa(spte));
  741. gfn = unalias_gfn(vcpu->kvm, gfn);
  742. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  743. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  744. kvm_flush_remote_tlbs(vcpu->kvm);
  745. }
  746. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  747. {
  748. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  749. }
  750. #ifdef MMU_DEBUG
  751. static int is_empty_shadow_page(u64 *spt)
  752. {
  753. u64 *pos;
  754. u64 *end;
  755. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  756. if (is_shadow_present_pte(*pos)) {
  757. printk(KERN_ERR "%s: %p %llx\n", __func__,
  758. pos, *pos);
  759. return 0;
  760. }
  761. return 1;
  762. }
  763. #endif
  764. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  765. {
  766. ASSERT(is_empty_shadow_page(sp->spt));
  767. list_del(&sp->link);
  768. __free_page(virt_to_page(sp->spt));
  769. __free_page(virt_to_page(sp->gfns));
  770. kfree(sp);
  771. ++kvm->arch.n_free_mmu_pages;
  772. }
  773. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  774. {
  775. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  776. }
  777. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  778. u64 *parent_pte)
  779. {
  780. struct kvm_mmu_page *sp;
  781. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  782. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  783. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  784. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  785. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  786. INIT_LIST_HEAD(&sp->oos_link);
  787. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  788. sp->multimapped = 0;
  789. sp->parent_pte = parent_pte;
  790. --vcpu->kvm->arch.n_free_mmu_pages;
  791. return sp;
  792. }
  793. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  794. struct kvm_mmu_page *sp, u64 *parent_pte)
  795. {
  796. struct kvm_pte_chain *pte_chain;
  797. struct hlist_node *node;
  798. int i;
  799. if (!parent_pte)
  800. return;
  801. if (!sp->multimapped) {
  802. u64 *old = sp->parent_pte;
  803. if (!old) {
  804. sp->parent_pte = parent_pte;
  805. return;
  806. }
  807. sp->multimapped = 1;
  808. pte_chain = mmu_alloc_pte_chain(vcpu);
  809. INIT_HLIST_HEAD(&sp->parent_ptes);
  810. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  811. pte_chain->parent_ptes[0] = old;
  812. }
  813. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  814. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  815. continue;
  816. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  817. if (!pte_chain->parent_ptes[i]) {
  818. pte_chain->parent_ptes[i] = parent_pte;
  819. return;
  820. }
  821. }
  822. pte_chain = mmu_alloc_pte_chain(vcpu);
  823. BUG_ON(!pte_chain);
  824. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  825. pte_chain->parent_ptes[0] = parent_pte;
  826. }
  827. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  828. u64 *parent_pte)
  829. {
  830. struct kvm_pte_chain *pte_chain;
  831. struct hlist_node *node;
  832. int i;
  833. if (!sp->multimapped) {
  834. BUG_ON(sp->parent_pte != parent_pte);
  835. sp->parent_pte = NULL;
  836. return;
  837. }
  838. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  839. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  840. if (!pte_chain->parent_ptes[i])
  841. break;
  842. if (pte_chain->parent_ptes[i] != parent_pte)
  843. continue;
  844. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  845. && pte_chain->parent_ptes[i + 1]) {
  846. pte_chain->parent_ptes[i]
  847. = pte_chain->parent_ptes[i + 1];
  848. ++i;
  849. }
  850. pte_chain->parent_ptes[i] = NULL;
  851. if (i == 0) {
  852. hlist_del(&pte_chain->link);
  853. mmu_free_pte_chain(pte_chain);
  854. if (hlist_empty(&sp->parent_ptes)) {
  855. sp->multimapped = 0;
  856. sp->parent_pte = NULL;
  857. }
  858. }
  859. return;
  860. }
  861. BUG();
  862. }
  863. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  864. mmu_parent_walk_fn fn)
  865. {
  866. struct kvm_pte_chain *pte_chain;
  867. struct hlist_node *node;
  868. struct kvm_mmu_page *parent_sp;
  869. int i;
  870. if (!sp->multimapped && sp->parent_pte) {
  871. parent_sp = page_header(__pa(sp->parent_pte));
  872. fn(vcpu, parent_sp);
  873. mmu_parent_walk(vcpu, parent_sp, fn);
  874. return;
  875. }
  876. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  877. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  878. if (!pte_chain->parent_ptes[i])
  879. break;
  880. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  881. fn(vcpu, parent_sp);
  882. mmu_parent_walk(vcpu, parent_sp, fn);
  883. }
  884. }
  885. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  886. {
  887. unsigned int index;
  888. struct kvm_mmu_page *sp = page_header(__pa(spte));
  889. index = spte - sp->spt;
  890. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  891. sp->unsync_children++;
  892. WARN_ON(!sp->unsync_children);
  893. }
  894. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  895. {
  896. struct kvm_pte_chain *pte_chain;
  897. struct hlist_node *node;
  898. int i;
  899. if (!sp->parent_pte)
  900. return;
  901. if (!sp->multimapped) {
  902. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  903. return;
  904. }
  905. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  906. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  907. if (!pte_chain->parent_ptes[i])
  908. break;
  909. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  910. }
  911. }
  912. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  913. {
  914. kvm_mmu_update_parents_unsync(sp);
  915. return 1;
  916. }
  917. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  918. struct kvm_mmu_page *sp)
  919. {
  920. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  921. kvm_mmu_update_parents_unsync(sp);
  922. }
  923. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  924. struct kvm_mmu_page *sp)
  925. {
  926. int i;
  927. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  928. sp->spt[i] = shadow_trap_nonpresent_pte;
  929. }
  930. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  931. struct kvm_mmu_page *sp)
  932. {
  933. return 1;
  934. }
  935. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  936. {
  937. }
  938. #define KVM_PAGE_ARRAY_NR 16
  939. struct kvm_mmu_pages {
  940. struct mmu_page_and_offset {
  941. struct kvm_mmu_page *sp;
  942. unsigned int idx;
  943. } page[KVM_PAGE_ARRAY_NR];
  944. unsigned int nr;
  945. };
  946. #define for_each_unsync_children(bitmap, idx) \
  947. for (idx = find_first_bit(bitmap, 512); \
  948. idx < 512; \
  949. idx = find_next_bit(bitmap, 512, idx+1))
  950. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  951. int idx)
  952. {
  953. int i;
  954. if (sp->unsync)
  955. for (i=0; i < pvec->nr; i++)
  956. if (pvec->page[i].sp == sp)
  957. return 0;
  958. pvec->page[pvec->nr].sp = sp;
  959. pvec->page[pvec->nr].idx = idx;
  960. pvec->nr++;
  961. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  962. }
  963. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  964. struct kvm_mmu_pages *pvec)
  965. {
  966. int i, ret, nr_unsync_leaf = 0;
  967. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  968. u64 ent = sp->spt[i];
  969. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  970. struct kvm_mmu_page *child;
  971. child = page_header(ent & PT64_BASE_ADDR_MASK);
  972. if (child->unsync_children) {
  973. if (mmu_pages_add(pvec, child, i))
  974. return -ENOSPC;
  975. ret = __mmu_unsync_walk(child, pvec);
  976. if (!ret)
  977. __clear_bit(i, sp->unsync_child_bitmap);
  978. else if (ret > 0)
  979. nr_unsync_leaf += ret;
  980. else
  981. return ret;
  982. }
  983. if (child->unsync) {
  984. nr_unsync_leaf++;
  985. if (mmu_pages_add(pvec, child, i))
  986. return -ENOSPC;
  987. }
  988. }
  989. }
  990. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  991. sp->unsync_children = 0;
  992. return nr_unsync_leaf;
  993. }
  994. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  995. struct kvm_mmu_pages *pvec)
  996. {
  997. if (!sp->unsync_children)
  998. return 0;
  999. mmu_pages_add(pvec, sp, 0);
  1000. return __mmu_unsync_walk(sp, pvec);
  1001. }
  1002. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  1003. {
  1004. unsigned index;
  1005. struct hlist_head *bucket;
  1006. struct kvm_mmu_page *sp;
  1007. struct hlist_node *node;
  1008. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1009. index = kvm_page_table_hashfn(gfn);
  1010. bucket = &kvm->arch.mmu_page_hash[index];
  1011. hlist_for_each_entry(sp, node, bucket, hash_link)
  1012. if (sp->gfn == gfn && !sp->role.direct
  1013. && !sp->role.invalid) {
  1014. pgprintk("%s: found role %x\n",
  1015. __func__, sp->role.word);
  1016. return sp;
  1017. }
  1018. return NULL;
  1019. }
  1020. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1021. {
  1022. WARN_ON(!sp->unsync);
  1023. sp->unsync = 0;
  1024. --kvm->stat.mmu_unsync;
  1025. }
  1026. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1027. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1028. {
  1029. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1030. kvm_mmu_zap_page(vcpu->kvm, sp);
  1031. return 1;
  1032. }
  1033. trace_kvm_mmu_sync_page(sp);
  1034. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1035. kvm_flush_remote_tlbs(vcpu->kvm);
  1036. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1037. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1038. kvm_mmu_zap_page(vcpu->kvm, sp);
  1039. return 1;
  1040. }
  1041. kvm_mmu_flush_tlb(vcpu);
  1042. return 0;
  1043. }
  1044. struct mmu_page_path {
  1045. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1046. unsigned int idx[PT64_ROOT_LEVEL-1];
  1047. };
  1048. #define for_each_sp(pvec, sp, parents, i) \
  1049. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1050. sp = pvec.page[i].sp; \
  1051. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1052. i = mmu_pages_next(&pvec, &parents, i))
  1053. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1054. struct mmu_page_path *parents,
  1055. int i)
  1056. {
  1057. int n;
  1058. for (n = i+1; n < pvec->nr; n++) {
  1059. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1060. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1061. parents->idx[0] = pvec->page[n].idx;
  1062. return n;
  1063. }
  1064. parents->parent[sp->role.level-2] = sp;
  1065. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1066. }
  1067. return n;
  1068. }
  1069. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1070. {
  1071. struct kvm_mmu_page *sp;
  1072. unsigned int level = 0;
  1073. do {
  1074. unsigned int idx = parents->idx[level];
  1075. sp = parents->parent[level];
  1076. if (!sp)
  1077. return;
  1078. --sp->unsync_children;
  1079. WARN_ON((int)sp->unsync_children < 0);
  1080. __clear_bit(idx, sp->unsync_child_bitmap);
  1081. level++;
  1082. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1083. }
  1084. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1085. struct mmu_page_path *parents,
  1086. struct kvm_mmu_pages *pvec)
  1087. {
  1088. parents->parent[parent->role.level-1] = NULL;
  1089. pvec->nr = 0;
  1090. }
  1091. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1092. struct kvm_mmu_page *parent)
  1093. {
  1094. int i;
  1095. struct kvm_mmu_page *sp;
  1096. struct mmu_page_path parents;
  1097. struct kvm_mmu_pages pages;
  1098. kvm_mmu_pages_init(parent, &parents, &pages);
  1099. while (mmu_unsync_walk(parent, &pages)) {
  1100. int protected = 0;
  1101. for_each_sp(pages, sp, parents, i)
  1102. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1103. if (protected)
  1104. kvm_flush_remote_tlbs(vcpu->kvm);
  1105. for_each_sp(pages, sp, parents, i) {
  1106. kvm_sync_page(vcpu, sp);
  1107. mmu_pages_clear_parents(&parents);
  1108. }
  1109. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1110. kvm_mmu_pages_init(parent, &parents, &pages);
  1111. }
  1112. }
  1113. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1114. gfn_t gfn,
  1115. gva_t gaddr,
  1116. unsigned level,
  1117. int direct,
  1118. unsigned access,
  1119. u64 *parent_pte)
  1120. {
  1121. union kvm_mmu_page_role role;
  1122. unsigned index;
  1123. unsigned quadrant;
  1124. struct hlist_head *bucket;
  1125. struct kvm_mmu_page *sp;
  1126. struct hlist_node *node, *tmp;
  1127. role = vcpu->arch.mmu.base_role;
  1128. role.level = level;
  1129. role.direct = direct;
  1130. role.access = access;
  1131. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1132. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1133. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1134. role.quadrant = quadrant;
  1135. }
  1136. index = kvm_page_table_hashfn(gfn);
  1137. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1138. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1139. if (sp->gfn == gfn) {
  1140. if (sp->unsync)
  1141. if (kvm_sync_page(vcpu, sp))
  1142. continue;
  1143. if (sp->role.word != role.word)
  1144. continue;
  1145. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1146. if (sp->unsync_children) {
  1147. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1148. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1149. }
  1150. trace_kvm_mmu_get_page(sp, false);
  1151. return sp;
  1152. }
  1153. ++vcpu->kvm->stat.mmu_cache_miss;
  1154. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1155. if (!sp)
  1156. return sp;
  1157. sp->gfn = gfn;
  1158. sp->role = role;
  1159. hlist_add_head(&sp->hash_link, bucket);
  1160. if (!direct) {
  1161. if (rmap_write_protect(vcpu->kvm, gfn))
  1162. kvm_flush_remote_tlbs(vcpu->kvm);
  1163. account_shadowed(vcpu->kvm, gfn);
  1164. }
  1165. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1166. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1167. else
  1168. nonpaging_prefetch_page(vcpu, sp);
  1169. trace_kvm_mmu_get_page(sp, true);
  1170. return sp;
  1171. }
  1172. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1173. struct kvm_vcpu *vcpu, u64 addr)
  1174. {
  1175. iterator->addr = addr;
  1176. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1177. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1178. if (iterator->level == PT32E_ROOT_LEVEL) {
  1179. iterator->shadow_addr
  1180. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1181. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1182. --iterator->level;
  1183. if (!iterator->shadow_addr)
  1184. iterator->level = 0;
  1185. }
  1186. }
  1187. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1188. {
  1189. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1190. return false;
  1191. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1192. if (is_large_pte(*iterator->sptep))
  1193. return false;
  1194. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1195. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1196. return true;
  1197. }
  1198. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1199. {
  1200. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1201. --iterator->level;
  1202. }
  1203. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1204. struct kvm_mmu_page *sp)
  1205. {
  1206. unsigned i;
  1207. u64 *pt;
  1208. u64 ent;
  1209. pt = sp->spt;
  1210. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1211. ent = pt[i];
  1212. if (is_shadow_present_pte(ent)) {
  1213. if (!is_last_spte(ent, sp->role.level)) {
  1214. ent &= PT64_BASE_ADDR_MASK;
  1215. mmu_page_remove_parent_pte(page_header(ent),
  1216. &pt[i]);
  1217. } else {
  1218. if (is_large_pte(ent))
  1219. --kvm->stat.lpages;
  1220. rmap_remove(kvm, &pt[i]);
  1221. }
  1222. }
  1223. pt[i] = shadow_trap_nonpresent_pte;
  1224. }
  1225. }
  1226. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1227. {
  1228. mmu_page_remove_parent_pte(sp, parent_pte);
  1229. }
  1230. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1231. {
  1232. int i;
  1233. struct kvm_vcpu *vcpu;
  1234. kvm_for_each_vcpu(i, vcpu, kvm)
  1235. vcpu->arch.last_pte_updated = NULL;
  1236. }
  1237. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1238. {
  1239. u64 *parent_pte;
  1240. while (sp->multimapped || sp->parent_pte) {
  1241. if (!sp->multimapped)
  1242. parent_pte = sp->parent_pte;
  1243. else {
  1244. struct kvm_pte_chain *chain;
  1245. chain = container_of(sp->parent_ptes.first,
  1246. struct kvm_pte_chain, link);
  1247. parent_pte = chain->parent_ptes[0];
  1248. }
  1249. BUG_ON(!parent_pte);
  1250. kvm_mmu_put_page(sp, parent_pte);
  1251. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1252. }
  1253. }
  1254. static int mmu_zap_unsync_children(struct kvm *kvm,
  1255. struct kvm_mmu_page *parent)
  1256. {
  1257. int i, zapped = 0;
  1258. struct mmu_page_path parents;
  1259. struct kvm_mmu_pages pages;
  1260. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1261. return 0;
  1262. kvm_mmu_pages_init(parent, &parents, &pages);
  1263. while (mmu_unsync_walk(parent, &pages)) {
  1264. struct kvm_mmu_page *sp;
  1265. for_each_sp(pages, sp, parents, i) {
  1266. kvm_mmu_zap_page(kvm, sp);
  1267. mmu_pages_clear_parents(&parents);
  1268. }
  1269. zapped += pages.nr;
  1270. kvm_mmu_pages_init(parent, &parents, &pages);
  1271. }
  1272. return zapped;
  1273. }
  1274. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1275. {
  1276. int ret;
  1277. trace_kvm_mmu_zap_page(sp);
  1278. ++kvm->stat.mmu_shadow_zapped;
  1279. ret = mmu_zap_unsync_children(kvm, sp);
  1280. kvm_mmu_page_unlink_children(kvm, sp);
  1281. kvm_mmu_unlink_parents(kvm, sp);
  1282. kvm_flush_remote_tlbs(kvm);
  1283. if (!sp->role.invalid && !sp->role.direct)
  1284. unaccount_shadowed(kvm, sp->gfn);
  1285. if (sp->unsync)
  1286. kvm_unlink_unsync_page(kvm, sp);
  1287. if (!sp->root_count) {
  1288. hlist_del(&sp->hash_link);
  1289. kvm_mmu_free_page(kvm, sp);
  1290. } else {
  1291. sp->role.invalid = 1;
  1292. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1293. kvm_reload_remote_mmus(kvm);
  1294. }
  1295. kvm_mmu_reset_last_pte_updated(kvm);
  1296. return ret;
  1297. }
  1298. /*
  1299. * Changing the number of mmu pages allocated to the vm
  1300. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1301. */
  1302. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1303. {
  1304. int used_pages;
  1305. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1306. used_pages = max(0, used_pages);
  1307. /*
  1308. * If we set the number of mmu pages to be smaller be than the
  1309. * number of actived pages , we must to free some mmu pages before we
  1310. * change the value
  1311. */
  1312. if (used_pages > kvm_nr_mmu_pages) {
  1313. while (used_pages > kvm_nr_mmu_pages) {
  1314. struct kvm_mmu_page *page;
  1315. page = container_of(kvm->arch.active_mmu_pages.prev,
  1316. struct kvm_mmu_page, link);
  1317. kvm_mmu_zap_page(kvm, page);
  1318. used_pages--;
  1319. }
  1320. kvm->arch.n_free_mmu_pages = 0;
  1321. }
  1322. else
  1323. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1324. - kvm->arch.n_alloc_mmu_pages;
  1325. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1326. }
  1327. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1328. {
  1329. unsigned index;
  1330. struct hlist_head *bucket;
  1331. struct kvm_mmu_page *sp;
  1332. struct hlist_node *node, *n;
  1333. int r;
  1334. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1335. r = 0;
  1336. index = kvm_page_table_hashfn(gfn);
  1337. bucket = &kvm->arch.mmu_page_hash[index];
  1338. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1339. if (sp->gfn == gfn && !sp->role.direct) {
  1340. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1341. sp->role.word);
  1342. r = 1;
  1343. if (kvm_mmu_zap_page(kvm, sp))
  1344. n = bucket->first;
  1345. }
  1346. return r;
  1347. }
  1348. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1349. {
  1350. unsigned index;
  1351. struct hlist_head *bucket;
  1352. struct kvm_mmu_page *sp;
  1353. struct hlist_node *node, *nn;
  1354. index = kvm_page_table_hashfn(gfn);
  1355. bucket = &kvm->arch.mmu_page_hash[index];
  1356. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1357. if (sp->gfn == gfn && !sp->role.direct
  1358. && !sp->role.invalid) {
  1359. pgprintk("%s: zap %lx %x\n",
  1360. __func__, gfn, sp->role.word);
  1361. kvm_mmu_zap_page(kvm, sp);
  1362. }
  1363. }
  1364. }
  1365. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1366. {
  1367. int slot = memslot_id(kvm, gfn);
  1368. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1369. __set_bit(slot, sp->slot_bitmap);
  1370. }
  1371. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1372. {
  1373. int i;
  1374. u64 *pt = sp->spt;
  1375. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1376. return;
  1377. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1378. if (pt[i] == shadow_notrap_nonpresent_pte)
  1379. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1380. }
  1381. }
  1382. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1383. {
  1384. struct page *page;
  1385. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1386. if (gpa == UNMAPPED_GVA)
  1387. return NULL;
  1388. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1389. return page;
  1390. }
  1391. /*
  1392. * The function is based on mtrr_type_lookup() in
  1393. * arch/x86/kernel/cpu/mtrr/generic.c
  1394. */
  1395. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1396. u64 start, u64 end)
  1397. {
  1398. int i;
  1399. u64 base, mask;
  1400. u8 prev_match, curr_match;
  1401. int num_var_ranges = KVM_NR_VAR_MTRR;
  1402. if (!mtrr_state->enabled)
  1403. return 0xFF;
  1404. /* Make end inclusive end, instead of exclusive */
  1405. end--;
  1406. /* Look in fixed ranges. Just return the type as per start */
  1407. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1408. int idx;
  1409. if (start < 0x80000) {
  1410. idx = 0;
  1411. idx += (start >> 16);
  1412. return mtrr_state->fixed_ranges[idx];
  1413. } else if (start < 0xC0000) {
  1414. idx = 1 * 8;
  1415. idx += ((start - 0x80000) >> 14);
  1416. return mtrr_state->fixed_ranges[idx];
  1417. } else if (start < 0x1000000) {
  1418. idx = 3 * 8;
  1419. idx += ((start - 0xC0000) >> 12);
  1420. return mtrr_state->fixed_ranges[idx];
  1421. }
  1422. }
  1423. /*
  1424. * Look in variable ranges
  1425. * Look of multiple ranges matching this address and pick type
  1426. * as per MTRR precedence
  1427. */
  1428. if (!(mtrr_state->enabled & 2))
  1429. return mtrr_state->def_type;
  1430. prev_match = 0xFF;
  1431. for (i = 0; i < num_var_ranges; ++i) {
  1432. unsigned short start_state, end_state;
  1433. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1434. continue;
  1435. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1436. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1437. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1438. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1439. start_state = ((start & mask) == (base & mask));
  1440. end_state = ((end & mask) == (base & mask));
  1441. if (start_state != end_state)
  1442. return 0xFE;
  1443. if ((start & mask) != (base & mask))
  1444. continue;
  1445. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1446. if (prev_match == 0xFF) {
  1447. prev_match = curr_match;
  1448. continue;
  1449. }
  1450. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1451. curr_match == MTRR_TYPE_UNCACHABLE)
  1452. return MTRR_TYPE_UNCACHABLE;
  1453. if ((prev_match == MTRR_TYPE_WRBACK &&
  1454. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1455. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1456. curr_match == MTRR_TYPE_WRBACK)) {
  1457. prev_match = MTRR_TYPE_WRTHROUGH;
  1458. curr_match = MTRR_TYPE_WRTHROUGH;
  1459. }
  1460. if (prev_match != curr_match)
  1461. return MTRR_TYPE_UNCACHABLE;
  1462. }
  1463. if (prev_match != 0xFF)
  1464. return prev_match;
  1465. return mtrr_state->def_type;
  1466. }
  1467. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1468. {
  1469. u8 mtrr;
  1470. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1471. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1472. if (mtrr == 0xfe || mtrr == 0xff)
  1473. mtrr = MTRR_TYPE_WRBACK;
  1474. return mtrr;
  1475. }
  1476. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1477. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1478. {
  1479. unsigned index;
  1480. struct hlist_head *bucket;
  1481. struct kvm_mmu_page *s;
  1482. struct hlist_node *node, *n;
  1483. trace_kvm_mmu_unsync_page(sp);
  1484. index = kvm_page_table_hashfn(sp->gfn);
  1485. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1486. /* don't unsync if pagetable is shadowed with multiple roles */
  1487. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1488. if (s->gfn != sp->gfn || s->role.direct)
  1489. continue;
  1490. if (s->role.word != sp->role.word)
  1491. return 1;
  1492. }
  1493. ++vcpu->kvm->stat.mmu_unsync;
  1494. sp->unsync = 1;
  1495. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1496. mmu_convert_notrap(sp);
  1497. return 0;
  1498. }
  1499. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1500. bool can_unsync)
  1501. {
  1502. struct kvm_mmu_page *shadow;
  1503. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1504. if (shadow) {
  1505. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1506. return 1;
  1507. if (shadow->unsync)
  1508. return 0;
  1509. if (can_unsync && oos_shadow)
  1510. return kvm_unsync_page(vcpu, shadow);
  1511. return 1;
  1512. }
  1513. return 0;
  1514. }
  1515. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1516. unsigned pte_access, int user_fault,
  1517. int write_fault, int dirty, int level,
  1518. gfn_t gfn, pfn_t pfn, bool speculative,
  1519. bool can_unsync, bool reset_host_protection)
  1520. {
  1521. u64 spte;
  1522. int ret = 0;
  1523. /*
  1524. * We don't set the accessed bit, since we sometimes want to see
  1525. * whether the guest actually used the pte (in order to detect
  1526. * demand paging).
  1527. */
  1528. spte = shadow_base_present_pte | shadow_dirty_mask;
  1529. if (!speculative)
  1530. spte |= shadow_accessed_mask;
  1531. if (!dirty)
  1532. pte_access &= ~ACC_WRITE_MASK;
  1533. if (pte_access & ACC_EXEC_MASK)
  1534. spte |= shadow_x_mask;
  1535. else
  1536. spte |= shadow_nx_mask;
  1537. if (pte_access & ACC_USER_MASK)
  1538. spte |= shadow_user_mask;
  1539. if (level > PT_PAGE_TABLE_LEVEL)
  1540. spte |= PT_PAGE_SIZE_MASK;
  1541. if (tdp_enabled)
  1542. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1543. kvm_is_mmio_pfn(pfn));
  1544. if (reset_host_protection)
  1545. spte |= SPTE_HOST_WRITEABLE;
  1546. spte |= (u64)pfn << PAGE_SHIFT;
  1547. if ((pte_access & ACC_WRITE_MASK)
  1548. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1549. if (level > PT_PAGE_TABLE_LEVEL &&
  1550. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1551. ret = 1;
  1552. spte = shadow_trap_nonpresent_pte;
  1553. goto set_pte;
  1554. }
  1555. spte |= PT_WRITABLE_MASK;
  1556. /*
  1557. * Optimization: for pte sync, if spte was writable the hash
  1558. * lookup is unnecessary (and expensive). Write protection
  1559. * is responsibility of mmu_get_page / kvm_sync_page.
  1560. * Same reasoning can be applied to dirty page accounting.
  1561. */
  1562. if (!can_unsync && is_writeble_pte(*sptep))
  1563. goto set_pte;
  1564. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1565. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1566. __func__, gfn);
  1567. ret = 1;
  1568. pte_access &= ~ACC_WRITE_MASK;
  1569. if (is_writeble_pte(spte))
  1570. spte &= ~PT_WRITABLE_MASK;
  1571. }
  1572. }
  1573. if (pte_access & ACC_WRITE_MASK)
  1574. mark_page_dirty(vcpu->kvm, gfn);
  1575. set_pte:
  1576. __set_spte(sptep, spte);
  1577. return ret;
  1578. }
  1579. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1580. unsigned pt_access, unsigned pte_access,
  1581. int user_fault, int write_fault, int dirty,
  1582. int *ptwrite, int level, gfn_t gfn,
  1583. pfn_t pfn, bool speculative,
  1584. bool reset_host_protection)
  1585. {
  1586. int was_rmapped = 0;
  1587. int was_writeble = is_writeble_pte(*sptep);
  1588. int rmap_count;
  1589. pgprintk("%s: spte %llx access %x write_fault %d"
  1590. " user_fault %d gfn %lx\n",
  1591. __func__, *sptep, pt_access,
  1592. write_fault, user_fault, gfn);
  1593. if (is_rmap_spte(*sptep)) {
  1594. /*
  1595. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1596. * the parent of the now unreachable PTE.
  1597. */
  1598. if (level > PT_PAGE_TABLE_LEVEL &&
  1599. !is_large_pte(*sptep)) {
  1600. struct kvm_mmu_page *child;
  1601. u64 pte = *sptep;
  1602. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1603. mmu_page_remove_parent_pte(child, sptep);
  1604. } else if (pfn != spte_to_pfn(*sptep)) {
  1605. pgprintk("hfn old %lx new %lx\n",
  1606. spte_to_pfn(*sptep), pfn);
  1607. rmap_remove(vcpu->kvm, sptep);
  1608. } else
  1609. was_rmapped = 1;
  1610. }
  1611. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1612. dirty, level, gfn, pfn, speculative, true,
  1613. reset_host_protection)) {
  1614. if (write_fault)
  1615. *ptwrite = 1;
  1616. kvm_x86_ops->tlb_flush(vcpu);
  1617. }
  1618. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1619. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1620. is_large_pte(*sptep)? "2MB" : "4kB",
  1621. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1622. *sptep, sptep);
  1623. if (!was_rmapped && is_large_pte(*sptep))
  1624. ++vcpu->kvm->stat.lpages;
  1625. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1626. if (!was_rmapped) {
  1627. rmap_count = rmap_add(vcpu, sptep, gfn);
  1628. kvm_release_pfn_clean(pfn);
  1629. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1630. rmap_recycle(vcpu, sptep, gfn);
  1631. } else {
  1632. if (was_writeble)
  1633. kvm_release_pfn_dirty(pfn);
  1634. else
  1635. kvm_release_pfn_clean(pfn);
  1636. }
  1637. if (speculative) {
  1638. vcpu->arch.last_pte_updated = sptep;
  1639. vcpu->arch.last_pte_gfn = gfn;
  1640. }
  1641. }
  1642. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1643. {
  1644. }
  1645. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1646. int level, gfn_t gfn, pfn_t pfn)
  1647. {
  1648. struct kvm_shadow_walk_iterator iterator;
  1649. struct kvm_mmu_page *sp;
  1650. int pt_write = 0;
  1651. gfn_t pseudo_gfn;
  1652. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1653. if (iterator.level == level) {
  1654. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1655. 0, write, 1, &pt_write,
  1656. level, gfn, pfn, false, true);
  1657. ++vcpu->stat.pf_fixed;
  1658. break;
  1659. }
  1660. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1661. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1662. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1663. iterator.level - 1,
  1664. 1, ACC_ALL, iterator.sptep);
  1665. if (!sp) {
  1666. pgprintk("nonpaging_map: ENOMEM\n");
  1667. kvm_release_pfn_clean(pfn);
  1668. return -ENOMEM;
  1669. }
  1670. __set_spte(iterator.sptep,
  1671. __pa(sp->spt)
  1672. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1673. | shadow_user_mask | shadow_x_mask);
  1674. }
  1675. }
  1676. return pt_write;
  1677. }
  1678. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1679. {
  1680. int r;
  1681. int level;
  1682. pfn_t pfn;
  1683. unsigned long mmu_seq;
  1684. level = mapping_level(vcpu, gfn);
  1685. /*
  1686. * This path builds a PAE pagetable - so we can map 2mb pages at
  1687. * maximum. Therefore check if the level is larger than that.
  1688. */
  1689. if (level > PT_DIRECTORY_LEVEL)
  1690. level = PT_DIRECTORY_LEVEL;
  1691. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1692. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1693. smp_rmb();
  1694. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1695. /* mmio */
  1696. if (is_error_pfn(pfn)) {
  1697. kvm_release_pfn_clean(pfn);
  1698. return 1;
  1699. }
  1700. spin_lock(&vcpu->kvm->mmu_lock);
  1701. if (mmu_notifier_retry(vcpu, mmu_seq))
  1702. goto out_unlock;
  1703. kvm_mmu_free_some_pages(vcpu);
  1704. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1705. spin_unlock(&vcpu->kvm->mmu_lock);
  1706. return r;
  1707. out_unlock:
  1708. spin_unlock(&vcpu->kvm->mmu_lock);
  1709. kvm_release_pfn_clean(pfn);
  1710. return 0;
  1711. }
  1712. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1713. {
  1714. int i;
  1715. struct kvm_mmu_page *sp;
  1716. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1717. return;
  1718. spin_lock(&vcpu->kvm->mmu_lock);
  1719. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1720. hpa_t root = vcpu->arch.mmu.root_hpa;
  1721. sp = page_header(root);
  1722. --sp->root_count;
  1723. if (!sp->root_count && sp->role.invalid)
  1724. kvm_mmu_zap_page(vcpu->kvm, sp);
  1725. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1726. spin_unlock(&vcpu->kvm->mmu_lock);
  1727. return;
  1728. }
  1729. for (i = 0; i < 4; ++i) {
  1730. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1731. if (root) {
  1732. root &= PT64_BASE_ADDR_MASK;
  1733. sp = page_header(root);
  1734. --sp->root_count;
  1735. if (!sp->root_count && sp->role.invalid)
  1736. kvm_mmu_zap_page(vcpu->kvm, sp);
  1737. }
  1738. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1739. }
  1740. spin_unlock(&vcpu->kvm->mmu_lock);
  1741. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1742. }
  1743. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1744. {
  1745. int ret = 0;
  1746. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1747. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1748. ret = 1;
  1749. }
  1750. return ret;
  1751. }
  1752. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1753. {
  1754. int i;
  1755. gfn_t root_gfn;
  1756. struct kvm_mmu_page *sp;
  1757. int direct = 0;
  1758. u64 pdptr;
  1759. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1760. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1761. hpa_t root = vcpu->arch.mmu.root_hpa;
  1762. ASSERT(!VALID_PAGE(root));
  1763. if (tdp_enabled)
  1764. direct = 1;
  1765. if (mmu_check_root(vcpu, root_gfn))
  1766. return 1;
  1767. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1768. PT64_ROOT_LEVEL, direct,
  1769. ACC_ALL, NULL);
  1770. root = __pa(sp->spt);
  1771. ++sp->root_count;
  1772. vcpu->arch.mmu.root_hpa = root;
  1773. return 0;
  1774. }
  1775. direct = !is_paging(vcpu);
  1776. if (tdp_enabled)
  1777. direct = 1;
  1778. for (i = 0; i < 4; ++i) {
  1779. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1780. ASSERT(!VALID_PAGE(root));
  1781. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1782. pdptr = kvm_pdptr_read(vcpu, i);
  1783. if (!is_present_gpte(pdptr)) {
  1784. vcpu->arch.mmu.pae_root[i] = 0;
  1785. continue;
  1786. }
  1787. root_gfn = pdptr >> PAGE_SHIFT;
  1788. } else if (vcpu->arch.mmu.root_level == 0)
  1789. root_gfn = 0;
  1790. if (mmu_check_root(vcpu, root_gfn))
  1791. return 1;
  1792. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1793. PT32_ROOT_LEVEL, direct,
  1794. ACC_ALL, NULL);
  1795. root = __pa(sp->spt);
  1796. ++sp->root_count;
  1797. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1798. }
  1799. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1800. return 0;
  1801. }
  1802. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1803. {
  1804. int i;
  1805. struct kvm_mmu_page *sp;
  1806. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1807. return;
  1808. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1809. hpa_t root = vcpu->arch.mmu.root_hpa;
  1810. sp = page_header(root);
  1811. mmu_sync_children(vcpu, sp);
  1812. return;
  1813. }
  1814. for (i = 0; i < 4; ++i) {
  1815. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1816. if (root && VALID_PAGE(root)) {
  1817. root &= PT64_BASE_ADDR_MASK;
  1818. sp = page_header(root);
  1819. mmu_sync_children(vcpu, sp);
  1820. }
  1821. }
  1822. }
  1823. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1824. {
  1825. spin_lock(&vcpu->kvm->mmu_lock);
  1826. mmu_sync_roots(vcpu);
  1827. spin_unlock(&vcpu->kvm->mmu_lock);
  1828. }
  1829. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1830. {
  1831. return vaddr;
  1832. }
  1833. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1834. u32 error_code)
  1835. {
  1836. gfn_t gfn;
  1837. int r;
  1838. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1839. r = mmu_topup_memory_caches(vcpu);
  1840. if (r)
  1841. return r;
  1842. ASSERT(vcpu);
  1843. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1844. gfn = gva >> PAGE_SHIFT;
  1845. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1846. error_code & PFERR_WRITE_MASK, gfn);
  1847. }
  1848. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1849. u32 error_code)
  1850. {
  1851. pfn_t pfn;
  1852. int r;
  1853. int level;
  1854. gfn_t gfn = gpa >> PAGE_SHIFT;
  1855. unsigned long mmu_seq;
  1856. ASSERT(vcpu);
  1857. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1858. r = mmu_topup_memory_caches(vcpu);
  1859. if (r)
  1860. return r;
  1861. level = mapping_level(vcpu, gfn);
  1862. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1863. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1864. smp_rmb();
  1865. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1866. if (is_error_pfn(pfn)) {
  1867. kvm_release_pfn_clean(pfn);
  1868. return 1;
  1869. }
  1870. spin_lock(&vcpu->kvm->mmu_lock);
  1871. if (mmu_notifier_retry(vcpu, mmu_seq))
  1872. goto out_unlock;
  1873. kvm_mmu_free_some_pages(vcpu);
  1874. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1875. level, gfn, pfn);
  1876. spin_unlock(&vcpu->kvm->mmu_lock);
  1877. return r;
  1878. out_unlock:
  1879. spin_unlock(&vcpu->kvm->mmu_lock);
  1880. kvm_release_pfn_clean(pfn);
  1881. return 0;
  1882. }
  1883. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1884. {
  1885. mmu_free_roots(vcpu);
  1886. }
  1887. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1888. {
  1889. struct kvm_mmu *context = &vcpu->arch.mmu;
  1890. context->new_cr3 = nonpaging_new_cr3;
  1891. context->page_fault = nonpaging_page_fault;
  1892. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1893. context->free = nonpaging_free;
  1894. context->prefetch_page = nonpaging_prefetch_page;
  1895. context->sync_page = nonpaging_sync_page;
  1896. context->invlpg = nonpaging_invlpg;
  1897. context->root_level = 0;
  1898. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1899. context->root_hpa = INVALID_PAGE;
  1900. return 0;
  1901. }
  1902. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1903. {
  1904. ++vcpu->stat.tlb_flush;
  1905. kvm_x86_ops->tlb_flush(vcpu);
  1906. }
  1907. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1908. {
  1909. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1910. mmu_free_roots(vcpu);
  1911. }
  1912. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1913. u64 addr,
  1914. u32 err_code)
  1915. {
  1916. kvm_inject_page_fault(vcpu, addr, err_code);
  1917. }
  1918. static void paging_free(struct kvm_vcpu *vcpu)
  1919. {
  1920. nonpaging_free(vcpu);
  1921. }
  1922. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1923. {
  1924. int bit7;
  1925. bit7 = (gpte >> 7) & 1;
  1926. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1927. }
  1928. #define PTTYPE 64
  1929. #include "paging_tmpl.h"
  1930. #undef PTTYPE
  1931. #define PTTYPE 32
  1932. #include "paging_tmpl.h"
  1933. #undef PTTYPE
  1934. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1935. {
  1936. struct kvm_mmu *context = &vcpu->arch.mmu;
  1937. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1938. u64 exb_bit_rsvd = 0;
  1939. if (!is_nx(vcpu))
  1940. exb_bit_rsvd = rsvd_bits(63, 63);
  1941. switch (level) {
  1942. case PT32_ROOT_LEVEL:
  1943. /* no rsvd bits for 2 level 4K page table entries */
  1944. context->rsvd_bits_mask[0][1] = 0;
  1945. context->rsvd_bits_mask[0][0] = 0;
  1946. if (is_cpuid_PSE36())
  1947. /* 36bits PSE 4MB page */
  1948. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1949. else
  1950. /* 32 bits PSE 4MB page */
  1951. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1952. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1953. break;
  1954. case PT32E_ROOT_LEVEL:
  1955. context->rsvd_bits_mask[0][2] =
  1956. rsvd_bits(maxphyaddr, 63) |
  1957. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1958. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1959. rsvd_bits(maxphyaddr, 62); /* PDE */
  1960. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1961. rsvd_bits(maxphyaddr, 62); /* PTE */
  1962. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1963. rsvd_bits(maxphyaddr, 62) |
  1964. rsvd_bits(13, 20); /* large page */
  1965. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1966. break;
  1967. case PT64_ROOT_LEVEL:
  1968. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1969. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1970. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1971. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1972. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1973. rsvd_bits(maxphyaddr, 51);
  1974. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1975. rsvd_bits(maxphyaddr, 51);
  1976. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1977. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1978. rsvd_bits(maxphyaddr, 51) |
  1979. rsvd_bits(13, 29);
  1980. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1981. rsvd_bits(maxphyaddr, 51) |
  1982. rsvd_bits(13, 20); /* large page */
  1983. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1984. break;
  1985. }
  1986. }
  1987. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1988. {
  1989. struct kvm_mmu *context = &vcpu->arch.mmu;
  1990. ASSERT(is_pae(vcpu));
  1991. context->new_cr3 = paging_new_cr3;
  1992. context->page_fault = paging64_page_fault;
  1993. context->gva_to_gpa = paging64_gva_to_gpa;
  1994. context->prefetch_page = paging64_prefetch_page;
  1995. context->sync_page = paging64_sync_page;
  1996. context->invlpg = paging64_invlpg;
  1997. context->free = paging_free;
  1998. context->root_level = level;
  1999. context->shadow_root_level = level;
  2000. context->root_hpa = INVALID_PAGE;
  2001. return 0;
  2002. }
  2003. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2004. {
  2005. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2006. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2007. }
  2008. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2009. {
  2010. struct kvm_mmu *context = &vcpu->arch.mmu;
  2011. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2012. context->new_cr3 = paging_new_cr3;
  2013. context->page_fault = paging32_page_fault;
  2014. context->gva_to_gpa = paging32_gva_to_gpa;
  2015. context->free = paging_free;
  2016. context->prefetch_page = paging32_prefetch_page;
  2017. context->sync_page = paging32_sync_page;
  2018. context->invlpg = paging32_invlpg;
  2019. context->root_level = PT32_ROOT_LEVEL;
  2020. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2021. context->root_hpa = INVALID_PAGE;
  2022. return 0;
  2023. }
  2024. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2025. {
  2026. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2027. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2028. }
  2029. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2030. {
  2031. struct kvm_mmu *context = &vcpu->arch.mmu;
  2032. context->new_cr3 = nonpaging_new_cr3;
  2033. context->page_fault = tdp_page_fault;
  2034. context->free = nonpaging_free;
  2035. context->prefetch_page = nonpaging_prefetch_page;
  2036. context->sync_page = nonpaging_sync_page;
  2037. context->invlpg = nonpaging_invlpg;
  2038. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2039. context->root_hpa = INVALID_PAGE;
  2040. if (!is_paging(vcpu)) {
  2041. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2042. context->root_level = 0;
  2043. } else if (is_long_mode(vcpu)) {
  2044. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2045. context->gva_to_gpa = paging64_gva_to_gpa;
  2046. context->root_level = PT64_ROOT_LEVEL;
  2047. } else if (is_pae(vcpu)) {
  2048. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2049. context->gva_to_gpa = paging64_gva_to_gpa;
  2050. context->root_level = PT32E_ROOT_LEVEL;
  2051. } else {
  2052. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2053. context->gva_to_gpa = paging32_gva_to_gpa;
  2054. context->root_level = PT32_ROOT_LEVEL;
  2055. }
  2056. return 0;
  2057. }
  2058. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2059. {
  2060. int r;
  2061. ASSERT(vcpu);
  2062. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2063. if (!is_paging(vcpu))
  2064. r = nonpaging_init_context(vcpu);
  2065. else if (is_long_mode(vcpu))
  2066. r = paging64_init_context(vcpu);
  2067. else if (is_pae(vcpu))
  2068. r = paging32E_init_context(vcpu);
  2069. else
  2070. r = paging32_init_context(vcpu);
  2071. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2072. return r;
  2073. }
  2074. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2075. {
  2076. vcpu->arch.update_pte.pfn = bad_pfn;
  2077. if (tdp_enabled)
  2078. return init_kvm_tdp_mmu(vcpu);
  2079. else
  2080. return init_kvm_softmmu(vcpu);
  2081. }
  2082. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2083. {
  2084. ASSERT(vcpu);
  2085. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2086. vcpu->arch.mmu.free(vcpu);
  2087. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2088. }
  2089. }
  2090. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2091. {
  2092. destroy_kvm_mmu(vcpu);
  2093. return init_kvm_mmu(vcpu);
  2094. }
  2095. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2096. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2097. {
  2098. int r;
  2099. r = mmu_topup_memory_caches(vcpu);
  2100. if (r)
  2101. goto out;
  2102. spin_lock(&vcpu->kvm->mmu_lock);
  2103. kvm_mmu_free_some_pages(vcpu);
  2104. r = mmu_alloc_roots(vcpu);
  2105. mmu_sync_roots(vcpu);
  2106. spin_unlock(&vcpu->kvm->mmu_lock);
  2107. if (r)
  2108. goto out;
  2109. /* set_cr3() should ensure TLB has been flushed */
  2110. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2111. out:
  2112. return r;
  2113. }
  2114. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2115. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2116. {
  2117. mmu_free_roots(vcpu);
  2118. }
  2119. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2120. struct kvm_mmu_page *sp,
  2121. u64 *spte)
  2122. {
  2123. u64 pte;
  2124. struct kvm_mmu_page *child;
  2125. pte = *spte;
  2126. if (is_shadow_present_pte(pte)) {
  2127. if (is_last_spte(pte, sp->role.level))
  2128. rmap_remove(vcpu->kvm, spte);
  2129. else {
  2130. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2131. mmu_page_remove_parent_pte(child, spte);
  2132. }
  2133. }
  2134. __set_spte(spte, shadow_trap_nonpresent_pte);
  2135. if (is_large_pte(pte))
  2136. --vcpu->kvm->stat.lpages;
  2137. }
  2138. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2139. struct kvm_mmu_page *sp,
  2140. u64 *spte,
  2141. const void *new)
  2142. {
  2143. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2144. ++vcpu->kvm->stat.mmu_pde_zapped;
  2145. return;
  2146. }
  2147. ++vcpu->kvm->stat.mmu_pte_updated;
  2148. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2149. paging32_update_pte(vcpu, sp, spte, new);
  2150. else
  2151. paging64_update_pte(vcpu, sp, spte, new);
  2152. }
  2153. static bool need_remote_flush(u64 old, u64 new)
  2154. {
  2155. if (!is_shadow_present_pte(old))
  2156. return false;
  2157. if (!is_shadow_present_pte(new))
  2158. return true;
  2159. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2160. return true;
  2161. old ^= PT64_NX_MASK;
  2162. new ^= PT64_NX_MASK;
  2163. return (old & ~new & PT64_PERM_MASK) != 0;
  2164. }
  2165. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2166. {
  2167. if (need_remote_flush(old, new))
  2168. kvm_flush_remote_tlbs(vcpu->kvm);
  2169. else
  2170. kvm_mmu_flush_tlb(vcpu);
  2171. }
  2172. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2173. {
  2174. u64 *spte = vcpu->arch.last_pte_updated;
  2175. return !!(spte && (*spte & shadow_accessed_mask));
  2176. }
  2177. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2178. const u8 *new, int bytes)
  2179. {
  2180. gfn_t gfn;
  2181. int r;
  2182. u64 gpte = 0;
  2183. pfn_t pfn;
  2184. if (bytes != 4 && bytes != 8)
  2185. return;
  2186. /*
  2187. * Assume that the pte write on a page table of the same type
  2188. * as the current vcpu paging mode. This is nearly always true
  2189. * (might be false while changing modes). Note it is verified later
  2190. * by update_pte().
  2191. */
  2192. if (is_pae(vcpu)) {
  2193. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2194. if ((bytes == 4) && (gpa % 4 == 0)) {
  2195. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2196. if (r)
  2197. return;
  2198. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2199. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2200. memcpy((void *)&gpte, new, 8);
  2201. }
  2202. } else {
  2203. if ((bytes == 4) && (gpa % 4 == 0))
  2204. memcpy((void *)&gpte, new, 4);
  2205. }
  2206. if (!is_present_gpte(gpte))
  2207. return;
  2208. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2209. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2210. smp_rmb();
  2211. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2212. if (is_error_pfn(pfn)) {
  2213. kvm_release_pfn_clean(pfn);
  2214. return;
  2215. }
  2216. vcpu->arch.update_pte.gfn = gfn;
  2217. vcpu->arch.update_pte.pfn = pfn;
  2218. }
  2219. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2220. {
  2221. u64 *spte = vcpu->arch.last_pte_updated;
  2222. if (spte
  2223. && vcpu->arch.last_pte_gfn == gfn
  2224. && shadow_accessed_mask
  2225. && !(*spte & shadow_accessed_mask)
  2226. && is_shadow_present_pte(*spte))
  2227. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2228. }
  2229. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2230. const u8 *new, int bytes,
  2231. bool guest_initiated)
  2232. {
  2233. gfn_t gfn = gpa >> PAGE_SHIFT;
  2234. struct kvm_mmu_page *sp;
  2235. struct hlist_node *node, *n;
  2236. struct hlist_head *bucket;
  2237. unsigned index;
  2238. u64 entry, gentry;
  2239. u64 *spte;
  2240. unsigned offset = offset_in_page(gpa);
  2241. unsigned pte_size;
  2242. unsigned page_offset;
  2243. unsigned misaligned;
  2244. unsigned quadrant;
  2245. int level;
  2246. int flooded = 0;
  2247. int npte;
  2248. int r;
  2249. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2250. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2251. spin_lock(&vcpu->kvm->mmu_lock);
  2252. kvm_mmu_access_page(vcpu, gfn);
  2253. kvm_mmu_free_some_pages(vcpu);
  2254. ++vcpu->kvm->stat.mmu_pte_write;
  2255. kvm_mmu_audit(vcpu, "pre pte write");
  2256. if (guest_initiated) {
  2257. if (gfn == vcpu->arch.last_pt_write_gfn
  2258. && !last_updated_pte_accessed(vcpu)) {
  2259. ++vcpu->arch.last_pt_write_count;
  2260. if (vcpu->arch.last_pt_write_count >= 3)
  2261. flooded = 1;
  2262. } else {
  2263. vcpu->arch.last_pt_write_gfn = gfn;
  2264. vcpu->arch.last_pt_write_count = 1;
  2265. vcpu->arch.last_pte_updated = NULL;
  2266. }
  2267. }
  2268. index = kvm_page_table_hashfn(gfn);
  2269. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2270. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2271. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2272. continue;
  2273. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2274. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2275. misaligned |= bytes < 4;
  2276. if (misaligned || flooded) {
  2277. /*
  2278. * Misaligned accesses are too much trouble to fix
  2279. * up; also, they usually indicate a page is not used
  2280. * as a page table.
  2281. *
  2282. * If we're seeing too many writes to a page,
  2283. * it may no longer be a page table, or we may be
  2284. * forking, in which case it is better to unmap the
  2285. * page.
  2286. */
  2287. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2288. gpa, bytes, sp->role.word);
  2289. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2290. n = bucket->first;
  2291. ++vcpu->kvm->stat.mmu_flooded;
  2292. continue;
  2293. }
  2294. page_offset = offset;
  2295. level = sp->role.level;
  2296. npte = 1;
  2297. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2298. page_offset <<= 1; /* 32->64 */
  2299. /*
  2300. * A 32-bit pde maps 4MB while the shadow pdes map
  2301. * only 2MB. So we need to double the offset again
  2302. * and zap two pdes instead of one.
  2303. */
  2304. if (level == PT32_ROOT_LEVEL) {
  2305. page_offset &= ~7; /* kill rounding error */
  2306. page_offset <<= 1;
  2307. npte = 2;
  2308. }
  2309. quadrant = page_offset >> PAGE_SHIFT;
  2310. page_offset &= ~PAGE_MASK;
  2311. if (quadrant != sp->role.quadrant)
  2312. continue;
  2313. }
  2314. spte = &sp->spt[page_offset / sizeof(*spte)];
  2315. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2316. gentry = 0;
  2317. r = kvm_read_guest_atomic(vcpu->kvm,
  2318. gpa & ~(u64)(pte_size - 1),
  2319. &gentry, pte_size);
  2320. new = (const void *)&gentry;
  2321. if (r < 0)
  2322. new = NULL;
  2323. }
  2324. while (npte--) {
  2325. entry = *spte;
  2326. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2327. if (new)
  2328. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2329. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2330. ++spte;
  2331. }
  2332. }
  2333. kvm_mmu_audit(vcpu, "post pte write");
  2334. spin_unlock(&vcpu->kvm->mmu_lock);
  2335. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2336. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2337. vcpu->arch.update_pte.pfn = bad_pfn;
  2338. }
  2339. }
  2340. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2341. {
  2342. gpa_t gpa;
  2343. int r;
  2344. if (tdp_enabled)
  2345. return 0;
  2346. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2347. spin_lock(&vcpu->kvm->mmu_lock);
  2348. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2349. spin_unlock(&vcpu->kvm->mmu_lock);
  2350. return r;
  2351. }
  2352. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2353. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2354. {
  2355. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2356. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2357. struct kvm_mmu_page *sp;
  2358. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2359. struct kvm_mmu_page, link);
  2360. kvm_mmu_zap_page(vcpu->kvm, sp);
  2361. ++vcpu->kvm->stat.mmu_recycled;
  2362. }
  2363. }
  2364. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2365. {
  2366. int r;
  2367. enum emulation_result er;
  2368. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2369. if (r < 0)
  2370. goto out;
  2371. if (!r) {
  2372. r = 1;
  2373. goto out;
  2374. }
  2375. r = mmu_topup_memory_caches(vcpu);
  2376. if (r)
  2377. goto out;
  2378. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2379. switch (er) {
  2380. case EMULATE_DONE:
  2381. return 1;
  2382. case EMULATE_DO_MMIO:
  2383. ++vcpu->stat.mmio_exits;
  2384. return 0;
  2385. case EMULATE_FAIL:
  2386. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2387. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2388. vcpu->run->internal.ndata = 0;
  2389. return 0;
  2390. default:
  2391. BUG();
  2392. }
  2393. out:
  2394. return r;
  2395. }
  2396. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2397. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2398. {
  2399. vcpu->arch.mmu.invlpg(vcpu, gva);
  2400. kvm_mmu_flush_tlb(vcpu);
  2401. ++vcpu->stat.invlpg;
  2402. }
  2403. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2404. void kvm_enable_tdp(void)
  2405. {
  2406. tdp_enabled = true;
  2407. }
  2408. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2409. void kvm_disable_tdp(void)
  2410. {
  2411. tdp_enabled = false;
  2412. }
  2413. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2414. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2415. {
  2416. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2417. }
  2418. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2419. {
  2420. struct page *page;
  2421. int i;
  2422. ASSERT(vcpu);
  2423. /*
  2424. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2425. * Therefore we need to allocate shadow page tables in the first
  2426. * 4GB of memory, which happens to fit the DMA32 zone.
  2427. */
  2428. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2429. if (!page)
  2430. goto error_1;
  2431. vcpu->arch.mmu.pae_root = page_address(page);
  2432. for (i = 0; i < 4; ++i)
  2433. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2434. return 0;
  2435. error_1:
  2436. free_mmu_pages(vcpu);
  2437. return -ENOMEM;
  2438. }
  2439. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2440. {
  2441. ASSERT(vcpu);
  2442. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2443. return alloc_mmu_pages(vcpu);
  2444. }
  2445. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2446. {
  2447. ASSERT(vcpu);
  2448. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2449. return init_kvm_mmu(vcpu);
  2450. }
  2451. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2452. {
  2453. ASSERT(vcpu);
  2454. destroy_kvm_mmu(vcpu);
  2455. free_mmu_pages(vcpu);
  2456. mmu_free_memory_caches(vcpu);
  2457. }
  2458. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2459. {
  2460. struct kvm_mmu_page *sp;
  2461. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2462. int i;
  2463. u64 *pt;
  2464. if (!test_bit(slot, sp->slot_bitmap))
  2465. continue;
  2466. pt = sp->spt;
  2467. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2468. /* avoid RMW */
  2469. if (pt[i] & PT_WRITABLE_MASK)
  2470. pt[i] &= ~PT_WRITABLE_MASK;
  2471. }
  2472. kvm_flush_remote_tlbs(kvm);
  2473. }
  2474. void kvm_mmu_zap_all(struct kvm *kvm)
  2475. {
  2476. struct kvm_mmu_page *sp, *node;
  2477. spin_lock(&kvm->mmu_lock);
  2478. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2479. if (kvm_mmu_zap_page(kvm, sp))
  2480. node = container_of(kvm->arch.active_mmu_pages.next,
  2481. struct kvm_mmu_page, link);
  2482. spin_unlock(&kvm->mmu_lock);
  2483. kvm_flush_remote_tlbs(kvm);
  2484. }
  2485. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2486. {
  2487. struct kvm_mmu_page *page;
  2488. page = container_of(kvm->arch.active_mmu_pages.prev,
  2489. struct kvm_mmu_page, link);
  2490. kvm_mmu_zap_page(kvm, page);
  2491. }
  2492. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2493. {
  2494. struct kvm *kvm;
  2495. struct kvm *kvm_freed = NULL;
  2496. int cache_count = 0;
  2497. spin_lock(&kvm_lock);
  2498. list_for_each_entry(kvm, &vm_list, vm_list) {
  2499. int npages, idx;
  2500. idx = srcu_read_lock(&kvm->srcu);
  2501. spin_lock(&kvm->mmu_lock);
  2502. npages = kvm->arch.n_alloc_mmu_pages -
  2503. kvm->arch.n_free_mmu_pages;
  2504. cache_count += npages;
  2505. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2506. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2507. cache_count--;
  2508. kvm_freed = kvm;
  2509. }
  2510. nr_to_scan--;
  2511. spin_unlock(&kvm->mmu_lock);
  2512. srcu_read_unlock(&kvm->srcu, idx);
  2513. }
  2514. if (kvm_freed)
  2515. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2516. spin_unlock(&kvm_lock);
  2517. return cache_count;
  2518. }
  2519. static struct shrinker mmu_shrinker = {
  2520. .shrink = mmu_shrink,
  2521. .seeks = DEFAULT_SEEKS * 10,
  2522. };
  2523. static void mmu_destroy_caches(void)
  2524. {
  2525. if (pte_chain_cache)
  2526. kmem_cache_destroy(pte_chain_cache);
  2527. if (rmap_desc_cache)
  2528. kmem_cache_destroy(rmap_desc_cache);
  2529. if (mmu_page_header_cache)
  2530. kmem_cache_destroy(mmu_page_header_cache);
  2531. }
  2532. void kvm_mmu_module_exit(void)
  2533. {
  2534. mmu_destroy_caches();
  2535. unregister_shrinker(&mmu_shrinker);
  2536. }
  2537. int kvm_mmu_module_init(void)
  2538. {
  2539. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2540. sizeof(struct kvm_pte_chain),
  2541. 0, 0, NULL);
  2542. if (!pte_chain_cache)
  2543. goto nomem;
  2544. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2545. sizeof(struct kvm_rmap_desc),
  2546. 0, 0, NULL);
  2547. if (!rmap_desc_cache)
  2548. goto nomem;
  2549. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2550. sizeof(struct kvm_mmu_page),
  2551. 0, 0, NULL);
  2552. if (!mmu_page_header_cache)
  2553. goto nomem;
  2554. register_shrinker(&mmu_shrinker);
  2555. return 0;
  2556. nomem:
  2557. mmu_destroy_caches();
  2558. return -ENOMEM;
  2559. }
  2560. /*
  2561. * Caculate mmu pages needed for kvm.
  2562. */
  2563. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2564. {
  2565. int i;
  2566. unsigned int nr_mmu_pages;
  2567. unsigned int nr_pages = 0;
  2568. struct kvm_memslots *slots;
  2569. slots = rcu_dereference(kvm->memslots);
  2570. for (i = 0; i < slots->nmemslots; i++)
  2571. nr_pages += slots->memslots[i].npages;
  2572. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2573. nr_mmu_pages = max(nr_mmu_pages,
  2574. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2575. return nr_mmu_pages;
  2576. }
  2577. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2578. unsigned len)
  2579. {
  2580. if (len > buffer->len)
  2581. return NULL;
  2582. return buffer->ptr;
  2583. }
  2584. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2585. unsigned len)
  2586. {
  2587. void *ret;
  2588. ret = pv_mmu_peek_buffer(buffer, len);
  2589. if (!ret)
  2590. return ret;
  2591. buffer->ptr += len;
  2592. buffer->len -= len;
  2593. buffer->processed += len;
  2594. return ret;
  2595. }
  2596. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2597. gpa_t addr, gpa_t value)
  2598. {
  2599. int bytes = 8;
  2600. int r;
  2601. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2602. bytes = 4;
  2603. r = mmu_topup_memory_caches(vcpu);
  2604. if (r)
  2605. return r;
  2606. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2607. return -EFAULT;
  2608. return 1;
  2609. }
  2610. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2611. {
  2612. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2613. return 1;
  2614. }
  2615. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2616. {
  2617. spin_lock(&vcpu->kvm->mmu_lock);
  2618. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2619. spin_unlock(&vcpu->kvm->mmu_lock);
  2620. return 1;
  2621. }
  2622. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2623. struct kvm_pv_mmu_op_buffer *buffer)
  2624. {
  2625. struct kvm_mmu_op_header *header;
  2626. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2627. if (!header)
  2628. return 0;
  2629. switch (header->op) {
  2630. case KVM_MMU_OP_WRITE_PTE: {
  2631. struct kvm_mmu_op_write_pte *wpte;
  2632. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2633. if (!wpte)
  2634. return 0;
  2635. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2636. wpte->pte_val);
  2637. }
  2638. case KVM_MMU_OP_FLUSH_TLB: {
  2639. struct kvm_mmu_op_flush_tlb *ftlb;
  2640. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2641. if (!ftlb)
  2642. return 0;
  2643. return kvm_pv_mmu_flush_tlb(vcpu);
  2644. }
  2645. case KVM_MMU_OP_RELEASE_PT: {
  2646. struct kvm_mmu_op_release_pt *rpt;
  2647. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2648. if (!rpt)
  2649. return 0;
  2650. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2651. }
  2652. default: return 0;
  2653. }
  2654. }
  2655. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2656. gpa_t addr, unsigned long *ret)
  2657. {
  2658. int r;
  2659. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2660. buffer->ptr = buffer->buf;
  2661. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2662. buffer->processed = 0;
  2663. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2664. if (r)
  2665. goto out;
  2666. while (buffer->len) {
  2667. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2668. if (r < 0)
  2669. goto out;
  2670. if (r == 0)
  2671. break;
  2672. }
  2673. r = 1;
  2674. out:
  2675. *ret = buffer->processed;
  2676. return r;
  2677. }
  2678. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2679. {
  2680. struct kvm_shadow_walk_iterator iterator;
  2681. int nr_sptes = 0;
  2682. spin_lock(&vcpu->kvm->mmu_lock);
  2683. for_each_shadow_entry(vcpu, addr, iterator) {
  2684. sptes[iterator.level-1] = *iterator.sptep;
  2685. nr_sptes++;
  2686. if (!is_shadow_present_pte(*iterator.sptep))
  2687. break;
  2688. }
  2689. spin_unlock(&vcpu->kvm->mmu_lock);
  2690. return nr_sptes;
  2691. }
  2692. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2693. #ifdef AUDIT
  2694. static const char *audit_msg;
  2695. static gva_t canonicalize(gva_t gva)
  2696. {
  2697. #ifdef CONFIG_X86_64
  2698. gva = (long long)(gva << 16) >> 16;
  2699. #endif
  2700. return gva;
  2701. }
  2702. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2703. u64 *sptep);
  2704. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2705. inspect_spte_fn fn)
  2706. {
  2707. int i;
  2708. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2709. u64 ent = sp->spt[i];
  2710. if (is_shadow_present_pte(ent)) {
  2711. if (!is_last_spte(ent, sp->role.level)) {
  2712. struct kvm_mmu_page *child;
  2713. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2714. __mmu_spte_walk(kvm, child, fn);
  2715. } else
  2716. fn(kvm, sp, &sp->spt[i]);
  2717. }
  2718. }
  2719. }
  2720. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2721. {
  2722. int i;
  2723. struct kvm_mmu_page *sp;
  2724. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2725. return;
  2726. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2727. hpa_t root = vcpu->arch.mmu.root_hpa;
  2728. sp = page_header(root);
  2729. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2730. return;
  2731. }
  2732. for (i = 0; i < 4; ++i) {
  2733. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2734. if (root && VALID_PAGE(root)) {
  2735. root &= PT64_BASE_ADDR_MASK;
  2736. sp = page_header(root);
  2737. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2738. }
  2739. }
  2740. return;
  2741. }
  2742. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2743. gva_t va, int level)
  2744. {
  2745. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2746. int i;
  2747. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2748. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2749. u64 ent = pt[i];
  2750. if (ent == shadow_trap_nonpresent_pte)
  2751. continue;
  2752. va = canonicalize(va);
  2753. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2754. audit_mappings_page(vcpu, ent, va, level - 1);
  2755. else {
  2756. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2757. gfn_t gfn = gpa >> PAGE_SHIFT;
  2758. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2759. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2760. if (is_error_pfn(pfn)) {
  2761. kvm_release_pfn_clean(pfn);
  2762. continue;
  2763. }
  2764. if (is_shadow_present_pte(ent)
  2765. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2766. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2767. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2768. audit_msg, vcpu->arch.mmu.root_level,
  2769. va, gpa, hpa, ent,
  2770. is_shadow_present_pte(ent));
  2771. else if (ent == shadow_notrap_nonpresent_pte
  2772. && !is_error_hpa(hpa))
  2773. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2774. " valid guest gva %lx\n", audit_msg, va);
  2775. kvm_release_pfn_clean(pfn);
  2776. }
  2777. }
  2778. }
  2779. static void audit_mappings(struct kvm_vcpu *vcpu)
  2780. {
  2781. unsigned i;
  2782. if (vcpu->arch.mmu.root_level == 4)
  2783. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2784. else
  2785. for (i = 0; i < 4; ++i)
  2786. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2787. audit_mappings_page(vcpu,
  2788. vcpu->arch.mmu.pae_root[i],
  2789. i << 30,
  2790. 2);
  2791. }
  2792. static int count_rmaps(struct kvm_vcpu *vcpu)
  2793. {
  2794. int nmaps = 0;
  2795. int i, j, k, idx;
  2796. idx = srcu_read_lock(&kvm->srcu);
  2797. slots = rcu_dereference(kvm->memslots);
  2798. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2799. struct kvm_memory_slot *m = &slots->memslots[i];
  2800. struct kvm_rmap_desc *d;
  2801. for (j = 0; j < m->npages; ++j) {
  2802. unsigned long *rmapp = &m->rmap[j];
  2803. if (!*rmapp)
  2804. continue;
  2805. if (!(*rmapp & 1)) {
  2806. ++nmaps;
  2807. continue;
  2808. }
  2809. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2810. while (d) {
  2811. for (k = 0; k < RMAP_EXT; ++k)
  2812. if (d->sptes[k])
  2813. ++nmaps;
  2814. else
  2815. break;
  2816. d = d->more;
  2817. }
  2818. }
  2819. }
  2820. srcu_read_unlock(&kvm->srcu, idx);
  2821. return nmaps;
  2822. }
  2823. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2824. {
  2825. unsigned long *rmapp;
  2826. struct kvm_mmu_page *rev_sp;
  2827. gfn_t gfn;
  2828. if (*sptep & PT_WRITABLE_MASK) {
  2829. rev_sp = page_header(__pa(sptep));
  2830. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2831. if (!gfn_to_memslot(kvm, gfn)) {
  2832. if (!printk_ratelimit())
  2833. return;
  2834. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2835. audit_msg, gfn);
  2836. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2837. audit_msg, sptep - rev_sp->spt,
  2838. rev_sp->gfn);
  2839. dump_stack();
  2840. return;
  2841. }
  2842. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2843. is_large_pte(*sptep));
  2844. if (!*rmapp) {
  2845. if (!printk_ratelimit())
  2846. return;
  2847. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2848. audit_msg, *sptep);
  2849. dump_stack();
  2850. }
  2851. }
  2852. }
  2853. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2854. {
  2855. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2856. }
  2857. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2858. {
  2859. struct kvm_mmu_page *sp;
  2860. int i;
  2861. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2862. u64 *pt = sp->spt;
  2863. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2864. continue;
  2865. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2866. u64 ent = pt[i];
  2867. if (!(ent & PT_PRESENT_MASK))
  2868. continue;
  2869. if (!(ent & PT_WRITABLE_MASK))
  2870. continue;
  2871. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2872. }
  2873. }
  2874. return;
  2875. }
  2876. static void audit_rmap(struct kvm_vcpu *vcpu)
  2877. {
  2878. check_writable_mappings_rmap(vcpu);
  2879. count_rmaps(vcpu);
  2880. }
  2881. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2882. {
  2883. struct kvm_mmu_page *sp;
  2884. struct kvm_memory_slot *slot;
  2885. unsigned long *rmapp;
  2886. u64 *spte;
  2887. gfn_t gfn;
  2888. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2889. if (sp->role.direct)
  2890. continue;
  2891. if (sp->unsync)
  2892. continue;
  2893. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2894. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2895. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2896. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2897. while (spte) {
  2898. if (*spte & PT_WRITABLE_MASK)
  2899. printk(KERN_ERR "%s: (%s) shadow page has "
  2900. "writable mappings: gfn %lx role %x\n",
  2901. __func__, audit_msg, sp->gfn,
  2902. sp->role.word);
  2903. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2904. }
  2905. }
  2906. }
  2907. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2908. {
  2909. int olddbg = dbg;
  2910. dbg = 0;
  2911. audit_msg = msg;
  2912. audit_rmap(vcpu);
  2913. audit_write_protection(vcpu);
  2914. if (strcmp("pre pte write", audit_msg) != 0)
  2915. audit_mappings(vcpu);
  2916. audit_writable_sptes_have_rmaps(vcpu);
  2917. dbg = olddbg;
  2918. }
  2919. #endif