kvm_main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. static struct dentry *debugfs_dir;
  58. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  59. unsigned long arg);
  60. static inline int valid_vcpu(int n)
  61. {
  62. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  63. }
  64. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  65. {
  66. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  67. return;
  68. vcpu->guest_fpu_loaded = 1;
  69. fx_save(&vcpu->host_fx_image);
  70. fx_restore(&vcpu->guest_fx_image);
  71. }
  72. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  73. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  74. {
  75. if (!vcpu->guest_fpu_loaded)
  76. return;
  77. vcpu->guest_fpu_loaded = 0;
  78. fx_save(&vcpu->guest_fx_image);
  79. fx_restore(&vcpu->host_fx_image);
  80. }
  81. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  82. /*
  83. * Switches to specified vcpu, until a matching vcpu_put()
  84. */
  85. void vcpu_load(struct kvm_vcpu *vcpu)
  86. {
  87. int cpu;
  88. mutex_lock(&vcpu->mutex);
  89. cpu = get_cpu();
  90. preempt_notifier_register(&vcpu->preempt_notifier);
  91. kvm_arch_vcpu_load(vcpu, cpu);
  92. put_cpu();
  93. }
  94. void vcpu_put(struct kvm_vcpu *vcpu)
  95. {
  96. preempt_disable();
  97. kvm_arch_vcpu_put(vcpu);
  98. preempt_notifier_unregister(&vcpu->preempt_notifier);
  99. preempt_enable();
  100. mutex_unlock(&vcpu->mutex);
  101. }
  102. static void ack_flush(void *_completed)
  103. {
  104. }
  105. void kvm_flush_remote_tlbs(struct kvm *kvm)
  106. {
  107. int i, cpu;
  108. cpumask_t cpus;
  109. struct kvm_vcpu *vcpu;
  110. cpus_clear(cpus);
  111. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  112. vcpu = kvm->vcpus[i];
  113. if (!vcpu)
  114. continue;
  115. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  116. continue;
  117. cpu = vcpu->cpu;
  118. if (cpu != -1 && cpu != raw_smp_processor_id())
  119. cpu_set(cpu, cpus);
  120. }
  121. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  122. }
  123. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  124. {
  125. struct page *page;
  126. int r;
  127. mutex_init(&vcpu->mutex);
  128. vcpu->cpu = -1;
  129. vcpu->mmu.root_hpa = INVALID_PAGE;
  130. vcpu->kvm = kvm;
  131. vcpu->vcpu_id = id;
  132. if (!irqchip_in_kernel(kvm) || id == 0)
  133. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  134. else
  135. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  136. init_waitqueue_head(&vcpu->wq);
  137. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  138. if (!page) {
  139. r = -ENOMEM;
  140. goto fail;
  141. }
  142. vcpu->run = page_address(page);
  143. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  144. if (!page) {
  145. r = -ENOMEM;
  146. goto fail_free_run;
  147. }
  148. vcpu->pio_data = page_address(page);
  149. r = kvm_mmu_create(vcpu);
  150. if (r < 0)
  151. goto fail_free_pio_data;
  152. if (irqchip_in_kernel(kvm)) {
  153. r = kvm_create_lapic(vcpu);
  154. if (r < 0)
  155. goto fail_mmu_destroy;
  156. }
  157. return 0;
  158. fail_mmu_destroy:
  159. kvm_mmu_destroy(vcpu);
  160. fail_free_pio_data:
  161. free_page((unsigned long)vcpu->pio_data);
  162. fail_free_run:
  163. free_page((unsigned long)vcpu->run);
  164. fail:
  165. return r;
  166. }
  167. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  168. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  169. {
  170. kvm_free_lapic(vcpu);
  171. kvm_mmu_destroy(vcpu);
  172. free_page((unsigned long)vcpu->pio_data);
  173. free_page((unsigned long)vcpu->run);
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  176. static struct kvm *kvm_create_vm(void)
  177. {
  178. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  179. if (!kvm)
  180. return ERR_PTR(-ENOMEM);
  181. kvm_io_bus_init(&kvm->pio_bus);
  182. mutex_init(&kvm->lock);
  183. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  184. kvm_io_bus_init(&kvm->mmio_bus);
  185. spin_lock(&kvm_lock);
  186. list_add(&kvm->vm_list, &vm_list);
  187. spin_unlock(&kvm_lock);
  188. return kvm;
  189. }
  190. /*
  191. * Free any memory in @free but not in @dont.
  192. */
  193. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  194. struct kvm_memory_slot *dont)
  195. {
  196. if (!dont || free->rmap != dont->rmap)
  197. vfree(free->rmap);
  198. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  199. vfree(free->dirty_bitmap);
  200. free->npages = 0;
  201. free->dirty_bitmap = NULL;
  202. free->rmap = NULL;
  203. }
  204. static void kvm_free_physmem(struct kvm *kvm)
  205. {
  206. int i;
  207. for (i = 0; i < kvm->nmemslots; ++i)
  208. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  209. }
  210. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  211. {
  212. vcpu_load(vcpu);
  213. kvm_mmu_unload(vcpu);
  214. vcpu_put(vcpu);
  215. }
  216. static void kvm_free_vcpus(struct kvm *kvm)
  217. {
  218. unsigned int i;
  219. /*
  220. * Unpin any mmu pages first.
  221. */
  222. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  223. if (kvm->vcpus[i])
  224. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  225. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  226. if (kvm->vcpus[i]) {
  227. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  228. kvm->vcpus[i] = NULL;
  229. }
  230. }
  231. }
  232. static void kvm_destroy_vm(struct kvm *kvm)
  233. {
  234. spin_lock(&kvm_lock);
  235. list_del(&kvm->vm_list);
  236. spin_unlock(&kvm_lock);
  237. kvm_io_bus_destroy(&kvm->pio_bus);
  238. kvm_io_bus_destroy(&kvm->mmio_bus);
  239. kfree(kvm->vpic);
  240. kfree(kvm->vioapic);
  241. kvm_free_vcpus(kvm);
  242. kvm_free_physmem(kvm);
  243. kfree(kvm);
  244. }
  245. static int kvm_vm_release(struct inode *inode, struct file *filp)
  246. {
  247. struct kvm *kvm = filp->private_data;
  248. kvm_destroy_vm(kvm);
  249. return 0;
  250. }
  251. void fx_init(struct kvm_vcpu *vcpu)
  252. {
  253. unsigned after_mxcsr_mask;
  254. /* Initialize guest FPU by resetting ours and saving into guest's */
  255. preempt_disable();
  256. fx_save(&vcpu->host_fx_image);
  257. fpu_init();
  258. fx_save(&vcpu->guest_fx_image);
  259. fx_restore(&vcpu->host_fx_image);
  260. preempt_enable();
  261. vcpu->cr0 |= X86_CR0_ET;
  262. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  263. vcpu->guest_fx_image.mxcsr = 0x1f80;
  264. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  265. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  266. }
  267. EXPORT_SYMBOL_GPL(fx_init);
  268. /*
  269. * Allocate some memory and give it an address in the guest physical address
  270. * space.
  271. *
  272. * Discontiguous memory is allowed, mostly for framebuffers.
  273. *
  274. * Must be called holding kvm->lock.
  275. */
  276. int __kvm_set_memory_region(struct kvm *kvm,
  277. struct kvm_userspace_memory_region *mem,
  278. int user_alloc)
  279. {
  280. int r;
  281. gfn_t base_gfn;
  282. unsigned long npages;
  283. unsigned long i;
  284. struct kvm_memory_slot *memslot;
  285. struct kvm_memory_slot old, new;
  286. r = -EINVAL;
  287. /* General sanity checks */
  288. if (mem->memory_size & (PAGE_SIZE - 1))
  289. goto out;
  290. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  291. goto out;
  292. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  293. goto out;
  294. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  295. goto out;
  296. memslot = &kvm->memslots[mem->slot];
  297. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  298. npages = mem->memory_size >> PAGE_SHIFT;
  299. if (!npages)
  300. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  301. new = old = *memslot;
  302. new.base_gfn = base_gfn;
  303. new.npages = npages;
  304. new.flags = mem->flags;
  305. /* Disallow changing a memory slot's size. */
  306. r = -EINVAL;
  307. if (npages && old.npages && npages != old.npages)
  308. goto out_free;
  309. /* Check for overlaps */
  310. r = -EEXIST;
  311. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  312. struct kvm_memory_slot *s = &kvm->memslots[i];
  313. if (s == memslot)
  314. continue;
  315. if (!((base_gfn + npages <= s->base_gfn) ||
  316. (base_gfn >= s->base_gfn + s->npages)))
  317. goto out_free;
  318. }
  319. /* Free page dirty bitmap if unneeded */
  320. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  321. new.dirty_bitmap = NULL;
  322. r = -ENOMEM;
  323. /* Allocate if a slot is being created */
  324. if (npages && !new.rmap) {
  325. new.rmap = vmalloc(npages * sizeof(struct page *));
  326. if (!new.rmap)
  327. goto out_free;
  328. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  329. new.user_alloc = user_alloc;
  330. if (user_alloc)
  331. new.userspace_addr = mem->userspace_addr;
  332. else {
  333. down_write(&current->mm->mmap_sem);
  334. new.userspace_addr = do_mmap(NULL, 0,
  335. npages * PAGE_SIZE,
  336. PROT_READ | PROT_WRITE,
  337. MAP_SHARED | MAP_ANONYMOUS,
  338. 0);
  339. up_write(&current->mm->mmap_sem);
  340. if (IS_ERR((void *)new.userspace_addr))
  341. goto out_free;
  342. }
  343. } else {
  344. if (!old.user_alloc && old.rmap) {
  345. int ret;
  346. down_write(&current->mm->mmap_sem);
  347. ret = do_munmap(current->mm, old.userspace_addr,
  348. old.npages * PAGE_SIZE);
  349. up_write(&current->mm->mmap_sem);
  350. if (ret < 0)
  351. printk(KERN_WARNING
  352. "kvm_vm_ioctl_set_memory_region: "
  353. "failed to munmap memory\n");
  354. }
  355. }
  356. /* Allocate page dirty bitmap if needed */
  357. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  358. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  359. new.dirty_bitmap = vmalloc(dirty_bytes);
  360. if (!new.dirty_bitmap)
  361. goto out_free;
  362. memset(new.dirty_bitmap, 0, dirty_bytes);
  363. }
  364. if (mem->slot >= kvm->nmemslots)
  365. kvm->nmemslots = mem->slot + 1;
  366. if (!kvm->n_requested_mmu_pages) {
  367. unsigned int n_pages;
  368. if (npages) {
  369. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  370. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  371. n_pages);
  372. } else {
  373. unsigned int nr_mmu_pages;
  374. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  375. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  376. nr_mmu_pages = max(nr_mmu_pages,
  377. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  378. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  379. }
  380. }
  381. *memslot = new;
  382. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  383. kvm_flush_remote_tlbs(kvm);
  384. kvm_free_physmem_slot(&old, &new);
  385. return 0;
  386. out_free:
  387. kvm_free_physmem_slot(&new, &old);
  388. out:
  389. return r;
  390. }
  391. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  392. int kvm_set_memory_region(struct kvm *kvm,
  393. struct kvm_userspace_memory_region *mem,
  394. int user_alloc)
  395. {
  396. int r;
  397. mutex_lock(&kvm->lock);
  398. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  399. mutex_unlock(&kvm->lock);
  400. return r;
  401. }
  402. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  403. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  404. struct
  405. kvm_userspace_memory_region *mem,
  406. int user_alloc)
  407. {
  408. if (mem->slot >= KVM_MEMORY_SLOTS)
  409. return -EINVAL;
  410. return kvm_set_memory_region(kvm, mem, user_alloc);
  411. }
  412. /*
  413. * Get (and clear) the dirty memory log for a memory slot.
  414. */
  415. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  416. struct kvm_dirty_log *log)
  417. {
  418. struct kvm_memory_slot *memslot;
  419. int r, i;
  420. int n;
  421. unsigned long any = 0;
  422. mutex_lock(&kvm->lock);
  423. r = -EINVAL;
  424. if (log->slot >= KVM_MEMORY_SLOTS)
  425. goto out;
  426. memslot = &kvm->memslots[log->slot];
  427. r = -ENOENT;
  428. if (!memslot->dirty_bitmap)
  429. goto out;
  430. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  431. for (i = 0; !any && i < n/sizeof(long); ++i)
  432. any = memslot->dirty_bitmap[i];
  433. r = -EFAULT;
  434. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  435. goto out;
  436. /* If nothing is dirty, don't bother messing with page tables. */
  437. if (any) {
  438. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  439. kvm_flush_remote_tlbs(kvm);
  440. memset(memslot->dirty_bitmap, 0, n);
  441. }
  442. r = 0;
  443. out:
  444. mutex_unlock(&kvm->lock);
  445. return r;
  446. }
  447. int is_error_page(struct page *page)
  448. {
  449. return page == bad_page;
  450. }
  451. EXPORT_SYMBOL_GPL(is_error_page);
  452. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  453. {
  454. int i;
  455. struct kvm_mem_alias *alias;
  456. for (i = 0; i < kvm->naliases; ++i) {
  457. alias = &kvm->aliases[i];
  458. if (gfn >= alias->base_gfn
  459. && gfn < alias->base_gfn + alias->npages)
  460. return alias->target_gfn + gfn - alias->base_gfn;
  461. }
  462. return gfn;
  463. }
  464. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  465. {
  466. int i;
  467. for (i = 0; i < kvm->nmemslots; ++i) {
  468. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  469. if (gfn >= memslot->base_gfn
  470. && gfn < memslot->base_gfn + memslot->npages)
  471. return memslot;
  472. }
  473. return NULL;
  474. }
  475. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  476. {
  477. gfn = unalias_gfn(kvm, gfn);
  478. return __gfn_to_memslot(kvm, gfn);
  479. }
  480. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  481. {
  482. int i;
  483. gfn = unalias_gfn(kvm, gfn);
  484. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  485. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  486. if (gfn >= memslot->base_gfn
  487. && gfn < memslot->base_gfn + memslot->npages)
  488. return 1;
  489. }
  490. return 0;
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  493. /*
  494. * Requires current->mm->mmap_sem to be held
  495. */
  496. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  497. {
  498. struct kvm_memory_slot *slot;
  499. struct page *page[1];
  500. int npages;
  501. might_sleep();
  502. gfn = unalias_gfn(kvm, gfn);
  503. slot = __gfn_to_memslot(kvm, gfn);
  504. if (!slot) {
  505. get_page(bad_page);
  506. return bad_page;
  507. }
  508. npages = get_user_pages(current, current->mm,
  509. slot->userspace_addr
  510. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  511. 1, 1, page, NULL);
  512. if (npages != 1) {
  513. get_page(bad_page);
  514. return bad_page;
  515. }
  516. return page[0];
  517. }
  518. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  519. {
  520. struct page *page;
  521. down_read(&current->mm->mmap_sem);
  522. page = __gfn_to_page(kvm, gfn);
  523. up_read(&current->mm->mmap_sem);
  524. return page;
  525. }
  526. EXPORT_SYMBOL_GPL(gfn_to_page);
  527. void kvm_release_page(struct page *page)
  528. {
  529. if (!PageReserved(page))
  530. SetPageDirty(page);
  531. put_page(page);
  532. }
  533. EXPORT_SYMBOL_GPL(kvm_release_page);
  534. static int next_segment(unsigned long len, int offset)
  535. {
  536. if (len > PAGE_SIZE - offset)
  537. return PAGE_SIZE - offset;
  538. else
  539. return len;
  540. }
  541. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  542. int len)
  543. {
  544. void *page_virt;
  545. struct page *page;
  546. page = gfn_to_page(kvm, gfn);
  547. if (is_error_page(page)) {
  548. kvm_release_page(page);
  549. return -EFAULT;
  550. }
  551. page_virt = kmap_atomic(page, KM_USER0);
  552. memcpy(data, page_virt + offset, len);
  553. kunmap_atomic(page_virt, KM_USER0);
  554. kvm_release_page(page);
  555. return 0;
  556. }
  557. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  558. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  559. {
  560. gfn_t gfn = gpa >> PAGE_SHIFT;
  561. int seg;
  562. int offset = offset_in_page(gpa);
  563. int ret;
  564. while ((seg = next_segment(len, offset)) != 0) {
  565. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  566. if (ret < 0)
  567. return ret;
  568. offset = 0;
  569. len -= seg;
  570. data += seg;
  571. ++gfn;
  572. }
  573. return 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvm_read_guest);
  576. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  577. int offset, int len)
  578. {
  579. void *page_virt;
  580. struct page *page;
  581. page = gfn_to_page(kvm, gfn);
  582. if (is_error_page(page)) {
  583. kvm_release_page(page);
  584. return -EFAULT;
  585. }
  586. page_virt = kmap_atomic(page, KM_USER0);
  587. memcpy(page_virt + offset, data, len);
  588. kunmap_atomic(page_virt, KM_USER0);
  589. mark_page_dirty(kvm, gfn);
  590. kvm_release_page(page);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  594. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  595. unsigned long len)
  596. {
  597. gfn_t gfn = gpa >> PAGE_SHIFT;
  598. int seg;
  599. int offset = offset_in_page(gpa);
  600. int ret;
  601. while ((seg = next_segment(len, offset)) != 0) {
  602. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  603. if (ret < 0)
  604. return ret;
  605. offset = 0;
  606. len -= seg;
  607. data += seg;
  608. ++gfn;
  609. }
  610. return 0;
  611. }
  612. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  613. {
  614. void *page_virt;
  615. struct page *page;
  616. page = gfn_to_page(kvm, gfn);
  617. if (is_error_page(page)) {
  618. kvm_release_page(page);
  619. return -EFAULT;
  620. }
  621. page_virt = kmap_atomic(page, KM_USER0);
  622. memset(page_virt + offset, 0, len);
  623. kunmap_atomic(page_virt, KM_USER0);
  624. kvm_release_page(page);
  625. return 0;
  626. }
  627. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  628. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  629. {
  630. gfn_t gfn = gpa >> PAGE_SHIFT;
  631. int seg;
  632. int offset = offset_in_page(gpa);
  633. int ret;
  634. while ((seg = next_segment(len, offset)) != 0) {
  635. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  636. if (ret < 0)
  637. return ret;
  638. offset = 0;
  639. len -= seg;
  640. ++gfn;
  641. }
  642. return 0;
  643. }
  644. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  645. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  646. {
  647. struct kvm_memory_slot *memslot;
  648. gfn = unalias_gfn(kvm, gfn);
  649. memslot = __gfn_to_memslot(kvm, gfn);
  650. if (memslot && memslot->dirty_bitmap) {
  651. unsigned long rel_gfn = gfn - memslot->base_gfn;
  652. /* avoid RMW */
  653. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  654. set_bit(rel_gfn, memslot->dirty_bitmap);
  655. }
  656. }
  657. /*
  658. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  659. */
  660. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  661. {
  662. DECLARE_WAITQUEUE(wait, current);
  663. add_wait_queue(&vcpu->wq, &wait);
  664. /*
  665. * We will block until either an interrupt or a signal wakes us up
  666. */
  667. while (!kvm_cpu_has_interrupt(vcpu)
  668. && !signal_pending(current)
  669. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  670. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  671. set_current_state(TASK_INTERRUPTIBLE);
  672. vcpu_put(vcpu);
  673. schedule();
  674. vcpu_load(vcpu);
  675. }
  676. __set_current_state(TASK_RUNNING);
  677. remove_wait_queue(&vcpu->wq, &wait);
  678. }
  679. void kvm_resched(struct kvm_vcpu *vcpu)
  680. {
  681. if (!need_resched())
  682. return;
  683. cond_resched();
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_resched);
  686. /*
  687. * Check if userspace requested an interrupt window, and that the
  688. * interrupt window is open.
  689. *
  690. * No need to exit to userspace if we already have an interrupt queued.
  691. */
  692. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  693. struct kvm_run *kvm_run)
  694. {
  695. return (!vcpu->irq_summary &&
  696. kvm_run->request_interrupt_window &&
  697. vcpu->interrupt_window_open &&
  698. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  699. }
  700. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  701. struct kvm_run *kvm_run)
  702. {
  703. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  704. kvm_run->cr8 = get_cr8(vcpu);
  705. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  706. if (irqchip_in_kernel(vcpu->kvm))
  707. kvm_run->ready_for_interrupt_injection = 1;
  708. else
  709. kvm_run->ready_for_interrupt_injection =
  710. (vcpu->interrupt_window_open &&
  711. vcpu->irq_summary == 0);
  712. }
  713. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  714. {
  715. int r;
  716. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  717. pr_debug("vcpu %d received sipi with vector # %x\n",
  718. vcpu->vcpu_id, vcpu->sipi_vector);
  719. kvm_lapic_reset(vcpu);
  720. r = kvm_x86_ops->vcpu_reset(vcpu);
  721. if (r)
  722. return r;
  723. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  724. }
  725. preempted:
  726. if (vcpu->guest_debug.enabled)
  727. kvm_x86_ops->guest_debug_pre(vcpu);
  728. again:
  729. r = kvm_mmu_reload(vcpu);
  730. if (unlikely(r))
  731. goto out;
  732. kvm_inject_pending_timer_irqs(vcpu);
  733. preempt_disable();
  734. kvm_x86_ops->prepare_guest_switch(vcpu);
  735. kvm_load_guest_fpu(vcpu);
  736. local_irq_disable();
  737. if (signal_pending(current)) {
  738. local_irq_enable();
  739. preempt_enable();
  740. r = -EINTR;
  741. kvm_run->exit_reason = KVM_EXIT_INTR;
  742. ++vcpu->stat.signal_exits;
  743. goto out;
  744. }
  745. if (irqchip_in_kernel(vcpu->kvm))
  746. kvm_x86_ops->inject_pending_irq(vcpu);
  747. else if (!vcpu->mmio_read_completed)
  748. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  749. vcpu->guest_mode = 1;
  750. kvm_guest_enter();
  751. if (vcpu->requests)
  752. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  753. kvm_x86_ops->tlb_flush(vcpu);
  754. kvm_x86_ops->run(vcpu, kvm_run);
  755. vcpu->guest_mode = 0;
  756. local_irq_enable();
  757. ++vcpu->stat.exits;
  758. /*
  759. * We must have an instruction between local_irq_enable() and
  760. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  761. * the interrupt shadow. The stat.exits increment will do nicely.
  762. * But we need to prevent reordering, hence this barrier():
  763. */
  764. barrier();
  765. kvm_guest_exit();
  766. preempt_enable();
  767. /*
  768. * Profile KVM exit RIPs:
  769. */
  770. if (unlikely(prof_on == KVM_PROFILING)) {
  771. kvm_x86_ops->cache_regs(vcpu);
  772. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  773. }
  774. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  775. if (r > 0) {
  776. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  777. r = -EINTR;
  778. kvm_run->exit_reason = KVM_EXIT_INTR;
  779. ++vcpu->stat.request_irq_exits;
  780. goto out;
  781. }
  782. if (!need_resched()) {
  783. ++vcpu->stat.light_exits;
  784. goto again;
  785. }
  786. }
  787. out:
  788. if (r > 0) {
  789. kvm_resched(vcpu);
  790. goto preempted;
  791. }
  792. post_kvm_run_save(vcpu, kvm_run);
  793. return r;
  794. }
  795. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  796. {
  797. int r;
  798. sigset_t sigsaved;
  799. vcpu_load(vcpu);
  800. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  801. kvm_vcpu_block(vcpu);
  802. vcpu_put(vcpu);
  803. return -EAGAIN;
  804. }
  805. if (vcpu->sigset_active)
  806. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  807. /* re-sync apic's tpr */
  808. if (!irqchip_in_kernel(vcpu->kvm))
  809. set_cr8(vcpu, kvm_run->cr8);
  810. if (vcpu->pio.cur_count) {
  811. r = complete_pio(vcpu);
  812. if (r)
  813. goto out;
  814. }
  815. #if CONFIG_HAS_IOMEM
  816. if (vcpu->mmio_needed) {
  817. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  818. vcpu->mmio_read_completed = 1;
  819. vcpu->mmio_needed = 0;
  820. r = emulate_instruction(vcpu, kvm_run,
  821. vcpu->mmio_fault_cr2, 0, 1);
  822. if (r == EMULATE_DO_MMIO) {
  823. /*
  824. * Read-modify-write. Back to userspace.
  825. */
  826. r = 0;
  827. goto out;
  828. }
  829. }
  830. #endif
  831. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  832. kvm_x86_ops->cache_regs(vcpu);
  833. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  834. kvm_x86_ops->decache_regs(vcpu);
  835. }
  836. r = __vcpu_run(vcpu, kvm_run);
  837. out:
  838. if (vcpu->sigset_active)
  839. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  840. vcpu_put(vcpu);
  841. return r;
  842. }
  843. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  844. struct kvm_regs *regs)
  845. {
  846. vcpu_load(vcpu);
  847. kvm_x86_ops->cache_regs(vcpu);
  848. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  849. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  850. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  851. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  852. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  853. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  854. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  855. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  856. #ifdef CONFIG_X86_64
  857. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  858. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  859. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  860. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  861. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  862. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  863. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  864. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  865. #endif
  866. regs->rip = vcpu->rip;
  867. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  868. /*
  869. * Don't leak debug flags in case they were set for guest debugging
  870. */
  871. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  872. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  873. vcpu_put(vcpu);
  874. return 0;
  875. }
  876. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  877. struct kvm_regs *regs)
  878. {
  879. vcpu_load(vcpu);
  880. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  881. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  882. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  883. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  884. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  885. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  886. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  887. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  888. #ifdef CONFIG_X86_64
  889. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  890. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  891. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  892. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  893. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  894. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  895. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  896. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  897. #endif
  898. vcpu->rip = regs->rip;
  899. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  900. kvm_x86_ops->decache_regs(vcpu);
  901. vcpu_put(vcpu);
  902. return 0;
  903. }
  904. static void get_segment(struct kvm_vcpu *vcpu,
  905. struct kvm_segment *var, int seg)
  906. {
  907. return kvm_x86_ops->get_segment(vcpu, var, seg);
  908. }
  909. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  910. struct kvm_sregs *sregs)
  911. {
  912. struct descriptor_table dt;
  913. int pending_vec;
  914. vcpu_load(vcpu);
  915. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  916. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  917. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  918. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  919. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  920. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  921. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  922. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  923. kvm_x86_ops->get_idt(vcpu, &dt);
  924. sregs->idt.limit = dt.limit;
  925. sregs->idt.base = dt.base;
  926. kvm_x86_ops->get_gdt(vcpu, &dt);
  927. sregs->gdt.limit = dt.limit;
  928. sregs->gdt.base = dt.base;
  929. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  930. sregs->cr0 = vcpu->cr0;
  931. sregs->cr2 = vcpu->cr2;
  932. sregs->cr3 = vcpu->cr3;
  933. sregs->cr4 = vcpu->cr4;
  934. sregs->cr8 = get_cr8(vcpu);
  935. sregs->efer = vcpu->shadow_efer;
  936. sregs->apic_base = kvm_get_apic_base(vcpu);
  937. if (irqchip_in_kernel(vcpu->kvm)) {
  938. memset(sregs->interrupt_bitmap, 0,
  939. sizeof sregs->interrupt_bitmap);
  940. pending_vec = kvm_x86_ops->get_irq(vcpu);
  941. if (pending_vec >= 0)
  942. set_bit(pending_vec,
  943. (unsigned long *)sregs->interrupt_bitmap);
  944. } else
  945. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  946. sizeof sregs->interrupt_bitmap);
  947. vcpu_put(vcpu);
  948. return 0;
  949. }
  950. static void set_segment(struct kvm_vcpu *vcpu,
  951. struct kvm_segment *var, int seg)
  952. {
  953. return kvm_x86_ops->set_segment(vcpu, var, seg);
  954. }
  955. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  956. struct kvm_sregs *sregs)
  957. {
  958. int mmu_reset_needed = 0;
  959. int i, pending_vec, max_bits;
  960. struct descriptor_table dt;
  961. vcpu_load(vcpu);
  962. dt.limit = sregs->idt.limit;
  963. dt.base = sregs->idt.base;
  964. kvm_x86_ops->set_idt(vcpu, &dt);
  965. dt.limit = sregs->gdt.limit;
  966. dt.base = sregs->gdt.base;
  967. kvm_x86_ops->set_gdt(vcpu, &dt);
  968. vcpu->cr2 = sregs->cr2;
  969. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  970. vcpu->cr3 = sregs->cr3;
  971. set_cr8(vcpu, sregs->cr8);
  972. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  973. #ifdef CONFIG_X86_64
  974. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  975. #endif
  976. kvm_set_apic_base(vcpu, sregs->apic_base);
  977. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  978. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  979. vcpu->cr0 = sregs->cr0;
  980. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  981. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  982. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  983. if (!is_long_mode(vcpu) && is_pae(vcpu))
  984. load_pdptrs(vcpu, vcpu->cr3);
  985. if (mmu_reset_needed)
  986. kvm_mmu_reset_context(vcpu);
  987. if (!irqchip_in_kernel(vcpu->kvm)) {
  988. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  989. sizeof vcpu->irq_pending);
  990. vcpu->irq_summary = 0;
  991. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  992. if (vcpu->irq_pending[i])
  993. __set_bit(i, &vcpu->irq_summary);
  994. } else {
  995. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  996. pending_vec = find_first_bit(
  997. (const unsigned long *)sregs->interrupt_bitmap,
  998. max_bits);
  999. /* Only pending external irq is handled here */
  1000. if (pending_vec < max_bits) {
  1001. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1002. pr_debug("Set back pending irq %d\n",
  1003. pending_vec);
  1004. }
  1005. }
  1006. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1007. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1008. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1009. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1010. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1011. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1012. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1013. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1014. vcpu_put(vcpu);
  1015. return 0;
  1016. }
  1017. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1018. {
  1019. struct kvm_segment cs;
  1020. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1021. *db = cs.db;
  1022. *l = cs.l;
  1023. }
  1024. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1025. /*
  1026. * Translate a guest virtual address to a guest physical address.
  1027. */
  1028. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1029. struct kvm_translation *tr)
  1030. {
  1031. unsigned long vaddr = tr->linear_address;
  1032. gpa_t gpa;
  1033. vcpu_load(vcpu);
  1034. mutex_lock(&vcpu->kvm->lock);
  1035. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1036. tr->physical_address = gpa;
  1037. tr->valid = gpa != UNMAPPED_GVA;
  1038. tr->writeable = 1;
  1039. tr->usermode = 0;
  1040. mutex_unlock(&vcpu->kvm->lock);
  1041. vcpu_put(vcpu);
  1042. return 0;
  1043. }
  1044. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1045. struct kvm_interrupt *irq)
  1046. {
  1047. if (irq->irq < 0 || irq->irq >= 256)
  1048. return -EINVAL;
  1049. if (irqchip_in_kernel(vcpu->kvm))
  1050. return -ENXIO;
  1051. vcpu_load(vcpu);
  1052. set_bit(irq->irq, vcpu->irq_pending);
  1053. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1054. vcpu_put(vcpu);
  1055. return 0;
  1056. }
  1057. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1058. struct kvm_debug_guest *dbg)
  1059. {
  1060. int r;
  1061. vcpu_load(vcpu);
  1062. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1063. vcpu_put(vcpu);
  1064. return r;
  1065. }
  1066. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1067. unsigned long address,
  1068. int *type)
  1069. {
  1070. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1071. unsigned long pgoff;
  1072. struct page *page;
  1073. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1074. if (pgoff == 0)
  1075. page = virt_to_page(vcpu->run);
  1076. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1077. page = virt_to_page(vcpu->pio_data);
  1078. else
  1079. return NOPAGE_SIGBUS;
  1080. get_page(page);
  1081. if (type != NULL)
  1082. *type = VM_FAULT_MINOR;
  1083. return page;
  1084. }
  1085. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1086. .nopage = kvm_vcpu_nopage,
  1087. };
  1088. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1089. {
  1090. vma->vm_ops = &kvm_vcpu_vm_ops;
  1091. return 0;
  1092. }
  1093. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1094. {
  1095. struct kvm_vcpu *vcpu = filp->private_data;
  1096. fput(vcpu->kvm->filp);
  1097. return 0;
  1098. }
  1099. static struct file_operations kvm_vcpu_fops = {
  1100. .release = kvm_vcpu_release,
  1101. .unlocked_ioctl = kvm_vcpu_ioctl,
  1102. .compat_ioctl = kvm_vcpu_ioctl,
  1103. .mmap = kvm_vcpu_mmap,
  1104. };
  1105. /*
  1106. * Allocates an inode for the vcpu.
  1107. */
  1108. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1109. {
  1110. int fd, r;
  1111. struct inode *inode;
  1112. struct file *file;
  1113. r = anon_inode_getfd(&fd, &inode, &file,
  1114. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1115. if (r)
  1116. return r;
  1117. atomic_inc(&vcpu->kvm->filp->f_count);
  1118. return fd;
  1119. }
  1120. /*
  1121. * Creates some virtual cpus. Good luck creating more than one.
  1122. */
  1123. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1124. {
  1125. int r;
  1126. struct kvm_vcpu *vcpu;
  1127. if (!valid_vcpu(n))
  1128. return -EINVAL;
  1129. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1130. if (IS_ERR(vcpu))
  1131. return PTR_ERR(vcpu);
  1132. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1133. /* We do fxsave: this must be aligned. */
  1134. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1135. vcpu_load(vcpu);
  1136. r = kvm_x86_ops->vcpu_reset(vcpu);
  1137. if (r == 0)
  1138. r = kvm_mmu_setup(vcpu);
  1139. vcpu_put(vcpu);
  1140. if (r < 0)
  1141. goto free_vcpu;
  1142. mutex_lock(&kvm->lock);
  1143. if (kvm->vcpus[n]) {
  1144. r = -EEXIST;
  1145. mutex_unlock(&kvm->lock);
  1146. goto mmu_unload;
  1147. }
  1148. kvm->vcpus[n] = vcpu;
  1149. mutex_unlock(&kvm->lock);
  1150. /* Now it's all set up, let userspace reach it */
  1151. r = create_vcpu_fd(vcpu);
  1152. if (r < 0)
  1153. goto unlink;
  1154. return r;
  1155. unlink:
  1156. mutex_lock(&kvm->lock);
  1157. kvm->vcpus[n] = NULL;
  1158. mutex_unlock(&kvm->lock);
  1159. mmu_unload:
  1160. vcpu_load(vcpu);
  1161. kvm_mmu_unload(vcpu);
  1162. vcpu_put(vcpu);
  1163. free_vcpu:
  1164. kvm_x86_ops->vcpu_free(vcpu);
  1165. return r;
  1166. }
  1167. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1168. {
  1169. if (sigset) {
  1170. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1171. vcpu->sigset_active = 1;
  1172. vcpu->sigset = *sigset;
  1173. } else
  1174. vcpu->sigset_active = 0;
  1175. return 0;
  1176. }
  1177. /*
  1178. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1179. * we have asm/x86/processor.h
  1180. */
  1181. struct fxsave {
  1182. u16 cwd;
  1183. u16 swd;
  1184. u16 twd;
  1185. u16 fop;
  1186. u64 rip;
  1187. u64 rdp;
  1188. u32 mxcsr;
  1189. u32 mxcsr_mask;
  1190. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1191. #ifdef CONFIG_X86_64
  1192. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1193. #else
  1194. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1195. #endif
  1196. };
  1197. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1198. {
  1199. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1200. vcpu_load(vcpu);
  1201. memcpy(fpu->fpr, fxsave->st_space, 128);
  1202. fpu->fcw = fxsave->cwd;
  1203. fpu->fsw = fxsave->swd;
  1204. fpu->ftwx = fxsave->twd;
  1205. fpu->last_opcode = fxsave->fop;
  1206. fpu->last_ip = fxsave->rip;
  1207. fpu->last_dp = fxsave->rdp;
  1208. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  1209. vcpu_put(vcpu);
  1210. return 0;
  1211. }
  1212. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1213. {
  1214. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1215. vcpu_load(vcpu);
  1216. memcpy(fxsave->st_space, fpu->fpr, 128);
  1217. fxsave->cwd = fpu->fcw;
  1218. fxsave->swd = fpu->fsw;
  1219. fxsave->twd = fpu->ftwx;
  1220. fxsave->fop = fpu->last_opcode;
  1221. fxsave->rip = fpu->last_ip;
  1222. fxsave->rdp = fpu->last_dp;
  1223. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  1224. vcpu_put(vcpu);
  1225. return 0;
  1226. }
  1227. static long kvm_vcpu_ioctl(struct file *filp,
  1228. unsigned int ioctl, unsigned long arg)
  1229. {
  1230. struct kvm_vcpu *vcpu = filp->private_data;
  1231. void __user *argp = (void __user *)arg;
  1232. int r;
  1233. switch (ioctl) {
  1234. case KVM_RUN:
  1235. r = -EINVAL;
  1236. if (arg)
  1237. goto out;
  1238. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  1239. break;
  1240. case KVM_GET_REGS: {
  1241. struct kvm_regs kvm_regs;
  1242. memset(&kvm_regs, 0, sizeof kvm_regs);
  1243. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  1244. if (r)
  1245. goto out;
  1246. r = -EFAULT;
  1247. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1248. goto out;
  1249. r = 0;
  1250. break;
  1251. }
  1252. case KVM_SET_REGS: {
  1253. struct kvm_regs kvm_regs;
  1254. r = -EFAULT;
  1255. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1256. goto out;
  1257. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  1258. if (r)
  1259. goto out;
  1260. r = 0;
  1261. break;
  1262. }
  1263. case KVM_GET_SREGS: {
  1264. struct kvm_sregs kvm_sregs;
  1265. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  1266. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  1267. if (r)
  1268. goto out;
  1269. r = -EFAULT;
  1270. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1271. goto out;
  1272. r = 0;
  1273. break;
  1274. }
  1275. case KVM_SET_SREGS: {
  1276. struct kvm_sregs kvm_sregs;
  1277. r = -EFAULT;
  1278. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1279. goto out;
  1280. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  1281. if (r)
  1282. goto out;
  1283. r = 0;
  1284. break;
  1285. }
  1286. case KVM_TRANSLATE: {
  1287. struct kvm_translation tr;
  1288. r = -EFAULT;
  1289. if (copy_from_user(&tr, argp, sizeof tr))
  1290. goto out;
  1291. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  1292. if (r)
  1293. goto out;
  1294. r = -EFAULT;
  1295. if (copy_to_user(argp, &tr, sizeof tr))
  1296. goto out;
  1297. r = 0;
  1298. break;
  1299. }
  1300. case KVM_INTERRUPT: {
  1301. struct kvm_interrupt irq;
  1302. r = -EFAULT;
  1303. if (copy_from_user(&irq, argp, sizeof irq))
  1304. goto out;
  1305. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1306. if (r)
  1307. goto out;
  1308. r = 0;
  1309. break;
  1310. }
  1311. case KVM_DEBUG_GUEST: {
  1312. struct kvm_debug_guest dbg;
  1313. r = -EFAULT;
  1314. if (copy_from_user(&dbg, argp, sizeof dbg))
  1315. goto out;
  1316. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1317. if (r)
  1318. goto out;
  1319. r = 0;
  1320. break;
  1321. }
  1322. case KVM_SET_SIGNAL_MASK: {
  1323. struct kvm_signal_mask __user *sigmask_arg = argp;
  1324. struct kvm_signal_mask kvm_sigmask;
  1325. sigset_t sigset, *p;
  1326. p = NULL;
  1327. if (argp) {
  1328. r = -EFAULT;
  1329. if (copy_from_user(&kvm_sigmask, argp,
  1330. sizeof kvm_sigmask))
  1331. goto out;
  1332. r = -EINVAL;
  1333. if (kvm_sigmask.len != sizeof sigset)
  1334. goto out;
  1335. r = -EFAULT;
  1336. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1337. sizeof sigset))
  1338. goto out;
  1339. p = &sigset;
  1340. }
  1341. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1342. break;
  1343. }
  1344. case KVM_GET_FPU: {
  1345. struct kvm_fpu fpu;
  1346. memset(&fpu, 0, sizeof fpu);
  1347. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  1348. if (r)
  1349. goto out;
  1350. r = -EFAULT;
  1351. if (copy_to_user(argp, &fpu, sizeof fpu))
  1352. goto out;
  1353. r = 0;
  1354. break;
  1355. }
  1356. case KVM_SET_FPU: {
  1357. struct kvm_fpu fpu;
  1358. r = -EFAULT;
  1359. if (copy_from_user(&fpu, argp, sizeof fpu))
  1360. goto out;
  1361. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  1362. if (r)
  1363. goto out;
  1364. r = 0;
  1365. break;
  1366. }
  1367. default:
  1368. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1369. }
  1370. out:
  1371. return r;
  1372. }
  1373. static long kvm_vm_ioctl(struct file *filp,
  1374. unsigned int ioctl, unsigned long arg)
  1375. {
  1376. struct kvm *kvm = filp->private_data;
  1377. void __user *argp = (void __user *)arg;
  1378. int r;
  1379. switch (ioctl) {
  1380. case KVM_CREATE_VCPU:
  1381. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1382. if (r < 0)
  1383. goto out;
  1384. break;
  1385. case KVM_SET_USER_MEMORY_REGION: {
  1386. struct kvm_userspace_memory_region kvm_userspace_mem;
  1387. r = -EFAULT;
  1388. if (copy_from_user(&kvm_userspace_mem, argp,
  1389. sizeof kvm_userspace_mem))
  1390. goto out;
  1391. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1392. if (r)
  1393. goto out;
  1394. break;
  1395. }
  1396. case KVM_GET_DIRTY_LOG: {
  1397. struct kvm_dirty_log log;
  1398. r = -EFAULT;
  1399. if (copy_from_user(&log, argp, sizeof log))
  1400. goto out;
  1401. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1402. if (r)
  1403. goto out;
  1404. break;
  1405. }
  1406. default:
  1407. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1408. }
  1409. out:
  1410. return r;
  1411. }
  1412. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  1413. unsigned long address,
  1414. int *type)
  1415. {
  1416. struct kvm *kvm = vma->vm_file->private_data;
  1417. unsigned long pgoff;
  1418. struct page *page;
  1419. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1420. if (!kvm_is_visible_gfn(kvm, pgoff))
  1421. return NOPAGE_SIGBUS;
  1422. /* current->mm->mmap_sem is already held so call lockless version */
  1423. page = __gfn_to_page(kvm, pgoff);
  1424. if (is_error_page(page)) {
  1425. kvm_release_page(page);
  1426. return NOPAGE_SIGBUS;
  1427. }
  1428. if (type != NULL)
  1429. *type = VM_FAULT_MINOR;
  1430. return page;
  1431. }
  1432. static struct vm_operations_struct kvm_vm_vm_ops = {
  1433. .nopage = kvm_vm_nopage,
  1434. };
  1435. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1436. {
  1437. vma->vm_ops = &kvm_vm_vm_ops;
  1438. return 0;
  1439. }
  1440. static struct file_operations kvm_vm_fops = {
  1441. .release = kvm_vm_release,
  1442. .unlocked_ioctl = kvm_vm_ioctl,
  1443. .compat_ioctl = kvm_vm_ioctl,
  1444. .mmap = kvm_vm_mmap,
  1445. };
  1446. static int kvm_dev_ioctl_create_vm(void)
  1447. {
  1448. int fd, r;
  1449. struct inode *inode;
  1450. struct file *file;
  1451. struct kvm *kvm;
  1452. kvm = kvm_create_vm();
  1453. if (IS_ERR(kvm))
  1454. return PTR_ERR(kvm);
  1455. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1456. if (r) {
  1457. kvm_destroy_vm(kvm);
  1458. return r;
  1459. }
  1460. kvm->filp = file;
  1461. return fd;
  1462. }
  1463. static long kvm_dev_ioctl(struct file *filp,
  1464. unsigned int ioctl, unsigned long arg)
  1465. {
  1466. void __user *argp = (void __user *)arg;
  1467. long r = -EINVAL;
  1468. switch (ioctl) {
  1469. case KVM_GET_API_VERSION:
  1470. r = -EINVAL;
  1471. if (arg)
  1472. goto out;
  1473. r = KVM_API_VERSION;
  1474. break;
  1475. case KVM_CREATE_VM:
  1476. r = -EINVAL;
  1477. if (arg)
  1478. goto out;
  1479. r = kvm_dev_ioctl_create_vm();
  1480. break;
  1481. case KVM_CHECK_EXTENSION: {
  1482. int ext = (long)argp;
  1483. switch (ext) {
  1484. case KVM_CAP_IRQCHIP:
  1485. case KVM_CAP_HLT:
  1486. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1487. case KVM_CAP_USER_MEMORY:
  1488. case KVM_CAP_SET_TSS_ADDR:
  1489. r = 1;
  1490. break;
  1491. default:
  1492. r = 0;
  1493. break;
  1494. }
  1495. break;
  1496. }
  1497. case KVM_GET_VCPU_MMAP_SIZE:
  1498. r = -EINVAL;
  1499. if (arg)
  1500. goto out;
  1501. r = 2 * PAGE_SIZE;
  1502. break;
  1503. default:
  1504. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1505. }
  1506. out:
  1507. return r;
  1508. }
  1509. static struct file_operations kvm_chardev_ops = {
  1510. .unlocked_ioctl = kvm_dev_ioctl,
  1511. .compat_ioctl = kvm_dev_ioctl,
  1512. };
  1513. static struct miscdevice kvm_dev = {
  1514. KVM_MINOR,
  1515. "kvm",
  1516. &kvm_chardev_ops,
  1517. };
  1518. /*
  1519. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1520. * cached on it.
  1521. */
  1522. static void decache_vcpus_on_cpu(int cpu)
  1523. {
  1524. struct kvm *vm;
  1525. struct kvm_vcpu *vcpu;
  1526. int i;
  1527. spin_lock(&kvm_lock);
  1528. list_for_each_entry(vm, &vm_list, vm_list)
  1529. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1530. vcpu = vm->vcpus[i];
  1531. if (!vcpu)
  1532. continue;
  1533. /*
  1534. * If the vcpu is locked, then it is running on some
  1535. * other cpu and therefore it is not cached on the
  1536. * cpu in question.
  1537. *
  1538. * If it's not locked, check the last cpu it executed
  1539. * on.
  1540. */
  1541. if (mutex_trylock(&vcpu->mutex)) {
  1542. if (vcpu->cpu == cpu) {
  1543. kvm_x86_ops->vcpu_decache(vcpu);
  1544. vcpu->cpu = -1;
  1545. }
  1546. mutex_unlock(&vcpu->mutex);
  1547. }
  1548. }
  1549. spin_unlock(&kvm_lock);
  1550. }
  1551. static void hardware_enable(void *junk)
  1552. {
  1553. int cpu = raw_smp_processor_id();
  1554. if (cpu_isset(cpu, cpus_hardware_enabled))
  1555. return;
  1556. cpu_set(cpu, cpus_hardware_enabled);
  1557. kvm_x86_ops->hardware_enable(NULL);
  1558. }
  1559. static void hardware_disable(void *junk)
  1560. {
  1561. int cpu = raw_smp_processor_id();
  1562. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1563. return;
  1564. cpu_clear(cpu, cpus_hardware_enabled);
  1565. decache_vcpus_on_cpu(cpu);
  1566. kvm_x86_ops->hardware_disable(NULL);
  1567. }
  1568. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1569. void *v)
  1570. {
  1571. int cpu = (long)v;
  1572. switch (val) {
  1573. case CPU_DYING:
  1574. case CPU_DYING_FROZEN:
  1575. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1576. cpu);
  1577. hardware_disable(NULL);
  1578. break;
  1579. case CPU_UP_CANCELED:
  1580. case CPU_UP_CANCELED_FROZEN:
  1581. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1582. cpu);
  1583. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1584. break;
  1585. case CPU_ONLINE:
  1586. case CPU_ONLINE_FROZEN:
  1587. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1588. cpu);
  1589. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1590. break;
  1591. }
  1592. return NOTIFY_OK;
  1593. }
  1594. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1595. void *v)
  1596. {
  1597. if (val == SYS_RESTART) {
  1598. /*
  1599. * Some (well, at least mine) BIOSes hang on reboot if
  1600. * in vmx root mode.
  1601. */
  1602. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1603. on_each_cpu(hardware_disable, NULL, 0, 1);
  1604. }
  1605. return NOTIFY_OK;
  1606. }
  1607. static struct notifier_block kvm_reboot_notifier = {
  1608. .notifier_call = kvm_reboot,
  1609. .priority = 0,
  1610. };
  1611. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1612. {
  1613. memset(bus, 0, sizeof(*bus));
  1614. }
  1615. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1616. {
  1617. int i;
  1618. for (i = 0; i < bus->dev_count; i++) {
  1619. struct kvm_io_device *pos = bus->devs[i];
  1620. kvm_iodevice_destructor(pos);
  1621. }
  1622. }
  1623. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1624. {
  1625. int i;
  1626. for (i = 0; i < bus->dev_count; i++) {
  1627. struct kvm_io_device *pos = bus->devs[i];
  1628. if (pos->in_range(pos, addr))
  1629. return pos;
  1630. }
  1631. return NULL;
  1632. }
  1633. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1634. {
  1635. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1636. bus->devs[bus->dev_count++] = dev;
  1637. }
  1638. static struct notifier_block kvm_cpu_notifier = {
  1639. .notifier_call = kvm_cpu_hotplug,
  1640. .priority = 20, /* must be > scheduler priority */
  1641. };
  1642. static u64 stat_get(void *_offset)
  1643. {
  1644. unsigned offset = (long)_offset;
  1645. u64 total = 0;
  1646. struct kvm *kvm;
  1647. struct kvm_vcpu *vcpu;
  1648. int i;
  1649. spin_lock(&kvm_lock);
  1650. list_for_each_entry(kvm, &vm_list, vm_list)
  1651. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1652. vcpu = kvm->vcpus[i];
  1653. if (vcpu)
  1654. total += *(u32 *)((void *)vcpu + offset);
  1655. }
  1656. spin_unlock(&kvm_lock);
  1657. return total;
  1658. }
  1659. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1660. static __init void kvm_init_debug(void)
  1661. {
  1662. struct kvm_stats_debugfs_item *p;
  1663. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1664. for (p = debugfs_entries; p->name; ++p)
  1665. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1666. (void *)(long)p->offset,
  1667. &stat_fops);
  1668. }
  1669. static void kvm_exit_debug(void)
  1670. {
  1671. struct kvm_stats_debugfs_item *p;
  1672. for (p = debugfs_entries; p->name; ++p)
  1673. debugfs_remove(p->dentry);
  1674. debugfs_remove(debugfs_dir);
  1675. }
  1676. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1677. {
  1678. hardware_disable(NULL);
  1679. return 0;
  1680. }
  1681. static int kvm_resume(struct sys_device *dev)
  1682. {
  1683. hardware_enable(NULL);
  1684. return 0;
  1685. }
  1686. static struct sysdev_class kvm_sysdev_class = {
  1687. .name = "kvm",
  1688. .suspend = kvm_suspend,
  1689. .resume = kvm_resume,
  1690. };
  1691. static struct sys_device kvm_sysdev = {
  1692. .id = 0,
  1693. .cls = &kvm_sysdev_class,
  1694. };
  1695. struct page *bad_page;
  1696. static inline
  1697. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1698. {
  1699. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1700. }
  1701. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1702. {
  1703. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1704. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1705. }
  1706. static void kvm_sched_out(struct preempt_notifier *pn,
  1707. struct task_struct *next)
  1708. {
  1709. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1710. kvm_x86_ops->vcpu_put(vcpu);
  1711. }
  1712. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1713. struct module *module)
  1714. {
  1715. int r;
  1716. int cpu;
  1717. if (kvm_x86_ops) {
  1718. printk(KERN_ERR "kvm: already loaded the other module\n");
  1719. return -EEXIST;
  1720. }
  1721. if (!ops->cpu_has_kvm_support()) {
  1722. printk(KERN_ERR "kvm: no hardware support\n");
  1723. return -EOPNOTSUPP;
  1724. }
  1725. if (ops->disabled_by_bios()) {
  1726. printk(KERN_ERR "kvm: disabled by bios\n");
  1727. return -EOPNOTSUPP;
  1728. }
  1729. kvm_x86_ops = ops;
  1730. r = kvm_x86_ops->hardware_setup();
  1731. if (r < 0)
  1732. goto out;
  1733. for_each_online_cpu(cpu) {
  1734. smp_call_function_single(cpu,
  1735. kvm_x86_ops->check_processor_compatibility,
  1736. &r, 0, 1);
  1737. if (r < 0)
  1738. goto out_free_0;
  1739. }
  1740. on_each_cpu(hardware_enable, NULL, 0, 1);
  1741. r = register_cpu_notifier(&kvm_cpu_notifier);
  1742. if (r)
  1743. goto out_free_1;
  1744. register_reboot_notifier(&kvm_reboot_notifier);
  1745. r = sysdev_class_register(&kvm_sysdev_class);
  1746. if (r)
  1747. goto out_free_2;
  1748. r = sysdev_register(&kvm_sysdev);
  1749. if (r)
  1750. goto out_free_3;
  1751. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1752. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1753. __alignof__(struct kvm_vcpu), 0, 0);
  1754. if (!kvm_vcpu_cache) {
  1755. r = -ENOMEM;
  1756. goto out_free_4;
  1757. }
  1758. kvm_chardev_ops.owner = module;
  1759. r = misc_register(&kvm_dev);
  1760. if (r) {
  1761. printk(KERN_ERR "kvm: misc device register failed\n");
  1762. goto out_free;
  1763. }
  1764. kvm_preempt_ops.sched_in = kvm_sched_in;
  1765. kvm_preempt_ops.sched_out = kvm_sched_out;
  1766. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1767. return 0;
  1768. out_free:
  1769. kmem_cache_destroy(kvm_vcpu_cache);
  1770. out_free_4:
  1771. sysdev_unregister(&kvm_sysdev);
  1772. out_free_3:
  1773. sysdev_class_unregister(&kvm_sysdev_class);
  1774. out_free_2:
  1775. unregister_reboot_notifier(&kvm_reboot_notifier);
  1776. unregister_cpu_notifier(&kvm_cpu_notifier);
  1777. out_free_1:
  1778. on_each_cpu(hardware_disable, NULL, 0, 1);
  1779. out_free_0:
  1780. kvm_x86_ops->hardware_unsetup();
  1781. out:
  1782. kvm_x86_ops = NULL;
  1783. return r;
  1784. }
  1785. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1786. void kvm_exit_x86(void)
  1787. {
  1788. misc_deregister(&kvm_dev);
  1789. kmem_cache_destroy(kvm_vcpu_cache);
  1790. sysdev_unregister(&kvm_sysdev);
  1791. sysdev_class_unregister(&kvm_sysdev_class);
  1792. unregister_reboot_notifier(&kvm_reboot_notifier);
  1793. unregister_cpu_notifier(&kvm_cpu_notifier);
  1794. on_each_cpu(hardware_disable, NULL, 0, 1);
  1795. kvm_x86_ops->hardware_unsetup();
  1796. kvm_x86_ops = NULL;
  1797. }
  1798. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1799. static __init int kvm_init(void)
  1800. {
  1801. int r;
  1802. r = kvm_mmu_module_init();
  1803. if (r)
  1804. goto out4;
  1805. kvm_init_debug();
  1806. kvm_arch_init();
  1807. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1808. if (bad_page == NULL) {
  1809. r = -ENOMEM;
  1810. goto out;
  1811. }
  1812. return 0;
  1813. out:
  1814. kvm_exit_debug();
  1815. kvm_mmu_module_exit();
  1816. out4:
  1817. return r;
  1818. }
  1819. static __exit void kvm_exit(void)
  1820. {
  1821. kvm_exit_debug();
  1822. __free_page(bad_page);
  1823. kvm_mmu_module_exit();
  1824. }
  1825. module_init(kvm_init)
  1826. module_exit(kvm_exit)