i915_gem.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static int i915_gem_phys_pwrite(struct drm_device *dev,
  44. struct drm_i915_gem_object *obj,
  45. struct drm_i915_gem_pwrite *args,
  46. struct drm_file *file);
  47. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48. struct drm_i915_gem_object *obj);
  49. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50. struct drm_i915_fence_reg *fence,
  51. bool enable);
  52. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  53. struct shrink_control *sc);
  54. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  55. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  56. {
  57. if (obj->tiling_mode)
  58. i915_gem_release_mmap(obj);
  59. /* As we do not have an associated fence register, we will force
  60. * a tiling change if we ever need to acquire one.
  61. */
  62. obj->fence_dirty = false;
  63. obj->fence_reg = I915_FENCE_REG_NONE;
  64. }
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static int
  79. i915_gem_wait_for_error(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. struct completion *x = &dev_priv->error_completion;
  83. unsigned long flags;
  84. int ret;
  85. if (!atomic_read(&dev_priv->mm.wedged))
  86. return 0;
  87. ret = wait_for_completion_interruptible(x);
  88. if (ret)
  89. return ret;
  90. if (atomic_read(&dev_priv->mm.wedged)) {
  91. /* GPU is hung, bump the completion count to account for
  92. * the token we just consumed so that we never hit zero and
  93. * end up waiting upon a subsequent completion event that
  94. * will never happen.
  95. */
  96. spin_lock_irqsave(&x->wait.lock, flags);
  97. x->done++;
  98. spin_unlock_irqrestore(&x->wait.lock, flags);
  99. }
  100. return 0;
  101. }
  102. int i915_mutex_lock_interruptible(struct drm_device *dev)
  103. {
  104. int ret;
  105. ret = i915_gem_wait_for_error(dev);
  106. if (ret)
  107. return ret;
  108. ret = mutex_lock_interruptible(&dev->struct_mutex);
  109. if (ret)
  110. return ret;
  111. WARN_ON(i915_verify_lists(dev));
  112. return 0;
  113. }
  114. static inline bool
  115. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  116. {
  117. return !obj->active;
  118. }
  119. int
  120. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  121. struct drm_file *file)
  122. {
  123. struct drm_i915_gem_init *args = data;
  124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  125. return -ENODEV;
  126. if (args->gtt_start >= args->gtt_end ||
  127. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  128. return -EINVAL;
  129. /* GEM with user mode setting was never supported on ilk and later. */
  130. if (INTEL_INFO(dev)->gen >= 5)
  131. return -ENODEV;
  132. mutex_lock(&dev->struct_mutex);
  133. i915_gem_init_global_gtt(dev, args->gtt_start,
  134. args->gtt_end, args->gtt_end);
  135. mutex_unlock(&dev->struct_mutex);
  136. return 0;
  137. }
  138. int
  139. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  140. struct drm_file *file)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. struct drm_i915_gem_get_aperture *args = data;
  144. struct drm_i915_gem_object *obj;
  145. size_t pinned;
  146. pinned = 0;
  147. mutex_lock(&dev->struct_mutex);
  148. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  149. if (obj->pin_count)
  150. pinned += obj->gtt_space->size;
  151. mutex_unlock(&dev->struct_mutex);
  152. args->aper_size = dev_priv->mm.gtt_total;
  153. args->aper_available_size = args->aper_size - pinned;
  154. return 0;
  155. }
  156. static int
  157. i915_gem_create(struct drm_file *file,
  158. struct drm_device *dev,
  159. uint64_t size,
  160. uint32_t *handle_p)
  161. {
  162. struct drm_i915_gem_object *obj;
  163. int ret;
  164. u32 handle;
  165. size = roundup(size, PAGE_SIZE);
  166. if (size == 0)
  167. return -EINVAL;
  168. /* Allocate the new object */
  169. obj = i915_gem_alloc_object(dev, size);
  170. if (obj == NULL)
  171. return -ENOMEM;
  172. ret = drm_gem_handle_create(file, &obj->base, &handle);
  173. if (ret) {
  174. drm_gem_object_release(&obj->base);
  175. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  176. kfree(obj);
  177. return ret;
  178. }
  179. /* drop reference from allocate - handle holds it now */
  180. drm_gem_object_unreference(&obj->base);
  181. trace_i915_gem_object_create(obj);
  182. *handle_p = handle;
  183. return 0;
  184. }
  185. int
  186. i915_gem_dumb_create(struct drm_file *file,
  187. struct drm_device *dev,
  188. struct drm_mode_create_dumb *args)
  189. {
  190. /* have to work out size/pitch and return them */
  191. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  192. args->size = args->pitch * args->height;
  193. return i915_gem_create(file, dev,
  194. args->size, &args->handle);
  195. }
  196. int i915_gem_dumb_destroy(struct drm_file *file,
  197. struct drm_device *dev,
  198. uint32_t handle)
  199. {
  200. return drm_gem_handle_delete(file, handle);
  201. }
  202. /**
  203. * Creates a new mm object and returns a handle to it.
  204. */
  205. int
  206. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  207. struct drm_file *file)
  208. {
  209. struct drm_i915_gem_create *args = data;
  210. return i915_gem_create(file, dev,
  211. args->size, &args->handle);
  212. }
  213. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  214. {
  215. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  216. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  217. obj->tiling_mode != I915_TILING_NONE;
  218. }
  219. static inline int
  220. __copy_to_user_swizzled(char __user *cpu_vaddr,
  221. const char *gpu_vaddr, int gpu_offset,
  222. int length)
  223. {
  224. int ret, cpu_offset = 0;
  225. while (length > 0) {
  226. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  227. int this_length = min(cacheline_end - gpu_offset, length);
  228. int swizzled_gpu_offset = gpu_offset ^ 64;
  229. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  230. gpu_vaddr + swizzled_gpu_offset,
  231. this_length);
  232. if (ret)
  233. return ret + length;
  234. cpu_offset += this_length;
  235. gpu_offset += this_length;
  236. length -= this_length;
  237. }
  238. return 0;
  239. }
  240. static inline int
  241. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  242. const char __user *cpu_vaddr,
  243. int length)
  244. {
  245. int ret, cpu_offset = 0;
  246. while (length > 0) {
  247. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  248. int this_length = min(cacheline_end - gpu_offset, length);
  249. int swizzled_gpu_offset = gpu_offset ^ 64;
  250. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  251. cpu_vaddr + cpu_offset,
  252. this_length);
  253. if (ret)
  254. return ret + length;
  255. cpu_offset += this_length;
  256. gpu_offset += this_length;
  257. length -= this_length;
  258. }
  259. return 0;
  260. }
  261. /* Per-page copy function for the shmem pread fastpath.
  262. * Flushes invalid cachelines before reading the target if
  263. * needs_clflush is set. */
  264. static int
  265. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  266. char __user *user_data,
  267. bool page_do_bit17_swizzling, bool needs_clflush)
  268. {
  269. char *vaddr;
  270. int ret;
  271. if (unlikely(page_do_bit17_swizzling))
  272. return -EINVAL;
  273. vaddr = kmap_atomic(page);
  274. if (needs_clflush)
  275. drm_clflush_virt_range(vaddr + shmem_page_offset,
  276. page_length);
  277. ret = __copy_to_user_inatomic(user_data,
  278. vaddr + shmem_page_offset,
  279. page_length);
  280. kunmap_atomic(vaddr);
  281. return ret;
  282. }
  283. static void
  284. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  285. bool swizzled)
  286. {
  287. if (unlikely(swizzled)) {
  288. unsigned long start = (unsigned long) addr;
  289. unsigned long end = (unsigned long) addr + length;
  290. /* For swizzling simply ensure that we always flush both
  291. * channels. Lame, but simple and it works. Swizzled
  292. * pwrite/pread is far from a hotpath - current userspace
  293. * doesn't use it at all. */
  294. start = round_down(start, 128);
  295. end = round_up(end, 128);
  296. drm_clflush_virt_range((void *)start, end - start);
  297. } else {
  298. drm_clflush_virt_range(addr, length);
  299. }
  300. }
  301. /* Only difference to the fast-path function is that this can handle bit17
  302. * and uses non-atomic copy and kmap functions. */
  303. static int
  304. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  305. char __user *user_data,
  306. bool page_do_bit17_swizzling, bool needs_clflush)
  307. {
  308. char *vaddr;
  309. int ret;
  310. vaddr = kmap(page);
  311. if (needs_clflush)
  312. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  313. page_length,
  314. page_do_bit17_swizzling);
  315. if (page_do_bit17_swizzling)
  316. ret = __copy_to_user_swizzled(user_data,
  317. vaddr, shmem_page_offset,
  318. page_length);
  319. else
  320. ret = __copy_to_user(user_data,
  321. vaddr + shmem_page_offset,
  322. page_length);
  323. kunmap(page);
  324. return ret;
  325. }
  326. static int
  327. i915_gem_shmem_pread(struct drm_device *dev,
  328. struct drm_i915_gem_object *obj,
  329. struct drm_i915_gem_pread *args,
  330. struct drm_file *file)
  331. {
  332. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  333. char __user *user_data;
  334. ssize_t remain;
  335. loff_t offset;
  336. int shmem_page_offset, page_length, ret = 0;
  337. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  338. int hit_slowpath = 0;
  339. int prefaulted = 0;
  340. int needs_clflush = 0;
  341. int release_page;
  342. user_data = (char __user *) (uintptr_t) args->data_ptr;
  343. remain = args->size;
  344. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  345. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  346. /* If we're not in the cpu read domain, set ourself into the gtt
  347. * read domain and manually flush cachelines (if required). This
  348. * optimizes for the case when the gpu will dirty the data
  349. * anyway again before the next pread happens. */
  350. if (obj->cache_level == I915_CACHE_NONE)
  351. needs_clflush = 1;
  352. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  353. if (ret)
  354. return ret;
  355. }
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * page_length = bytes to copy for this page
  363. */
  364. shmem_page_offset = offset_in_page(offset);
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if (obj->pages) {
  369. page = obj->pages[offset >> PAGE_SHIFT];
  370. release_page = 0;
  371. } else {
  372. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  373. if (IS_ERR(page)) {
  374. ret = PTR_ERR(page);
  375. goto out;
  376. }
  377. release_page = 1;
  378. }
  379. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  380. (page_to_phys(page) & (1 << 17)) != 0;
  381. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  382. user_data, page_do_bit17_swizzling,
  383. needs_clflush);
  384. if (ret == 0)
  385. goto next_page;
  386. hit_slowpath = 1;
  387. page_cache_get(page);
  388. mutex_unlock(&dev->struct_mutex);
  389. if (!prefaulted) {
  390. ret = fault_in_multipages_writeable(user_data, remain);
  391. /* Userspace is tricking us, but we've already clobbered
  392. * its pages with the prefault and promised to write the
  393. * data up to the first fault. Hence ignore any errors
  394. * and just continue. */
  395. (void)ret;
  396. prefaulted = 1;
  397. }
  398. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  399. user_data, page_do_bit17_swizzling,
  400. needs_clflush);
  401. mutex_lock(&dev->struct_mutex);
  402. page_cache_release(page);
  403. next_page:
  404. mark_page_accessed(page);
  405. if (release_page)
  406. page_cache_release(page);
  407. if (ret) {
  408. ret = -EFAULT;
  409. goto out;
  410. }
  411. remain -= page_length;
  412. user_data += page_length;
  413. offset += page_length;
  414. }
  415. out:
  416. if (hit_slowpath) {
  417. /* Fixup: Kill any reinstated backing storage pages */
  418. if (obj->madv == __I915_MADV_PURGED)
  419. i915_gem_object_truncate(obj);
  420. }
  421. return ret;
  422. }
  423. /**
  424. * Reads data from the object referenced by handle.
  425. *
  426. * On error, the contents of *data are undefined.
  427. */
  428. int
  429. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  430. struct drm_file *file)
  431. {
  432. struct drm_i915_gem_pread *args = data;
  433. struct drm_i915_gem_object *obj;
  434. int ret = 0;
  435. if (args->size == 0)
  436. return 0;
  437. if (!access_ok(VERIFY_WRITE,
  438. (char __user *)(uintptr_t)args->data_ptr,
  439. args->size))
  440. return -EFAULT;
  441. ret = i915_mutex_lock_interruptible(dev);
  442. if (ret)
  443. return ret;
  444. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  445. if (&obj->base == NULL) {
  446. ret = -ENOENT;
  447. goto unlock;
  448. }
  449. /* Bounds check source. */
  450. if (args->offset > obj->base.size ||
  451. args->size > obj->base.size - args->offset) {
  452. ret = -EINVAL;
  453. goto out;
  454. }
  455. trace_i915_gem_object_pread(obj, args->offset, args->size);
  456. ret = i915_gem_shmem_pread(dev, obj, args, file);
  457. out:
  458. drm_gem_object_unreference(&obj->base);
  459. unlock:
  460. mutex_unlock(&dev->struct_mutex);
  461. return ret;
  462. }
  463. /* This is the fast write path which cannot handle
  464. * page faults in the source data
  465. */
  466. static inline int
  467. fast_user_write(struct io_mapping *mapping,
  468. loff_t page_base, int page_offset,
  469. char __user *user_data,
  470. int length)
  471. {
  472. void __iomem *vaddr_atomic;
  473. void *vaddr;
  474. unsigned long unwritten;
  475. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  476. /* We can use the cpu mem copy function because this is X86. */
  477. vaddr = (void __force*)vaddr_atomic + page_offset;
  478. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  479. user_data, length);
  480. io_mapping_unmap_atomic(vaddr_atomic);
  481. return unwritten;
  482. }
  483. /**
  484. * This is the fast pwrite path, where we copy the data directly from the
  485. * user into the GTT, uncached.
  486. */
  487. static int
  488. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  489. struct drm_i915_gem_object *obj,
  490. struct drm_i915_gem_pwrite *args,
  491. struct drm_file *file)
  492. {
  493. drm_i915_private_t *dev_priv = dev->dev_private;
  494. ssize_t remain;
  495. loff_t offset, page_base;
  496. char __user *user_data;
  497. int page_offset, page_length, ret;
  498. ret = i915_gem_object_pin(obj, 0, true);
  499. if (ret)
  500. goto out;
  501. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  502. if (ret)
  503. goto out_unpin;
  504. ret = i915_gem_object_put_fence(obj);
  505. if (ret)
  506. goto out_unpin;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = offset & PAGE_MASK;
  518. page_offset = offset_in_page(offset);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length)) {
  528. ret = -EFAULT;
  529. goto out_unpin;
  530. }
  531. remain -= page_length;
  532. user_data += page_length;
  533. offset += page_length;
  534. }
  535. out_unpin:
  536. i915_gem_object_unpin(obj);
  537. out:
  538. return ret;
  539. }
  540. /* Per-page copy function for the shmem pwrite fastpath.
  541. * Flushes invalid cachelines before writing to the target if
  542. * needs_clflush_before is set and flushes out any written cachelines after
  543. * writing if needs_clflush is set. */
  544. static int
  545. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  546. char __user *user_data,
  547. bool page_do_bit17_swizzling,
  548. bool needs_clflush_before,
  549. bool needs_clflush_after)
  550. {
  551. char *vaddr;
  552. int ret;
  553. if (unlikely(page_do_bit17_swizzling))
  554. return -EINVAL;
  555. vaddr = kmap_atomic(page);
  556. if (needs_clflush_before)
  557. drm_clflush_virt_range(vaddr + shmem_page_offset,
  558. page_length);
  559. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  560. user_data,
  561. page_length);
  562. if (needs_clflush_after)
  563. drm_clflush_virt_range(vaddr + shmem_page_offset,
  564. page_length);
  565. kunmap_atomic(vaddr);
  566. return ret;
  567. }
  568. /* Only difference to the fast-path function is that this can handle bit17
  569. * and uses non-atomic copy and kmap functions. */
  570. static int
  571. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  572. char __user *user_data,
  573. bool page_do_bit17_swizzling,
  574. bool needs_clflush_before,
  575. bool needs_clflush_after)
  576. {
  577. char *vaddr;
  578. int ret;
  579. vaddr = kmap(page);
  580. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  581. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  582. page_length,
  583. page_do_bit17_swizzling);
  584. if (page_do_bit17_swizzling)
  585. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  586. user_data,
  587. page_length);
  588. else
  589. ret = __copy_from_user(vaddr + shmem_page_offset,
  590. user_data,
  591. page_length);
  592. if (needs_clflush_after)
  593. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  594. page_length,
  595. page_do_bit17_swizzling);
  596. kunmap(page);
  597. return ret;
  598. }
  599. static int
  600. i915_gem_shmem_pwrite(struct drm_device *dev,
  601. struct drm_i915_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file)
  604. {
  605. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  606. ssize_t remain;
  607. loff_t offset;
  608. char __user *user_data;
  609. int shmem_page_offset, page_length, ret = 0;
  610. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  611. int hit_slowpath = 0;
  612. int needs_clflush_after = 0;
  613. int needs_clflush_before = 0;
  614. int release_page;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  618. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  619. /* If we're not in the cpu write domain, set ourself into the gtt
  620. * write domain and manually flush cachelines (if required). This
  621. * optimizes for the case when the gpu will use the data
  622. * right away and we therefore have to clflush anyway. */
  623. if (obj->cache_level == I915_CACHE_NONE)
  624. needs_clflush_after = 1;
  625. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  626. if (ret)
  627. return ret;
  628. }
  629. /* Same trick applies for invalidate partially written cachelines before
  630. * writing. */
  631. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  632. && obj->cache_level == I915_CACHE_NONE)
  633. needs_clflush_before = 1;
  634. offset = args->offset;
  635. obj->dirty = 1;
  636. while (remain > 0) {
  637. struct page *page;
  638. int partial_cacheline_write;
  639. /* Operation in this page
  640. *
  641. * shmem_page_offset = offset within page in shmem file
  642. * page_length = bytes to copy for this page
  643. */
  644. shmem_page_offset = offset_in_page(offset);
  645. page_length = remain;
  646. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  647. page_length = PAGE_SIZE - shmem_page_offset;
  648. /* If we don't overwrite a cacheline completely we need to be
  649. * careful to have up-to-date data by first clflushing. Don't
  650. * overcomplicate things and flush the entire patch. */
  651. partial_cacheline_write = needs_clflush_before &&
  652. ((shmem_page_offset | page_length)
  653. & (boot_cpu_data.x86_clflush_size - 1));
  654. if (obj->pages) {
  655. page = obj->pages[offset >> PAGE_SHIFT];
  656. release_page = 0;
  657. } else {
  658. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  659. if (IS_ERR(page)) {
  660. ret = PTR_ERR(page);
  661. goto out;
  662. }
  663. release_page = 1;
  664. }
  665. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  666. (page_to_phys(page) & (1 << 17)) != 0;
  667. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  668. user_data, page_do_bit17_swizzling,
  669. partial_cacheline_write,
  670. needs_clflush_after);
  671. if (ret == 0)
  672. goto next_page;
  673. hit_slowpath = 1;
  674. page_cache_get(page);
  675. mutex_unlock(&dev->struct_mutex);
  676. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  677. user_data, page_do_bit17_swizzling,
  678. partial_cacheline_write,
  679. needs_clflush_after);
  680. mutex_lock(&dev->struct_mutex);
  681. page_cache_release(page);
  682. next_page:
  683. set_page_dirty(page);
  684. mark_page_accessed(page);
  685. if (release_page)
  686. page_cache_release(page);
  687. if (ret) {
  688. ret = -EFAULT;
  689. goto out;
  690. }
  691. remain -= page_length;
  692. user_data += page_length;
  693. offset += page_length;
  694. }
  695. out:
  696. if (hit_slowpath) {
  697. /* Fixup: Kill any reinstated backing storage pages */
  698. if (obj->madv == __I915_MADV_PURGED)
  699. i915_gem_object_truncate(obj);
  700. /* and flush dirty cachelines in case the object isn't in the cpu write
  701. * domain anymore. */
  702. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  703. i915_gem_clflush_object(obj);
  704. intel_gtt_chipset_flush();
  705. }
  706. }
  707. if (needs_clflush_after)
  708. intel_gtt_chipset_flush();
  709. return ret;
  710. }
  711. /**
  712. * Writes data to the object referenced by handle.
  713. *
  714. * On error, the contents of the buffer that were to be modified are undefined.
  715. */
  716. int
  717. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  718. struct drm_file *file)
  719. {
  720. struct drm_i915_gem_pwrite *args = data;
  721. struct drm_i915_gem_object *obj;
  722. int ret;
  723. if (args->size == 0)
  724. return 0;
  725. if (!access_ok(VERIFY_READ,
  726. (char __user *)(uintptr_t)args->data_ptr,
  727. args->size))
  728. return -EFAULT;
  729. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  730. args->size);
  731. if (ret)
  732. return -EFAULT;
  733. ret = i915_mutex_lock_interruptible(dev);
  734. if (ret)
  735. return ret;
  736. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  737. if (&obj->base == NULL) {
  738. ret = -ENOENT;
  739. goto unlock;
  740. }
  741. /* Bounds check destination. */
  742. if (args->offset > obj->base.size ||
  743. args->size > obj->base.size - args->offset) {
  744. ret = -EINVAL;
  745. goto out;
  746. }
  747. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  748. ret = -EFAULT;
  749. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  750. * it would end up going through the fenced access, and we'll get
  751. * different detiling behavior between reading and writing.
  752. * pread/pwrite currently are reading and writing from the CPU
  753. * perspective, requiring manual detiling by the client.
  754. */
  755. if (obj->phys_obj) {
  756. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  757. goto out;
  758. }
  759. if (obj->gtt_space &&
  760. obj->cache_level == I915_CACHE_NONE &&
  761. obj->tiling_mode == I915_TILING_NONE &&
  762. obj->map_and_fenceable &&
  763. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  764. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  765. /* Note that the gtt paths might fail with non-page-backed user
  766. * pointers (e.g. gtt mappings when moving data between
  767. * textures). Fallback to the shmem path in that case. */
  768. }
  769. if (ret == -EFAULT)
  770. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  771. out:
  772. drm_gem_object_unreference(&obj->base);
  773. unlock:
  774. mutex_unlock(&dev->struct_mutex);
  775. return ret;
  776. }
  777. /**
  778. * Called when user space prepares to use an object with the CPU, either
  779. * through the mmap ioctl's mapping or a GTT mapping.
  780. */
  781. int
  782. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file)
  784. {
  785. struct drm_i915_gem_set_domain *args = data;
  786. struct drm_i915_gem_object *obj;
  787. uint32_t read_domains = args->read_domains;
  788. uint32_t write_domain = args->write_domain;
  789. int ret;
  790. /* Only handle setting domains to types used by the CPU. */
  791. if (write_domain & I915_GEM_GPU_DOMAINS)
  792. return -EINVAL;
  793. if (read_domains & I915_GEM_GPU_DOMAINS)
  794. return -EINVAL;
  795. /* Having something in the write domain implies it's in the read
  796. * domain, and only that read domain. Enforce that in the request.
  797. */
  798. if (write_domain != 0 && read_domains != write_domain)
  799. return -EINVAL;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. if (read_domains & I915_GEM_DOMAIN_GTT) {
  809. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  810. /* Silently promote "you're not bound, there was nothing to do"
  811. * to success, since the client was just asking us to
  812. * make sure everything was done.
  813. */
  814. if (ret == -EINVAL)
  815. ret = 0;
  816. } else {
  817. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  818. }
  819. drm_gem_object_unreference(&obj->base);
  820. unlock:
  821. mutex_unlock(&dev->struct_mutex);
  822. return ret;
  823. }
  824. /**
  825. * Called when user space has done writes to this buffer
  826. */
  827. int
  828. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  829. struct drm_file *file)
  830. {
  831. struct drm_i915_gem_sw_finish *args = data;
  832. struct drm_i915_gem_object *obj;
  833. int ret = 0;
  834. ret = i915_mutex_lock_interruptible(dev);
  835. if (ret)
  836. return ret;
  837. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  838. if (&obj->base == NULL) {
  839. ret = -ENOENT;
  840. goto unlock;
  841. }
  842. /* Pinned buffers may be scanout, so flush the cache */
  843. if (obj->pin_count)
  844. i915_gem_object_flush_cpu_write_domain(obj);
  845. drm_gem_object_unreference(&obj->base);
  846. unlock:
  847. mutex_unlock(&dev->struct_mutex);
  848. return ret;
  849. }
  850. /**
  851. * Maps the contents of an object, returning the address it is mapped
  852. * into.
  853. *
  854. * While the mapping holds a reference on the contents of the object, it doesn't
  855. * imply a ref on the object itself.
  856. */
  857. int
  858. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_mmap *args = data;
  862. struct drm_gem_object *obj;
  863. unsigned long addr;
  864. obj = drm_gem_object_lookup(dev, file, args->handle);
  865. if (obj == NULL)
  866. return -ENOENT;
  867. down_write(&current->mm->mmap_sem);
  868. addr = do_mmap(obj->filp, 0, args->size,
  869. PROT_READ | PROT_WRITE, MAP_SHARED,
  870. args->offset);
  871. up_write(&current->mm->mmap_sem);
  872. drm_gem_object_unreference_unlocked(obj);
  873. if (IS_ERR((void *)addr))
  874. return addr;
  875. args->addr_ptr = (uint64_t) addr;
  876. return 0;
  877. }
  878. /**
  879. * i915_gem_fault - fault a page into the GTT
  880. * vma: VMA in question
  881. * vmf: fault info
  882. *
  883. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  884. * from userspace. The fault handler takes care of binding the object to
  885. * the GTT (if needed), allocating and programming a fence register (again,
  886. * only if needed based on whether the old reg is still valid or the object
  887. * is tiled) and inserting a new PTE into the faulting process.
  888. *
  889. * Note that the faulting process may involve evicting existing objects
  890. * from the GTT and/or fence registers to make room. So performance may
  891. * suffer if the GTT working set is large or there are few fence registers
  892. * left.
  893. */
  894. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  895. {
  896. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  897. struct drm_device *dev = obj->base.dev;
  898. drm_i915_private_t *dev_priv = dev->dev_private;
  899. pgoff_t page_offset;
  900. unsigned long pfn;
  901. int ret = 0;
  902. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  903. /* We don't use vmf->pgoff since that has the fake offset */
  904. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  905. PAGE_SHIFT;
  906. ret = i915_mutex_lock_interruptible(dev);
  907. if (ret)
  908. goto out;
  909. trace_i915_gem_object_fault(obj, page_offset, true, write);
  910. /* Now bind it into the GTT if needed */
  911. if (!obj->map_and_fenceable) {
  912. ret = i915_gem_object_unbind(obj);
  913. if (ret)
  914. goto unlock;
  915. }
  916. if (!obj->gtt_space) {
  917. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  918. if (ret)
  919. goto unlock;
  920. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  921. if (ret)
  922. goto unlock;
  923. }
  924. if (!obj->has_global_gtt_mapping)
  925. i915_gem_gtt_bind_object(obj, obj->cache_level);
  926. ret = i915_gem_object_get_fence(obj);
  927. if (ret)
  928. goto unlock;
  929. if (i915_gem_object_is_inactive(obj))
  930. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  931. obj->fault_mappable = true;
  932. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  933. page_offset;
  934. /* Finally, remap it using the new GTT offset */
  935. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  936. unlock:
  937. mutex_unlock(&dev->struct_mutex);
  938. out:
  939. switch (ret) {
  940. case -EIO:
  941. case -EAGAIN:
  942. /* Give the error handler a chance to run and move the
  943. * objects off the GPU active list. Next time we service the
  944. * fault, we should be able to transition the page into the
  945. * GTT without touching the GPU (and so avoid further
  946. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  947. * with coherency, just lost writes.
  948. */
  949. set_need_resched();
  950. case 0:
  951. case -ERESTARTSYS:
  952. case -EINTR:
  953. return VM_FAULT_NOPAGE;
  954. case -ENOMEM:
  955. return VM_FAULT_OOM;
  956. default:
  957. return VM_FAULT_SIGBUS;
  958. }
  959. }
  960. /**
  961. * i915_gem_release_mmap - remove physical page mappings
  962. * @obj: obj in question
  963. *
  964. * Preserve the reservation of the mmapping with the DRM core code, but
  965. * relinquish ownership of the pages back to the system.
  966. *
  967. * It is vital that we remove the page mapping if we have mapped a tiled
  968. * object through the GTT and then lose the fence register due to
  969. * resource pressure. Similarly if the object has been moved out of the
  970. * aperture, than pages mapped into userspace must be revoked. Removing the
  971. * mapping will then trigger a page fault on the next user access, allowing
  972. * fixup by i915_gem_fault().
  973. */
  974. void
  975. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  976. {
  977. if (!obj->fault_mappable)
  978. return;
  979. if (obj->base.dev->dev_mapping)
  980. unmap_mapping_range(obj->base.dev->dev_mapping,
  981. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  982. obj->base.size, 1);
  983. obj->fault_mappable = false;
  984. }
  985. static uint32_t
  986. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  987. {
  988. uint32_t gtt_size;
  989. if (INTEL_INFO(dev)->gen >= 4 ||
  990. tiling_mode == I915_TILING_NONE)
  991. return size;
  992. /* Previous chips need a power-of-two fence region when tiling */
  993. if (INTEL_INFO(dev)->gen == 3)
  994. gtt_size = 1024*1024;
  995. else
  996. gtt_size = 512*1024;
  997. while (gtt_size < size)
  998. gtt_size <<= 1;
  999. return gtt_size;
  1000. }
  1001. /**
  1002. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1003. * @obj: object to check
  1004. *
  1005. * Return the required GTT alignment for an object, taking into account
  1006. * potential fence register mapping.
  1007. */
  1008. static uint32_t
  1009. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1010. uint32_t size,
  1011. int tiling_mode)
  1012. {
  1013. /*
  1014. * Minimum alignment is 4k (GTT page size), but might be greater
  1015. * if a fence register is needed for the object.
  1016. */
  1017. if (INTEL_INFO(dev)->gen >= 4 ||
  1018. tiling_mode == I915_TILING_NONE)
  1019. return 4096;
  1020. /*
  1021. * Previous chips need to be aligned to the size of the smallest
  1022. * fence register that can contain the object.
  1023. */
  1024. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1025. }
  1026. /**
  1027. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1028. * unfenced object
  1029. * @dev: the device
  1030. * @size: size of the object
  1031. * @tiling_mode: tiling mode of the object
  1032. *
  1033. * Return the required GTT alignment for an object, only taking into account
  1034. * unfenced tiled surface requirements.
  1035. */
  1036. uint32_t
  1037. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1038. uint32_t size,
  1039. int tiling_mode)
  1040. {
  1041. /*
  1042. * Minimum alignment is 4k (GTT page size) for sane hw.
  1043. */
  1044. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1045. tiling_mode == I915_TILING_NONE)
  1046. return 4096;
  1047. /* Previous hardware however needs to be aligned to a power-of-two
  1048. * tile height. The simplest method for determining this is to reuse
  1049. * the power-of-tile object size.
  1050. */
  1051. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1052. }
  1053. int
  1054. i915_gem_mmap_gtt(struct drm_file *file,
  1055. struct drm_device *dev,
  1056. uint32_t handle,
  1057. uint64_t *offset)
  1058. {
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. struct drm_i915_gem_object *obj;
  1061. int ret;
  1062. ret = i915_mutex_lock_interruptible(dev);
  1063. if (ret)
  1064. return ret;
  1065. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1066. if (&obj->base == NULL) {
  1067. ret = -ENOENT;
  1068. goto unlock;
  1069. }
  1070. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1071. ret = -E2BIG;
  1072. goto out;
  1073. }
  1074. if (obj->madv != I915_MADV_WILLNEED) {
  1075. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1076. ret = -EINVAL;
  1077. goto out;
  1078. }
  1079. if (!obj->base.map_list.map) {
  1080. ret = drm_gem_create_mmap_offset(&obj->base);
  1081. if (ret)
  1082. goto out;
  1083. }
  1084. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1085. out:
  1086. drm_gem_object_unreference(&obj->base);
  1087. unlock:
  1088. mutex_unlock(&dev->struct_mutex);
  1089. return ret;
  1090. }
  1091. /**
  1092. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1093. * @dev: DRM device
  1094. * @data: GTT mapping ioctl data
  1095. * @file: GEM object info
  1096. *
  1097. * Simply returns the fake offset to userspace so it can mmap it.
  1098. * The mmap call will end up in drm_gem_mmap(), which will set things
  1099. * up so we can get faults in the handler above.
  1100. *
  1101. * The fault handler will take care of binding the object into the GTT
  1102. * (since it may have been evicted to make room for something), allocating
  1103. * a fence register, and mapping the appropriate aperture address into
  1104. * userspace.
  1105. */
  1106. int
  1107. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1108. struct drm_file *file)
  1109. {
  1110. struct drm_i915_gem_mmap_gtt *args = data;
  1111. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1112. }
  1113. static int
  1114. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1115. gfp_t gfpmask)
  1116. {
  1117. int page_count, i;
  1118. struct address_space *mapping;
  1119. struct inode *inode;
  1120. struct page *page;
  1121. /* Get the list of pages out of our struct file. They'll be pinned
  1122. * at this point until we release them.
  1123. */
  1124. page_count = obj->base.size / PAGE_SIZE;
  1125. BUG_ON(obj->pages != NULL);
  1126. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1127. if (obj->pages == NULL)
  1128. return -ENOMEM;
  1129. inode = obj->base.filp->f_path.dentry->d_inode;
  1130. mapping = inode->i_mapping;
  1131. gfpmask |= mapping_gfp_mask(mapping);
  1132. for (i = 0; i < page_count; i++) {
  1133. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1134. if (IS_ERR(page))
  1135. goto err_pages;
  1136. obj->pages[i] = page;
  1137. }
  1138. if (i915_gem_object_needs_bit17_swizzle(obj))
  1139. i915_gem_object_do_bit_17_swizzle(obj);
  1140. return 0;
  1141. err_pages:
  1142. while (i--)
  1143. page_cache_release(obj->pages[i]);
  1144. drm_free_large(obj->pages);
  1145. obj->pages = NULL;
  1146. return PTR_ERR(page);
  1147. }
  1148. static void
  1149. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1150. {
  1151. int page_count = obj->base.size / PAGE_SIZE;
  1152. int i;
  1153. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1154. if (i915_gem_object_needs_bit17_swizzle(obj))
  1155. i915_gem_object_save_bit_17_swizzle(obj);
  1156. if (obj->madv == I915_MADV_DONTNEED)
  1157. obj->dirty = 0;
  1158. for (i = 0; i < page_count; i++) {
  1159. if (obj->dirty)
  1160. set_page_dirty(obj->pages[i]);
  1161. if (obj->madv == I915_MADV_WILLNEED)
  1162. mark_page_accessed(obj->pages[i]);
  1163. page_cache_release(obj->pages[i]);
  1164. }
  1165. obj->dirty = 0;
  1166. drm_free_large(obj->pages);
  1167. obj->pages = NULL;
  1168. }
  1169. void
  1170. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1171. struct intel_ring_buffer *ring,
  1172. u32 seqno)
  1173. {
  1174. struct drm_device *dev = obj->base.dev;
  1175. struct drm_i915_private *dev_priv = dev->dev_private;
  1176. BUG_ON(ring == NULL);
  1177. obj->ring = ring;
  1178. /* Add a reference if we're newly entering the active list. */
  1179. if (!obj->active) {
  1180. drm_gem_object_reference(&obj->base);
  1181. obj->active = 1;
  1182. }
  1183. /* Move from whatever list we were on to the tail of execution. */
  1184. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1185. list_move_tail(&obj->ring_list, &ring->active_list);
  1186. obj->last_rendering_seqno = seqno;
  1187. if (obj->fenced_gpu_access) {
  1188. obj->last_fenced_seqno = seqno;
  1189. /* Bump MRU to take account of the delayed flush */
  1190. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1191. struct drm_i915_fence_reg *reg;
  1192. reg = &dev_priv->fence_regs[obj->fence_reg];
  1193. list_move_tail(&reg->lru_list,
  1194. &dev_priv->mm.fence_list);
  1195. }
  1196. }
  1197. }
  1198. static void
  1199. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1200. {
  1201. list_del_init(&obj->ring_list);
  1202. obj->last_rendering_seqno = 0;
  1203. obj->last_fenced_seqno = 0;
  1204. }
  1205. static void
  1206. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1207. {
  1208. struct drm_device *dev = obj->base.dev;
  1209. drm_i915_private_t *dev_priv = dev->dev_private;
  1210. BUG_ON(!obj->active);
  1211. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1212. i915_gem_object_move_off_active(obj);
  1213. }
  1214. static void
  1215. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1216. {
  1217. struct drm_device *dev = obj->base.dev;
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1220. BUG_ON(!list_empty(&obj->gpu_write_list));
  1221. BUG_ON(!obj->active);
  1222. obj->ring = NULL;
  1223. i915_gem_object_move_off_active(obj);
  1224. obj->fenced_gpu_access = false;
  1225. obj->active = 0;
  1226. obj->pending_gpu_write = false;
  1227. drm_gem_object_unreference(&obj->base);
  1228. WARN_ON(i915_verify_lists(dev));
  1229. }
  1230. /* Immediately discard the backing storage */
  1231. static void
  1232. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1233. {
  1234. struct inode *inode;
  1235. /* Our goal here is to return as much of the memory as
  1236. * is possible back to the system as we are called from OOM.
  1237. * To do this we must instruct the shmfs to drop all of its
  1238. * backing pages, *now*.
  1239. */
  1240. inode = obj->base.filp->f_path.dentry->d_inode;
  1241. shmem_truncate_range(inode, 0, (loff_t)-1);
  1242. if (obj->base.map_list.map)
  1243. drm_gem_free_mmap_offset(&obj->base);
  1244. obj->madv = __I915_MADV_PURGED;
  1245. }
  1246. static inline int
  1247. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1248. {
  1249. return obj->madv == I915_MADV_DONTNEED;
  1250. }
  1251. static void
  1252. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1253. uint32_t flush_domains)
  1254. {
  1255. struct drm_i915_gem_object *obj, *next;
  1256. list_for_each_entry_safe(obj, next,
  1257. &ring->gpu_write_list,
  1258. gpu_write_list) {
  1259. if (obj->base.write_domain & flush_domains) {
  1260. uint32_t old_write_domain = obj->base.write_domain;
  1261. obj->base.write_domain = 0;
  1262. list_del_init(&obj->gpu_write_list);
  1263. i915_gem_object_move_to_active(obj, ring,
  1264. i915_gem_next_request_seqno(ring));
  1265. trace_i915_gem_object_change_domain(obj,
  1266. obj->base.read_domains,
  1267. old_write_domain);
  1268. }
  1269. }
  1270. }
  1271. static u32
  1272. i915_gem_get_seqno(struct drm_device *dev)
  1273. {
  1274. drm_i915_private_t *dev_priv = dev->dev_private;
  1275. u32 seqno = dev_priv->next_seqno;
  1276. /* reserve 0 for non-seqno */
  1277. if (++dev_priv->next_seqno == 0)
  1278. dev_priv->next_seqno = 1;
  1279. return seqno;
  1280. }
  1281. u32
  1282. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1283. {
  1284. if (ring->outstanding_lazy_request == 0)
  1285. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1286. return ring->outstanding_lazy_request;
  1287. }
  1288. int
  1289. i915_add_request(struct intel_ring_buffer *ring,
  1290. struct drm_file *file,
  1291. struct drm_i915_gem_request *request)
  1292. {
  1293. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1294. uint32_t seqno;
  1295. u32 request_ring_position;
  1296. int was_empty;
  1297. int ret;
  1298. BUG_ON(request == NULL);
  1299. seqno = i915_gem_next_request_seqno(ring);
  1300. /* Record the position of the start of the request so that
  1301. * should we detect the updated seqno part-way through the
  1302. * GPU processing the request, we never over-estimate the
  1303. * position of the head.
  1304. */
  1305. request_ring_position = intel_ring_get_tail(ring);
  1306. ret = ring->add_request(ring, &seqno);
  1307. if (ret)
  1308. return ret;
  1309. trace_i915_gem_request_add(ring, seqno);
  1310. request->seqno = seqno;
  1311. request->ring = ring;
  1312. request->tail = request_ring_position;
  1313. request->emitted_jiffies = jiffies;
  1314. was_empty = list_empty(&ring->request_list);
  1315. list_add_tail(&request->list, &ring->request_list);
  1316. if (file) {
  1317. struct drm_i915_file_private *file_priv = file->driver_priv;
  1318. spin_lock(&file_priv->mm.lock);
  1319. request->file_priv = file_priv;
  1320. list_add_tail(&request->client_list,
  1321. &file_priv->mm.request_list);
  1322. spin_unlock(&file_priv->mm.lock);
  1323. }
  1324. ring->outstanding_lazy_request = 0;
  1325. if (!dev_priv->mm.suspended) {
  1326. if (i915_enable_hangcheck) {
  1327. mod_timer(&dev_priv->hangcheck_timer,
  1328. jiffies +
  1329. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1330. }
  1331. if (was_empty)
  1332. queue_delayed_work(dev_priv->wq,
  1333. &dev_priv->mm.retire_work, HZ);
  1334. }
  1335. return 0;
  1336. }
  1337. static inline void
  1338. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1339. {
  1340. struct drm_i915_file_private *file_priv = request->file_priv;
  1341. if (!file_priv)
  1342. return;
  1343. spin_lock(&file_priv->mm.lock);
  1344. if (request->file_priv) {
  1345. list_del(&request->client_list);
  1346. request->file_priv = NULL;
  1347. }
  1348. spin_unlock(&file_priv->mm.lock);
  1349. }
  1350. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1351. struct intel_ring_buffer *ring)
  1352. {
  1353. while (!list_empty(&ring->request_list)) {
  1354. struct drm_i915_gem_request *request;
  1355. request = list_first_entry(&ring->request_list,
  1356. struct drm_i915_gem_request,
  1357. list);
  1358. list_del(&request->list);
  1359. i915_gem_request_remove_from_client(request);
  1360. kfree(request);
  1361. }
  1362. while (!list_empty(&ring->active_list)) {
  1363. struct drm_i915_gem_object *obj;
  1364. obj = list_first_entry(&ring->active_list,
  1365. struct drm_i915_gem_object,
  1366. ring_list);
  1367. obj->base.write_domain = 0;
  1368. list_del_init(&obj->gpu_write_list);
  1369. i915_gem_object_move_to_inactive(obj);
  1370. }
  1371. }
  1372. static void i915_gem_reset_fences(struct drm_device *dev)
  1373. {
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. int i;
  1376. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1377. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1378. i915_gem_write_fence(dev, i, NULL);
  1379. if (reg->obj)
  1380. i915_gem_object_fence_lost(reg->obj);
  1381. reg->pin_count = 0;
  1382. reg->obj = NULL;
  1383. INIT_LIST_HEAD(&reg->lru_list);
  1384. }
  1385. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1386. }
  1387. void i915_gem_reset(struct drm_device *dev)
  1388. {
  1389. struct drm_i915_private *dev_priv = dev->dev_private;
  1390. struct drm_i915_gem_object *obj;
  1391. int i;
  1392. for (i = 0; i < I915_NUM_RINGS; i++)
  1393. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1394. /* Remove anything from the flushing lists. The GPU cache is likely
  1395. * to be lost on reset along with the data, so simply move the
  1396. * lost bo to the inactive list.
  1397. */
  1398. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1399. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1400. struct drm_i915_gem_object,
  1401. mm_list);
  1402. obj->base.write_domain = 0;
  1403. list_del_init(&obj->gpu_write_list);
  1404. i915_gem_object_move_to_inactive(obj);
  1405. }
  1406. /* Move everything out of the GPU domains to ensure we do any
  1407. * necessary invalidation upon reuse.
  1408. */
  1409. list_for_each_entry(obj,
  1410. &dev_priv->mm.inactive_list,
  1411. mm_list)
  1412. {
  1413. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1414. }
  1415. /* The fence registers are invalidated so clear them out */
  1416. i915_gem_reset_fences(dev);
  1417. }
  1418. /**
  1419. * This function clears the request list as sequence numbers are passed.
  1420. */
  1421. void
  1422. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1423. {
  1424. uint32_t seqno;
  1425. int i;
  1426. if (list_empty(&ring->request_list))
  1427. return;
  1428. WARN_ON(i915_verify_lists(ring->dev));
  1429. seqno = ring->get_seqno(ring);
  1430. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1431. if (seqno >= ring->sync_seqno[i])
  1432. ring->sync_seqno[i] = 0;
  1433. while (!list_empty(&ring->request_list)) {
  1434. struct drm_i915_gem_request *request;
  1435. request = list_first_entry(&ring->request_list,
  1436. struct drm_i915_gem_request,
  1437. list);
  1438. if (!i915_seqno_passed(seqno, request->seqno))
  1439. break;
  1440. trace_i915_gem_request_retire(ring, request->seqno);
  1441. /* We know the GPU must have read the request to have
  1442. * sent us the seqno + interrupt, so use the position
  1443. * of tail of the request to update the last known position
  1444. * of the GPU head.
  1445. */
  1446. ring->last_retired_head = request->tail;
  1447. list_del(&request->list);
  1448. i915_gem_request_remove_from_client(request);
  1449. kfree(request);
  1450. }
  1451. /* Move any buffers on the active list that are no longer referenced
  1452. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1453. */
  1454. while (!list_empty(&ring->active_list)) {
  1455. struct drm_i915_gem_object *obj;
  1456. obj = list_first_entry(&ring->active_list,
  1457. struct drm_i915_gem_object,
  1458. ring_list);
  1459. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1460. break;
  1461. if (obj->base.write_domain != 0)
  1462. i915_gem_object_move_to_flushing(obj);
  1463. else
  1464. i915_gem_object_move_to_inactive(obj);
  1465. }
  1466. if (unlikely(ring->trace_irq_seqno &&
  1467. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1468. ring->irq_put(ring);
  1469. ring->trace_irq_seqno = 0;
  1470. }
  1471. WARN_ON(i915_verify_lists(ring->dev));
  1472. }
  1473. void
  1474. i915_gem_retire_requests(struct drm_device *dev)
  1475. {
  1476. drm_i915_private_t *dev_priv = dev->dev_private;
  1477. int i;
  1478. for (i = 0; i < I915_NUM_RINGS; i++)
  1479. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1480. }
  1481. static void
  1482. i915_gem_retire_work_handler(struct work_struct *work)
  1483. {
  1484. drm_i915_private_t *dev_priv;
  1485. struct drm_device *dev;
  1486. bool idle;
  1487. int i;
  1488. dev_priv = container_of(work, drm_i915_private_t,
  1489. mm.retire_work.work);
  1490. dev = dev_priv->dev;
  1491. /* Come back later if the device is busy... */
  1492. if (!mutex_trylock(&dev->struct_mutex)) {
  1493. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1494. return;
  1495. }
  1496. i915_gem_retire_requests(dev);
  1497. /* Send a periodic flush down the ring so we don't hold onto GEM
  1498. * objects indefinitely.
  1499. */
  1500. idle = true;
  1501. for (i = 0; i < I915_NUM_RINGS; i++) {
  1502. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1503. if (!list_empty(&ring->gpu_write_list)) {
  1504. struct drm_i915_gem_request *request;
  1505. int ret;
  1506. ret = i915_gem_flush_ring(ring,
  1507. 0, I915_GEM_GPU_DOMAINS);
  1508. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1509. if (ret || request == NULL ||
  1510. i915_add_request(ring, NULL, request))
  1511. kfree(request);
  1512. }
  1513. idle &= list_empty(&ring->request_list);
  1514. }
  1515. if (!dev_priv->mm.suspended && !idle)
  1516. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1517. mutex_unlock(&dev->struct_mutex);
  1518. }
  1519. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1520. bool interruptible)
  1521. {
  1522. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1523. int ret = 0;
  1524. if (i915_seqno_passed(ring->get_seqno(ring), seqno))
  1525. return 0;
  1526. trace_i915_gem_request_wait_begin(ring, seqno);
  1527. if (WARN_ON(!ring->irq_get(ring)))
  1528. return -ENODEV;
  1529. #define EXIT_COND \
  1530. (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
  1531. atomic_read(&dev_priv->mm.wedged))
  1532. if (interruptible)
  1533. ret = wait_event_interruptible(ring->irq_queue,
  1534. EXIT_COND);
  1535. else
  1536. wait_event(ring->irq_queue, EXIT_COND);
  1537. ring->irq_put(ring);
  1538. trace_i915_gem_request_wait_end(ring, seqno);
  1539. #undef EXIT_COND
  1540. return ret;
  1541. }
  1542. /**
  1543. * Waits for a sequence number to be signaled, and cleans up the
  1544. * request and object lists appropriately for that event.
  1545. */
  1546. int
  1547. i915_wait_request(struct intel_ring_buffer *ring,
  1548. uint32_t seqno)
  1549. {
  1550. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1551. int ret = 0;
  1552. BUG_ON(seqno == 0);
  1553. if (atomic_read(&dev_priv->mm.wedged)) {
  1554. struct completion *x = &dev_priv->error_completion;
  1555. bool recovery_complete;
  1556. unsigned long flags;
  1557. /* Give the error handler a chance to run. */
  1558. spin_lock_irqsave(&x->wait.lock, flags);
  1559. recovery_complete = x->done > 0;
  1560. spin_unlock_irqrestore(&x->wait.lock, flags);
  1561. return recovery_complete ? -EIO : -EAGAIN;
  1562. }
  1563. if (seqno == ring->outstanding_lazy_request) {
  1564. struct drm_i915_gem_request *request;
  1565. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1566. if (request == NULL)
  1567. return -ENOMEM;
  1568. ret = i915_add_request(ring, NULL, request);
  1569. if (ret) {
  1570. kfree(request);
  1571. return ret;
  1572. }
  1573. seqno = request->seqno;
  1574. }
  1575. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible);
  1576. if (atomic_read(&dev_priv->mm.wedged))
  1577. ret = -EAGAIN;
  1578. return ret;
  1579. }
  1580. /**
  1581. * Ensures that all rendering to the object has completed and the object is
  1582. * safe to unbind from the GTT or access from the CPU.
  1583. */
  1584. int
  1585. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1586. {
  1587. int ret;
  1588. /* This function only exists to support waiting for existing rendering,
  1589. * not for emitting required flushes.
  1590. */
  1591. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1592. /* If there is rendering queued on the buffer being evicted, wait for
  1593. * it.
  1594. */
  1595. if (obj->active) {
  1596. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1597. if (ret)
  1598. return ret;
  1599. i915_gem_retire_requests_ring(obj->ring);
  1600. }
  1601. return 0;
  1602. }
  1603. /**
  1604. * i915_gem_object_sync - sync an object to a ring.
  1605. *
  1606. * @obj: object which may be in use on another ring.
  1607. * @to: ring we wish to use the object on. May be NULL.
  1608. *
  1609. * This code is meant to abstract object synchronization with the GPU.
  1610. * Calling with NULL implies synchronizing the object with the CPU
  1611. * rather than a particular GPU ring.
  1612. *
  1613. * Returns 0 if successful, else propagates up the lower layer error.
  1614. */
  1615. int
  1616. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1617. struct intel_ring_buffer *to)
  1618. {
  1619. struct intel_ring_buffer *from = obj->ring;
  1620. u32 seqno;
  1621. int ret, idx;
  1622. if (from == NULL || to == from)
  1623. return 0;
  1624. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1625. return i915_gem_object_wait_rendering(obj);
  1626. idx = intel_ring_sync_index(from, to);
  1627. seqno = obj->last_rendering_seqno;
  1628. if (seqno <= from->sync_seqno[idx])
  1629. return 0;
  1630. if (seqno == from->outstanding_lazy_request) {
  1631. struct drm_i915_gem_request *request;
  1632. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1633. if (request == NULL)
  1634. return -ENOMEM;
  1635. ret = i915_add_request(from, NULL, request);
  1636. if (ret) {
  1637. kfree(request);
  1638. return ret;
  1639. }
  1640. seqno = request->seqno;
  1641. }
  1642. ret = to->sync_to(to, from, seqno);
  1643. if (!ret)
  1644. from->sync_seqno[idx] = seqno;
  1645. return ret;
  1646. }
  1647. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1648. {
  1649. u32 old_write_domain, old_read_domains;
  1650. /* Act a barrier for all accesses through the GTT */
  1651. mb();
  1652. /* Force a pagefault for domain tracking on next user access */
  1653. i915_gem_release_mmap(obj);
  1654. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1655. return;
  1656. old_read_domains = obj->base.read_domains;
  1657. old_write_domain = obj->base.write_domain;
  1658. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1659. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1660. trace_i915_gem_object_change_domain(obj,
  1661. old_read_domains,
  1662. old_write_domain);
  1663. }
  1664. /**
  1665. * Unbinds an object from the GTT aperture.
  1666. */
  1667. int
  1668. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1669. {
  1670. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1671. int ret = 0;
  1672. if (obj->gtt_space == NULL)
  1673. return 0;
  1674. if (obj->pin_count != 0) {
  1675. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1676. return -EINVAL;
  1677. }
  1678. ret = i915_gem_object_finish_gpu(obj);
  1679. if (ret)
  1680. return ret;
  1681. /* Continue on if we fail due to EIO, the GPU is hung so we
  1682. * should be safe and we need to cleanup or else we might
  1683. * cause memory corruption through use-after-free.
  1684. */
  1685. i915_gem_object_finish_gtt(obj);
  1686. /* Move the object to the CPU domain to ensure that
  1687. * any possible CPU writes while it's not in the GTT
  1688. * are flushed when we go to remap it.
  1689. */
  1690. if (ret == 0)
  1691. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1692. if (ret == -ERESTARTSYS)
  1693. return ret;
  1694. if (ret) {
  1695. /* In the event of a disaster, abandon all caches and
  1696. * hope for the best.
  1697. */
  1698. i915_gem_clflush_object(obj);
  1699. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1700. }
  1701. /* release the fence reg _after_ flushing */
  1702. ret = i915_gem_object_put_fence(obj);
  1703. if (ret)
  1704. return ret;
  1705. trace_i915_gem_object_unbind(obj);
  1706. if (obj->has_global_gtt_mapping)
  1707. i915_gem_gtt_unbind_object(obj);
  1708. if (obj->has_aliasing_ppgtt_mapping) {
  1709. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1710. obj->has_aliasing_ppgtt_mapping = 0;
  1711. }
  1712. i915_gem_gtt_finish_object(obj);
  1713. i915_gem_object_put_pages_gtt(obj);
  1714. list_del_init(&obj->gtt_list);
  1715. list_del_init(&obj->mm_list);
  1716. /* Avoid an unnecessary call to unbind on rebind. */
  1717. obj->map_and_fenceable = true;
  1718. drm_mm_put_block(obj->gtt_space);
  1719. obj->gtt_space = NULL;
  1720. obj->gtt_offset = 0;
  1721. if (i915_gem_object_is_purgeable(obj))
  1722. i915_gem_object_truncate(obj);
  1723. return ret;
  1724. }
  1725. int
  1726. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1727. uint32_t invalidate_domains,
  1728. uint32_t flush_domains)
  1729. {
  1730. int ret;
  1731. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1732. return 0;
  1733. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1734. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1735. if (ret)
  1736. return ret;
  1737. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1738. i915_gem_process_flushing_list(ring, flush_domains);
  1739. return 0;
  1740. }
  1741. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1742. {
  1743. int ret;
  1744. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1745. return 0;
  1746. if (!list_empty(&ring->gpu_write_list)) {
  1747. ret = i915_gem_flush_ring(ring,
  1748. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1749. if (ret)
  1750. return ret;
  1751. }
  1752. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1753. }
  1754. int i915_gpu_idle(struct drm_device *dev)
  1755. {
  1756. drm_i915_private_t *dev_priv = dev->dev_private;
  1757. int ret, i;
  1758. /* Flush everything onto the inactive list. */
  1759. for (i = 0; i < I915_NUM_RINGS; i++) {
  1760. ret = i915_ring_idle(&dev_priv->ring[i]);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. return 0;
  1765. }
  1766. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1767. struct drm_i915_gem_object *obj)
  1768. {
  1769. drm_i915_private_t *dev_priv = dev->dev_private;
  1770. uint64_t val;
  1771. if (obj) {
  1772. u32 size = obj->gtt_space->size;
  1773. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1774. 0xfffff000) << 32;
  1775. val |= obj->gtt_offset & 0xfffff000;
  1776. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1777. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1778. if (obj->tiling_mode == I915_TILING_Y)
  1779. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1780. val |= I965_FENCE_REG_VALID;
  1781. } else
  1782. val = 0;
  1783. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1784. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1785. }
  1786. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1787. struct drm_i915_gem_object *obj)
  1788. {
  1789. drm_i915_private_t *dev_priv = dev->dev_private;
  1790. uint64_t val;
  1791. if (obj) {
  1792. u32 size = obj->gtt_space->size;
  1793. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1794. 0xfffff000) << 32;
  1795. val |= obj->gtt_offset & 0xfffff000;
  1796. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1797. if (obj->tiling_mode == I915_TILING_Y)
  1798. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1799. val |= I965_FENCE_REG_VALID;
  1800. } else
  1801. val = 0;
  1802. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  1803. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  1804. }
  1805. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  1806. struct drm_i915_gem_object *obj)
  1807. {
  1808. drm_i915_private_t *dev_priv = dev->dev_private;
  1809. u32 val;
  1810. if (obj) {
  1811. u32 size = obj->gtt_space->size;
  1812. int pitch_val;
  1813. int tile_width;
  1814. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1815. (size & -size) != size ||
  1816. (obj->gtt_offset & (size - 1)),
  1817. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1818. obj->gtt_offset, obj->map_and_fenceable, size);
  1819. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1820. tile_width = 128;
  1821. else
  1822. tile_width = 512;
  1823. /* Note: pitch better be a power of two tile widths */
  1824. pitch_val = obj->stride / tile_width;
  1825. pitch_val = ffs(pitch_val) - 1;
  1826. val = obj->gtt_offset;
  1827. if (obj->tiling_mode == I915_TILING_Y)
  1828. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1829. val |= I915_FENCE_SIZE_BITS(size);
  1830. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1831. val |= I830_FENCE_REG_VALID;
  1832. } else
  1833. val = 0;
  1834. if (reg < 8)
  1835. reg = FENCE_REG_830_0 + reg * 4;
  1836. else
  1837. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  1838. I915_WRITE(reg, val);
  1839. POSTING_READ(reg);
  1840. }
  1841. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  1842. struct drm_i915_gem_object *obj)
  1843. {
  1844. drm_i915_private_t *dev_priv = dev->dev_private;
  1845. uint32_t val;
  1846. if (obj) {
  1847. u32 size = obj->gtt_space->size;
  1848. uint32_t pitch_val;
  1849. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1850. (size & -size) != size ||
  1851. (obj->gtt_offset & (size - 1)),
  1852. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1853. obj->gtt_offset, size);
  1854. pitch_val = obj->stride / 128;
  1855. pitch_val = ffs(pitch_val) - 1;
  1856. val = obj->gtt_offset;
  1857. if (obj->tiling_mode == I915_TILING_Y)
  1858. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1859. val |= I830_FENCE_SIZE_BITS(size);
  1860. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1861. val |= I830_FENCE_REG_VALID;
  1862. } else
  1863. val = 0;
  1864. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  1865. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  1866. }
  1867. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  1868. struct drm_i915_gem_object *obj)
  1869. {
  1870. switch (INTEL_INFO(dev)->gen) {
  1871. case 7:
  1872. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  1873. case 5:
  1874. case 4: i965_write_fence_reg(dev, reg, obj); break;
  1875. case 3: i915_write_fence_reg(dev, reg, obj); break;
  1876. case 2: i830_write_fence_reg(dev, reg, obj); break;
  1877. default: break;
  1878. }
  1879. }
  1880. static inline int fence_number(struct drm_i915_private *dev_priv,
  1881. struct drm_i915_fence_reg *fence)
  1882. {
  1883. return fence - dev_priv->fence_regs;
  1884. }
  1885. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  1886. struct drm_i915_fence_reg *fence,
  1887. bool enable)
  1888. {
  1889. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1890. int reg = fence_number(dev_priv, fence);
  1891. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  1892. if (enable) {
  1893. obj->fence_reg = reg;
  1894. fence->obj = obj;
  1895. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  1896. } else {
  1897. obj->fence_reg = I915_FENCE_REG_NONE;
  1898. fence->obj = NULL;
  1899. list_del_init(&fence->lru_list);
  1900. }
  1901. }
  1902. static int
  1903. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  1904. {
  1905. int ret;
  1906. if (obj->fenced_gpu_access) {
  1907. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1908. ret = i915_gem_flush_ring(obj->ring,
  1909. 0, obj->base.write_domain);
  1910. if (ret)
  1911. return ret;
  1912. }
  1913. obj->fenced_gpu_access = false;
  1914. }
  1915. if (obj->last_fenced_seqno) {
  1916. ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
  1917. if (ret)
  1918. return ret;
  1919. obj->last_fenced_seqno = 0;
  1920. }
  1921. /* Ensure that all CPU reads are completed before installing a fence
  1922. * and all writes before removing the fence.
  1923. */
  1924. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1925. mb();
  1926. return 0;
  1927. }
  1928. int
  1929. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1930. {
  1931. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1932. int ret;
  1933. ret = i915_gem_object_flush_fence(obj);
  1934. if (ret)
  1935. return ret;
  1936. if (obj->fence_reg == I915_FENCE_REG_NONE)
  1937. return 0;
  1938. i915_gem_object_update_fence(obj,
  1939. &dev_priv->fence_regs[obj->fence_reg],
  1940. false);
  1941. i915_gem_object_fence_lost(obj);
  1942. return 0;
  1943. }
  1944. static struct drm_i915_fence_reg *
  1945. i915_find_fence_reg(struct drm_device *dev)
  1946. {
  1947. struct drm_i915_private *dev_priv = dev->dev_private;
  1948. struct drm_i915_fence_reg *reg, *avail;
  1949. int i;
  1950. /* First try to find a free reg */
  1951. avail = NULL;
  1952. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1953. reg = &dev_priv->fence_regs[i];
  1954. if (!reg->obj)
  1955. return reg;
  1956. if (!reg->pin_count)
  1957. avail = reg;
  1958. }
  1959. if (avail == NULL)
  1960. return NULL;
  1961. /* None available, try to steal one or wait for a user to finish */
  1962. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1963. if (reg->pin_count)
  1964. continue;
  1965. return reg;
  1966. }
  1967. return NULL;
  1968. }
  1969. /**
  1970. * i915_gem_object_get_fence - set up fencing for an object
  1971. * @obj: object to map through a fence reg
  1972. *
  1973. * When mapping objects through the GTT, userspace wants to be able to write
  1974. * to them without having to worry about swizzling if the object is tiled.
  1975. * This function walks the fence regs looking for a free one for @obj,
  1976. * stealing one if it can't find any.
  1977. *
  1978. * It then sets up the reg based on the object's properties: address, pitch
  1979. * and tiling format.
  1980. *
  1981. * For an untiled surface, this removes any existing fence.
  1982. */
  1983. int
  1984. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  1985. {
  1986. struct drm_device *dev = obj->base.dev;
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. bool enable = obj->tiling_mode != I915_TILING_NONE;
  1989. struct drm_i915_fence_reg *reg;
  1990. int ret;
  1991. /* Have we updated the tiling parameters upon the object and so
  1992. * will need to serialise the write to the associated fence register?
  1993. */
  1994. if (obj->fence_dirty) {
  1995. ret = i915_gem_object_flush_fence(obj);
  1996. if (ret)
  1997. return ret;
  1998. }
  1999. /* Just update our place in the LRU if our fence is getting reused. */
  2000. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2001. reg = &dev_priv->fence_regs[obj->fence_reg];
  2002. if (!obj->fence_dirty) {
  2003. list_move_tail(&reg->lru_list,
  2004. &dev_priv->mm.fence_list);
  2005. return 0;
  2006. }
  2007. } else if (enable) {
  2008. reg = i915_find_fence_reg(dev);
  2009. if (reg == NULL)
  2010. return -EDEADLK;
  2011. if (reg->obj) {
  2012. struct drm_i915_gem_object *old = reg->obj;
  2013. ret = i915_gem_object_flush_fence(old);
  2014. if (ret)
  2015. return ret;
  2016. i915_gem_object_fence_lost(old);
  2017. }
  2018. } else
  2019. return 0;
  2020. i915_gem_object_update_fence(obj, reg, enable);
  2021. obj->fence_dirty = false;
  2022. return 0;
  2023. }
  2024. /**
  2025. * Finds free space in the GTT aperture and binds the object there.
  2026. */
  2027. static int
  2028. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2029. unsigned alignment,
  2030. bool map_and_fenceable)
  2031. {
  2032. struct drm_device *dev = obj->base.dev;
  2033. drm_i915_private_t *dev_priv = dev->dev_private;
  2034. struct drm_mm_node *free_space;
  2035. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2036. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2037. bool mappable, fenceable;
  2038. int ret;
  2039. if (obj->madv != I915_MADV_WILLNEED) {
  2040. DRM_ERROR("Attempting to bind a purgeable object\n");
  2041. return -EINVAL;
  2042. }
  2043. fence_size = i915_gem_get_gtt_size(dev,
  2044. obj->base.size,
  2045. obj->tiling_mode);
  2046. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2047. obj->base.size,
  2048. obj->tiling_mode);
  2049. unfenced_alignment =
  2050. i915_gem_get_unfenced_gtt_alignment(dev,
  2051. obj->base.size,
  2052. obj->tiling_mode);
  2053. if (alignment == 0)
  2054. alignment = map_and_fenceable ? fence_alignment :
  2055. unfenced_alignment;
  2056. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2057. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2058. return -EINVAL;
  2059. }
  2060. size = map_and_fenceable ? fence_size : obj->base.size;
  2061. /* If the object is bigger than the entire aperture, reject it early
  2062. * before evicting everything in a vain attempt to find space.
  2063. */
  2064. if (obj->base.size >
  2065. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2066. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2067. return -E2BIG;
  2068. }
  2069. search_free:
  2070. if (map_and_fenceable)
  2071. free_space =
  2072. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2073. size, alignment, 0,
  2074. dev_priv->mm.gtt_mappable_end,
  2075. 0);
  2076. else
  2077. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2078. size, alignment, 0);
  2079. if (free_space != NULL) {
  2080. if (map_and_fenceable)
  2081. obj->gtt_space =
  2082. drm_mm_get_block_range_generic(free_space,
  2083. size, alignment, 0,
  2084. dev_priv->mm.gtt_mappable_end,
  2085. 0);
  2086. else
  2087. obj->gtt_space =
  2088. drm_mm_get_block(free_space, size, alignment);
  2089. }
  2090. if (obj->gtt_space == NULL) {
  2091. /* If the gtt is empty and we're still having trouble
  2092. * fitting our object in, we're out of memory.
  2093. */
  2094. ret = i915_gem_evict_something(dev, size, alignment,
  2095. map_and_fenceable);
  2096. if (ret)
  2097. return ret;
  2098. goto search_free;
  2099. }
  2100. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2101. if (ret) {
  2102. drm_mm_put_block(obj->gtt_space);
  2103. obj->gtt_space = NULL;
  2104. if (ret == -ENOMEM) {
  2105. /* first try to reclaim some memory by clearing the GTT */
  2106. ret = i915_gem_evict_everything(dev, false);
  2107. if (ret) {
  2108. /* now try to shrink everyone else */
  2109. if (gfpmask) {
  2110. gfpmask = 0;
  2111. goto search_free;
  2112. }
  2113. return -ENOMEM;
  2114. }
  2115. goto search_free;
  2116. }
  2117. return ret;
  2118. }
  2119. ret = i915_gem_gtt_prepare_object(obj);
  2120. if (ret) {
  2121. i915_gem_object_put_pages_gtt(obj);
  2122. drm_mm_put_block(obj->gtt_space);
  2123. obj->gtt_space = NULL;
  2124. if (i915_gem_evict_everything(dev, false))
  2125. return ret;
  2126. goto search_free;
  2127. }
  2128. if (!dev_priv->mm.aliasing_ppgtt)
  2129. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2130. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2131. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2132. /* Assert that the object is not currently in any GPU domain. As it
  2133. * wasn't in the GTT, there shouldn't be any way it could have been in
  2134. * a GPU cache
  2135. */
  2136. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2137. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2138. obj->gtt_offset = obj->gtt_space->start;
  2139. fenceable =
  2140. obj->gtt_space->size == fence_size &&
  2141. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2142. mappable =
  2143. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2144. obj->map_and_fenceable = mappable && fenceable;
  2145. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2146. return 0;
  2147. }
  2148. void
  2149. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2150. {
  2151. /* If we don't have a page list set up, then we're not pinned
  2152. * to GPU, and we can ignore the cache flush because it'll happen
  2153. * again at bind time.
  2154. */
  2155. if (obj->pages == NULL)
  2156. return;
  2157. /* If the GPU is snooping the contents of the CPU cache,
  2158. * we do not need to manually clear the CPU cache lines. However,
  2159. * the caches are only snooped when the render cache is
  2160. * flushed/invalidated. As we always have to emit invalidations
  2161. * and flushes when moving into and out of the RENDER domain, correct
  2162. * snooping behaviour occurs naturally as the result of our domain
  2163. * tracking.
  2164. */
  2165. if (obj->cache_level != I915_CACHE_NONE)
  2166. return;
  2167. trace_i915_gem_object_clflush(obj);
  2168. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2169. }
  2170. /** Flushes any GPU write domain for the object if it's dirty. */
  2171. static int
  2172. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2173. {
  2174. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2175. return 0;
  2176. /* Queue the GPU write cache flushing we need. */
  2177. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2178. }
  2179. /** Flushes the GTT write domain for the object if it's dirty. */
  2180. static void
  2181. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2182. {
  2183. uint32_t old_write_domain;
  2184. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2185. return;
  2186. /* No actual flushing is required for the GTT write domain. Writes
  2187. * to it immediately go to main memory as far as we know, so there's
  2188. * no chipset flush. It also doesn't land in render cache.
  2189. *
  2190. * However, we do have to enforce the order so that all writes through
  2191. * the GTT land before any writes to the device, such as updates to
  2192. * the GATT itself.
  2193. */
  2194. wmb();
  2195. old_write_domain = obj->base.write_domain;
  2196. obj->base.write_domain = 0;
  2197. trace_i915_gem_object_change_domain(obj,
  2198. obj->base.read_domains,
  2199. old_write_domain);
  2200. }
  2201. /** Flushes the CPU write domain for the object if it's dirty. */
  2202. static void
  2203. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2204. {
  2205. uint32_t old_write_domain;
  2206. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2207. return;
  2208. i915_gem_clflush_object(obj);
  2209. intel_gtt_chipset_flush();
  2210. old_write_domain = obj->base.write_domain;
  2211. obj->base.write_domain = 0;
  2212. trace_i915_gem_object_change_domain(obj,
  2213. obj->base.read_domains,
  2214. old_write_domain);
  2215. }
  2216. /**
  2217. * Moves a single object to the GTT read, and possibly write domain.
  2218. *
  2219. * This function returns when the move is complete, including waiting on
  2220. * flushes to occur.
  2221. */
  2222. int
  2223. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2224. {
  2225. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2226. uint32_t old_write_domain, old_read_domains;
  2227. int ret;
  2228. /* Not valid to be called on unbound objects. */
  2229. if (obj->gtt_space == NULL)
  2230. return -EINVAL;
  2231. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2232. return 0;
  2233. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2234. if (ret)
  2235. return ret;
  2236. if (obj->pending_gpu_write || write) {
  2237. ret = i915_gem_object_wait_rendering(obj);
  2238. if (ret)
  2239. return ret;
  2240. }
  2241. i915_gem_object_flush_cpu_write_domain(obj);
  2242. old_write_domain = obj->base.write_domain;
  2243. old_read_domains = obj->base.read_domains;
  2244. /* It should now be out of any other write domains, and we can update
  2245. * the domain values for our changes.
  2246. */
  2247. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2248. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2249. if (write) {
  2250. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2251. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2252. obj->dirty = 1;
  2253. }
  2254. trace_i915_gem_object_change_domain(obj,
  2255. old_read_domains,
  2256. old_write_domain);
  2257. /* And bump the LRU for this access */
  2258. if (i915_gem_object_is_inactive(obj))
  2259. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2260. return 0;
  2261. }
  2262. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2263. enum i915_cache_level cache_level)
  2264. {
  2265. struct drm_device *dev = obj->base.dev;
  2266. drm_i915_private_t *dev_priv = dev->dev_private;
  2267. int ret;
  2268. if (obj->cache_level == cache_level)
  2269. return 0;
  2270. if (obj->pin_count) {
  2271. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2272. return -EBUSY;
  2273. }
  2274. if (obj->gtt_space) {
  2275. ret = i915_gem_object_finish_gpu(obj);
  2276. if (ret)
  2277. return ret;
  2278. i915_gem_object_finish_gtt(obj);
  2279. /* Before SandyBridge, you could not use tiling or fence
  2280. * registers with snooped memory, so relinquish any fences
  2281. * currently pointing to our region in the aperture.
  2282. */
  2283. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2284. ret = i915_gem_object_put_fence(obj);
  2285. if (ret)
  2286. return ret;
  2287. }
  2288. if (obj->has_global_gtt_mapping)
  2289. i915_gem_gtt_bind_object(obj, cache_level);
  2290. if (obj->has_aliasing_ppgtt_mapping)
  2291. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2292. obj, cache_level);
  2293. }
  2294. if (cache_level == I915_CACHE_NONE) {
  2295. u32 old_read_domains, old_write_domain;
  2296. /* If we're coming from LLC cached, then we haven't
  2297. * actually been tracking whether the data is in the
  2298. * CPU cache or not, since we only allow one bit set
  2299. * in obj->write_domain and have been skipping the clflushes.
  2300. * Just set it to the CPU cache for now.
  2301. */
  2302. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2303. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2304. old_read_domains = obj->base.read_domains;
  2305. old_write_domain = obj->base.write_domain;
  2306. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2307. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2308. trace_i915_gem_object_change_domain(obj,
  2309. old_read_domains,
  2310. old_write_domain);
  2311. }
  2312. obj->cache_level = cache_level;
  2313. return 0;
  2314. }
  2315. /*
  2316. * Prepare buffer for display plane (scanout, cursors, etc).
  2317. * Can be called from an uninterruptible phase (modesetting) and allows
  2318. * any flushes to be pipelined (for pageflips).
  2319. */
  2320. int
  2321. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2322. u32 alignment,
  2323. struct intel_ring_buffer *pipelined)
  2324. {
  2325. u32 old_read_domains, old_write_domain;
  2326. int ret;
  2327. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2328. if (ret)
  2329. return ret;
  2330. if (pipelined != obj->ring) {
  2331. ret = i915_gem_object_sync(obj, pipelined);
  2332. if (ret)
  2333. return ret;
  2334. }
  2335. /* The display engine is not coherent with the LLC cache on gen6. As
  2336. * a result, we make sure that the pinning that is about to occur is
  2337. * done with uncached PTEs. This is lowest common denominator for all
  2338. * chipsets.
  2339. *
  2340. * However for gen6+, we could do better by using the GFDT bit instead
  2341. * of uncaching, which would allow us to flush all the LLC-cached data
  2342. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2343. */
  2344. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2345. if (ret)
  2346. return ret;
  2347. /* As the user may map the buffer once pinned in the display plane
  2348. * (e.g. libkms for the bootup splash), we have to ensure that we
  2349. * always use map_and_fenceable for all scanout buffers.
  2350. */
  2351. ret = i915_gem_object_pin(obj, alignment, true);
  2352. if (ret)
  2353. return ret;
  2354. i915_gem_object_flush_cpu_write_domain(obj);
  2355. old_write_domain = obj->base.write_domain;
  2356. old_read_domains = obj->base.read_domains;
  2357. /* It should now be out of any other write domains, and we can update
  2358. * the domain values for our changes.
  2359. */
  2360. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2361. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2362. trace_i915_gem_object_change_domain(obj,
  2363. old_read_domains,
  2364. old_write_domain);
  2365. return 0;
  2366. }
  2367. int
  2368. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2369. {
  2370. int ret;
  2371. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2372. return 0;
  2373. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2374. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2375. if (ret)
  2376. return ret;
  2377. }
  2378. ret = i915_gem_object_wait_rendering(obj);
  2379. if (ret)
  2380. return ret;
  2381. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2382. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2383. return 0;
  2384. }
  2385. /**
  2386. * Moves a single object to the CPU read, and possibly write domain.
  2387. *
  2388. * This function returns when the move is complete, including waiting on
  2389. * flushes to occur.
  2390. */
  2391. int
  2392. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2393. {
  2394. uint32_t old_write_domain, old_read_domains;
  2395. int ret;
  2396. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2397. return 0;
  2398. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2399. if (ret)
  2400. return ret;
  2401. if (write || obj->pending_gpu_write) {
  2402. ret = i915_gem_object_wait_rendering(obj);
  2403. if (ret)
  2404. return ret;
  2405. }
  2406. i915_gem_object_flush_gtt_write_domain(obj);
  2407. old_write_domain = obj->base.write_domain;
  2408. old_read_domains = obj->base.read_domains;
  2409. /* Flush the CPU cache if it's still invalid. */
  2410. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2411. i915_gem_clflush_object(obj);
  2412. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2413. }
  2414. /* It should now be out of any other write domains, and we can update
  2415. * the domain values for our changes.
  2416. */
  2417. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2418. /* If we're writing through the CPU, then the GPU read domains will
  2419. * need to be invalidated at next use.
  2420. */
  2421. if (write) {
  2422. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2423. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2424. }
  2425. trace_i915_gem_object_change_domain(obj,
  2426. old_read_domains,
  2427. old_write_domain);
  2428. return 0;
  2429. }
  2430. /* Throttle our rendering by waiting until the ring has completed our requests
  2431. * emitted over 20 msec ago.
  2432. *
  2433. * Note that if we were to use the current jiffies each time around the loop,
  2434. * we wouldn't escape the function with any frames outstanding if the time to
  2435. * render a frame was over 20ms.
  2436. *
  2437. * This should get us reasonable parallelism between CPU and GPU but also
  2438. * relatively low latency when blocking on a particular request to finish.
  2439. */
  2440. static int
  2441. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2442. {
  2443. struct drm_i915_private *dev_priv = dev->dev_private;
  2444. struct drm_i915_file_private *file_priv = file->driver_priv;
  2445. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2446. struct drm_i915_gem_request *request;
  2447. struct intel_ring_buffer *ring = NULL;
  2448. u32 seqno = 0;
  2449. int ret;
  2450. if (atomic_read(&dev_priv->mm.wedged))
  2451. return -EIO;
  2452. spin_lock(&file_priv->mm.lock);
  2453. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2454. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2455. break;
  2456. ring = request->ring;
  2457. seqno = request->seqno;
  2458. }
  2459. spin_unlock(&file_priv->mm.lock);
  2460. if (seqno == 0)
  2461. return 0;
  2462. ret = __wait_seqno(ring, seqno, true);
  2463. if (ret == 0)
  2464. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2465. return ret;
  2466. }
  2467. int
  2468. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2469. uint32_t alignment,
  2470. bool map_and_fenceable)
  2471. {
  2472. int ret;
  2473. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2474. if (obj->gtt_space != NULL) {
  2475. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2476. (map_and_fenceable && !obj->map_and_fenceable)) {
  2477. WARN(obj->pin_count,
  2478. "bo is already pinned with incorrect alignment:"
  2479. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2480. " obj->map_and_fenceable=%d\n",
  2481. obj->gtt_offset, alignment,
  2482. map_and_fenceable,
  2483. obj->map_and_fenceable);
  2484. ret = i915_gem_object_unbind(obj);
  2485. if (ret)
  2486. return ret;
  2487. }
  2488. }
  2489. if (obj->gtt_space == NULL) {
  2490. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2491. map_and_fenceable);
  2492. if (ret)
  2493. return ret;
  2494. }
  2495. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2496. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2497. obj->pin_count++;
  2498. obj->pin_mappable |= map_and_fenceable;
  2499. return 0;
  2500. }
  2501. void
  2502. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2503. {
  2504. BUG_ON(obj->pin_count == 0);
  2505. BUG_ON(obj->gtt_space == NULL);
  2506. if (--obj->pin_count == 0)
  2507. obj->pin_mappable = false;
  2508. }
  2509. int
  2510. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2511. struct drm_file *file)
  2512. {
  2513. struct drm_i915_gem_pin *args = data;
  2514. struct drm_i915_gem_object *obj;
  2515. int ret;
  2516. ret = i915_mutex_lock_interruptible(dev);
  2517. if (ret)
  2518. return ret;
  2519. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2520. if (&obj->base == NULL) {
  2521. ret = -ENOENT;
  2522. goto unlock;
  2523. }
  2524. if (obj->madv != I915_MADV_WILLNEED) {
  2525. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2526. ret = -EINVAL;
  2527. goto out;
  2528. }
  2529. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2530. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2531. args->handle);
  2532. ret = -EINVAL;
  2533. goto out;
  2534. }
  2535. obj->user_pin_count++;
  2536. obj->pin_filp = file;
  2537. if (obj->user_pin_count == 1) {
  2538. ret = i915_gem_object_pin(obj, args->alignment, true);
  2539. if (ret)
  2540. goto out;
  2541. }
  2542. /* XXX - flush the CPU caches for pinned objects
  2543. * as the X server doesn't manage domains yet
  2544. */
  2545. i915_gem_object_flush_cpu_write_domain(obj);
  2546. args->offset = obj->gtt_offset;
  2547. out:
  2548. drm_gem_object_unreference(&obj->base);
  2549. unlock:
  2550. mutex_unlock(&dev->struct_mutex);
  2551. return ret;
  2552. }
  2553. int
  2554. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2555. struct drm_file *file)
  2556. {
  2557. struct drm_i915_gem_pin *args = data;
  2558. struct drm_i915_gem_object *obj;
  2559. int ret;
  2560. ret = i915_mutex_lock_interruptible(dev);
  2561. if (ret)
  2562. return ret;
  2563. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2564. if (&obj->base == NULL) {
  2565. ret = -ENOENT;
  2566. goto unlock;
  2567. }
  2568. if (obj->pin_filp != file) {
  2569. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2570. args->handle);
  2571. ret = -EINVAL;
  2572. goto out;
  2573. }
  2574. obj->user_pin_count--;
  2575. if (obj->user_pin_count == 0) {
  2576. obj->pin_filp = NULL;
  2577. i915_gem_object_unpin(obj);
  2578. }
  2579. out:
  2580. drm_gem_object_unreference(&obj->base);
  2581. unlock:
  2582. mutex_unlock(&dev->struct_mutex);
  2583. return ret;
  2584. }
  2585. int
  2586. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2587. struct drm_file *file)
  2588. {
  2589. struct drm_i915_gem_busy *args = data;
  2590. struct drm_i915_gem_object *obj;
  2591. int ret;
  2592. ret = i915_mutex_lock_interruptible(dev);
  2593. if (ret)
  2594. return ret;
  2595. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2596. if (&obj->base == NULL) {
  2597. ret = -ENOENT;
  2598. goto unlock;
  2599. }
  2600. /* Count all active objects as busy, even if they are currently not used
  2601. * by the gpu. Users of this interface expect objects to eventually
  2602. * become non-busy without any further actions, therefore emit any
  2603. * necessary flushes here.
  2604. */
  2605. args->busy = obj->active;
  2606. if (args->busy) {
  2607. /* Unconditionally flush objects, even when the gpu still uses this
  2608. * object. Userspace calling this function indicates that it wants to
  2609. * use this buffer rather sooner than later, so issuing the required
  2610. * flush earlier is beneficial.
  2611. */
  2612. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2613. ret = i915_gem_flush_ring(obj->ring,
  2614. 0, obj->base.write_domain);
  2615. } else if (obj->ring->outstanding_lazy_request ==
  2616. obj->last_rendering_seqno) {
  2617. struct drm_i915_gem_request *request;
  2618. /* This ring is not being cleared by active usage,
  2619. * so emit a request to do so.
  2620. */
  2621. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2622. if (request) {
  2623. ret = i915_add_request(obj->ring, NULL, request);
  2624. if (ret)
  2625. kfree(request);
  2626. } else
  2627. ret = -ENOMEM;
  2628. }
  2629. /* Update the active list for the hardware's current position.
  2630. * Otherwise this only updates on a delayed timer or when irqs
  2631. * are actually unmasked, and our working set ends up being
  2632. * larger than required.
  2633. */
  2634. i915_gem_retire_requests_ring(obj->ring);
  2635. args->busy = obj->active;
  2636. }
  2637. drm_gem_object_unreference(&obj->base);
  2638. unlock:
  2639. mutex_unlock(&dev->struct_mutex);
  2640. return ret;
  2641. }
  2642. int
  2643. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2644. struct drm_file *file_priv)
  2645. {
  2646. return i915_gem_ring_throttle(dev, file_priv);
  2647. }
  2648. int
  2649. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2650. struct drm_file *file_priv)
  2651. {
  2652. struct drm_i915_gem_madvise *args = data;
  2653. struct drm_i915_gem_object *obj;
  2654. int ret;
  2655. switch (args->madv) {
  2656. case I915_MADV_DONTNEED:
  2657. case I915_MADV_WILLNEED:
  2658. break;
  2659. default:
  2660. return -EINVAL;
  2661. }
  2662. ret = i915_mutex_lock_interruptible(dev);
  2663. if (ret)
  2664. return ret;
  2665. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2666. if (&obj->base == NULL) {
  2667. ret = -ENOENT;
  2668. goto unlock;
  2669. }
  2670. if (obj->pin_count) {
  2671. ret = -EINVAL;
  2672. goto out;
  2673. }
  2674. if (obj->madv != __I915_MADV_PURGED)
  2675. obj->madv = args->madv;
  2676. /* if the object is no longer bound, discard its backing storage */
  2677. if (i915_gem_object_is_purgeable(obj) &&
  2678. obj->gtt_space == NULL)
  2679. i915_gem_object_truncate(obj);
  2680. args->retained = obj->madv != __I915_MADV_PURGED;
  2681. out:
  2682. drm_gem_object_unreference(&obj->base);
  2683. unlock:
  2684. mutex_unlock(&dev->struct_mutex);
  2685. return ret;
  2686. }
  2687. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2688. size_t size)
  2689. {
  2690. struct drm_i915_private *dev_priv = dev->dev_private;
  2691. struct drm_i915_gem_object *obj;
  2692. struct address_space *mapping;
  2693. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2694. if (obj == NULL)
  2695. return NULL;
  2696. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2697. kfree(obj);
  2698. return NULL;
  2699. }
  2700. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2701. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2702. i915_gem_info_add_obj(dev_priv, size);
  2703. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2704. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2705. if (HAS_LLC(dev)) {
  2706. /* On some devices, we can have the GPU use the LLC (the CPU
  2707. * cache) for about a 10% performance improvement
  2708. * compared to uncached. Graphics requests other than
  2709. * display scanout are coherent with the CPU in
  2710. * accessing this cache. This means in this mode we
  2711. * don't need to clflush on the CPU side, and on the
  2712. * GPU side we only need to flush internal caches to
  2713. * get data visible to the CPU.
  2714. *
  2715. * However, we maintain the display planes as UC, and so
  2716. * need to rebind when first used as such.
  2717. */
  2718. obj->cache_level = I915_CACHE_LLC;
  2719. } else
  2720. obj->cache_level = I915_CACHE_NONE;
  2721. obj->base.driver_private = NULL;
  2722. obj->fence_reg = I915_FENCE_REG_NONE;
  2723. INIT_LIST_HEAD(&obj->mm_list);
  2724. INIT_LIST_HEAD(&obj->gtt_list);
  2725. INIT_LIST_HEAD(&obj->ring_list);
  2726. INIT_LIST_HEAD(&obj->exec_list);
  2727. INIT_LIST_HEAD(&obj->gpu_write_list);
  2728. obj->madv = I915_MADV_WILLNEED;
  2729. /* Avoid an unnecessary call to unbind on the first bind. */
  2730. obj->map_and_fenceable = true;
  2731. return obj;
  2732. }
  2733. int i915_gem_init_object(struct drm_gem_object *obj)
  2734. {
  2735. BUG();
  2736. return 0;
  2737. }
  2738. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2739. {
  2740. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2741. struct drm_device *dev = obj->base.dev;
  2742. drm_i915_private_t *dev_priv = dev->dev_private;
  2743. trace_i915_gem_object_destroy(obj);
  2744. if (obj->phys_obj)
  2745. i915_gem_detach_phys_object(dev, obj);
  2746. obj->pin_count = 0;
  2747. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2748. bool was_interruptible;
  2749. was_interruptible = dev_priv->mm.interruptible;
  2750. dev_priv->mm.interruptible = false;
  2751. WARN_ON(i915_gem_object_unbind(obj));
  2752. dev_priv->mm.interruptible = was_interruptible;
  2753. }
  2754. if (obj->base.map_list.map)
  2755. drm_gem_free_mmap_offset(&obj->base);
  2756. drm_gem_object_release(&obj->base);
  2757. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2758. kfree(obj->bit_17);
  2759. kfree(obj);
  2760. }
  2761. int
  2762. i915_gem_idle(struct drm_device *dev)
  2763. {
  2764. drm_i915_private_t *dev_priv = dev->dev_private;
  2765. int ret;
  2766. mutex_lock(&dev->struct_mutex);
  2767. if (dev_priv->mm.suspended) {
  2768. mutex_unlock(&dev->struct_mutex);
  2769. return 0;
  2770. }
  2771. ret = i915_gpu_idle(dev);
  2772. if (ret) {
  2773. mutex_unlock(&dev->struct_mutex);
  2774. return ret;
  2775. }
  2776. i915_gem_retire_requests(dev);
  2777. /* Under UMS, be paranoid and evict. */
  2778. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2779. i915_gem_evict_everything(dev, false);
  2780. i915_gem_reset_fences(dev);
  2781. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2782. * We need to replace this with a semaphore, or something.
  2783. * And not confound mm.suspended!
  2784. */
  2785. dev_priv->mm.suspended = 1;
  2786. del_timer_sync(&dev_priv->hangcheck_timer);
  2787. i915_kernel_lost_context(dev);
  2788. i915_gem_cleanup_ringbuffer(dev);
  2789. mutex_unlock(&dev->struct_mutex);
  2790. /* Cancel the retire work handler, which should be idle now. */
  2791. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2792. return 0;
  2793. }
  2794. void i915_gem_init_swizzling(struct drm_device *dev)
  2795. {
  2796. drm_i915_private_t *dev_priv = dev->dev_private;
  2797. if (INTEL_INFO(dev)->gen < 5 ||
  2798. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2799. return;
  2800. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2801. DISP_TILE_SURFACE_SWIZZLING);
  2802. if (IS_GEN5(dev))
  2803. return;
  2804. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2805. if (IS_GEN6(dev))
  2806. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2807. else
  2808. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2809. }
  2810. void i915_gem_init_ppgtt(struct drm_device *dev)
  2811. {
  2812. drm_i915_private_t *dev_priv = dev->dev_private;
  2813. uint32_t pd_offset;
  2814. struct intel_ring_buffer *ring;
  2815. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2816. uint32_t __iomem *pd_addr;
  2817. uint32_t pd_entry;
  2818. int i;
  2819. if (!dev_priv->mm.aliasing_ppgtt)
  2820. return;
  2821. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2822. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2823. dma_addr_t pt_addr;
  2824. if (dev_priv->mm.gtt->needs_dmar)
  2825. pt_addr = ppgtt->pt_dma_addr[i];
  2826. else
  2827. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2828. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2829. pd_entry |= GEN6_PDE_VALID;
  2830. writel(pd_entry, pd_addr + i);
  2831. }
  2832. readl(pd_addr);
  2833. pd_offset = ppgtt->pd_offset;
  2834. pd_offset /= 64; /* in cachelines, */
  2835. pd_offset <<= 16;
  2836. if (INTEL_INFO(dev)->gen == 6) {
  2837. uint32_t ecochk, gab_ctl, ecobits;
  2838. ecobits = I915_READ(GAC_ECO_BITS);
  2839. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  2840. gab_ctl = I915_READ(GAB_CTL);
  2841. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  2842. ecochk = I915_READ(GAM_ECOCHK);
  2843. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2844. ECOCHK_PPGTT_CACHE64B);
  2845. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2846. } else if (INTEL_INFO(dev)->gen >= 7) {
  2847. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  2848. /* GFX_MODE is per-ring on gen7+ */
  2849. }
  2850. for (i = 0; i < I915_NUM_RINGS; i++) {
  2851. ring = &dev_priv->ring[i];
  2852. if (INTEL_INFO(dev)->gen >= 7)
  2853. I915_WRITE(RING_MODE_GEN7(ring),
  2854. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  2855. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  2856. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  2857. }
  2858. }
  2859. int
  2860. i915_gem_init_hw(struct drm_device *dev)
  2861. {
  2862. drm_i915_private_t *dev_priv = dev->dev_private;
  2863. int ret;
  2864. i915_gem_init_swizzling(dev);
  2865. ret = intel_init_render_ring_buffer(dev);
  2866. if (ret)
  2867. return ret;
  2868. if (HAS_BSD(dev)) {
  2869. ret = intel_init_bsd_ring_buffer(dev);
  2870. if (ret)
  2871. goto cleanup_render_ring;
  2872. }
  2873. if (HAS_BLT(dev)) {
  2874. ret = intel_init_blt_ring_buffer(dev);
  2875. if (ret)
  2876. goto cleanup_bsd_ring;
  2877. }
  2878. dev_priv->next_seqno = 1;
  2879. i915_gem_init_ppgtt(dev);
  2880. return 0;
  2881. cleanup_bsd_ring:
  2882. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  2883. cleanup_render_ring:
  2884. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  2885. return ret;
  2886. }
  2887. static bool
  2888. intel_enable_ppgtt(struct drm_device *dev)
  2889. {
  2890. if (i915_enable_ppgtt >= 0)
  2891. return i915_enable_ppgtt;
  2892. #ifdef CONFIG_INTEL_IOMMU
  2893. /* Disable ppgtt on SNB if VT-d is on. */
  2894. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  2895. return false;
  2896. #endif
  2897. return true;
  2898. }
  2899. int i915_gem_init(struct drm_device *dev)
  2900. {
  2901. struct drm_i915_private *dev_priv = dev->dev_private;
  2902. unsigned long gtt_size, mappable_size;
  2903. int ret;
  2904. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  2905. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  2906. mutex_lock(&dev->struct_mutex);
  2907. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  2908. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  2909. * aperture accordingly when using aliasing ppgtt. */
  2910. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  2911. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  2912. ret = i915_gem_init_aliasing_ppgtt(dev);
  2913. if (ret) {
  2914. mutex_unlock(&dev->struct_mutex);
  2915. return ret;
  2916. }
  2917. } else {
  2918. /* Let GEM Manage all of the aperture.
  2919. *
  2920. * However, leave one page at the end still bound to the scratch
  2921. * page. There are a number of places where the hardware
  2922. * apparently prefetches past the end of the object, and we've
  2923. * seen multiple hangs with the GPU head pointer stuck in a
  2924. * batchbuffer bound at the last page of the aperture. One page
  2925. * should be enough to keep any prefetching inside of the
  2926. * aperture.
  2927. */
  2928. i915_gem_init_global_gtt(dev, 0, mappable_size,
  2929. gtt_size);
  2930. }
  2931. ret = i915_gem_init_hw(dev);
  2932. mutex_unlock(&dev->struct_mutex);
  2933. if (ret) {
  2934. i915_gem_cleanup_aliasing_ppgtt(dev);
  2935. return ret;
  2936. }
  2937. /* Allow hardware batchbuffers unless told otherwise. */
  2938. dev_priv->dri1.allow_batchbuffer = 1;
  2939. return 0;
  2940. }
  2941. void
  2942. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  2943. {
  2944. drm_i915_private_t *dev_priv = dev->dev_private;
  2945. int i;
  2946. for (i = 0; i < I915_NUM_RINGS; i++)
  2947. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  2948. }
  2949. int
  2950. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  2951. struct drm_file *file_priv)
  2952. {
  2953. drm_i915_private_t *dev_priv = dev->dev_private;
  2954. int ret, i;
  2955. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2956. return 0;
  2957. if (atomic_read(&dev_priv->mm.wedged)) {
  2958. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  2959. atomic_set(&dev_priv->mm.wedged, 0);
  2960. }
  2961. mutex_lock(&dev->struct_mutex);
  2962. dev_priv->mm.suspended = 0;
  2963. ret = i915_gem_init_hw(dev);
  2964. if (ret != 0) {
  2965. mutex_unlock(&dev->struct_mutex);
  2966. return ret;
  2967. }
  2968. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  2969. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  2970. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  2971. for (i = 0; i < I915_NUM_RINGS; i++) {
  2972. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  2973. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  2974. }
  2975. mutex_unlock(&dev->struct_mutex);
  2976. ret = drm_irq_install(dev);
  2977. if (ret)
  2978. goto cleanup_ringbuffer;
  2979. return 0;
  2980. cleanup_ringbuffer:
  2981. mutex_lock(&dev->struct_mutex);
  2982. i915_gem_cleanup_ringbuffer(dev);
  2983. dev_priv->mm.suspended = 1;
  2984. mutex_unlock(&dev->struct_mutex);
  2985. return ret;
  2986. }
  2987. int
  2988. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  2989. struct drm_file *file_priv)
  2990. {
  2991. if (drm_core_check_feature(dev, DRIVER_MODESET))
  2992. return 0;
  2993. drm_irq_uninstall(dev);
  2994. return i915_gem_idle(dev);
  2995. }
  2996. void
  2997. i915_gem_lastclose(struct drm_device *dev)
  2998. {
  2999. int ret;
  3000. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3001. return;
  3002. ret = i915_gem_idle(dev);
  3003. if (ret)
  3004. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3005. }
  3006. static void
  3007. init_ring_lists(struct intel_ring_buffer *ring)
  3008. {
  3009. INIT_LIST_HEAD(&ring->active_list);
  3010. INIT_LIST_HEAD(&ring->request_list);
  3011. INIT_LIST_HEAD(&ring->gpu_write_list);
  3012. }
  3013. void
  3014. i915_gem_load(struct drm_device *dev)
  3015. {
  3016. int i;
  3017. drm_i915_private_t *dev_priv = dev->dev_private;
  3018. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3019. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3020. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3021. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3022. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3023. for (i = 0; i < I915_NUM_RINGS; i++)
  3024. init_ring_lists(&dev_priv->ring[i]);
  3025. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3026. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3027. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3028. i915_gem_retire_work_handler);
  3029. init_completion(&dev_priv->error_completion);
  3030. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3031. if (IS_GEN3(dev)) {
  3032. I915_WRITE(MI_ARB_STATE,
  3033. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3034. }
  3035. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3036. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3037. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3038. dev_priv->fence_reg_start = 3;
  3039. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3040. dev_priv->num_fence_regs = 16;
  3041. else
  3042. dev_priv->num_fence_regs = 8;
  3043. /* Initialize fence registers to zero */
  3044. i915_gem_reset_fences(dev);
  3045. i915_gem_detect_bit_6_swizzle(dev);
  3046. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3047. dev_priv->mm.interruptible = true;
  3048. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3049. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3050. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3051. }
  3052. /*
  3053. * Create a physically contiguous memory object for this object
  3054. * e.g. for cursor + overlay regs
  3055. */
  3056. static int i915_gem_init_phys_object(struct drm_device *dev,
  3057. int id, int size, int align)
  3058. {
  3059. drm_i915_private_t *dev_priv = dev->dev_private;
  3060. struct drm_i915_gem_phys_object *phys_obj;
  3061. int ret;
  3062. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3063. return 0;
  3064. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3065. if (!phys_obj)
  3066. return -ENOMEM;
  3067. phys_obj->id = id;
  3068. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3069. if (!phys_obj->handle) {
  3070. ret = -ENOMEM;
  3071. goto kfree_obj;
  3072. }
  3073. #ifdef CONFIG_X86
  3074. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3075. #endif
  3076. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3077. return 0;
  3078. kfree_obj:
  3079. kfree(phys_obj);
  3080. return ret;
  3081. }
  3082. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3083. {
  3084. drm_i915_private_t *dev_priv = dev->dev_private;
  3085. struct drm_i915_gem_phys_object *phys_obj;
  3086. if (!dev_priv->mm.phys_objs[id - 1])
  3087. return;
  3088. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3089. if (phys_obj->cur_obj) {
  3090. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3091. }
  3092. #ifdef CONFIG_X86
  3093. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3094. #endif
  3095. drm_pci_free(dev, phys_obj->handle);
  3096. kfree(phys_obj);
  3097. dev_priv->mm.phys_objs[id - 1] = NULL;
  3098. }
  3099. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3100. {
  3101. int i;
  3102. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3103. i915_gem_free_phys_object(dev, i);
  3104. }
  3105. void i915_gem_detach_phys_object(struct drm_device *dev,
  3106. struct drm_i915_gem_object *obj)
  3107. {
  3108. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3109. char *vaddr;
  3110. int i;
  3111. int page_count;
  3112. if (!obj->phys_obj)
  3113. return;
  3114. vaddr = obj->phys_obj->handle->vaddr;
  3115. page_count = obj->base.size / PAGE_SIZE;
  3116. for (i = 0; i < page_count; i++) {
  3117. struct page *page = shmem_read_mapping_page(mapping, i);
  3118. if (!IS_ERR(page)) {
  3119. char *dst = kmap_atomic(page);
  3120. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3121. kunmap_atomic(dst);
  3122. drm_clflush_pages(&page, 1);
  3123. set_page_dirty(page);
  3124. mark_page_accessed(page);
  3125. page_cache_release(page);
  3126. }
  3127. }
  3128. intel_gtt_chipset_flush();
  3129. obj->phys_obj->cur_obj = NULL;
  3130. obj->phys_obj = NULL;
  3131. }
  3132. int
  3133. i915_gem_attach_phys_object(struct drm_device *dev,
  3134. struct drm_i915_gem_object *obj,
  3135. int id,
  3136. int align)
  3137. {
  3138. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3139. drm_i915_private_t *dev_priv = dev->dev_private;
  3140. int ret = 0;
  3141. int page_count;
  3142. int i;
  3143. if (id > I915_MAX_PHYS_OBJECT)
  3144. return -EINVAL;
  3145. if (obj->phys_obj) {
  3146. if (obj->phys_obj->id == id)
  3147. return 0;
  3148. i915_gem_detach_phys_object(dev, obj);
  3149. }
  3150. /* create a new object */
  3151. if (!dev_priv->mm.phys_objs[id - 1]) {
  3152. ret = i915_gem_init_phys_object(dev, id,
  3153. obj->base.size, align);
  3154. if (ret) {
  3155. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3156. id, obj->base.size);
  3157. return ret;
  3158. }
  3159. }
  3160. /* bind to the object */
  3161. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3162. obj->phys_obj->cur_obj = obj;
  3163. page_count = obj->base.size / PAGE_SIZE;
  3164. for (i = 0; i < page_count; i++) {
  3165. struct page *page;
  3166. char *dst, *src;
  3167. page = shmem_read_mapping_page(mapping, i);
  3168. if (IS_ERR(page))
  3169. return PTR_ERR(page);
  3170. src = kmap_atomic(page);
  3171. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3172. memcpy(dst, src, PAGE_SIZE);
  3173. kunmap_atomic(src);
  3174. mark_page_accessed(page);
  3175. page_cache_release(page);
  3176. }
  3177. return 0;
  3178. }
  3179. static int
  3180. i915_gem_phys_pwrite(struct drm_device *dev,
  3181. struct drm_i915_gem_object *obj,
  3182. struct drm_i915_gem_pwrite *args,
  3183. struct drm_file *file_priv)
  3184. {
  3185. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3186. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3187. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3188. unsigned long unwritten;
  3189. /* The physical object once assigned is fixed for the lifetime
  3190. * of the obj, so we can safely drop the lock and continue
  3191. * to access vaddr.
  3192. */
  3193. mutex_unlock(&dev->struct_mutex);
  3194. unwritten = copy_from_user(vaddr, user_data, args->size);
  3195. mutex_lock(&dev->struct_mutex);
  3196. if (unwritten)
  3197. return -EFAULT;
  3198. }
  3199. intel_gtt_chipset_flush();
  3200. return 0;
  3201. }
  3202. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3203. {
  3204. struct drm_i915_file_private *file_priv = file->driver_priv;
  3205. /* Clean up our request list when the client is going away, so that
  3206. * later retire_requests won't dereference our soon-to-be-gone
  3207. * file_priv.
  3208. */
  3209. spin_lock(&file_priv->mm.lock);
  3210. while (!list_empty(&file_priv->mm.request_list)) {
  3211. struct drm_i915_gem_request *request;
  3212. request = list_first_entry(&file_priv->mm.request_list,
  3213. struct drm_i915_gem_request,
  3214. client_list);
  3215. list_del(&request->client_list);
  3216. request->file_priv = NULL;
  3217. }
  3218. spin_unlock(&file_priv->mm.lock);
  3219. }
  3220. static int
  3221. i915_gpu_is_active(struct drm_device *dev)
  3222. {
  3223. drm_i915_private_t *dev_priv = dev->dev_private;
  3224. int lists_empty;
  3225. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3226. list_empty(&dev_priv->mm.active_list);
  3227. return !lists_empty;
  3228. }
  3229. static int
  3230. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3231. {
  3232. struct drm_i915_private *dev_priv =
  3233. container_of(shrinker,
  3234. struct drm_i915_private,
  3235. mm.inactive_shrinker);
  3236. struct drm_device *dev = dev_priv->dev;
  3237. struct drm_i915_gem_object *obj, *next;
  3238. int nr_to_scan = sc->nr_to_scan;
  3239. int cnt;
  3240. if (!mutex_trylock(&dev->struct_mutex))
  3241. return 0;
  3242. /* "fast-path" to count number of available objects */
  3243. if (nr_to_scan == 0) {
  3244. cnt = 0;
  3245. list_for_each_entry(obj,
  3246. &dev_priv->mm.inactive_list,
  3247. mm_list)
  3248. cnt++;
  3249. mutex_unlock(&dev->struct_mutex);
  3250. return cnt / 100 * sysctl_vfs_cache_pressure;
  3251. }
  3252. rescan:
  3253. /* first scan for clean buffers */
  3254. i915_gem_retire_requests(dev);
  3255. list_for_each_entry_safe(obj, next,
  3256. &dev_priv->mm.inactive_list,
  3257. mm_list) {
  3258. if (i915_gem_object_is_purgeable(obj)) {
  3259. if (i915_gem_object_unbind(obj) == 0 &&
  3260. --nr_to_scan == 0)
  3261. break;
  3262. }
  3263. }
  3264. /* second pass, evict/count anything still on the inactive list */
  3265. cnt = 0;
  3266. list_for_each_entry_safe(obj, next,
  3267. &dev_priv->mm.inactive_list,
  3268. mm_list) {
  3269. if (nr_to_scan &&
  3270. i915_gem_object_unbind(obj) == 0)
  3271. nr_to_scan--;
  3272. else
  3273. cnt++;
  3274. }
  3275. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3276. /*
  3277. * We are desperate for pages, so as a last resort, wait
  3278. * for the GPU to finish and discard whatever we can.
  3279. * This has a dramatic impact to reduce the number of
  3280. * OOM-killer events whilst running the GPU aggressively.
  3281. */
  3282. if (i915_gpu_idle(dev) == 0)
  3283. goto rescan;
  3284. }
  3285. mutex_unlock(&dev->struct_mutex);
  3286. return cnt / 100 * sysctl_vfs_cache_pressure;
  3287. }