memory.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/tlb.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/pgtable.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #ifndef CONFIG_NEED_MULTIPLE_NODES
  54. /* use the per-pgdat data instead for discontigmem - mbligh */
  55. unsigned long max_mapnr;
  56. struct page *mem_map;
  57. EXPORT_SYMBOL(max_mapnr);
  58. EXPORT_SYMBOL(mem_map);
  59. #endif
  60. unsigned long num_physpages;
  61. /*
  62. * A number of key systems in x86 including ioremap() rely on the assumption
  63. * that high_memory defines the upper bound on direct map memory, then end
  64. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  65. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  66. * and ZONE_HIGHMEM.
  67. */
  68. void * high_memory;
  69. unsigned long vmalloc_earlyreserve;
  70. EXPORT_SYMBOL(num_physpages);
  71. EXPORT_SYMBOL(high_memory);
  72. EXPORT_SYMBOL(vmalloc_earlyreserve);
  73. /*
  74. * If a p?d_bad entry is found while walking page tables, report
  75. * the error, before resetting entry to p?d_none. Usually (but
  76. * very seldom) called out from the p?d_none_or_clear_bad macros.
  77. */
  78. void pgd_clear_bad(pgd_t *pgd)
  79. {
  80. pgd_ERROR(*pgd);
  81. pgd_clear(pgd);
  82. }
  83. void pud_clear_bad(pud_t *pud)
  84. {
  85. pud_ERROR(*pud);
  86. pud_clear(pud);
  87. }
  88. void pmd_clear_bad(pmd_t *pmd)
  89. {
  90. pmd_ERROR(*pmd);
  91. pmd_clear(pmd);
  92. }
  93. /*
  94. * Note: this doesn't free the actual pages themselves. That
  95. * has been handled earlier when unmapping all the memory regions.
  96. */
  97. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  98. {
  99. struct page *page = pmd_page(*pmd);
  100. pmd_clear(pmd);
  101. pte_free_tlb(tlb, page);
  102. dec_page_state(nr_page_table_pages);
  103. tlb->mm->nr_ptes--;
  104. }
  105. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  106. unsigned long addr, unsigned long end,
  107. unsigned long floor, unsigned long ceiling)
  108. {
  109. pmd_t *pmd;
  110. unsigned long next;
  111. unsigned long start;
  112. start = addr;
  113. pmd = pmd_offset(pud, addr);
  114. do {
  115. next = pmd_addr_end(addr, end);
  116. if (pmd_none_or_clear_bad(pmd))
  117. continue;
  118. free_pte_range(tlb, pmd);
  119. } while (pmd++, addr = next, addr != end);
  120. start &= PUD_MASK;
  121. if (start < floor)
  122. return;
  123. if (ceiling) {
  124. ceiling &= PUD_MASK;
  125. if (!ceiling)
  126. return;
  127. }
  128. if (end - 1 > ceiling - 1)
  129. return;
  130. pmd = pmd_offset(pud, start);
  131. pud_clear(pud);
  132. pmd_free_tlb(tlb, pmd);
  133. }
  134. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  135. unsigned long addr, unsigned long end,
  136. unsigned long floor, unsigned long ceiling)
  137. {
  138. pud_t *pud;
  139. unsigned long next;
  140. unsigned long start;
  141. start = addr;
  142. pud = pud_offset(pgd, addr);
  143. do {
  144. next = pud_addr_end(addr, end);
  145. if (pud_none_or_clear_bad(pud))
  146. continue;
  147. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  148. } while (pud++, addr = next, addr != end);
  149. start &= PGDIR_MASK;
  150. if (start < floor)
  151. return;
  152. if (ceiling) {
  153. ceiling &= PGDIR_MASK;
  154. if (!ceiling)
  155. return;
  156. }
  157. if (end - 1 > ceiling - 1)
  158. return;
  159. pud = pud_offset(pgd, start);
  160. pgd_clear(pgd);
  161. pud_free_tlb(tlb, pud);
  162. }
  163. /*
  164. * This function frees user-level page tables of a process.
  165. *
  166. * Must be called with pagetable lock held.
  167. */
  168. void free_pgd_range(struct mmu_gather **tlb,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pgd_t *pgd;
  173. unsigned long next;
  174. unsigned long start;
  175. /*
  176. * The next few lines have given us lots of grief...
  177. *
  178. * Why are we testing PMD* at this top level? Because often
  179. * there will be no work to do at all, and we'd prefer not to
  180. * go all the way down to the bottom just to discover that.
  181. *
  182. * Why all these "- 1"s? Because 0 represents both the bottom
  183. * of the address space and the top of it (using -1 for the
  184. * top wouldn't help much: the masks would do the wrong thing).
  185. * The rule is that addr 0 and floor 0 refer to the bottom of
  186. * the address space, but end 0 and ceiling 0 refer to the top
  187. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  188. * that end 0 case should be mythical).
  189. *
  190. * Wherever addr is brought up or ceiling brought down, we must
  191. * be careful to reject "the opposite 0" before it confuses the
  192. * subsequent tests. But what about where end is brought down
  193. * by PMD_SIZE below? no, end can't go down to 0 there.
  194. *
  195. * Whereas we round start (addr) and ceiling down, by different
  196. * masks at different levels, in order to test whether a table
  197. * now has no other vmas using it, so can be freed, we don't
  198. * bother to round floor or end up - the tests don't need that.
  199. */
  200. addr &= PMD_MASK;
  201. if (addr < floor) {
  202. addr += PMD_SIZE;
  203. if (!addr)
  204. return;
  205. }
  206. if (ceiling) {
  207. ceiling &= PMD_MASK;
  208. if (!ceiling)
  209. return;
  210. }
  211. if (end - 1 > ceiling - 1)
  212. end -= PMD_SIZE;
  213. if (addr > end - 1)
  214. return;
  215. start = addr;
  216. pgd = pgd_offset((*tlb)->mm, addr);
  217. do {
  218. next = pgd_addr_end(addr, end);
  219. if (pgd_none_or_clear_bad(pgd))
  220. continue;
  221. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  222. } while (pgd++, addr = next, addr != end);
  223. if (!(*tlb)->fullmm)
  224. flush_tlb_pgtables((*tlb)->mm, start, end);
  225. }
  226. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  227. unsigned long floor, unsigned long ceiling)
  228. {
  229. while (vma) {
  230. struct vm_area_struct *next = vma->vm_next;
  231. unsigned long addr = vma->vm_start;
  232. if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
  233. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  234. floor, next? next->vm_start: ceiling);
  235. } else {
  236. /*
  237. * Optimization: gather nearby vmas into one call down
  238. */
  239. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  240. && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
  241. HPAGE_SIZE)) {
  242. vma = next;
  243. next = vma->vm_next;
  244. }
  245. free_pgd_range(tlb, addr, vma->vm_end,
  246. floor, next? next->vm_start: ceiling);
  247. }
  248. vma = next;
  249. }
  250. }
  251. pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
  252. unsigned long address)
  253. {
  254. if (!pmd_present(*pmd)) {
  255. struct page *new;
  256. spin_unlock(&mm->page_table_lock);
  257. new = pte_alloc_one(mm, address);
  258. spin_lock(&mm->page_table_lock);
  259. if (!new)
  260. return NULL;
  261. /*
  262. * Because we dropped the lock, we should re-check the
  263. * entry, as somebody else could have populated it..
  264. */
  265. if (pmd_present(*pmd)) {
  266. pte_free(new);
  267. goto out;
  268. }
  269. mm->nr_ptes++;
  270. inc_page_state(nr_page_table_pages);
  271. pmd_populate(mm, pmd, new);
  272. }
  273. out:
  274. return pte_offset_map(pmd, address);
  275. }
  276. pte_t fastcall * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  277. {
  278. if (!pmd_present(*pmd)) {
  279. pte_t *new;
  280. new = pte_alloc_one_kernel(&init_mm, address);
  281. if (!new)
  282. return NULL;
  283. spin_lock(&init_mm.page_table_lock);
  284. if (pmd_present(*pmd))
  285. pte_free_kernel(new);
  286. else
  287. pmd_populate_kernel(&init_mm, pmd, new);
  288. spin_unlock(&init_mm.page_table_lock);
  289. }
  290. return pte_offset_kernel(pmd, address);
  291. }
  292. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  293. {
  294. if (file_rss)
  295. add_mm_counter(mm, file_rss, file_rss);
  296. if (anon_rss)
  297. add_mm_counter(mm, anon_rss, anon_rss);
  298. }
  299. /*
  300. * This function is called to print an error when a pte in a
  301. * !VM_RESERVED region is found pointing to an invalid pfn (which
  302. * is an error.
  303. *
  304. * The calling function must still handle the error.
  305. */
  306. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  307. {
  308. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  309. "vm_flags = %lx, vaddr = %lx\n",
  310. (long long)pte_val(pte),
  311. (vma->vm_mm == current->mm ? current->comm : "???"),
  312. vma->vm_flags, vaddr);
  313. dump_stack();
  314. }
  315. /*
  316. * copy one vm_area from one task to the other. Assumes the page tables
  317. * already present in the new task to be cleared in the whole range
  318. * covered by this vma.
  319. *
  320. * dst->page_table_lock is held on entry and exit,
  321. * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
  322. */
  323. static inline void
  324. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  325. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  326. unsigned long addr, int *rss)
  327. {
  328. unsigned long vm_flags = vma->vm_flags;
  329. pte_t pte = *src_pte;
  330. struct page *page;
  331. unsigned long pfn;
  332. /* pte contains position in swap or file, so copy. */
  333. if (unlikely(!pte_present(pte))) {
  334. if (!pte_file(pte)) {
  335. swap_duplicate(pte_to_swp_entry(pte));
  336. /* make sure dst_mm is on swapoff's mmlist. */
  337. if (unlikely(list_empty(&dst_mm->mmlist))) {
  338. spin_lock(&mmlist_lock);
  339. list_add(&dst_mm->mmlist, &src_mm->mmlist);
  340. spin_unlock(&mmlist_lock);
  341. }
  342. }
  343. goto out_set_pte;
  344. }
  345. /* If the region is VM_RESERVED, the mapping is not
  346. * mapped via rmap - duplicate the pte as is.
  347. */
  348. if (vm_flags & VM_RESERVED)
  349. goto out_set_pte;
  350. pfn = pte_pfn(pte);
  351. /* If the pte points outside of valid memory but
  352. * the region is not VM_RESERVED, we have a problem.
  353. */
  354. if (unlikely(!pfn_valid(pfn))) {
  355. print_bad_pte(vma, pte, addr);
  356. goto out_set_pte; /* try to do something sane */
  357. }
  358. page = pfn_to_page(pfn);
  359. /*
  360. * If it's a COW mapping, write protect it both
  361. * in the parent and the child
  362. */
  363. if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
  364. ptep_set_wrprotect(src_mm, addr, src_pte);
  365. pte = *src_pte;
  366. }
  367. /*
  368. * If it's a shared mapping, mark it clean in
  369. * the child
  370. */
  371. if (vm_flags & VM_SHARED)
  372. pte = pte_mkclean(pte);
  373. pte = pte_mkold(pte);
  374. get_page(page);
  375. page_dup_rmap(page);
  376. rss[!!PageAnon(page)]++;
  377. out_set_pte:
  378. set_pte_at(dst_mm, addr, dst_pte, pte);
  379. }
  380. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  381. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  382. unsigned long addr, unsigned long end)
  383. {
  384. pte_t *src_pte, *dst_pte;
  385. int progress = 0;
  386. int rss[2];
  387. again:
  388. rss[1] = rss[0] = 0;
  389. dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
  390. if (!dst_pte)
  391. return -ENOMEM;
  392. src_pte = pte_offset_map_nested(src_pmd, addr);
  393. spin_lock(&src_mm->page_table_lock);
  394. do {
  395. /*
  396. * We are holding two locks at this point - either of them
  397. * could generate latencies in another task on another CPU.
  398. */
  399. if (progress >= 32) {
  400. progress = 0;
  401. if (need_resched() ||
  402. need_lockbreak(&src_mm->page_table_lock) ||
  403. need_lockbreak(&dst_mm->page_table_lock))
  404. break;
  405. }
  406. if (pte_none(*src_pte)) {
  407. progress++;
  408. continue;
  409. }
  410. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  411. progress += 8;
  412. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  413. spin_unlock(&src_mm->page_table_lock);
  414. pte_unmap_nested(src_pte - 1);
  415. pte_unmap(dst_pte - 1);
  416. add_mm_rss(dst_mm, rss[0], rss[1]);
  417. cond_resched_lock(&dst_mm->page_table_lock);
  418. if (addr != end)
  419. goto again;
  420. return 0;
  421. }
  422. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  423. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  424. unsigned long addr, unsigned long end)
  425. {
  426. pmd_t *src_pmd, *dst_pmd;
  427. unsigned long next;
  428. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  429. if (!dst_pmd)
  430. return -ENOMEM;
  431. src_pmd = pmd_offset(src_pud, addr);
  432. do {
  433. next = pmd_addr_end(addr, end);
  434. if (pmd_none_or_clear_bad(src_pmd))
  435. continue;
  436. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  437. vma, addr, next))
  438. return -ENOMEM;
  439. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  440. return 0;
  441. }
  442. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  443. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  444. unsigned long addr, unsigned long end)
  445. {
  446. pud_t *src_pud, *dst_pud;
  447. unsigned long next;
  448. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  449. if (!dst_pud)
  450. return -ENOMEM;
  451. src_pud = pud_offset(src_pgd, addr);
  452. do {
  453. next = pud_addr_end(addr, end);
  454. if (pud_none_or_clear_bad(src_pud))
  455. continue;
  456. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  457. vma, addr, next))
  458. return -ENOMEM;
  459. } while (dst_pud++, src_pud++, addr = next, addr != end);
  460. return 0;
  461. }
  462. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  463. struct vm_area_struct *vma)
  464. {
  465. pgd_t *src_pgd, *dst_pgd;
  466. unsigned long next;
  467. unsigned long addr = vma->vm_start;
  468. unsigned long end = vma->vm_end;
  469. /*
  470. * Don't copy ptes where a page fault will fill them correctly.
  471. * Fork becomes much lighter when there are big shared or private
  472. * readonly mappings. The tradeoff is that copy_page_range is more
  473. * efficient than faulting.
  474. */
  475. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
  476. if (!vma->anon_vma)
  477. return 0;
  478. }
  479. if (is_vm_hugetlb_page(vma))
  480. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  481. dst_pgd = pgd_offset(dst_mm, addr);
  482. src_pgd = pgd_offset(src_mm, addr);
  483. do {
  484. next = pgd_addr_end(addr, end);
  485. if (pgd_none_or_clear_bad(src_pgd))
  486. continue;
  487. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  488. vma, addr, next))
  489. return -ENOMEM;
  490. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  491. return 0;
  492. }
  493. static void zap_pte_range(struct mmu_gather *tlb,
  494. struct vm_area_struct *vma, pmd_t *pmd,
  495. unsigned long addr, unsigned long end,
  496. struct zap_details *details)
  497. {
  498. struct mm_struct *mm = tlb->mm;
  499. pte_t *pte;
  500. int file_rss = 0;
  501. int anon_rss = 0;
  502. pte = pte_offset_map(pmd, addr);
  503. do {
  504. pte_t ptent = *pte;
  505. if (pte_none(ptent))
  506. continue;
  507. if (pte_present(ptent)) {
  508. struct page *page = NULL;
  509. if (!(vma->vm_flags & VM_RESERVED)) {
  510. unsigned long pfn = pte_pfn(ptent);
  511. if (unlikely(!pfn_valid(pfn)))
  512. print_bad_pte(vma, ptent, addr);
  513. else
  514. page = pfn_to_page(pfn);
  515. }
  516. if (unlikely(details) && page) {
  517. /*
  518. * unmap_shared_mapping_pages() wants to
  519. * invalidate cache without truncating:
  520. * unmap shared but keep private pages.
  521. */
  522. if (details->check_mapping &&
  523. details->check_mapping != page->mapping)
  524. continue;
  525. /*
  526. * Each page->index must be checked when
  527. * invalidating or truncating nonlinear.
  528. */
  529. if (details->nonlinear_vma &&
  530. (page->index < details->first_index ||
  531. page->index > details->last_index))
  532. continue;
  533. }
  534. ptent = ptep_get_and_clear_full(mm, addr, pte,
  535. tlb->fullmm);
  536. tlb_remove_tlb_entry(tlb, pte, addr);
  537. if (unlikely(!page))
  538. continue;
  539. if (unlikely(details) && details->nonlinear_vma
  540. && linear_page_index(details->nonlinear_vma,
  541. addr) != page->index)
  542. set_pte_at(mm, addr, pte,
  543. pgoff_to_pte(page->index));
  544. if (PageAnon(page))
  545. anon_rss--;
  546. else {
  547. if (pte_dirty(ptent))
  548. set_page_dirty(page);
  549. if (pte_young(ptent))
  550. mark_page_accessed(page);
  551. file_rss--;
  552. }
  553. page_remove_rmap(page);
  554. tlb_remove_page(tlb, page);
  555. continue;
  556. }
  557. /*
  558. * If details->check_mapping, we leave swap entries;
  559. * if details->nonlinear_vma, we leave file entries.
  560. */
  561. if (unlikely(details))
  562. continue;
  563. if (!pte_file(ptent))
  564. free_swap_and_cache(pte_to_swp_entry(ptent));
  565. pte_clear_full(mm, addr, pte, tlb->fullmm);
  566. } while (pte++, addr += PAGE_SIZE, addr != end);
  567. add_mm_rss(mm, file_rss, anon_rss);
  568. pte_unmap(pte - 1);
  569. }
  570. static inline void zap_pmd_range(struct mmu_gather *tlb,
  571. struct vm_area_struct *vma, pud_t *pud,
  572. unsigned long addr, unsigned long end,
  573. struct zap_details *details)
  574. {
  575. pmd_t *pmd;
  576. unsigned long next;
  577. pmd = pmd_offset(pud, addr);
  578. do {
  579. next = pmd_addr_end(addr, end);
  580. if (pmd_none_or_clear_bad(pmd))
  581. continue;
  582. zap_pte_range(tlb, vma, pmd, addr, next, details);
  583. } while (pmd++, addr = next, addr != end);
  584. }
  585. static inline void zap_pud_range(struct mmu_gather *tlb,
  586. struct vm_area_struct *vma, pgd_t *pgd,
  587. unsigned long addr, unsigned long end,
  588. struct zap_details *details)
  589. {
  590. pud_t *pud;
  591. unsigned long next;
  592. pud = pud_offset(pgd, addr);
  593. do {
  594. next = pud_addr_end(addr, end);
  595. if (pud_none_or_clear_bad(pud))
  596. continue;
  597. zap_pmd_range(tlb, vma, pud, addr, next, details);
  598. } while (pud++, addr = next, addr != end);
  599. }
  600. static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  601. unsigned long addr, unsigned long end,
  602. struct zap_details *details)
  603. {
  604. pgd_t *pgd;
  605. unsigned long next;
  606. if (details && !details->check_mapping && !details->nonlinear_vma)
  607. details = NULL;
  608. BUG_ON(addr >= end);
  609. tlb_start_vma(tlb, vma);
  610. pgd = pgd_offset(vma->vm_mm, addr);
  611. do {
  612. next = pgd_addr_end(addr, end);
  613. if (pgd_none_or_clear_bad(pgd))
  614. continue;
  615. zap_pud_range(tlb, vma, pgd, addr, next, details);
  616. } while (pgd++, addr = next, addr != end);
  617. tlb_end_vma(tlb, vma);
  618. }
  619. #ifdef CONFIG_PREEMPT
  620. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  621. #else
  622. /* No preempt: go for improved straight-line efficiency */
  623. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  624. #endif
  625. /**
  626. * unmap_vmas - unmap a range of memory covered by a list of vma's
  627. * @tlbp: address of the caller's struct mmu_gather
  628. * @mm: the controlling mm_struct
  629. * @vma: the starting vma
  630. * @start_addr: virtual address at which to start unmapping
  631. * @end_addr: virtual address at which to end unmapping
  632. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  633. * @details: details of nonlinear truncation or shared cache invalidation
  634. *
  635. * Returns the end address of the unmapping (restart addr if interrupted).
  636. *
  637. * Unmap all pages in the vma list. Called under page_table_lock.
  638. *
  639. * We aim to not hold page_table_lock for too long (for scheduling latency
  640. * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  641. * return the ending mmu_gather to the caller.
  642. *
  643. * Only addresses between `start' and `end' will be unmapped.
  644. *
  645. * The VMA list must be sorted in ascending virtual address order.
  646. *
  647. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  648. * range after unmap_vmas() returns. So the only responsibility here is to
  649. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  650. * drops the lock and schedules.
  651. */
  652. unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
  653. struct vm_area_struct *vma, unsigned long start_addr,
  654. unsigned long end_addr, unsigned long *nr_accounted,
  655. struct zap_details *details)
  656. {
  657. unsigned long zap_bytes = ZAP_BLOCK_SIZE;
  658. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  659. int tlb_start_valid = 0;
  660. unsigned long start = start_addr;
  661. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  662. int fullmm = (*tlbp)->fullmm;
  663. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  664. unsigned long end;
  665. start = max(vma->vm_start, start_addr);
  666. if (start >= vma->vm_end)
  667. continue;
  668. end = min(vma->vm_end, end_addr);
  669. if (end <= vma->vm_start)
  670. continue;
  671. if (vma->vm_flags & VM_ACCOUNT)
  672. *nr_accounted += (end - start) >> PAGE_SHIFT;
  673. while (start != end) {
  674. unsigned long block;
  675. if (!tlb_start_valid) {
  676. tlb_start = start;
  677. tlb_start_valid = 1;
  678. }
  679. if (is_vm_hugetlb_page(vma)) {
  680. block = end - start;
  681. unmap_hugepage_range(vma, start, end);
  682. } else {
  683. block = min(zap_bytes, end - start);
  684. unmap_page_range(*tlbp, vma, start,
  685. start + block, details);
  686. }
  687. start += block;
  688. zap_bytes -= block;
  689. if ((long)zap_bytes > 0)
  690. continue;
  691. tlb_finish_mmu(*tlbp, tlb_start, start);
  692. if (need_resched() ||
  693. need_lockbreak(&mm->page_table_lock) ||
  694. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  695. if (i_mmap_lock) {
  696. /* must reset count of rss freed */
  697. *tlbp = tlb_gather_mmu(mm, fullmm);
  698. goto out;
  699. }
  700. spin_unlock(&mm->page_table_lock);
  701. cond_resched();
  702. spin_lock(&mm->page_table_lock);
  703. }
  704. *tlbp = tlb_gather_mmu(mm, fullmm);
  705. tlb_start_valid = 0;
  706. zap_bytes = ZAP_BLOCK_SIZE;
  707. }
  708. }
  709. out:
  710. return start; /* which is now the end (or restart) address */
  711. }
  712. /**
  713. * zap_page_range - remove user pages in a given range
  714. * @vma: vm_area_struct holding the applicable pages
  715. * @address: starting address of pages to zap
  716. * @size: number of bytes to zap
  717. * @details: details of nonlinear truncation or shared cache invalidation
  718. */
  719. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  720. unsigned long size, struct zap_details *details)
  721. {
  722. struct mm_struct *mm = vma->vm_mm;
  723. struct mmu_gather *tlb;
  724. unsigned long end = address + size;
  725. unsigned long nr_accounted = 0;
  726. if (is_vm_hugetlb_page(vma)) {
  727. zap_hugepage_range(vma, address, size);
  728. return end;
  729. }
  730. lru_add_drain();
  731. spin_lock(&mm->page_table_lock);
  732. tlb = tlb_gather_mmu(mm, 0);
  733. update_hiwater_rss(mm);
  734. end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
  735. tlb_finish_mmu(tlb, address, end);
  736. spin_unlock(&mm->page_table_lock);
  737. return end;
  738. }
  739. /*
  740. * Do a quick page-table lookup for a single page.
  741. * mm->page_table_lock must be held.
  742. */
  743. static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
  744. int read, int write, int accessed)
  745. {
  746. pgd_t *pgd;
  747. pud_t *pud;
  748. pmd_t *pmd;
  749. pte_t *ptep, pte;
  750. unsigned long pfn;
  751. struct page *page;
  752. page = follow_huge_addr(mm, address, write);
  753. if (! IS_ERR(page))
  754. return page;
  755. pgd = pgd_offset(mm, address);
  756. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  757. goto out;
  758. pud = pud_offset(pgd, address);
  759. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  760. goto out;
  761. pmd = pmd_offset(pud, address);
  762. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  763. goto out;
  764. if (pmd_huge(*pmd))
  765. return follow_huge_pmd(mm, address, pmd, write);
  766. ptep = pte_offset_map(pmd, address);
  767. if (!ptep)
  768. goto out;
  769. pte = *ptep;
  770. pte_unmap(ptep);
  771. if (pte_present(pte)) {
  772. if (write && !pte_write(pte))
  773. goto out;
  774. if (read && !pte_read(pte))
  775. goto out;
  776. pfn = pte_pfn(pte);
  777. if (pfn_valid(pfn)) {
  778. page = pfn_to_page(pfn);
  779. if (accessed) {
  780. if (write && !pte_dirty(pte) &&!PageDirty(page))
  781. set_page_dirty(page);
  782. mark_page_accessed(page);
  783. }
  784. return page;
  785. }
  786. }
  787. out:
  788. return NULL;
  789. }
  790. inline struct page *
  791. follow_page(struct mm_struct *mm, unsigned long address, int write)
  792. {
  793. return __follow_page(mm, address, 0, write, 1);
  794. }
  795. /*
  796. * check_user_page_readable() can be called frm niterrupt context by oprofile,
  797. * so we need to avoid taking any non-irq-safe locks
  798. */
  799. int check_user_page_readable(struct mm_struct *mm, unsigned long address)
  800. {
  801. return __follow_page(mm, address, 1, 0, 0) != NULL;
  802. }
  803. EXPORT_SYMBOL(check_user_page_readable);
  804. static inline int
  805. untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
  806. unsigned long address)
  807. {
  808. pgd_t *pgd;
  809. pud_t *pud;
  810. pmd_t *pmd;
  811. /* Check if the vma is for an anonymous mapping. */
  812. if (vma->vm_ops && vma->vm_ops->nopage)
  813. return 0;
  814. /* Check if page directory entry exists. */
  815. pgd = pgd_offset(mm, address);
  816. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  817. return 1;
  818. pud = pud_offset(pgd, address);
  819. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  820. return 1;
  821. /* Check if page middle directory entry exists. */
  822. pmd = pmd_offset(pud, address);
  823. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  824. return 1;
  825. /* There is a pte slot for 'address' in 'mm'. */
  826. return 0;
  827. }
  828. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  829. unsigned long start, int len, int write, int force,
  830. struct page **pages, struct vm_area_struct **vmas)
  831. {
  832. int i;
  833. unsigned int flags;
  834. /*
  835. * Require read or write permissions.
  836. * If 'force' is set, we only require the "MAY" flags.
  837. */
  838. flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  839. flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  840. i = 0;
  841. do {
  842. struct vm_area_struct * vma;
  843. vma = find_extend_vma(mm, start);
  844. if (!vma && in_gate_area(tsk, start)) {
  845. unsigned long pg = start & PAGE_MASK;
  846. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  847. pgd_t *pgd;
  848. pud_t *pud;
  849. pmd_t *pmd;
  850. pte_t *pte;
  851. if (write) /* user gate pages are read-only */
  852. return i ? : -EFAULT;
  853. if (pg > TASK_SIZE)
  854. pgd = pgd_offset_k(pg);
  855. else
  856. pgd = pgd_offset_gate(mm, pg);
  857. BUG_ON(pgd_none(*pgd));
  858. pud = pud_offset(pgd, pg);
  859. BUG_ON(pud_none(*pud));
  860. pmd = pmd_offset(pud, pg);
  861. if (pmd_none(*pmd))
  862. return i ? : -EFAULT;
  863. pte = pte_offset_map(pmd, pg);
  864. if (pte_none(*pte)) {
  865. pte_unmap(pte);
  866. return i ? : -EFAULT;
  867. }
  868. if (pages) {
  869. pages[i] = pte_page(*pte);
  870. get_page(pages[i]);
  871. }
  872. pte_unmap(pte);
  873. if (vmas)
  874. vmas[i] = gate_vma;
  875. i++;
  876. start += PAGE_SIZE;
  877. len--;
  878. continue;
  879. }
  880. if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
  881. || !(flags & vma->vm_flags))
  882. return i ? : -EFAULT;
  883. if (is_vm_hugetlb_page(vma)) {
  884. i = follow_hugetlb_page(mm, vma, pages, vmas,
  885. &start, &len, i);
  886. continue;
  887. }
  888. spin_lock(&mm->page_table_lock);
  889. do {
  890. int write_access = write;
  891. struct page *page;
  892. cond_resched_lock(&mm->page_table_lock);
  893. while (!(page = follow_page(mm, start, write_access))) {
  894. int ret;
  895. /*
  896. * Shortcut for anonymous pages. We don't want
  897. * to force the creation of pages tables for
  898. * insanely big anonymously mapped areas that
  899. * nobody touched so far. This is important
  900. * for doing a core dump for these mappings.
  901. */
  902. if (!write && untouched_anonymous_page(mm,vma,start)) {
  903. page = ZERO_PAGE(start);
  904. break;
  905. }
  906. spin_unlock(&mm->page_table_lock);
  907. ret = __handle_mm_fault(mm, vma, start, write_access);
  908. /*
  909. * The VM_FAULT_WRITE bit tells us that do_wp_page has
  910. * broken COW when necessary, even if maybe_mkwrite
  911. * decided not to set pte_write. We can thus safely do
  912. * subsequent page lookups as if they were reads.
  913. */
  914. if (ret & VM_FAULT_WRITE)
  915. write_access = 0;
  916. switch (ret & ~VM_FAULT_WRITE) {
  917. case VM_FAULT_MINOR:
  918. tsk->min_flt++;
  919. break;
  920. case VM_FAULT_MAJOR:
  921. tsk->maj_flt++;
  922. break;
  923. case VM_FAULT_SIGBUS:
  924. return i ? i : -EFAULT;
  925. case VM_FAULT_OOM:
  926. return i ? i : -ENOMEM;
  927. default:
  928. BUG();
  929. }
  930. spin_lock(&mm->page_table_lock);
  931. }
  932. if (pages) {
  933. pages[i] = page;
  934. flush_dcache_page(page);
  935. page_cache_get(page);
  936. }
  937. if (vmas)
  938. vmas[i] = vma;
  939. i++;
  940. start += PAGE_SIZE;
  941. len--;
  942. } while (len && start < vma->vm_end);
  943. spin_unlock(&mm->page_table_lock);
  944. } while (len);
  945. return i;
  946. }
  947. EXPORT_SYMBOL(get_user_pages);
  948. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  949. unsigned long addr, unsigned long end, pgprot_t prot)
  950. {
  951. pte_t *pte;
  952. pte = pte_alloc_map(mm, pmd, addr);
  953. if (!pte)
  954. return -ENOMEM;
  955. do {
  956. struct page *page = ZERO_PAGE(addr);
  957. pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
  958. page_cache_get(page);
  959. page_add_file_rmap(page);
  960. inc_mm_counter(mm, file_rss);
  961. BUG_ON(!pte_none(*pte));
  962. set_pte_at(mm, addr, pte, zero_pte);
  963. } while (pte++, addr += PAGE_SIZE, addr != end);
  964. pte_unmap(pte - 1);
  965. return 0;
  966. }
  967. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  968. unsigned long addr, unsigned long end, pgprot_t prot)
  969. {
  970. pmd_t *pmd;
  971. unsigned long next;
  972. pmd = pmd_alloc(mm, pud, addr);
  973. if (!pmd)
  974. return -ENOMEM;
  975. do {
  976. next = pmd_addr_end(addr, end);
  977. if (zeromap_pte_range(mm, pmd, addr, next, prot))
  978. return -ENOMEM;
  979. } while (pmd++, addr = next, addr != end);
  980. return 0;
  981. }
  982. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  983. unsigned long addr, unsigned long end, pgprot_t prot)
  984. {
  985. pud_t *pud;
  986. unsigned long next;
  987. pud = pud_alloc(mm, pgd, addr);
  988. if (!pud)
  989. return -ENOMEM;
  990. do {
  991. next = pud_addr_end(addr, end);
  992. if (zeromap_pmd_range(mm, pud, addr, next, prot))
  993. return -ENOMEM;
  994. } while (pud++, addr = next, addr != end);
  995. return 0;
  996. }
  997. int zeromap_page_range(struct vm_area_struct *vma,
  998. unsigned long addr, unsigned long size, pgprot_t prot)
  999. {
  1000. pgd_t *pgd;
  1001. unsigned long next;
  1002. unsigned long end = addr + size;
  1003. struct mm_struct *mm = vma->vm_mm;
  1004. int err;
  1005. BUG_ON(addr >= end);
  1006. pgd = pgd_offset(mm, addr);
  1007. flush_cache_range(vma, addr, end);
  1008. spin_lock(&mm->page_table_lock);
  1009. do {
  1010. next = pgd_addr_end(addr, end);
  1011. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  1012. if (err)
  1013. break;
  1014. } while (pgd++, addr = next, addr != end);
  1015. spin_unlock(&mm->page_table_lock);
  1016. return err;
  1017. }
  1018. /*
  1019. * maps a range of physical memory into the requested pages. the old
  1020. * mappings are removed. any references to nonexistent pages results
  1021. * in null mappings (currently treated as "copy-on-access")
  1022. */
  1023. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1024. unsigned long addr, unsigned long end,
  1025. unsigned long pfn, pgprot_t prot)
  1026. {
  1027. pte_t *pte;
  1028. pte = pte_alloc_map(mm, pmd, addr);
  1029. if (!pte)
  1030. return -ENOMEM;
  1031. do {
  1032. BUG_ON(!pte_none(*pte));
  1033. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1034. pfn++;
  1035. } while (pte++, addr += PAGE_SIZE, addr != end);
  1036. pte_unmap(pte - 1);
  1037. return 0;
  1038. }
  1039. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1040. unsigned long addr, unsigned long end,
  1041. unsigned long pfn, pgprot_t prot)
  1042. {
  1043. pmd_t *pmd;
  1044. unsigned long next;
  1045. pfn -= addr >> PAGE_SHIFT;
  1046. pmd = pmd_alloc(mm, pud, addr);
  1047. if (!pmd)
  1048. return -ENOMEM;
  1049. do {
  1050. next = pmd_addr_end(addr, end);
  1051. if (remap_pte_range(mm, pmd, addr, next,
  1052. pfn + (addr >> PAGE_SHIFT), prot))
  1053. return -ENOMEM;
  1054. } while (pmd++, addr = next, addr != end);
  1055. return 0;
  1056. }
  1057. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1058. unsigned long addr, unsigned long end,
  1059. unsigned long pfn, pgprot_t prot)
  1060. {
  1061. pud_t *pud;
  1062. unsigned long next;
  1063. pfn -= addr >> PAGE_SHIFT;
  1064. pud = pud_alloc(mm, pgd, addr);
  1065. if (!pud)
  1066. return -ENOMEM;
  1067. do {
  1068. next = pud_addr_end(addr, end);
  1069. if (remap_pmd_range(mm, pud, addr, next,
  1070. pfn + (addr >> PAGE_SHIFT), prot))
  1071. return -ENOMEM;
  1072. } while (pud++, addr = next, addr != end);
  1073. return 0;
  1074. }
  1075. /* Note: this is only safe if the mm semaphore is held when called. */
  1076. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1077. unsigned long pfn, unsigned long size, pgprot_t prot)
  1078. {
  1079. pgd_t *pgd;
  1080. unsigned long next;
  1081. unsigned long end = addr + PAGE_ALIGN(size);
  1082. struct mm_struct *mm = vma->vm_mm;
  1083. int err;
  1084. /*
  1085. * Physically remapped pages are special. Tell the
  1086. * rest of the world about it:
  1087. * VM_IO tells people not to look at these pages
  1088. * (accesses can have side effects).
  1089. * VM_RESERVED tells the core MM not to "manage" these pages
  1090. * (e.g. refcount, mapcount, try to swap them out).
  1091. */
  1092. vma->vm_flags |= VM_IO | VM_RESERVED;
  1093. BUG_ON(addr >= end);
  1094. pfn -= addr >> PAGE_SHIFT;
  1095. pgd = pgd_offset(mm, addr);
  1096. flush_cache_range(vma, addr, end);
  1097. spin_lock(&mm->page_table_lock);
  1098. do {
  1099. next = pgd_addr_end(addr, end);
  1100. err = remap_pud_range(mm, pgd, addr, next,
  1101. pfn + (addr >> PAGE_SHIFT), prot);
  1102. if (err)
  1103. break;
  1104. } while (pgd++, addr = next, addr != end);
  1105. spin_unlock(&mm->page_table_lock);
  1106. return err;
  1107. }
  1108. EXPORT_SYMBOL(remap_pfn_range);
  1109. /*
  1110. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1111. * servicing faults for write access. In the normal case, do always want
  1112. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1113. * that do not have writing enabled, when used by access_process_vm.
  1114. */
  1115. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1116. {
  1117. if (likely(vma->vm_flags & VM_WRITE))
  1118. pte = pte_mkwrite(pte);
  1119. return pte;
  1120. }
  1121. /*
  1122. * This routine handles present pages, when users try to write
  1123. * to a shared page. It is done by copying the page to a new address
  1124. * and decrementing the shared-page counter for the old page.
  1125. *
  1126. * Note that this routine assumes that the protection checks have been
  1127. * done by the caller (the low-level page fault routine in most cases).
  1128. * Thus we can safely just mark it writable once we've done any necessary
  1129. * COW.
  1130. *
  1131. * We also mark the page dirty at this point even though the page will
  1132. * change only once the write actually happens. This avoids a few races,
  1133. * and potentially makes it more efficient.
  1134. *
  1135. * We hold the mm semaphore and the page_table_lock on entry and exit
  1136. * with the page_table_lock released.
  1137. */
  1138. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1139. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1140. pte_t orig_pte)
  1141. {
  1142. struct page *old_page, *new_page;
  1143. unsigned long pfn = pte_pfn(orig_pte);
  1144. pte_t entry;
  1145. int ret = VM_FAULT_MINOR;
  1146. BUG_ON(vma->vm_flags & VM_RESERVED);
  1147. if (unlikely(!pfn_valid(pfn))) {
  1148. /*
  1149. * Page table corrupted: show pte and kill process.
  1150. */
  1151. print_bad_pte(vma, orig_pte, address);
  1152. ret = VM_FAULT_OOM;
  1153. goto unlock;
  1154. }
  1155. old_page = pfn_to_page(pfn);
  1156. if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
  1157. int reuse = can_share_swap_page(old_page);
  1158. unlock_page(old_page);
  1159. if (reuse) {
  1160. flush_cache_page(vma, address, pfn);
  1161. entry = pte_mkyoung(orig_pte);
  1162. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1163. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1164. update_mmu_cache(vma, address, entry);
  1165. lazy_mmu_prot_update(entry);
  1166. ret |= VM_FAULT_WRITE;
  1167. goto unlock;
  1168. }
  1169. }
  1170. /*
  1171. * Ok, we need to copy. Oh, well..
  1172. */
  1173. page_cache_get(old_page);
  1174. pte_unmap(page_table);
  1175. spin_unlock(&mm->page_table_lock);
  1176. if (unlikely(anon_vma_prepare(vma)))
  1177. goto oom;
  1178. if (old_page == ZERO_PAGE(address)) {
  1179. new_page = alloc_zeroed_user_highpage(vma, address);
  1180. if (!new_page)
  1181. goto oom;
  1182. } else {
  1183. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1184. if (!new_page)
  1185. goto oom;
  1186. copy_user_highpage(new_page, old_page, address);
  1187. }
  1188. /*
  1189. * Re-check the pte - we dropped the lock
  1190. */
  1191. spin_lock(&mm->page_table_lock);
  1192. page_table = pte_offset_map(pmd, address);
  1193. if (likely(pte_same(*page_table, orig_pte))) {
  1194. page_remove_rmap(old_page);
  1195. if (!PageAnon(old_page)) {
  1196. inc_mm_counter(mm, anon_rss);
  1197. dec_mm_counter(mm, file_rss);
  1198. }
  1199. flush_cache_page(vma, address, pfn);
  1200. entry = mk_pte(new_page, vma->vm_page_prot);
  1201. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1202. ptep_establish(vma, address, page_table, entry);
  1203. update_mmu_cache(vma, address, entry);
  1204. lazy_mmu_prot_update(entry);
  1205. lru_cache_add_active(new_page);
  1206. page_add_anon_rmap(new_page, vma, address);
  1207. /* Free the old page.. */
  1208. new_page = old_page;
  1209. ret |= VM_FAULT_WRITE;
  1210. }
  1211. page_cache_release(new_page);
  1212. page_cache_release(old_page);
  1213. unlock:
  1214. pte_unmap(page_table);
  1215. spin_unlock(&mm->page_table_lock);
  1216. return ret;
  1217. oom:
  1218. page_cache_release(old_page);
  1219. return VM_FAULT_OOM;
  1220. }
  1221. /*
  1222. * Helper functions for unmap_mapping_range().
  1223. *
  1224. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1225. *
  1226. * We have to restart searching the prio_tree whenever we drop the lock,
  1227. * since the iterator is only valid while the lock is held, and anyway
  1228. * a later vma might be split and reinserted earlier while lock dropped.
  1229. *
  1230. * The list of nonlinear vmas could be handled more efficiently, using
  1231. * a placeholder, but handle it in the same way until a need is shown.
  1232. * It is important to search the prio_tree before nonlinear list: a vma
  1233. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1234. * while the lock is dropped; but never shifted from list to prio_tree.
  1235. *
  1236. * In order to make forward progress despite restarting the search,
  1237. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1238. * quickly skip it next time around. Since the prio_tree search only
  1239. * shows us those vmas affected by unmapping the range in question, we
  1240. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1241. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1242. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1243. * i_mmap_lock.
  1244. *
  1245. * In order to make forward progress despite repeatedly restarting some
  1246. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1247. * and restart from that address when we reach that vma again. It might
  1248. * have been split or merged, shrunk or extended, but never shifted: so
  1249. * restart_addr remains valid so long as it remains in the vma's range.
  1250. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1251. * values so we can save vma's restart_addr in its truncate_count field.
  1252. */
  1253. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1254. static void reset_vma_truncate_counts(struct address_space *mapping)
  1255. {
  1256. struct vm_area_struct *vma;
  1257. struct prio_tree_iter iter;
  1258. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1259. vma->vm_truncate_count = 0;
  1260. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1261. vma->vm_truncate_count = 0;
  1262. }
  1263. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1264. unsigned long start_addr, unsigned long end_addr,
  1265. struct zap_details *details)
  1266. {
  1267. unsigned long restart_addr;
  1268. int need_break;
  1269. again:
  1270. restart_addr = vma->vm_truncate_count;
  1271. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1272. start_addr = restart_addr;
  1273. if (start_addr >= end_addr) {
  1274. /* Top of vma has been split off since last time */
  1275. vma->vm_truncate_count = details->truncate_count;
  1276. return 0;
  1277. }
  1278. }
  1279. restart_addr = zap_page_range(vma, start_addr,
  1280. end_addr - start_addr, details);
  1281. /*
  1282. * We cannot rely on the break test in unmap_vmas:
  1283. * on the one hand, we don't want to restart our loop
  1284. * just because that broke out for the page_table_lock;
  1285. * on the other hand, it does no test when vma is small.
  1286. */
  1287. need_break = need_resched() ||
  1288. need_lockbreak(details->i_mmap_lock);
  1289. if (restart_addr >= end_addr) {
  1290. /* We have now completed this vma: mark it so */
  1291. vma->vm_truncate_count = details->truncate_count;
  1292. if (!need_break)
  1293. return 0;
  1294. } else {
  1295. /* Note restart_addr in vma's truncate_count field */
  1296. vma->vm_truncate_count = restart_addr;
  1297. if (!need_break)
  1298. goto again;
  1299. }
  1300. spin_unlock(details->i_mmap_lock);
  1301. cond_resched();
  1302. spin_lock(details->i_mmap_lock);
  1303. return -EINTR;
  1304. }
  1305. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1306. struct zap_details *details)
  1307. {
  1308. struct vm_area_struct *vma;
  1309. struct prio_tree_iter iter;
  1310. pgoff_t vba, vea, zba, zea;
  1311. restart:
  1312. vma_prio_tree_foreach(vma, &iter, root,
  1313. details->first_index, details->last_index) {
  1314. /* Skip quickly over those we have already dealt with */
  1315. if (vma->vm_truncate_count == details->truncate_count)
  1316. continue;
  1317. vba = vma->vm_pgoff;
  1318. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1319. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1320. zba = details->first_index;
  1321. if (zba < vba)
  1322. zba = vba;
  1323. zea = details->last_index;
  1324. if (zea > vea)
  1325. zea = vea;
  1326. if (unmap_mapping_range_vma(vma,
  1327. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1328. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1329. details) < 0)
  1330. goto restart;
  1331. }
  1332. }
  1333. static inline void unmap_mapping_range_list(struct list_head *head,
  1334. struct zap_details *details)
  1335. {
  1336. struct vm_area_struct *vma;
  1337. /*
  1338. * In nonlinear VMAs there is no correspondence between virtual address
  1339. * offset and file offset. So we must perform an exhaustive search
  1340. * across *all* the pages in each nonlinear VMA, not just the pages
  1341. * whose virtual address lies outside the file truncation point.
  1342. */
  1343. restart:
  1344. list_for_each_entry(vma, head, shared.vm_set.list) {
  1345. /* Skip quickly over those we have already dealt with */
  1346. if (vma->vm_truncate_count == details->truncate_count)
  1347. continue;
  1348. details->nonlinear_vma = vma;
  1349. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1350. vma->vm_end, details) < 0)
  1351. goto restart;
  1352. }
  1353. }
  1354. /**
  1355. * unmap_mapping_range - unmap the portion of all mmaps
  1356. * in the specified address_space corresponding to the specified
  1357. * page range in the underlying file.
  1358. * @mapping: the address space containing mmaps to be unmapped.
  1359. * @holebegin: byte in first page to unmap, relative to the start of
  1360. * the underlying file. This will be rounded down to a PAGE_SIZE
  1361. * boundary. Note that this is different from vmtruncate(), which
  1362. * must keep the partial page. In contrast, we must get rid of
  1363. * partial pages.
  1364. * @holelen: size of prospective hole in bytes. This will be rounded
  1365. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1366. * end of the file.
  1367. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1368. * but 0 when invalidating pagecache, don't throw away private data.
  1369. */
  1370. void unmap_mapping_range(struct address_space *mapping,
  1371. loff_t const holebegin, loff_t const holelen, int even_cows)
  1372. {
  1373. struct zap_details details;
  1374. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1375. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1376. /* Check for overflow. */
  1377. if (sizeof(holelen) > sizeof(hlen)) {
  1378. long long holeend =
  1379. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1380. if (holeend & ~(long long)ULONG_MAX)
  1381. hlen = ULONG_MAX - hba + 1;
  1382. }
  1383. details.check_mapping = even_cows? NULL: mapping;
  1384. details.nonlinear_vma = NULL;
  1385. details.first_index = hba;
  1386. details.last_index = hba + hlen - 1;
  1387. if (details.last_index < details.first_index)
  1388. details.last_index = ULONG_MAX;
  1389. details.i_mmap_lock = &mapping->i_mmap_lock;
  1390. spin_lock(&mapping->i_mmap_lock);
  1391. /* serialize i_size write against truncate_count write */
  1392. smp_wmb();
  1393. /* Protect against page faults, and endless unmapping loops */
  1394. mapping->truncate_count++;
  1395. /*
  1396. * For archs where spin_lock has inclusive semantics like ia64
  1397. * this smp_mb() will prevent to read pagetable contents
  1398. * before the truncate_count increment is visible to
  1399. * other cpus.
  1400. */
  1401. smp_mb();
  1402. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1403. if (mapping->truncate_count == 0)
  1404. reset_vma_truncate_counts(mapping);
  1405. mapping->truncate_count++;
  1406. }
  1407. details.truncate_count = mapping->truncate_count;
  1408. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1409. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1410. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1411. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1412. spin_unlock(&mapping->i_mmap_lock);
  1413. }
  1414. EXPORT_SYMBOL(unmap_mapping_range);
  1415. /*
  1416. * Handle all mappings that got truncated by a "truncate()"
  1417. * system call.
  1418. *
  1419. * NOTE! We have to be ready to update the memory sharing
  1420. * between the file and the memory map for a potential last
  1421. * incomplete page. Ugly, but necessary.
  1422. */
  1423. int vmtruncate(struct inode * inode, loff_t offset)
  1424. {
  1425. struct address_space *mapping = inode->i_mapping;
  1426. unsigned long limit;
  1427. if (inode->i_size < offset)
  1428. goto do_expand;
  1429. /*
  1430. * truncation of in-use swapfiles is disallowed - it would cause
  1431. * subsequent swapout to scribble on the now-freed blocks.
  1432. */
  1433. if (IS_SWAPFILE(inode))
  1434. goto out_busy;
  1435. i_size_write(inode, offset);
  1436. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1437. truncate_inode_pages(mapping, offset);
  1438. goto out_truncate;
  1439. do_expand:
  1440. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1441. if (limit != RLIM_INFINITY && offset > limit)
  1442. goto out_sig;
  1443. if (offset > inode->i_sb->s_maxbytes)
  1444. goto out_big;
  1445. i_size_write(inode, offset);
  1446. out_truncate:
  1447. if (inode->i_op && inode->i_op->truncate)
  1448. inode->i_op->truncate(inode);
  1449. return 0;
  1450. out_sig:
  1451. send_sig(SIGXFSZ, current, 0);
  1452. out_big:
  1453. return -EFBIG;
  1454. out_busy:
  1455. return -ETXTBSY;
  1456. }
  1457. EXPORT_SYMBOL(vmtruncate);
  1458. /*
  1459. * Primitive swap readahead code. We simply read an aligned block of
  1460. * (1 << page_cluster) entries in the swap area. This method is chosen
  1461. * because it doesn't cost us any seek time. We also make sure to queue
  1462. * the 'original' request together with the readahead ones...
  1463. *
  1464. * This has been extended to use the NUMA policies from the mm triggering
  1465. * the readahead.
  1466. *
  1467. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1468. */
  1469. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1470. {
  1471. #ifdef CONFIG_NUMA
  1472. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1473. #endif
  1474. int i, num;
  1475. struct page *new_page;
  1476. unsigned long offset;
  1477. /*
  1478. * Get the number of handles we should do readahead io to.
  1479. */
  1480. num = valid_swaphandles(entry, &offset);
  1481. for (i = 0; i < num; offset++, i++) {
  1482. /* Ok, do the async read-ahead now */
  1483. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1484. offset), vma, addr);
  1485. if (!new_page)
  1486. break;
  1487. page_cache_release(new_page);
  1488. #ifdef CONFIG_NUMA
  1489. /*
  1490. * Find the next applicable VMA for the NUMA policy.
  1491. */
  1492. addr += PAGE_SIZE;
  1493. if (addr == 0)
  1494. vma = NULL;
  1495. if (vma) {
  1496. if (addr >= vma->vm_end) {
  1497. vma = next_vma;
  1498. next_vma = vma ? vma->vm_next : NULL;
  1499. }
  1500. if (vma && addr < vma->vm_start)
  1501. vma = NULL;
  1502. } else {
  1503. if (next_vma && addr >= next_vma->vm_start) {
  1504. vma = next_vma;
  1505. next_vma = vma->vm_next;
  1506. }
  1507. }
  1508. #endif
  1509. }
  1510. lru_add_drain(); /* Push any new pages onto the LRU now */
  1511. }
  1512. /*
  1513. * We hold the mm semaphore and the page_table_lock on entry and
  1514. * should release the pagetable lock on exit..
  1515. */
  1516. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1517. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1518. int write_access, pte_t orig_pte)
  1519. {
  1520. struct page *page;
  1521. swp_entry_t entry;
  1522. pte_t pte;
  1523. int ret = VM_FAULT_MINOR;
  1524. pte_unmap(page_table);
  1525. spin_unlock(&mm->page_table_lock);
  1526. entry = pte_to_swp_entry(orig_pte);
  1527. page = lookup_swap_cache(entry);
  1528. if (!page) {
  1529. swapin_readahead(entry, address, vma);
  1530. page = read_swap_cache_async(entry, vma, address);
  1531. if (!page) {
  1532. /*
  1533. * Back out if somebody else faulted in this pte while
  1534. * we released the page table lock.
  1535. */
  1536. spin_lock(&mm->page_table_lock);
  1537. page_table = pte_offset_map(pmd, address);
  1538. if (likely(pte_same(*page_table, orig_pte)))
  1539. ret = VM_FAULT_OOM;
  1540. goto unlock;
  1541. }
  1542. /* Had to read the page from swap area: Major fault */
  1543. ret = VM_FAULT_MAJOR;
  1544. inc_page_state(pgmajfault);
  1545. grab_swap_token();
  1546. }
  1547. mark_page_accessed(page);
  1548. lock_page(page);
  1549. /*
  1550. * Back out if somebody else faulted in this pte while we
  1551. * released the page table lock.
  1552. */
  1553. spin_lock(&mm->page_table_lock);
  1554. page_table = pte_offset_map(pmd, address);
  1555. if (unlikely(!pte_same(*page_table, orig_pte)))
  1556. goto out_nomap;
  1557. if (unlikely(!PageUptodate(page))) {
  1558. ret = VM_FAULT_SIGBUS;
  1559. goto out_nomap;
  1560. }
  1561. /* The page isn't present yet, go ahead with the fault. */
  1562. inc_mm_counter(mm, anon_rss);
  1563. pte = mk_pte(page, vma->vm_page_prot);
  1564. if (write_access && can_share_swap_page(page)) {
  1565. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1566. write_access = 0;
  1567. }
  1568. flush_icache_page(vma, page);
  1569. set_pte_at(mm, address, page_table, pte);
  1570. page_add_anon_rmap(page, vma, address);
  1571. swap_free(entry);
  1572. if (vm_swap_full())
  1573. remove_exclusive_swap_page(page);
  1574. unlock_page(page);
  1575. if (write_access) {
  1576. if (do_wp_page(mm, vma, address,
  1577. page_table, pmd, pte) == VM_FAULT_OOM)
  1578. ret = VM_FAULT_OOM;
  1579. goto out;
  1580. }
  1581. /* No need to invalidate - it was non-present before */
  1582. update_mmu_cache(vma, address, pte);
  1583. lazy_mmu_prot_update(pte);
  1584. unlock:
  1585. pte_unmap(page_table);
  1586. spin_unlock(&mm->page_table_lock);
  1587. out:
  1588. return ret;
  1589. out_nomap:
  1590. pte_unmap(page_table);
  1591. spin_unlock(&mm->page_table_lock);
  1592. unlock_page(page);
  1593. page_cache_release(page);
  1594. return ret;
  1595. }
  1596. /*
  1597. * We are called with the MM semaphore and page_table_lock
  1598. * spinlock held to protect against concurrent faults in
  1599. * multithreaded programs.
  1600. */
  1601. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1602. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1603. int write_access)
  1604. {
  1605. struct page *page = ZERO_PAGE(addr);
  1606. pte_t entry;
  1607. /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
  1608. entry = mk_pte(page, vma->vm_page_prot);
  1609. if (write_access) {
  1610. /* Allocate our own private page. */
  1611. pte_unmap(page_table);
  1612. spin_unlock(&mm->page_table_lock);
  1613. if (unlikely(anon_vma_prepare(vma)))
  1614. goto oom;
  1615. page = alloc_zeroed_user_highpage(vma, address);
  1616. if (!page)
  1617. goto oom;
  1618. spin_lock(&mm->page_table_lock);
  1619. page_table = pte_offset_map(pmd, address);
  1620. if (!pte_none(*page_table)) {
  1621. page_cache_release(page);
  1622. goto unlock;
  1623. }
  1624. inc_mm_counter(mm, anon_rss);
  1625. entry = mk_pte(page, vma->vm_page_prot);
  1626. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1627. lru_cache_add_active(page);
  1628. SetPageReferenced(page);
  1629. page_add_anon_rmap(page, vma, address);
  1630. } else {
  1631. inc_mm_counter(mm, file_rss);
  1632. page_add_file_rmap(page);
  1633. page_cache_get(page);
  1634. }
  1635. set_pte_at(mm, address, page_table, entry);
  1636. /* No need to invalidate - it was non-present before */
  1637. update_mmu_cache(vma, address, entry);
  1638. lazy_mmu_prot_update(entry);
  1639. unlock:
  1640. pte_unmap(page_table);
  1641. spin_unlock(&mm->page_table_lock);
  1642. return VM_FAULT_MINOR;
  1643. oom:
  1644. return VM_FAULT_OOM;
  1645. }
  1646. /*
  1647. * do_no_page() tries to create a new page mapping. It aggressively
  1648. * tries to share with existing pages, but makes a separate copy if
  1649. * the "write_access" parameter is true in order to avoid the next
  1650. * page fault.
  1651. *
  1652. * As this is called only for pages that do not currently exist, we
  1653. * do not need to flush old virtual caches or the TLB.
  1654. *
  1655. * This is called with the MM semaphore held and the page table
  1656. * spinlock held. Exit with the spinlock released.
  1657. */
  1658. static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1659. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1660. int write_access)
  1661. {
  1662. struct page *new_page;
  1663. struct address_space *mapping = NULL;
  1664. pte_t entry;
  1665. unsigned int sequence = 0;
  1666. int ret = VM_FAULT_MINOR;
  1667. int anon = 0;
  1668. pte_unmap(page_table);
  1669. spin_unlock(&mm->page_table_lock);
  1670. if (vma->vm_file) {
  1671. mapping = vma->vm_file->f_mapping;
  1672. sequence = mapping->truncate_count;
  1673. smp_rmb(); /* serializes i_size against truncate_count */
  1674. }
  1675. retry:
  1676. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  1677. /*
  1678. * No smp_rmb is needed here as long as there's a full
  1679. * spin_lock/unlock sequence inside the ->nopage callback
  1680. * (for the pagecache lookup) that acts as an implicit
  1681. * smp_mb() and prevents the i_size read to happen
  1682. * after the next truncate_count read.
  1683. */
  1684. /* no page was available -- either SIGBUS or OOM */
  1685. if (new_page == NOPAGE_SIGBUS)
  1686. return VM_FAULT_SIGBUS;
  1687. if (new_page == NOPAGE_OOM)
  1688. return VM_FAULT_OOM;
  1689. /*
  1690. * Should we do an early C-O-W break?
  1691. */
  1692. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  1693. struct page *page;
  1694. if (unlikely(anon_vma_prepare(vma)))
  1695. goto oom;
  1696. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1697. if (!page)
  1698. goto oom;
  1699. copy_user_highpage(page, new_page, address);
  1700. page_cache_release(new_page);
  1701. new_page = page;
  1702. anon = 1;
  1703. }
  1704. spin_lock(&mm->page_table_lock);
  1705. /*
  1706. * For a file-backed vma, someone could have truncated or otherwise
  1707. * invalidated this page. If unmap_mapping_range got called,
  1708. * retry getting the page.
  1709. */
  1710. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  1711. spin_unlock(&mm->page_table_lock);
  1712. page_cache_release(new_page);
  1713. cond_resched();
  1714. sequence = mapping->truncate_count;
  1715. smp_rmb();
  1716. goto retry;
  1717. }
  1718. page_table = pte_offset_map(pmd, address);
  1719. /*
  1720. * This silly early PAGE_DIRTY setting removes a race
  1721. * due to the bad i386 page protection. But it's valid
  1722. * for other architectures too.
  1723. *
  1724. * Note that if write_access is true, we either now have
  1725. * an exclusive copy of the page, or this is a shared mapping,
  1726. * so we can make it writable and dirty to avoid having to
  1727. * handle that later.
  1728. */
  1729. /* Only go through if we didn't race with anybody else... */
  1730. if (pte_none(*page_table)) {
  1731. flush_icache_page(vma, new_page);
  1732. entry = mk_pte(new_page, vma->vm_page_prot);
  1733. if (write_access)
  1734. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1735. set_pte_at(mm, address, page_table, entry);
  1736. if (anon) {
  1737. inc_mm_counter(mm, anon_rss);
  1738. lru_cache_add_active(new_page);
  1739. page_add_anon_rmap(new_page, vma, address);
  1740. } else if (!(vma->vm_flags & VM_RESERVED)) {
  1741. inc_mm_counter(mm, file_rss);
  1742. page_add_file_rmap(new_page);
  1743. }
  1744. } else {
  1745. /* One of our sibling threads was faster, back out. */
  1746. page_cache_release(new_page);
  1747. goto unlock;
  1748. }
  1749. /* no need to invalidate: a not-present page shouldn't be cached */
  1750. update_mmu_cache(vma, address, entry);
  1751. lazy_mmu_prot_update(entry);
  1752. unlock:
  1753. pte_unmap(page_table);
  1754. spin_unlock(&mm->page_table_lock);
  1755. return ret;
  1756. oom:
  1757. page_cache_release(new_page);
  1758. return VM_FAULT_OOM;
  1759. }
  1760. /*
  1761. * Fault of a previously existing named mapping. Repopulate the pte
  1762. * from the encoded file_pte if possible. This enables swappable
  1763. * nonlinear vmas.
  1764. */
  1765. static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1766. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1767. int write_access, pte_t orig_pte)
  1768. {
  1769. pgoff_t pgoff;
  1770. int err;
  1771. pte_unmap(page_table);
  1772. spin_unlock(&mm->page_table_lock);
  1773. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  1774. /*
  1775. * Page table corrupted: show pte and kill process.
  1776. */
  1777. print_bad_pte(vma, orig_pte, address);
  1778. return VM_FAULT_OOM;
  1779. }
  1780. /* We can then assume vm->vm_ops && vma->vm_ops->populate */
  1781. pgoff = pte_to_pgoff(orig_pte);
  1782. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
  1783. vma->vm_page_prot, pgoff, 0);
  1784. if (err == -ENOMEM)
  1785. return VM_FAULT_OOM;
  1786. if (err)
  1787. return VM_FAULT_SIGBUS;
  1788. return VM_FAULT_MAJOR;
  1789. }
  1790. /*
  1791. * These routines also need to handle stuff like marking pages dirty
  1792. * and/or accessed for architectures that don't do it in hardware (most
  1793. * RISC architectures). The early dirtying is also good on the i386.
  1794. *
  1795. * There is also a hook called "update_mmu_cache()" that architectures
  1796. * with external mmu caches can use to update those (ie the Sparc or
  1797. * PowerPC hashed page tables that act as extended TLBs).
  1798. *
  1799. * Note the "page_table_lock". It is to protect against kswapd removing
  1800. * pages from under us. Note that kswapd only ever _removes_ pages, never
  1801. * adds them. As such, once we have noticed that the page is not present,
  1802. * we can drop the lock early.
  1803. *
  1804. * The adding of pages is protected by the MM semaphore (which we hold),
  1805. * so we don't need to worry about a page being suddenly been added into
  1806. * our VM.
  1807. *
  1808. * We enter with the pagetable spinlock held, we are supposed to
  1809. * release it when done.
  1810. */
  1811. static inline int handle_pte_fault(struct mm_struct *mm,
  1812. struct vm_area_struct *vma, unsigned long address,
  1813. pte_t *pte, pmd_t *pmd, int write_access)
  1814. {
  1815. pte_t entry;
  1816. entry = *pte;
  1817. if (!pte_present(entry)) {
  1818. if (pte_none(entry)) {
  1819. if (!vma->vm_ops || !vma->vm_ops->nopage)
  1820. return do_anonymous_page(mm, vma, address,
  1821. pte, pmd, write_access);
  1822. return do_no_page(mm, vma, address,
  1823. pte, pmd, write_access);
  1824. }
  1825. if (pte_file(entry))
  1826. return do_file_page(mm, vma, address,
  1827. pte, pmd, write_access, entry);
  1828. return do_swap_page(mm, vma, address,
  1829. pte, pmd, write_access, entry);
  1830. }
  1831. if (write_access) {
  1832. if (!pte_write(entry))
  1833. return do_wp_page(mm, vma, address, pte, pmd, entry);
  1834. entry = pte_mkdirty(entry);
  1835. }
  1836. entry = pte_mkyoung(entry);
  1837. ptep_set_access_flags(vma, address, pte, entry, write_access);
  1838. update_mmu_cache(vma, address, entry);
  1839. lazy_mmu_prot_update(entry);
  1840. pte_unmap(pte);
  1841. spin_unlock(&mm->page_table_lock);
  1842. return VM_FAULT_MINOR;
  1843. }
  1844. /*
  1845. * By the time we get here, we already hold the mm semaphore
  1846. */
  1847. int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1848. unsigned long address, int write_access)
  1849. {
  1850. pgd_t *pgd;
  1851. pud_t *pud;
  1852. pmd_t *pmd;
  1853. pte_t *pte;
  1854. __set_current_state(TASK_RUNNING);
  1855. inc_page_state(pgfault);
  1856. if (unlikely(is_vm_hugetlb_page(vma)))
  1857. return hugetlb_fault(mm, vma, address, write_access);
  1858. /*
  1859. * We need the page table lock to synchronize with kswapd
  1860. * and the SMP-safe atomic PTE updates.
  1861. */
  1862. pgd = pgd_offset(mm, address);
  1863. spin_lock(&mm->page_table_lock);
  1864. pud = pud_alloc(mm, pgd, address);
  1865. if (!pud)
  1866. goto oom;
  1867. pmd = pmd_alloc(mm, pud, address);
  1868. if (!pmd)
  1869. goto oom;
  1870. pte = pte_alloc_map(mm, pmd, address);
  1871. if (!pte)
  1872. goto oom;
  1873. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  1874. oom:
  1875. spin_unlock(&mm->page_table_lock);
  1876. return VM_FAULT_OOM;
  1877. }
  1878. #ifndef __PAGETABLE_PUD_FOLDED
  1879. /*
  1880. * Allocate page upper directory.
  1881. * We've already handled the fast-path in-line.
  1882. */
  1883. pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1884. {
  1885. pud_t *new;
  1886. if (mm != &init_mm) /* Temporary bridging hack */
  1887. spin_unlock(&mm->page_table_lock);
  1888. new = pud_alloc_one(mm, address);
  1889. if (!new) {
  1890. if (mm != &init_mm) /* Temporary bridging hack */
  1891. spin_lock(&mm->page_table_lock);
  1892. return NULL;
  1893. }
  1894. spin_lock(&mm->page_table_lock);
  1895. if (pgd_present(*pgd)) {
  1896. pud_free(new);
  1897. goto out;
  1898. }
  1899. pgd_populate(mm, pgd, new);
  1900. out:
  1901. if (mm == &init_mm) /* Temporary bridging hack */
  1902. spin_unlock(&mm->page_table_lock);
  1903. return pud_offset(pgd, address);
  1904. }
  1905. #endif /* __PAGETABLE_PUD_FOLDED */
  1906. #ifndef __PAGETABLE_PMD_FOLDED
  1907. /*
  1908. * Allocate page middle directory.
  1909. * We've already handled the fast-path in-line.
  1910. */
  1911. pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1912. {
  1913. pmd_t *new;
  1914. if (mm != &init_mm) /* Temporary bridging hack */
  1915. spin_unlock(&mm->page_table_lock);
  1916. new = pmd_alloc_one(mm, address);
  1917. if (!new) {
  1918. if (mm != &init_mm) /* Temporary bridging hack */
  1919. spin_lock(&mm->page_table_lock);
  1920. return NULL;
  1921. }
  1922. spin_lock(&mm->page_table_lock);
  1923. #ifndef __ARCH_HAS_4LEVEL_HACK
  1924. if (pud_present(*pud)) {
  1925. pmd_free(new);
  1926. goto out;
  1927. }
  1928. pud_populate(mm, pud, new);
  1929. #else
  1930. if (pgd_present(*pud)) {
  1931. pmd_free(new);
  1932. goto out;
  1933. }
  1934. pgd_populate(mm, pud, new);
  1935. #endif /* __ARCH_HAS_4LEVEL_HACK */
  1936. out:
  1937. if (mm == &init_mm) /* Temporary bridging hack */
  1938. spin_unlock(&mm->page_table_lock);
  1939. return pmd_offset(pud, address);
  1940. }
  1941. #endif /* __PAGETABLE_PMD_FOLDED */
  1942. int make_pages_present(unsigned long addr, unsigned long end)
  1943. {
  1944. int ret, len, write;
  1945. struct vm_area_struct * vma;
  1946. vma = find_vma(current->mm, addr);
  1947. if (!vma)
  1948. return -1;
  1949. write = (vma->vm_flags & VM_WRITE) != 0;
  1950. if (addr >= end)
  1951. BUG();
  1952. if (end > vma->vm_end)
  1953. BUG();
  1954. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  1955. ret = get_user_pages(current, current->mm, addr,
  1956. len, write, 0, NULL, NULL);
  1957. if (ret < 0)
  1958. return ret;
  1959. return ret == len ? 0 : -1;
  1960. }
  1961. /*
  1962. * Map a vmalloc()-space virtual address to the physical page.
  1963. */
  1964. struct page * vmalloc_to_page(void * vmalloc_addr)
  1965. {
  1966. unsigned long addr = (unsigned long) vmalloc_addr;
  1967. struct page *page = NULL;
  1968. pgd_t *pgd = pgd_offset_k(addr);
  1969. pud_t *pud;
  1970. pmd_t *pmd;
  1971. pte_t *ptep, pte;
  1972. if (!pgd_none(*pgd)) {
  1973. pud = pud_offset(pgd, addr);
  1974. if (!pud_none(*pud)) {
  1975. pmd = pmd_offset(pud, addr);
  1976. if (!pmd_none(*pmd)) {
  1977. ptep = pte_offset_map(pmd, addr);
  1978. pte = *ptep;
  1979. if (pte_present(pte))
  1980. page = pte_page(pte);
  1981. pte_unmap(ptep);
  1982. }
  1983. }
  1984. }
  1985. return page;
  1986. }
  1987. EXPORT_SYMBOL(vmalloc_to_page);
  1988. /*
  1989. * Map a vmalloc()-space virtual address to the physical page frame number.
  1990. */
  1991. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  1992. {
  1993. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  1994. }
  1995. EXPORT_SYMBOL(vmalloc_to_pfn);
  1996. #if !defined(__HAVE_ARCH_GATE_AREA)
  1997. #if defined(AT_SYSINFO_EHDR)
  1998. static struct vm_area_struct gate_vma;
  1999. static int __init gate_vma_init(void)
  2000. {
  2001. gate_vma.vm_mm = NULL;
  2002. gate_vma.vm_start = FIXADDR_USER_START;
  2003. gate_vma.vm_end = FIXADDR_USER_END;
  2004. gate_vma.vm_page_prot = PAGE_READONLY;
  2005. gate_vma.vm_flags = VM_RESERVED;
  2006. return 0;
  2007. }
  2008. __initcall(gate_vma_init);
  2009. #endif
  2010. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2011. {
  2012. #ifdef AT_SYSINFO_EHDR
  2013. return &gate_vma;
  2014. #else
  2015. return NULL;
  2016. #endif
  2017. }
  2018. int in_gate_area_no_task(unsigned long addr)
  2019. {
  2020. #ifdef AT_SYSINFO_EHDR
  2021. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2022. return 1;
  2023. #endif
  2024. return 0;
  2025. }
  2026. #endif /* __HAVE_ARCH_GATE_AREA */