nomadik-mtu.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. /*
  2. * Copyright (C) 2008 STMicroelectronics
  3. * Copyright (C) 2010 Alessandro Rubini
  4. * Copyright (C) 2010 Linus Walleij for ST-Ericsson
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2, as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/irq.h>
  13. #include <linux/io.h>
  14. #include <linux/clockchips.h>
  15. #include <linux/clocksource.h>
  16. #include <linux/clk.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/err.h>
  19. #include <linux/platform_data/clocksource-nomadik-mtu.h>
  20. #include <asm/mach/time.h>
  21. #include <asm/sched_clock.h>
  22. /*
  23. * The MTU device hosts four different counters, with 4 set of
  24. * registers. These are register names.
  25. */
  26. #define MTU_IMSC 0x00 /* Interrupt mask set/clear */
  27. #define MTU_RIS 0x04 /* Raw interrupt status */
  28. #define MTU_MIS 0x08 /* Masked interrupt status */
  29. #define MTU_ICR 0x0C /* Interrupt clear register */
  30. /* per-timer registers take 0..3 as argument */
  31. #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */
  32. #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */
  33. #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */
  34. #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */
  35. /* bits for the control register */
  36. #define MTU_CRn_ENA 0x80
  37. #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */
  38. #define MTU_CRn_PRESCALE_MASK 0x0c
  39. #define MTU_CRn_PRESCALE_1 0x00
  40. #define MTU_CRn_PRESCALE_16 0x04
  41. #define MTU_CRn_PRESCALE_256 0x08
  42. #define MTU_CRn_32BITS 0x02
  43. #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/
  44. /* Other registers are usual amba/primecell registers, currently not used */
  45. #define MTU_ITCR 0xff0
  46. #define MTU_ITOP 0xff4
  47. #define MTU_PERIPH_ID0 0xfe0
  48. #define MTU_PERIPH_ID1 0xfe4
  49. #define MTU_PERIPH_ID2 0xfe8
  50. #define MTU_PERIPH_ID3 0xfeC
  51. #define MTU_PCELL0 0xff0
  52. #define MTU_PCELL1 0xff4
  53. #define MTU_PCELL2 0xff8
  54. #define MTU_PCELL3 0xffC
  55. static void __iomem *mtu_base;
  56. static bool clkevt_periodic;
  57. static u32 clk_prescale;
  58. static u32 nmdk_cycle; /* write-once */
  59. #ifdef CONFIG_NOMADIK_MTU_SCHED_CLOCK
  60. /*
  61. * Override the global weak sched_clock symbol with this
  62. * local implementation which uses the clocksource to get some
  63. * better resolution when scheduling the kernel.
  64. */
  65. static u32 notrace nomadik_read_sched_clock(void)
  66. {
  67. if (unlikely(!mtu_base))
  68. return 0;
  69. return -readl(mtu_base + MTU_VAL(0));
  70. }
  71. #endif
  72. /* Clockevent device: use one-shot mode */
  73. static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
  74. {
  75. writel(1 << 1, mtu_base + MTU_IMSC);
  76. writel(evt, mtu_base + MTU_LR(1));
  77. /* Load highest value, enable device, enable interrupts */
  78. writel(MTU_CRn_ONESHOT | clk_prescale |
  79. MTU_CRn_32BITS | MTU_CRn_ENA,
  80. mtu_base + MTU_CR(1));
  81. return 0;
  82. }
  83. void nmdk_clkevt_reset(void)
  84. {
  85. if (clkevt_periodic) {
  86. /* Timer: configure load and background-load, and fire it up */
  87. writel(nmdk_cycle, mtu_base + MTU_LR(1));
  88. writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
  89. writel(MTU_CRn_PERIODIC | clk_prescale |
  90. MTU_CRn_32BITS | MTU_CRn_ENA,
  91. mtu_base + MTU_CR(1));
  92. writel(1 << 1, mtu_base + MTU_IMSC);
  93. } else {
  94. /* Generate an interrupt to start the clockevent again */
  95. (void) nmdk_clkevt_next(nmdk_cycle, NULL);
  96. }
  97. }
  98. static void nmdk_clkevt_mode(enum clock_event_mode mode,
  99. struct clock_event_device *dev)
  100. {
  101. switch (mode) {
  102. case CLOCK_EVT_MODE_PERIODIC:
  103. clkevt_periodic = true;
  104. nmdk_clkevt_reset();
  105. break;
  106. case CLOCK_EVT_MODE_ONESHOT:
  107. clkevt_periodic = false;
  108. break;
  109. case CLOCK_EVT_MODE_SHUTDOWN:
  110. case CLOCK_EVT_MODE_UNUSED:
  111. writel(0, mtu_base + MTU_IMSC);
  112. /* disable timer */
  113. writel(0, mtu_base + MTU_CR(1));
  114. /* load some high default value */
  115. writel(0xffffffff, mtu_base + MTU_LR(1));
  116. break;
  117. case CLOCK_EVT_MODE_RESUME:
  118. break;
  119. }
  120. }
  121. void nmdk_clksrc_reset(void)
  122. {
  123. /* Disable */
  124. writel(0, mtu_base + MTU_CR(0));
  125. /* ClockSource: configure load and background-load, and fire it up */
  126. writel(nmdk_cycle, mtu_base + MTU_LR(0));
  127. writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
  128. writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
  129. mtu_base + MTU_CR(0));
  130. }
  131. static void nmdk_clkevt_resume(struct clock_event_device *cedev)
  132. {
  133. nmdk_clkevt_reset();
  134. nmdk_clksrc_reset();
  135. }
  136. static struct clock_event_device nmdk_clkevt = {
  137. .name = "mtu_1",
  138. .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
  139. .rating = 200,
  140. .set_mode = nmdk_clkevt_mode,
  141. .set_next_event = nmdk_clkevt_next,
  142. .resume = nmdk_clkevt_resume,
  143. };
  144. /*
  145. * IRQ Handler for timer 1 of the MTU block.
  146. */
  147. static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
  148. {
  149. struct clock_event_device *evdev = dev_id;
  150. writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
  151. evdev->event_handler(evdev);
  152. return IRQ_HANDLED;
  153. }
  154. static struct irqaction nmdk_timer_irq = {
  155. .name = "Nomadik Timer Tick",
  156. .flags = IRQF_DISABLED | IRQF_TIMER,
  157. .handler = nmdk_timer_interrupt,
  158. .dev_id = &nmdk_clkevt,
  159. };
  160. void __init nmdk_timer_init(void __iomem *base, int irq)
  161. {
  162. unsigned long rate;
  163. struct clk *clk0, *pclk0;
  164. mtu_base = base;
  165. pclk0 = clk_get_sys("mtu0", "apb_pclk");
  166. BUG_ON(IS_ERR(pclk0));
  167. BUG_ON(clk_prepare(pclk0) < 0);
  168. BUG_ON(clk_enable(pclk0) < 0);
  169. clk0 = clk_get_sys("mtu0", NULL);
  170. BUG_ON(IS_ERR(clk0));
  171. BUG_ON(clk_prepare(clk0) < 0);
  172. BUG_ON(clk_enable(clk0) < 0);
  173. /*
  174. * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
  175. * for ux500.
  176. * Use a divide-by-16 counter if the tick rate is more than 32MHz.
  177. * At 32 MHz, the timer (with 32 bit counter) can be programmed
  178. * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
  179. * with 16 gives too low timer resolution.
  180. */
  181. rate = clk_get_rate(clk0);
  182. if (rate > 32000000) {
  183. rate /= 16;
  184. clk_prescale = MTU_CRn_PRESCALE_16;
  185. } else {
  186. clk_prescale = MTU_CRn_PRESCALE_1;
  187. }
  188. /* Cycles for periodic mode */
  189. nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
  190. /* Timer 0 is the free running clocksource */
  191. nmdk_clksrc_reset();
  192. if (clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
  193. rate, 200, 32, clocksource_mmio_readl_down))
  194. pr_err("timer: failed to initialize clock source %s\n",
  195. "mtu_0");
  196. #ifdef CONFIG_NOMADIK_MTU_SCHED_CLOCK
  197. setup_sched_clock(nomadik_read_sched_clock, 32, rate);
  198. #endif
  199. /* Timer 1 is used for events, register irq and clockevents */
  200. setup_irq(irq, &nmdk_timer_irq);
  201. nmdk_clkevt.cpumask = cpumask_of(0);
  202. clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU);
  203. }