sched_fair.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 5000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 5000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 1000000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 5;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  416. curr->sum_exec_runtime += delta_exec;
  417. schedstat_add(cfs_rq, exec_clock, delta_exec);
  418. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  419. curr->vruntime += delta_exec_weighted;
  420. update_min_vruntime(cfs_rq);
  421. }
  422. static void update_curr(struct cfs_rq *cfs_rq)
  423. {
  424. struct sched_entity *curr = cfs_rq->curr;
  425. u64 now = rq_of(cfs_rq)->clock;
  426. unsigned long delta_exec;
  427. if (unlikely(!curr))
  428. return;
  429. /*
  430. * Get the amount of time the current task was running
  431. * since the last time we changed load (this cannot
  432. * overflow on 32 bits):
  433. */
  434. delta_exec = (unsigned long)(now - curr->exec_start);
  435. if (!delta_exec)
  436. return;
  437. __update_curr(cfs_rq, curr, delta_exec);
  438. curr->exec_start = now;
  439. if (entity_is_task(curr)) {
  440. struct task_struct *curtask = task_of(curr);
  441. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  442. cpuacct_charge(curtask, delta_exec);
  443. account_group_exec_runtime(curtask, delta_exec);
  444. }
  445. }
  446. static inline void
  447. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  448. {
  449. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  450. }
  451. /*
  452. * Task is being enqueued - update stats:
  453. */
  454. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  455. {
  456. /*
  457. * Are we enqueueing a waiting task? (for current tasks
  458. * a dequeue/enqueue event is a NOP)
  459. */
  460. if (se != cfs_rq->curr)
  461. update_stats_wait_start(cfs_rq, se);
  462. }
  463. static void
  464. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  465. {
  466. schedstat_set(se->wait_max, max(se->wait_max,
  467. rq_of(cfs_rq)->clock - se->wait_start));
  468. schedstat_set(se->wait_count, se->wait_count + 1);
  469. schedstat_set(se->wait_sum, se->wait_sum +
  470. rq_of(cfs_rq)->clock - se->wait_start);
  471. #ifdef CONFIG_SCHEDSTATS
  472. if (entity_is_task(se)) {
  473. trace_sched_stat_wait(task_of(se),
  474. rq_of(cfs_rq)->clock - se->wait_start);
  475. }
  476. #endif
  477. schedstat_set(se->wait_start, 0);
  478. }
  479. static inline void
  480. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  481. {
  482. /*
  483. * Mark the end of the wait period if dequeueing a
  484. * waiting task:
  485. */
  486. if (se != cfs_rq->curr)
  487. update_stats_wait_end(cfs_rq, se);
  488. }
  489. /*
  490. * We are picking a new current task - update its stats:
  491. */
  492. static inline void
  493. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  494. {
  495. /*
  496. * We are starting a new run period:
  497. */
  498. se->exec_start = rq_of(cfs_rq)->clock;
  499. }
  500. /**************************************************
  501. * Scheduling class queueing methods:
  502. */
  503. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  504. static void
  505. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  506. {
  507. cfs_rq->task_weight += weight;
  508. }
  509. #else
  510. static inline void
  511. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  512. {
  513. }
  514. #endif
  515. static void
  516. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  517. {
  518. update_load_add(&cfs_rq->load, se->load.weight);
  519. if (!parent_entity(se))
  520. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  521. if (entity_is_task(se)) {
  522. add_cfs_task_weight(cfs_rq, se->load.weight);
  523. list_add(&se->group_node, &cfs_rq->tasks);
  524. }
  525. cfs_rq->nr_running++;
  526. se->on_rq = 1;
  527. }
  528. static void
  529. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. update_load_sub(&cfs_rq->load, se->load.weight);
  532. if (!parent_entity(se))
  533. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  534. if (entity_is_task(se)) {
  535. add_cfs_task_weight(cfs_rq, -se->load.weight);
  536. list_del_init(&se->group_node);
  537. }
  538. cfs_rq->nr_running--;
  539. se->on_rq = 0;
  540. }
  541. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  542. {
  543. #ifdef CONFIG_SCHEDSTATS
  544. struct task_struct *tsk = NULL;
  545. if (entity_is_task(se))
  546. tsk = task_of(se);
  547. if (se->sleep_start) {
  548. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  549. if ((s64)delta < 0)
  550. delta = 0;
  551. if (unlikely(delta > se->sleep_max))
  552. se->sleep_max = delta;
  553. se->sleep_start = 0;
  554. se->sum_sleep_runtime += delta;
  555. if (tsk) {
  556. account_scheduler_latency(tsk, delta >> 10, 1);
  557. trace_sched_stat_sleep(tsk, delta);
  558. }
  559. }
  560. if (se->block_start) {
  561. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  562. if ((s64)delta < 0)
  563. delta = 0;
  564. if (unlikely(delta > se->block_max))
  565. se->block_max = delta;
  566. se->block_start = 0;
  567. se->sum_sleep_runtime += delta;
  568. if (tsk) {
  569. if (tsk->in_iowait) {
  570. se->iowait_sum += delta;
  571. se->iowait_count++;
  572. trace_sched_stat_iowait(tsk, delta);
  573. }
  574. /*
  575. * Blocking time is in units of nanosecs, so shift by
  576. * 20 to get a milliseconds-range estimation of the
  577. * amount of time that the task spent sleeping:
  578. */
  579. if (unlikely(prof_on == SLEEP_PROFILING)) {
  580. profile_hits(SLEEP_PROFILING,
  581. (void *)get_wchan(tsk),
  582. delta >> 20);
  583. }
  584. account_scheduler_latency(tsk, delta >> 10, 0);
  585. }
  586. }
  587. #endif
  588. }
  589. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  590. {
  591. #ifdef CONFIG_SCHED_DEBUG
  592. s64 d = se->vruntime - cfs_rq->min_vruntime;
  593. if (d < 0)
  594. d = -d;
  595. if (d > 3*sysctl_sched_latency)
  596. schedstat_inc(cfs_rq, nr_spread_over);
  597. #endif
  598. }
  599. static void
  600. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  601. {
  602. u64 vruntime = cfs_rq->min_vruntime;
  603. /*
  604. * The 'current' period is already promised to the current tasks,
  605. * however the extra weight of the new task will slow them down a
  606. * little, place the new task so that it fits in the slot that
  607. * stays open at the end.
  608. */
  609. if (initial && sched_feat(START_DEBIT))
  610. vruntime += sched_vslice(cfs_rq, se);
  611. /* sleeps up to a single latency don't count. */
  612. if (!initial && sched_feat(FAIR_SLEEPERS)) {
  613. unsigned long thresh = sysctl_sched_latency;
  614. /*
  615. * Convert the sleeper threshold into virtual time.
  616. * SCHED_IDLE is a special sub-class. We care about
  617. * fairness only relative to other SCHED_IDLE tasks,
  618. * all of which have the same weight.
  619. */
  620. if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
  621. task_of(se)->policy != SCHED_IDLE))
  622. thresh = calc_delta_fair(thresh, se);
  623. /*
  624. * Halve their sleep time's effect, to allow
  625. * for a gentler effect of sleepers:
  626. */
  627. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  628. thresh >>= 1;
  629. vruntime -= thresh;
  630. }
  631. /* ensure we never gain time by being placed backwards. */
  632. vruntime = max_vruntime(se->vruntime, vruntime);
  633. se->vruntime = vruntime;
  634. }
  635. #define ENQUEUE_WAKEUP 1
  636. #define ENQUEUE_MIGRATE 2
  637. static void
  638. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  639. {
  640. /*
  641. * Update the normalized vruntime before updating min_vruntime
  642. * through callig update_curr().
  643. */
  644. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
  645. se->vruntime += cfs_rq->min_vruntime;
  646. /*
  647. * Update run-time statistics of the 'current'.
  648. */
  649. update_curr(cfs_rq);
  650. account_entity_enqueue(cfs_rq, se);
  651. if (flags & ENQUEUE_WAKEUP) {
  652. place_entity(cfs_rq, se, 0);
  653. enqueue_sleeper(cfs_rq, se);
  654. }
  655. update_stats_enqueue(cfs_rq, se);
  656. check_spread(cfs_rq, se);
  657. if (se != cfs_rq->curr)
  658. __enqueue_entity(cfs_rq, se);
  659. }
  660. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  661. {
  662. if (!se || cfs_rq->last == se)
  663. cfs_rq->last = NULL;
  664. if (!se || cfs_rq->next == se)
  665. cfs_rq->next = NULL;
  666. }
  667. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  668. {
  669. for_each_sched_entity(se)
  670. __clear_buddies(cfs_rq_of(se), se);
  671. }
  672. static void
  673. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  674. {
  675. /*
  676. * Update run-time statistics of the 'current'.
  677. */
  678. update_curr(cfs_rq);
  679. update_stats_dequeue(cfs_rq, se);
  680. if (sleep) {
  681. #ifdef CONFIG_SCHEDSTATS
  682. if (entity_is_task(se)) {
  683. struct task_struct *tsk = task_of(se);
  684. if (tsk->state & TASK_INTERRUPTIBLE)
  685. se->sleep_start = rq_of(cfs_rq)->clock;
  686. if (tsk->state & TASK_UNINTERRUPTIBLE)
  687. se->block_start = rq_of(cfs_rq)->clock;
  688. }
  689. #endif
  690. }
  691. clear_buddies(cfs_rq, se);
  692. if (se != cfs_rq->curr)
  693. __dequeue_entity(cfs_rq, se);
  694. account_entity_dequeue(cfs_rq, se);
  695. update_min_vruntime(cfs_rq);
  696. /*
  697. * Normalize the entity after updating the min_vruntime because the
  698. * update can refer to the ->curr item and we need to reflect this
  699. * movement in our normalized position.
  700. */
  701. if (!sleep)
  702. se->vruntime -= cfs_rq->min_vruntime;
  703. }
  704. /*
  705. * Preempt the current task with a newly woken task if needed:
  706. */
  707. static void
  708. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  709. {
  710. unsigned long ideal_runtime, delta_exec;
  711. ideal_runtime = sched_slice(cfs_rq, curr);
  712. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  713. if (delta_exec > ideal_runtime) {
  714. resched_task(rq_of(cfs_rq)->curr);
  715. /*
  716. * The current task ran long enough, ensure it doesn't get
  717. * re-elected due to buddy favours.
  718. */
  719. clear_buddies(cfs_rq, curr);
  720. return;
  721. }
  722. /*
  723. * Ensure that a task that missed wakeup preemption by a
  724. * narrow margin doesn't have to wait for a full slice.
  725. * This also mitigates buddy induced latencies under load.
  726. */
  727. if (!sched_feat(WAKEUP_PREEMPT))
  728. return;
  729. if (delta_exec < sysctl_sched_min_granularity)
  730. return;
  731. if (cfs_rq->nr_running > 1) {
  732. struct sched_entity *se = __pick_next_entity(cfs_rq);
  733. s64 delta = curr->vruntime - se->vruntime;
  734. if (delta > ideal_runtime)
  735. resched_task(rq_of(cfs_rq)->curr);
  736. }
  737. }
  738. static void
  739. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  740. {
  741. /* 'current' is not kept within the tree. */
  742. if (se->on_rq) {
  743. /*
  744. * Any task has to be enqueued before it get to execute on
  745. * a CPU. So account for the time it spent waiting on the
  746. * runqueue.
  747. */
  748. update_stats_wait_end(cfs_rq, se);
  749. __dequeue_entity(cfs_rq, se);
  750. }
  751. update_stats_curr_start(cfs_rq, se);
  752. cfs_rq->curr = se;
  753. #ifdef CONFIG_SCHEDSTATS
  754. /*
  755. * Track our maximum slice length, if the CPU's load is at
  756. * least twice that of our own weight (i.e. dont track it
  757. * when there are only lesser-weight tasks around):
  758. */
  759. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  760. se->slice_max = max(se->slice_max,
  761. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  762. }
  763. #endif
  764. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  765. }
  766. static int
  767. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  768. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  769. {
  770. struct sched_entity *se = __pick_next_entity(cfs_rq);
  771. struct sched_entity *left = se;
  772. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  773. se = cfs_rq->next;
  774. /*
  775. * Prefer last buddy, try to return the CPU to a preempted task.
  776. */
  777. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  778. se = cfs_rq->last;
  779. clear_buddies(cfs_rq, se);
  780. return se;
  781. }
  782. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  783. {
  784. /*
  785. * If still on the runqueue then deactivate_task()
  786. * was not called and update_curr() has to be done:
  787. */
  788. if (prev->on_rq)
  789. update_curr(cfs_rq);
  790. check_spread(cfs_rq, prev);
  791. if (prev->on_rq) {
  792. update_stats_wait_start(cfs_rq, prev);
  793. /* Put 'current' back into the tree. */
  794. __enqueue_entity(cfs_rq, prev);
  795. }
  796. cfs_rq->curr = NULL;
  797. }
  798. static void
  799. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  800. {
  801. /*
  802. * Update run-time statistics of the 'current'.
  803. */
  804. update_curr(cfs_rq);
  805. #ifdef CONFIG_SCHED_HRTICK
  806. /*
  807. * queued ticks are scheduled to match the slice, so don't bother
  808. * validating it and just reschedule.
  809. */
  810. if (queued) {
  811. resched_task(rq_of(cfs_rq)->curr);
  812. return;
  813. }
  814. /*
  815. * don't let the period tick interfere with the hrtick preemption
  816. */
  817. if (!sched_feat(DOUBLE_TICK) &&
  818. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  819. return;
  820. #endif
  821. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  822. check_preempt_tick(cfs_rq, curr);
  823. }
  824. /**************************************************
  825. * CFS operations on tasks:
  826. */
  827. #ifdef CONFIG_SCHED_HRTICK
  828. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  829. {
  830. struct sched_entity *se = &p->se;
  831. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  832. WARN_ON(task_rq(p) != rq);
  833. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  834. u64 slice = sched_slice(cfs_rq, se);
  835. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  836. s64 delta = slice - ran;
  837. if (delta < 0) {
  838. if (rq->curr == p)
  839. resched_task(p);
  840. return;
  841. }
  842. /*
  843. * Don't schedule slices shorter than 10000ns, that just
  844. * doesn't make sense. Rely on vruntime for fairness.
  845. */
  846. if (rq->curr != p)
  847. delta = max_t(s64, 10000LL, delta);
  848. hrtick_start(rq, delta);
  849. }
  850. }
  851. /*
  852. * called from enqueue/dequeue and updates the hrtick when the
  853. * current task is from our class and nr_running is low enough
  854. * to matter.
  855. */
  856. static void hrtick_update(struct rq *rq)
  857. {
  858. struct task_struct *curr = rq->curr;
  859. if (curr->sched_class != &fair_sched_class)
  860. return;
  861. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  862. hrtick_start_fair(rq, curr);
  863. }
  864. #else /* !CONFIG_SCHED_HRTICK */
  865. static inline void
  866. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  867. {
  868. }
  869. static inline void hrtick_update(struct rq *rq)
  870. {
  871. }
  872. #endif
  873. /*
  874. * The enqueue_task method is called before nr_running is
  875. * increased. Here we update the fair scheduling stats and
  876. * then put the task into the rbtree:
  877. */
  878. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  879. {
  880. struct cfs_rq *cfs_rq;
  881. struct sched_entity *se = &p->se;
  882. int flags = 0;
  883. if (wakeup)
  884. flags |= ENQUEUE_WAKEUP;
  885. if (p->state == TASK_WAKING)
  886. flags |= ENQUEUE_MIGRATE;
  887. for_each_sched_entity(se) {
  888. if (se->on_rq)
  889. break;
  890. cfs_rq = cfs_rq_of(se);
  891. enqueue_entity(cfs_rq, se, flags);
  892. flags = ENQUEUE_WAKEUP;
  893. }
  894. hrtick_update(rq);
  895. }
  896. /*
  897. * The dequeue_task method is called before nr_running is
  898. * decreased. We remove the task from the rbtree and
  899. * update the fair scheduling stats:
  900. */
  901. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  902. {
  903. struct cfs_rq *cfs_rq;
  904. struct sched_entity *se = &p->se;
  905. for_each_sched_entity(se) {
  906. cfs_rq = cfs_rq_of(se);
  907. dequeue_entity(cfs_rq, se, sleep);
  908. /* Don't dequeue parent if it has other entities besides us */
  909. if (cfs_rq->load.weight)
  910. break;
  911. sleep = 1;
  912. }
  913. hrtick_update(rq);
  914. }
  915. /*
  916. * sched_yield() support is very simple - we dequeue and enqueue.
  917. *
  918. * If compat_yield is turned on then we requeue to the end of the tree.
  919. */
  920. static void yield_task_fair(struct rq *rq)
  921. {
  922. struct task_struct *curr = rq->curr;
  923. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  924. struct sched_entity *rightmost, *se = &curr->se;
  925. /*
  926. * Are we the only task in the tree?
  927. */
  928. if (unlikely(cfs_rq->nr_running == 1))
  929. return;
  930. clear_buddies(cfs_rq, se);
  931. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  932. update_rq_clock(rq);
  933. /*
  934. * Update run-time statistics of the 'current'.
  935. */
  936. update_curr(cfs_rq);
  937. return;
  938. }
  939. /*
  940. * Find the rightmost entry in the rbtree:
  941. */
  942. rightmost = __pick_last_entity(cfs_rq);
  943. /*
  944. * Already in the rightmost position?
  945. */
  946. if (unlikely(!rightmost || entity_before(rightmost, se)))
  947. return;
  948. /*
  949. * Minimally necessary key value to be last in the tree:
  950. * Upon rescheduling, sched_class::put_prev_task() will place
  951. * 'current' within the tree based on its new key value.
  952. */
  953. se->vruntime = rightmost->vruntime + 1;
  954. }
  955. #ifdef CONFIG_SMP
  956. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  957. {
  958. struct sched_entity *se = &p->se;
  959. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  960. se->vruntime -= cfs_rq->min_vruntime;
  961. }
  962. #ifdef CONFIG_FAIR_GROUP_SCHED
  963. /*
  964. * effective_load() calculates the load change as seen from the root_task_group
  965. *
  966. * Adding load to a group doesn't make a group heavier, but can cause movement
  967. * of group shares between cpus. Assuming the shares were perfectly aligned one
  968. * can calculate the shift in shares.
  969. *
  970. * The problem is that perfectly aligning the shares is rather expensive, hence
  971. * we try to avoid doing that too often - see update_shares(), which ratelimits
  972. * this change.
  973. *
  974. * We compensate this by not only taking the current delta into account, but
  975. * also considering the delta between when the shares were last adjusted and
  976. * now.
  977. *
  978. * We still saw a performance dip, some tracing learned us that between
  979. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  980. * significantly. Therefore try to bias the error in direction of failing
  981. * the affine wakeup.
  982. *
  983. */
  984. static long effective_load(struct task_group *tg, int cpu,
  985. long wl, long wg)
  986. {
  987. struct sched_entity *se = tg->se[cpu];
  988. if (!tg->parent)
  989. return wl;
  990. /*
  991. * By not taking the decrease of shares on the other cpu into
  992. * account our error leans towards reducing the affine wakeups.
  993. */
  994. if (!wl && sched_feat(ASYM_EFF_LOAD))
  995. return wl;
  996. for_each_sched_entity(se) {
  997. long S, rw, s, a, b;
  998. long more_w;
  999. /*
  1000. * Instead of using this increment, also add the difference
  1001. * between when the shares were last updated and now.
  1002. */
  1003. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  1004. wl += more_w;
  1005. wg += more_w;
  1006. S = se->my_q->tg->shares;
  1007. s = se->my_q->shares;
  1008. rw = se->my_q->rq_weight;
  1009. a = S*(rw + wl);
  1010. b = S*rw + s*wg;
  1011. wl = s*(a-b);
  1012. if (likely(b))
  1013. wl /= b;
  1014. /*
  1015. * Assume the group is already running and will
  1016. * thus already be accounted for in the weight.
  1017. *
  1018. * That is, moving shares between CPUs, does not
  1019. * alter the group weight.
  1020. */
  1021. wg = 0;
  1022. }
  1023. return wl;
  1024. }
  1025. #else
  1026. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1027. unsigned long wl, unsigned long wg)
  1028. {
  1029. return wl;
  1030. }
  1031. #endif
  1032. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1033. {
  1034. struct task_struct *curr = current;
  1035. unsigned long this_load, load;
  1036. int idx, this_cpu, prev_cpu;
  1037. unsigned long tl_per_task;
  1038. unsigned int imbalance;
  1039. struct task_group *tg;
  1040. unsigned long weight;
  1041. int balanced;
  1042. idx = sd->wake_idx;
  1043. this_cpu = smp_processor_id();
  1044. prev_cpu = task_cpu(p);
  1045. load = source_load(prev_cpu, idx);
  1046. this_load = target_load(this_cpu, idx);
  1047. if (sync) {
  1048. if (sched_feat(SYNC_LESS) &&
  1049. (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1050. p->se.avg_overlap > sysctl_sched_migration_cost))
  1051. sync = 0;
  1052. } else {
  1053. if (sched_feat(SYNC_MORE) &&
  1054. (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  1055. p->se.avg_overlap < sysctl_sched_migration_cost))
  1056. sync = 1;
  1057. }
  1058. /*
  1059. * If sync wakeup then subtract the (maximum possible)
  1060. * effect of the currently running task from the load
  1061. * of the current CPU:
  1062. */
  1063. if (sync) {
  1064. tg = task_group(current);
  1065. weight = current->se.load.weight;
  1066. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1067. load += effective_load(tg, prev_cpu, 0, -weight);
  1068. }
  1069. tg = task_group(p);
  1070. weight = p->se.load.weight;
  1071. imbalance = 100 + (sd->imbalance_pct - 100) / 2;
  1072. /*
  1073. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1074. * due to the sync cause above having dropped this_load to 0, we'll
  1075. * always have an imbalance, but there's really nothing you can do
  1076. * about that, so that's good too.
  1077. *
  1078. * Otherwise check if either cpus are near enough in load to allow this
  1079. * task to be woken on this_cpu.
  1080. */
  1081. balanced = !this_load ||
  1082. 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
  1083. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1084. /*
  1085. * If the currently running task will sleep within
  1086. * a reasonable amount of time then attract this newly
  1087. * woken task:
  1088. */
  1089. if (sync && balanced)
  1090. return 1;
  1091. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1092. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1093. if (balanced ||
  1094. (this_load <= load &&
  1095. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1096. /*
  1097. * This domain has SD_WAKE_AFFINE and
  1098. * p is cache cold in this domain, and
  1099. * there is no bad imbalance.
  1100. */
  1101. schedstat_inc(sd, ttwu_move_affine);
  1102. schedstat_inc(p, se.nr_wakeups_affine);
  1103. return 1;
  1104. }
  1105. return 0;
  1106. }
  1107. /*
  1108. * find_idlest_group finds and returns the least busy CPU group within the
  1109. * domain.
  1110. */
  1111. static struct sched_group *
  1112. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1113. int this_cpu, int load_idx)
  1114. {
  1115. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1116. unsigned long min_load = ULONG_MAX, this_load = 0;
  1117. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1118. do {
  1119. unsigned long load, avg_load;
  1120. int local_group;
  1121. int i;
  1122. /* Skip over this group if it has no CPUs allowed */
  1123. if (!cpumask_intersects(sched_group_cpus(group),
  1124. &p->cpus_allowed))
  1125. continue;
  1126. local_group = cpumask_test_cpu(this_cpu,
  1127. sched_group_cpus(group));
  1128. /* Tally up the load of all CPUs in the group */
  1129. avg_load = 0;
  1130. for_each_cpu(i, sched_group_cpus(group)) {
  1131. /* Bias balancing toward cpus of our domain */
  1132. if (local_group)
  1133. load = source_load(i, load_idx);
  1134. else
  1135. load = target_load(i, load_idx);
  1136. avg_load += load;
  1137. }
  1138. /* Adjust by relative CPU power of the group */
  1139. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1140. if (local_group) {
  1141. this_load = avg_load;
  1142. this = group;
  1143. } else if (avg_load < min_load) {
  1144. min_load = avg_load;
  1145. idlest = group;
  1146. }
  1147. } while (group = group->next, group != sd->groups);
  1148. if (!idlest || 100*this_load < imbalance*min_load)
  1149. return NULL;
  1150. return idlest;
  1151. }
  1152. /*
  1153. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1154. */
  1155. static int
  1156. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1157. {
  1158. unsigned long load, min_load = ULONG_MAX;
  1159. int idlest = -1;
  1160. int i;
  1161. /* Traverse only the allowed CPUs */
  1162. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1163. load = weighted_cpuload(i);
  1164. if (load < min_load || (load == min_load && i == this_cpu)) {
  1165. min_load = load;
  1166. idlest = i;
  1167. }
  1168. }
  1169. return idlest;
  1170. }
  1171. /*
  1172. * Try and locate an idle CPU in the sched_domain.
  1173. */
  1174. static int
  1175. select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
  1176. {
  1177. int cpu = smp_processor_id();
  1178. int prev_cpu = task_cpu(p);
  1179. int i;
  1180. /*
  1181. * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
  1182. * test in select_task_rq_fair) and the prev_cpu is idle then that's
  1183. * always a better target than the current cpu.
  1184. */
  1185. if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
  1186. return prev_cpu;
  1187. /*
  1188. * Otherwise, iterate the domain and find an elegible idle cpu.
  1189. */
  1190. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1191. if (!cpu_rq(i)->cfs.nr_running) {
  1192. target = i;
  1193. break;
  1194. }
  1195. }
  1196. return target;
  1197. }
  1198. /*
  1199. * sched_balance_self: balance the current task (running on cpu) in domains
  1200. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1201. * SD_BALANCE_EXEC.
  1202. *
  1203. * Balance, ie. select the least loaded group.
  1204. *
  1205. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1206. *
  1207. * preempt must be disabled.
  1208. */
  1209. static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1210. {
  1211. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1212. int cpu = smp_processor_id();
  1213. int prev_cpu = task_cpu(p);
  1214. int new_cpu = cpu;
  1215. int want_affine = 0;
  1216. int want_sd = 1;
  1217. int sync = wake_flags & WF_SYNC;
  1218. if (sd_flag & SD_BALANCE_WAKE) {
  1219. if (sched_feat(AFFINE_WAKEUPS) &&
  1220. cpumask_test_cpu(cpu, &p->cpus_allowed))
  1221. want_affine = 1;
  1222. new_cpu = prev_cpu;
  1223. }
  1224. for_each_domain(cpu, tmp) {
  1225. if (!(tmp->flags & SD_LOAD_BALANCE))
  1226. continue;
  1227. /*
  1228. * If power savings logic is enabled for a domain, see if we
  1229. * are not overloaded, if so, don't balance wider.
  1230. */
  1231. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1232. unsigned long power = 0;
  1233. unsigned long nr_running = 0;
  1234. unsigned long capacity;
  1235. int i;
  1236. for_each_cpu(i, sched_domain_span(tmp)) {
  1237. power += power_of(i);
  1238. nr_running += cpu_rq(i)->cfs.nr_running;
  1239. }
  1240. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1241. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1242. nr_running /= 2;
  1243. if (nr_running < capacity)
  1244. want_sd = 0;
  1245. }
  1246. /*
  1247. * While iterating the domains looking for a spanning
  1248. * WAKE_AFFINE domain, adjust the affine target to any idle cpu
  1249. * in cache sharing domains along the way.
  1250. */
  1251. if (want_affine) {
  1252. int target = -1;
  1253. /*
  1254. * If both cpu and prev_cpu are part of this domain,
  1255. * cpu is a valid SD_WAKE_AFFINE target.
  1256. */
  1257. if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
  1258. target = cpu;
  1259. /*
  1260. * If there's an idle sibling in this domain, make that
  1261. * the wake_affine target instead of the current cpu.
  1262. */
  1263. if (tmp->flags & SD_PREFER_SIBLING)
  1264. target = select_idle_sibling(p, tmp, target);
  1265. if (target >= 0) {
  1266. if (tmp->flags & SD_WAKE_AFFINE) {
  1267. affine_sd = tmp;
  1268. want_affine = 0;
  1269. }
  1270. cpu = target;
  1271. }
  1272. }
  1273. if (!want_sd && !want_affine)
  1274. break;
  1275. if (!(tmp->flags & sd_flag))
  1276. continue;
  1277. if (want_sd)
  1278. sd = tmp;
  1279. }
  1280. if (sched_feat(LB_SHARES_UPDATE)) {
  1281. /*
  1282. * Pick the largest domain to update shares over
  1283. */
  1284. tmp = sd;
  1285. if (affine_sd && (!tmp ||
  1286. cpumask_weight(sched_domain_span(affine_sd)) >
  1287. cpumask_weight(sched_domain_span(sd))))
  1288. tmp = affine_sd;
  1289. if (tmp)
  1290. update_shares(tmp);
  1291. }
  1292. if (affine_sd && wake_affine(affine_sd, p, sync))
  1293. return cpu;
  1294. while (sd) {
  1295. int load_idx = sd->forkexec_idx;
  1296. struct sched_group *group;
  1297. int weight;
  1298. if (!(sd->flags & sd_flag)) {
  1299. sd = sd->child;
  1300. continue;
  1301. }
  1302. if (sd_flag & SD_BALANCE_WAKE)
  1303. load_idx = sd->wake_idx;
  1304. group = find_idlest_group(sd, p, cpu, load_idx);
  1305. if (!group) {
  1306. sd = sd->child;
  1307. continue;
  1308. }
  1309. new_cpu = find_idlest_cpu(group, p, cpu);
  1310. if (new_cpu == -1 || new_cpu == cpu) {
  1311. /* Now try balancing at a lower domain level of cpu */
  1312. sd = sd->child;
  1313. continue;
  1314. }
  1315. /* Now try balancing at a lower domain level of new_cpu */
  1316. cpu = new_cpu;
  1317. weight = cpumask_weight(sched_domain_span(sd));
  1318. sd = NULL;
  1319. for_each_domain(cpu, tmp) {
  1320. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1321. break;
  1322. if (tmp->flags & sd_flag)
  1323. sd = tmp;
  1324. }
  1325. /* while loop will break here if sd == NULL */
  1326. }
  1327. return new_cpu;
  1328. }
  1329. #endif /* CONFIG_SMP */
  1330. /*
  1331. * Adaptive granularity
  1332. *
  1333. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1334. * with the limit of wakeup_gran -- when it never does a wakeup.
  1335. *
  1336. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1337. * but we don't want to treat the preemptee unfairly and therefore allow it
  1338. * to run for at least the amount of time we'd like to run.
  1339. *
  1340. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1341. *
  1342. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1343. * degrading latency on load.
  1344. */
  1345. static unsigned long
  1346. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1347. {
  1348. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1349. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1350. u64 gran = 0;
  1351. if (this_run < expected_wakeup)
  1352. gran = expected_wakeup - this_run;
  1353. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1354. }
  1355. static unsigned long
  1356. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1357. {
  1358. unsigned long gran = sysctl_sched_wakeup_granularity;
  1359. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1360. gran = adaptive_gran(curr, se);
  1361. /*
  1362. * Since its curr running now, convert the gran from real-time
  1363. * to virtual-time in his units.
  1364. */
  1365. if (sched_feat(ASYM_GRAN)) {
  1366. /*
  1367. * By using 'se' instead of 'curr' we penalize light tasks, so
  1368. * they get preempted easier. That is, if 'se' < 'curr' then
  1369. * the resulting gran will be larger, therefore penalizing the
  1370. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1371. * be smaller, again penalizing the lighter task.
  1372. *
  1373. * This is especially important for buddies when the leftmost
  1374. * task is higher priority than the buddy.
  1375. */
  1376. if (unlikely(se->load.weight != NICE_0_LOAD))
  1377. gran = calc_delta_fair(gran, se);
  1378. } else {
  1379. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1380. gran = calc_delta_fair(gran, curr);
  1381. }
  1382. return gran;
  1383. }
  1384. /*
  1385. * Should 'se' preempt 'curr'.
  1386. *
  1387. * |s1
  1388. * |s2
  1389. * |s3
  1390. * g
  1391. * |<--->|c
  1392. *
  1393. * w(c, s1) = -1
  1394. * w(c, s2) = 0
  1395. * w(c, s3) = 1
  1396. *
  1397. */
  1398. static int
  1399. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1400. {
  1401. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1402. if (vdiff <= 0)
  1403. return -1;
  1404. gran = wakeup_gran(curr, se);
  1405. if (vdiff > gran)
  1406. return 1;
  1407. return 0;
  1408. }
  1409. static void set_last_buddy(struct sched_entity *se)
  1410. {
  1411. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1412. for_each_sched_entity(se)
  1413. cfs_rq_of(se)->last = se;
  1414. }
  1415. }
  1416. static void set_next_buddy(struct sched_entity *se)
  1417. {
  1418. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1419. for_each_sched_entity(se)
  1420. cfs_rq_of(se)->next = se;
  1421. }
  1422. }
  1423. /*
  1424. * Preempt the current task with a newly woken task if needed:
  1425. */
  1426. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1427. {
  1428. struct task_struct *curr = rq->curr;
  1429. struct sched_entity *se = &curr->se, *pse = &p->se;
  1430. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1431. int sync = wake_flags & WF_SYNC;
  1432. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1433. if (unlikely(rt_prio(p->prio)))
  1434. goto preempt;
  1435. if (unlikely(p->sched_class != &fair_sched_class))
  1436. return;
  1437. if (unlikely(se == pse))
  1438. return;
  1439. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1440. set_next_buddy(pse);
  1441. /*
  1442. * We can come here with TIF_NEED_RESCHED already set from new task
  1443. * wake up path.
  1444. */
  1445. if (test_tsk_need_resched(curr))
  1446. return;
  1447. /*
  1448. * Batch and idle tasks do not preempt (their preemption is driven by
  1449. * the tick):
  1450. */
  1451. if (unlikely(p->policy != SCHED_NORMAL))
  1452. return;
  1453. /* Idle tasks are by definition preempted by everybody. */
  1454. if (unlikely(curr->policy == SCHED_IDLE))
  1455. goto preempt;
  1456. if (sched_feat(WAKEUP_SYNC) && sync)
  1457. goto preempt;
  1458. if (sched_feat(WAKEUP_OVERLAP) &&
  1459. se->avg_overlap < sysctl_sched_migration_cost &&
  1460. pse->avg_overlap < sysctl_sched_migration_cost)
  1461. goto preempt;
  1462. if (!sched_feat(WAKEUP_PREEMPT))
  1463. return;
  1464. update_curr(cfs_rq);
  1465. find_matching_se(&se, &pse);
  1466. BUG_ON(!pse);
  1467. if (wakeup_preempt_entity(se, pse) == 1)
  1468. goto preempt;
  1469. return;
  1470. preempt:
  1471. resched_task(curr);
  1472. /*
  1473. * Only set the backward buddy when the current task is still
  1474. * on the rq. This can happen when a wakeup gets interleaved
  1475. * with schedule on the ->pre_schedule() or idle_balance()
  1476. * point, either of which can * drop the rq lock.
  1477. *
  1478. * Also, during early boot the idle thread is in the fair class,
  1479. * for obvious reasons its a bad idea to schedule back to it.
  1480. */
  1481. if (unlikely(!se->on_rq || curr == rq->idle))
  1482. return;
  1483. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1484. set_last_buddy(se);
  1485. }
  1486. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1487. {
  1488. struct task_struct *p;
  1489. struct cfs_rq *cfs_rq = &rq->cfs;
  1490. struct sched_entity *se;
  1491. if (!cfs_rq->nr_running)
  1492. return NULL;
  1493. do {
  1494. se = pick_next_entity(cfs_rq);
  1495. set_next_entity(cfs_rq, se);
  1496. cfs_rq = group_cfs_rq(se);
  1497. } while (cfs_rq);
  1498. p = task_of(se);
  1499. hrtick_start_fair(rq, p);
  1500. return p;
  1501. }
  1502. /*
  1503. * Account for a descheduled task:
  1504. */
  1505. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1506. {
  1507. struct sched_entity *se = &prev->se;
  1508. struct cfs_rq *cfs_rq;
  1509. for_each_sched_entity(se) {
  1510. cfs_rq = cfs_rq_of(se);
  1511. put_prev_entity(cfs_rq, se);
  1512. }
  1513. }
  1514. #ifdef CONFIG_SMP
  1515. /**************************************************
  1516. * Fair scheduling class load-balancing methods:
  1517. */
  1518. /*
  1519. * pull_task - move a task from a remote runqueue to the local runqueue.
  1520. * Both runqueues must be locked.
  1521. */
  1522. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1523. struct rq *this_rq, int this_cpu)
  1524. {
  1525. deactivate_task(src_rq, p, 0);
  1526. set_task_cpu(p, this_cpu);
  1527. activate_task(this_rq, p, 0);
  1528. check_preempt_curr(this_rq, p, 0);
  1529. }
  1530. /*
  1531. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1532. */
  1533. static
  1534. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1535. struct sched_domain *sd, enum cpu_idle_type idle,
  1536. int *all_pinned)
  1537. {
  1538. int tsk_cache_hot = 0;
  1539. /*
  1540. * We do not migrate tasks that are:
  1541. * 1) running (obviously), or
  1542. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1543. * 3) are cache-hot on their current CPU.
  1544. */
  1545. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1546. schedstat_inc(p, se.nr_failed_migrations_affine);
  1547. return 0;
  1548. }
  1549. *all_pinned = 0;
  1550. if (task_running(rq, p)) {
  1551. schedstat_inc(p, se.nr_failed_migrations_running);
  1552. return 0;
  1553. }
  1554. /*
  1555. * Aggressive migration if:
  1556. * 1) task is cache cold, or
  1557. * 2) too many balance attempts have failed.
  1558. */
  1559. tsk_cache_hot = task_hot(p, rq->clock, sd);
  1560. if (!tsk_cache_hot ||
  1561. sd->nr_balance_failed > sd->cache_nice_tries) {
  1562. #ifdef CONFIG_SCHEDSTATS
  1563. if (tsk_cache_hot) {
  1564. schedstat_inc(sd, lb_hot_gained[idle]);
  1565. schedstat_inc(p, se.nr_forced_migrations);
  1566. }
  1567. #endif
  1568. return 1;
  1569. }
  1570. if (tsk_cache_hot) {
  1571. schedstat_inc(p, se.nr_failed_migrations_hot);
  1572. return 0;
  1573. }
  1574. return 1;
  1575. }
  1576. /*
  1577. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1578. * part of active balancing operations within "domain".
  1579. * Returns 1 if successful and 0 otherwise.
  1580. *
  1581. * Called with both runqueues locked.
  1582. */
  1583. static int
  1584. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1585. struct sched_domain *sd, enum cpu_idle_type idle)
  1586. {
  1587. struct task_struct *p, *n;
  1588. struct cfs_rq *cfs_rq;
  1589. int pinned = 0;
  1590. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1591. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1592. if (!can_migrate_task(p, busiest, this_cpu,
  1593. sd, idle, &pinned))
  1594. continue;
  1595. pull_task(busiest, p, this_rq, this_cpu);
  1596. /*
  1597. * Right now, this is only the second place pull_task()
  1598. * is called, so we can safely collect pull_task()
  1599. * stats here rather than inside pull_task().
  1600. */
  1601. schedstat_inc(sd, lb_gained[idle]);
  1602. return 1;
  1603. }
  1604. }
  1605. return 0;
  1606. }
  1607. static unsigned long
  1608. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1609. unsigned long max_load_move, struct sched_domain *sd,
  1610. enum cpu_idle_type idle, int *all_pinned,
  1611. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1612. {
  1613. int loops = 0, pulled = 0, pinned = 0;
  1614. long rem_load_move = max_load_move;
  1615. struct task_struct *p, *n;
  1616. if (max_load_move == 0)
  1617. goto out;
  1618. pinned = 1;
  1619. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1620. if (loops++ > sysctl_sched_nr_migrate)
  1621. break;
  1622. if ((p->se.load.weight >> 1) > rem_load_move ||
  1623. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1624. continue;
  1625. pull_task(busiest, p, this_rq, this_cpu);
  1626. pulled++;
  1627. rem_load_move -= p->se.load.weight;
  1628. #ifdef CONFIG_PREEMPT
  1629. /*
  1630. * NEWIDLE balancing is a source of latency, so preemptible
  1631. * kernels will stop after the first task is pulled to minimize
  1632. * the critical section.
  1633. */
  1634. if (idle == CPU_NEWLY_IDLE)
  1635. break;
  1636. #endif
  1637. /*
  1638. * We only want to steal up to the prescribed amount of
  1639. * weighted load.
  1640. */
  1641. if (rem_load_move <= 0)
  1642. break;
  1643. if (p->prio < *this_best_prio)
  1644. *this_best_prio = p->prio;
  1645. }
  1646. out:
  1647. /*
  1648. * Right now, this is one of only two places pull_task() is called,
  1649. * so we can safely collect pull_task() stats here rather than
  1650. * inside pull_task().
  1651. */
  1652. schedstat_add(sd, lb_gained[idle], pulled);
  1653. if (all_pinned)
  1654. *all_pinned = pinned;
  1655. return max_load_move - rem_load_move;
  1656. }
  1657. #ifdef CONFIG_FAIR_GROUP_SCHED
  1658. static unsigned long
  1659. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1660. unsigned long max_load_move,
  1661. struct sched_domain *sd, enum cpu_idle_type idle,
  1662. int *all_pinned, int *this_best_prio)
  1663. {
  1664. long rem_load_move = max_load_move;
  1665. int busiest_cpu = cpu_of(busiest);
  1666. struct task_group *tg;
  1667. rcu_read_lock();
  1668. update_h_load(busiest_cpu);
  1669. list_for_each_entry_rcu(tg, &task_groups, list) {
  1670. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1671. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1672. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1673. u64 rem_load, moved_load;
  1674. /*
  1675. * empty group
  1676. */
  1677. if (!busiest_cfs_rq->task_weight)
  1678. continue;
  1679. rem_load = (u64)rem_load_move * busiest_weight;
  1680. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1681. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1682. rem_load, sd, idle, all_pinned, this_best_prio,
  1683. busiest_cfs_rq);
  1684. if (!moved_load)
  1685. continue;
  1686. moved_load *= busiest_h_load;
  1687. moved_load = div_u64(moved_load, busiest_weight + 1);
  1688. rem_load_move -= moved_load;
  1689. if (rem_load_move < 0)
  1690. break;
  1691. }
  1692. rcu_read_unlock();
  1693. return max_load_move - rem_load_move;
  1694. }
  1695. #else
  1696. static unsigned long
  1697. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1698. unsigned long max_load_move,
  1699. struct sched_domain *sd, enum cpu_idle_type idle,
  1700. int *all_pinned, int *this_best_prio)
  1701. {
  1702. return balance_tasks(this_rq, this_cpu, busiest,
  1703. max_load_move, sd, idle, all_pinned,
  1704. this_best_prio, &busiest->cfs);
  1705. }
  1706. #endif
  1707. /*
  1708. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1709. * this_rq, as part of a balancing operation within domain "sd".
  1710. * Returns 1 if successful and 0 otherwise.
  1711. *
  1712. * Called with both runqueues locked.
  1713. */
  1714. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1715. unsigned long max_load_move,
  1716. struct sched_domain *sd, enum cpu_idle_type idle,
  1717. int *all_pinned)
  1718. {
  1719. unsigned long total_load_moved = 0, load_moved;
  1720. int this_best_prio = this_rq->curr->prio;
  1721. do {
  1722. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1723. max_load_move - total_load_moved,
  1724. sd, idle, all_pinned, &this_best_prio);
  1725. total_load_moved += load_moved;
  1726. #ifdef CONFIG_PREEMPT
  1727. /*
  1728. * NEWIDLE balancing is a source of latency, so preemptible
  1729. * kernels will stop after the first task is pulled to minimize
  1730. * the critical section.
  1731. */
  1732. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1733. break;
  1734. if (raw_spin_is_contended(&this_rq->lock) ||
  1735. raw_spin_is_contended(&busiest->lock))
  1736. break;
  1737. #endif
  1738. } while (load_moved && max_load_move > total_load_moved);
  1739. return total_load_moved > 0;
  1740. }
  1741. /********** Helpers for find_busiest_group ************************/
  1742. /*
  1743. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1744. * during load balancing.
  1745. */
  1746. struct sd_lb_stats {
  1747. struct sched_group *busiest; /* Busiest group in this sd */
  1748. struct sched_group *this; /* Local group in this sd */
  1749. unsigned long total_load; /* Total load of all groups in sd */
  1750. unsigned long total_pwr; /* Total power of all groups in sd */
  1751. unsigned long avg_load; /* Average load across all groups in sd */
  1752. /** Statistics of this group */
  1753. unsigned long this_load;
  1754. unsigned long this_load_per_task;
  1755. unsigned long this_nr_running;
  1756. /* Statistics of the busiest group */
  1757. unsigned long max_load;
  1758. unsigned long busiest_load_per_task;
  1759. unsigned long busiest_nr_running;
  1760. int group_imb; /* Is there imbalance in this sd */
  1761. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1762. int power_savings_balance; /* Is powersave balance needed for this sd */
  1763. struct sched_group *group_min; /* Least loaded group in sd */
  1764. struct sched_group *group_leader; /* Group which relieves group_min */
  1765. unsigned long min_load_per_task; /* load_per_task in group_min */
  1766. unsigned long leader_nr_running; /* Nr running of group_leader */
  1767. unsigned long min_nr_running; /* Nr running of group_min */
  1768. #endif
  1769. };
  1770. /*
  1771. * sg_lb_stats - stats of a sched_group required for load_balancing
  1772. */
  1773. struct sg_lb_stats {
  1774. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1775. unsigned long group_load; /* Total load over the CPUs of the group */
  1776. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1777. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1778. unsigned long group_capacity;
  1779. int group_imb; /* Is there an imbalance in the group ? */
  1780. };
  1781. /**
  1782. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1783. * @group: The group whose first cpu is to be returned.
  1784. */
  1785. static inline unsigned int group_first_cpu(struct sched_group *group)
  1786. {
  1787. return cpumask_first(sched_group_cpus(group));
  1788. }
  1789. /**
  1790. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1791. * @sd: The sched_domain whose load_idx is to be obtained.
  1792. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1793. */
  1794. static inline int get_sd_load_idx(struct sched_domain *sd,
  1795. enum cpu_idle_type idle)
  1796. {
  1797. int load_idx;
  1798. switch (idle) {
  1799. case CPU_NOT_IDLE:
  1800. load_idx = sd->busy_idx;
  1801. break;
  1802. case CPU_NEWLY_IDLE:
  1803. load_idx = sd->newidle_idx;
  1804. break;
  1805. default:
  1806. load_idx = sd->idle_idx;
  1807. break;
  1808. }
  1809. return load_idx;
  1810. }
  1811. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1812. /**
  1813. * init_sd_power_savings_stats - Initialize power savings statistics for
  1814. * the given sched_domain, during load balancing.
  1815. *
  1816. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1817. * @sds: Variable containing the statistics for sd.
  1818. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1819. */
  1820. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1821. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1822. {
  1823. /*
  1824. * Busy processors will not participate in power savings
  1825. * balance.
  1826. */
  1827. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1828. sds->power_savings_balance = 0;
  1829. else {
  1830. sds->power_savings_balance = 1;
  1831. sds->min_nr_running = ULONG_MAX;
  1832. sds->leader_nr_running = 0;
  1833. }
  1834. }
  1835. /**
  1836. * update_sd_power_savings_stats - Update the power saving stats for a
  1837. * sched_domain while performing load balancing.
  1838. *
  1839. * @group: sched_group belonging to the sched_domain under consideration.
  1840. * @sds: Variable containing the statistics of the sched_domain
  1841. * @local_group: Does group contain the CPU for which we're performing
  1842. * load balancing ?
  1843. * @sgs: Variable containing the statistics of the group.
  1844. */
  1845. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1846. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1847. {
  1848. if (!sds->power_savings_balance)
  1849. return;
  1850. /*
  1851. * If the local group is idle or completely loaded
  1852. * no need to do power savings balance at this domain
  1853. */
  1854. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1855. !sds->this_nr_running))
  1856. sds->power_savings_balance = 0;
  1857. /*
  1858. * If a group is already running at full capacity or idle,
  1859. * don't include that group in power savings calculations
  1860. */
  1861. if (!sds->power_savings_balance ||
  1862. sgs->sum_nr_running >= sgs->group_capacity ||
  1863. !sgs->sum_nr_running)
  1864. return;
  1865. /*
  1866. * Calculate the group which has the least non-idle load.
  1867. * This is the group from where we need to pick up the load
  1868. * for saving power
  1869. */
  1870. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1871. (sgs->sum_nr_running == sds->min_nr_running &&
  1872. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1873. sds->group_min = group;
  1874. sds->min_nr_running = sgs->sum_nr_running;
  1875. sds->min_load_per_task = sgs->sum_weighted_load /
  1876. sgs->sum_nr_running;
  1877. }
  1878. /*
  1879. * Calculate the group which is almost near its
  1880. * capacity but still has some space to pick up some load
  1881. * from other group and save more power
  1882. */
  1883. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1884. return;
  1885. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1886. (sgs->sum_nr_running == sds->leader_nr_running &&
  1887. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1888. sds->group_leader = group;
  1889. sds->leader_nr_running = sgs->sum_nr_running;
  1890. }
  1891. }
  1892. /**
  1893. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1894. * @sds: Variable containing the statistics of the sched_domain
  1895. * under consideration.
  1896. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1897. * @imbalance: Variable to store the imbalance.
  1898. *
  1899. * Description:
  1900. * Check if we have potential to perform some power-savings balance.
  1901. * If yes, set the busiest group to be the least loaded group in the
  1902. * sched_domain, so that it's CPUs can be put to idle.
  1903. *
  1904. * Returns 1 if there is potential to perform power-savings balance.
  1905. * Else returns 0.
  1906. */
  1907. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1908. int this_cpu, unsigned long *imbalance)
  1909. {
  1910. if (!sds->power_savings_balance)
  1911. return 0;
  1912. if (sds->this != sds->group_leader ||
  1913. sds->group_leader == sds->group_min)
  1914. return 0;
  1915. *imbalance = sds->min_load_per_task;
  1916. sds->busiest = sds->group_min;
  1917. return 1;
  1918. }
  1919. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1920. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1921. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1922. {
  1923. return;
  1924. }
  1925. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1926. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1927. {
  1928. return;
  1929. }
  1930. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1931. int this_cpu, unsigned long *imbalance)
  1932. {
  1933. return 0;
  1934. }
  1935. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1936. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1937. {
  1938. return SCHED_LOAD_SCALE;
  1939. }
  1940. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1941. {
  1942. return default_scale_freq_power(sd, cpu);
  1943. }
  1944. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1945. {
  1946. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  1947. unsigned long smt_gain = sd->smt_gain;
  1948. smt_gain /= weight;
  1949. return smt_gain;
  1950. }
  1951. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1952. {
  1953. return default_scale_smt_power(sd, cpu);
  1954. }
  1955. unsigned long scale_rt_power(int cpu)
  1956. {
  1957. struct rq *rq = cpu_rq(cpu);
  1958. u64 total, available;
  1959. sched_avg_update(rq);
  1960. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1961. available = total - rq->rt_avg;
  1962. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1963. total = SCHED_LOAD_SCALE;
  1964. total >>= SCHED_LOAD_SHIFT;
  1965. return div_u64(available, total);
  1966. }
  1967. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1968. {
  1969. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  1970. unsigned long power = SCHED_LOAD_SCALE;
  1971. struct sched_group *sdg = sd->groups;
  1972. if (sched_feat(ARCH_POWER))
  1973. power *= arch_scale_freq_power(sd, cpu);
  1974. else
  1975. power *= default_scale_freq_power(sd, cpu);
  1976. power >>= SCHED_LOAD_SHIFT;
  1977. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1978. if (sched_feat(ARCH_POWER))
  1979. power *= arch_scale_smt_power(sd, cpu);
  1980. else
  1981. power *= default_scale_smt_power(sd, cpu);
  1982. power >>= SCHED_LOAD_SHIFT;
  1983. }
  1984. power *= scale_rt_power(cpu);
  1985. power >>= SCHED_LOAD_SHIFT;
  1986. if (!power)
  1987. power = 1;
  1988. sdg->cpu_power = power;
  1989. }
  1990. static void update_group_power(struct sched_domain *sd, int cpu)
  1991. {
  1992. struct sched_domain *child = sd->child;
  1993. struct sched_group *group, *sdg = sd->groups;
  1994. unsigned long power;
  1995. if (!child) {
  1996. update_cpu_power(sd, cpu);
  1997. return;
  1998. }
  1999. power = 0;
  2000. group = child->groups;
  2001. do {
  2002. power += group->cpu_power;
  2003. group = group->next;
  2004. } while (group != child->groups);
  2005. sdg->cpu_power = power;
  2006. }
  2007. /**
  2008. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2009. * @sd: The sched_domain whose statistics are to be updated.
  2010. * @group: sched_group whose statistics are to be updated.
  2011. * @this_cpu: Cpu for which load balance is currently performed.
  2012. * @idle: Idle status of this_cpu
  2013. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2014. * @sd_idle: Idle status of the sched_domain containing group.
  2015. * @local_group: Does group contain this_cpu.
  2016. * @cpus: Set of cpus considered for load balancing.
  2017. * @balance: Should we balance.
  2018. * @sgs: variable to hold the statistics for this group.
  2019. */
  2020. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2021. struct sched_group *group, int this_cpu,
  2022. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2023. int local_group, const struct cpumask *cpus,
  2024. int *balance, struct sg_lb_stats *sgs)
  2025. {
  2026. unsigned long load, max_cpu_load, min_cpu_load;
  2027. int i;
  2028. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2029. unsigned long sum_avg_load_per_task;
  2030. unsigned long avg_load_per_task;
  2031. if (local_group)
  2032. balance_cpu = group_first_cpu(group);
  2033. /* Tally up the load of all CPUs in the group */
  2034. sum_avg_load_per_task = avg_load_per_task = 0;
  2035. max_cpu_load = 0;
  2036. min_cpu_load = ~0UL;
  2037. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2038. struct rq *rq = cpu_rq(i);
  2039. if (*sd_idle && rq->nr_running)
  2040. *sd_idle = 0;
  2041. /* Bias balancing toward cpus of our domain */
  2042. if (local_group) {
  2043. if (idle_cpu(i) && !first_idle_cpu) {
  2044. first_idle_cpu = 1;
  2045. balance_cpu = i;
  2046. }
  2047. load = target_load(i, load_idx);
  2048. } else {
  2049. load = source_load(i, load_idx);
  2050. if (load > max_cpu_load)
  2051. max_cpu_load = load;
  2052. if (min_cpu_load > load)
  2053. min_cpu_load = load;
  2054. }
  2055. sgs->group_load += load;
  2056. sgs->sum_nr_running += rq->nr_running;
  2057. sgs->sum_weighted_load += weighted_cpuload(i);
  2058. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2059. }
  2060. /*
  2061. * First idle cpu or the first cpu(busiest) in this sched group
  2062. * is eligible for doing load balancing at this and above
  2063. * domains. In the newly idle case, we will allow all the cpu's
  2064. * to do the newly idle load balance.
  2065. */
  2066. if (idle != CPU_NEWLY_IDLE && local_group &&
  2067. balance_cpu != this_cpu) {
  2068. *balance = 0;
  2069. return;
  2070. }
  2071. update_group_power(sd, this_cpu);
  2072. /* Adjust by relative CPU power of the group */
  2073. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2074. /*
  2075. * Consider the group unbalanced when the imbalance is larger
  2076. * than the average weight of two tasks.
  2077. *
  2078. * APZ: with cgroup the avg task weight can vary wildly and
  2079. * might not be a suitable number - should we keep a
  2080. * normalized nr_running number somewhere that negates
  2081. * the hierarchy?
  2082. */
  2083. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  2084. group->cpu_power;
  2085. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2086. sgs->group_imb = 1;
  2087. sgs->group_capacity =
  2088. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2089. }
  2090. /**
  2091. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2092. * @sd: sched_domain whose statistics are to be updated.
  2093. * @this_cpu: Cpu for which load balance is currently performed.
  2094. * @idle: Idle status of this_cpu
  2095. * @sd_idle: Idle status of the sched_domain containing group.
  2096. * @cpus: Set of cpus considered for load balancing.
  2097. * @balance: Should we balance.
  2098. * @sds: variable to hold the statistics for this sched_domain.
  2099. */
  2100. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2101. enum cpu_idle_type idle, int *sd_idle,
  2102. const struct cpumask *cpus, int *balance,
  2103. struct sd_lb_stats *sds)
  2104. {
  2105. struct sched_domain *child = sd->child;
  2106. struct sched_group *group = sd->groups;
  2107. struct sg_lb_stats sgs;
  2108. int load_idx, prefer_sibling = 0;
  2109. if (child && child->flags & SD_PREFER_SIBLING)
  2110. prefer_sibling = 1;
  2111. init_sd_power_savings_stats(sd, sds, idle);
  2112. load_idx = get_sd_load_idx(sd, idle);
  2113. do {
  2114. int local_group;
  2115. local_group = cpumask_test_cpu(this_cpu,
  2116. sched_group_cpus(group));
  2117. memset(&sgs, 0, sizeof(sgs));
  2118. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  2119. local_group, cpus, balance, &sgs);
  2120. if (local_group && !(*balance))
  2121. return;
  2122. sds->total_load += sgs.group_load;
  2123. sds->total_pwr += group->cpu_power;
  2124. /*
  2125. * In case the child domain prefers tasks go to siblings
  2126. * first, lower the group capacity to one so that we'll try
  2127. * and move all the excess tasks away.
  2128. */
  2129. if (prefer_sibling)
  2130. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2131. if (local_group) {
  2132. sds->this_load = sgs.avg_load;
  2133. sds->this = group;
  2134. sds->this_nr_running = sgs.sum_nr_running;
  2135. sds->this_load_per_task = sgs.sum_weighted_load;
  2136. } else if (sgs.avg_load > sds->max_load &&
  2137. (sgs.sum_nr_running > sgs.group_capacity ||
  2138. sgs.group_imb)) {
  2139. sds->max_load = sgs.avg_load;
  2140. sds->busiest = group;
  2141. sds->busiest_nr_running = sgs.sum_nr_running;
  2142. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2143. sds->group_imb = sgs.group_imb;
  2144. }
  2145. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  2146. group = group->next;
  2147. } while (group != sd->groups);
  2148. }
  2149. /**
  2150. * fix_small_imbalance - Calculate the minor imbalance that exists
  2151. * amongst the groups of a sched_domain, during
  2152. * load balancing.
  2153. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2154. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2155. * @imbalance: Variable to store the imbalance.
  2156. */
  2157. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2158. int this_cpu, unsigned long *imbalance)
  2159. {
  2160. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2161. unsigned int imbn = 2;
  2162. if (sds->this_nr_running) {
  2163. sds->this_load_per_task /= sds->this_nr_running;
  2164. if (sds->busiest_load_per_task >
  2165. sds->this_load_per_task)
  2166. imbn = 1;
  2167. } else
  2168. sds->this_load_per_task =
  2169. cpu_avg_load_per_task(this_cpu);
  2170. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  2171. sds->busiest_load_per_task * imbn) {
  2172. *imbalance = sds->busiest_load_per_task;
  2173. return;
  2174. }
  2175. /*
  2176. * OK, we don't have enough imbalance to justify moving tasks,
  2177. * however we may be able to increase total CPU power used by
  2178. * moving them.
  2179. */
  2180. pwr_now += sds->busiest->cpu_power *
  2181. min(sds->busiest_load_per_task, sds->max_load);
  2182. pwr_now += sds->this->cpu_power *
  2183. min(sds->this_load_per_task, sds->this_load);
  2184. pwr_now /= SCHED_LOAD_SCALE;
  2185. /* Amount of load we'd subtract */
  2186. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2187. sds->busiest->cpu_power;
  2188. if (sds->max_load > tmp)
  2189. pwr_move += sds->busiest->cpu_power *
  2190. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2191. /* Amount of load we'd add */
  2192. if (sds->max_load * sds->busiest->cpu_power <
  2193. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2194. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2195. sds->this->cpu_power;
  2196. else
  2197. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2198. sds->this->cpu_power;
  2199. pwr_move += sds->this->cpu_power *
  2200. min(sds->this_load_per_task, sds->this_load + tmp);
  2201. pwr_move /= SCHED_LOAD_SCALE;
  2202. /* Move if we gain throughput */
  2203. if (pwr_move > pwr_now)
  2204. *imbalance = sds->busiest_load_per_task;
  2205. }
  2206. /**
  2207. * calculate_imbalance - Calculate the amount of imbalance present within the
  2208. * groups of a given sched_domain during load balance.
  2209. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2210. * @this_cpu: Cpu for which currently load balance is being performed.
  2211. * @imbalance: The variable to store the imbalance.
  2212. */
  2213. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2214. unsigned long *imbalance)
  2215. {
  2216. unsigned long max_pull;
  2217. /*
  2218. * In the presence of smp nice balancing, certain scenarios can have
  2219. * max load less than avg load(as we skip the groups at or below
  2220. * its cpu_power, while calculating max_load..)
  2221. */
  2222. if (sds->max_load < sds->avg_load) {
  2223. *imbalance = 0;
  2224. return fix_small_imbalance(sds, this_cpu, imbalance);
  2225. }
  2226. /* Don't want to pull so many tasks that a group would go idle */
  2227. max_pull = min(sds->max_load - sds->avg_load,
  2228. sds->max_load - sds->busiest_load_per_task);
  2229. /* How much load to actually move to equalise the imbalance */
  2230. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2231. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2232. / SCHED_LOAD_SCALE;
  2233. /*
  2234. * if *imbalance is less than the average load per runnable task
  2235. * there is no gaurantee that any tasks will be moved so we'll have
  2236. * a think about bumping its value to force at least one task to be
  2237. * moved
  2238. */
  2239. if (*imbalance < sds->busiest_load_per_task)
  2240. return fix_small_imbalance(sds, this_cpu, imbalance);
  2241. }
  2242. /******* find_busiest_group() helpers end here *********************/
  2243. /**
  2244. * find_busiest_group - Returns the busiest group within the sched_domain
  2245. * if there is an imbalance. If there isn't an imbalance, and
  2246. * the user has opted for power-savings, it returns a group whose
  2247. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2248. * such a group exists.
  2249. *
  2250. * Also calculates the amount of weighted load which should be moved
  2251. * to restore balance.
  2252. *
  2253. * @sd: The sched_domain whose busiest group is to be returned.
  2254. * @this_cpu: The cpu for which load balancing is currently being performed.
  2255. * @imbalance: Variable which stores amount of weighted load which should
  2256. * be moved to restore balance/put a group to idle.
  2257. * @idle: The idle status of this_cpu.
  2258. * @sd_idle: The idleness of sd
  2259. * @cpus: The set of CPUs under consideration for load-balancing.
  2260. * @balance: Pointer to a variable indicating if this_cpu
  2261. * is the appropriate cpu to perform load balancing at this_level.
  2262. *
  2263. * Returns: - the busiest group if imbalance exists.
  2264. * - If no imbalance and user has opted for power-savings balance,
  2265. * return the least loaded group whose CPUs can be
  2266. * put to idle by rebalancing its tasks onto our group.
  2267. */
  2268. static struct sched_group *
  2269. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2270. unsigned long *imbalance, enum cpu_idle_type idle,
  2271. int *sd_idle, const struct cpumask *cpus, int *balance)
  2272. {
  2273. struct sd_lb_stats sds;
  2274. memset(&sds, 0, sizeof(sds));
  2275. /*
  2276. * Compute the various statistics relavent for load balancing at
  2277. * this level.
  2278. */
  2279. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2280. balance, &sds);
  2281. /* Cases where imbalance does not exist from POV of this_cpu */
  2282. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2283. * at this level.
  2284. * 2) There is no busy sibling group to pull from.
  2285. * 3) This group is the busiest group.
  2286. * 4) This group is more busy than the avg busieness at this
  2287. * sched_domain.
  2288. * 5) The imbalance is within the specified limit.
  2289. * 6) Any rebalance would lead to ping-pong
  2290. */
  2291. if (!(*balance))
  2292. goto ret;
  2293. if (!sds.busiest || sds.busiest_nr_running == 0)
  2294. goto out_balanced;
  2295. if (sds.this_load >= sds.max_load)
  2296. goto out_balanced;
  2297. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2298. if (sds.this_load >= sds.avg_load)
  2299. goto out_balanced;
  2300. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2301. goto out_balanced;
  2302. sds.busiest_load_per_task /= sds.busiest_nr_running;
  2303. if (sds.group_imb)
  2304. sds.busiest_load_per_task =
  2305. min(sds.busiest_load_per_task, sds.avg_load);
  2306. /*
  2307. * We're trying to get all the cpus to the average_load, so we don't
  2308. * want to push ourselves above the average load, nor do we wish to
  2309. * reduce the max loaded cpu below the average load, as either of these
  2310. * actions would just result in more rebalancing later, and ping-pong
  2311. * tasks around. Thus we look for the minimum possible imbalance.
  2312. * Negative imbalances (*we* are more loaded than anyone else) will
  2313. * be counted as no imbalance for these purposes -- we can't fix that
  2314. * by pulling tasks to us. Be careful of negative numbers as they'll
  2315. * appear as very large values with unsigned longs.
  2316. */
  2317. if (sds.max_load <= sds.busiest_load_per_task)
  2318. goto out_balanced;
  2319. /* Looks like there is an imbalance. Compute it */
  2320. calculate_imbalance(&sds, this_cpu, imbalance);
  2321. return sds.busiest;
  2322. out_balanced:
  2323. /*
  2324. * There is no obvious imbalance. But check if we can do some balancing
  2325. * to save power.
  2326. */
  2327. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2328. return sds.busiest;
  2329. ret:
  2330. *imbalance = 0;
  2331. return NULL;
  2332. }
  2333. /*
  2334. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2335. */
  2336. static struct rq *
  2337. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2338. unsigned long imbalance, const struct cpumask *cpus)
  2339. {
  2340. struct rq *busiest = NULL, *rq;
  2341. unsigned long max_load = 0;
  2342. int i;
  2343. for_each_cpu(i, sched_group_cpus(group)) {
  2344. unsigned long power = power_of(i);
  2345. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2346. unsigned long wl;
  2347. if (!cpumask_test_cpu(i, cpus))
  2348. continue;
  2349. rq = cpu_rq(i);
  2350. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  2351. wl /= power;
  2352. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2353. continue;
  2354. if (wl > max_load) {
  2355. max_load = wl;
  2356. busiest = rq;
  2357. }
  2358. }
  2359. return busiest;
  2360. }
  2361. /*
  2362. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2363. * so long as it is large enough.
  2364. */
  2365. #define MAX_PINNED_INTERVAL 512
  2366. /* Working cpumask for load_balance and load_balance_newidle. */
  2367. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2368. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
  2369. {
  2370. if (idle == CPU_NEWLY_IDLE) {
  2371. /*
  2372. * The only task running in a non-idle cpu can be moved to this
  2373. * cpu in an attempt to completely freeup the other CPU
  2374. * package.
  2375. *
  2376. * The package power saving logic comes from
  2377. * find_busiest_group(). If there are no imbalance, then
  2378. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2379. * f_b_g() will select a group from which a running task may be
  2380. * pulled to this cpu in order to make the other package idle.
  2381. * If there is no opportunity to make a package idle and if
  2382. * there are no imbalance, then f_b_g() will return NULL and no
  2383. * action will be taken in load_balance_newidle().
  2384. *
  2385. * Under normal task pull operation due to imbalance, there
  2386. * will be more than one task in the source run queue and
  2387. * move_tasks() will succeed. ld_moved will be true and this
  2388. * active balance code will not be triggered.
  2389. */
  2390. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2391. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2392. return 0;
  2393. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2394. return 0;
  2395. }
  2396. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2397. }
  2398. /*
  2399. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2400. * tasks if there is an imbalance.
  2401. */
  2402. static int load_balance(int this_cpu, struct rq *this_rq,
  2403. struct sched_domain *sd, enum cpu_idle_type idle,
  2404. int *balance)
  2405. {
  2406. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2407. struct sched_group *group;
  2408. unsigned long imbalance;
  2409. struct rq *busiest;
  2410. unsigned long flags;
  2411. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2412. cpumask_copy(cpus, cpu_active_mask);
  2413. /*
  2414. * When power savings policy is enabled for the parent domain, idle
  2415. * sibling can pick up load irrespective of busy siblings. In this case,
  2416. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2417. * portraying it as CPU_NOT_IDLE.
  2418. */
  2419. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2420. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2421. sd_idle = 1;
  2422. schedstat_inc(sd, lb_count[idle]);
  2423. redo:
  2424. update_shares(sd);
  2425. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2426. cpus, balance);
  2427. if (*balance == 0)
  2428. goto out_balanced;
  2429. if (!group) {
  2430. schedstat_inc(sd, lb_nobusyg[idle]);
  2431. goto out_balanced;
  2432. }
  2433. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2434. if (!busiest) {
  2435. schedstat_inc(sd, lb_nobusyq[idle]);
  2436. goto out_balanced;
  2437. }
  2438. BUG_ON(busiest == this_rq);
  2439. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2440. ld_moved = 0;
  2441. if (busiest->nr_running > 1) {
  2442. /*
  2443. * Attempt to move tasks. If find_busiest_group has found
  2444. * an imbalance but busiest->nr_running <= 1, the group is
  2445. * still unbalanced. ld_moved simply stays zero, so it is
  2446. * correctly treated as an imbalance.
  2447. */
  2448. local_irq_save(flags);
  2449. double_rq_lock(this_rq, busiest);
  2450. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2451. imbalance, sd, idle, &all_pinned);
  2452. double_rq_unlock(this_rq, busiest);
  2453. local_irq_restore(flags);
  2454. /*
  2455. * some other cpu did the load balance for us.
  2456. */
  2457. if (ld_moved && this_cpu != smp_processor_id())
  2458. resched_cpu(this_cpu);
  2459. /* All tasks on this runqueue were pinned by CPU affinity */
  2460. if (unlikely(all_pinned)) {
  2461. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2462. if (!cpumask_empty(cpus))
  2463. goto redo;
  2464. goto out_balanced;
  2465. }
  2466. }
  2467. if (!ld_moved) {
  2468. schedstat_inc(sd, lb_failed[idle]);
  2469. sd->nr_balance_failed++;
  2470. if (need_active_balance(sd, sd_idle, idle)) {
  2471. raw_spin_lock_irqsave(&busiest->lock, flags);
  2472. /* don't kick the migration_thread, if the curr
  2473. * task on busiest cpu can't be moved to this_cpu
  2474. */
  2475. if (!cpumask_test_cpu(this_cpu,
  2476. &busiest->curr->cpus_allowed)) {
  2477. raw_spin_unlock_irqrestore(&busiest->lock,
  2478. flags);
  2479. all_pinned = 1;
  2480. goto out_one_pinned;
  2481. }
  2482. if (!busiest->active_balance) {
  2483. busiest->active_balance = 1;
  2484. busiest->push_cpu = this_cpu;
  2485. active_balance = 1;
  2486. }
  2487. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2488. if (active_balance)
  2489. wake_up_process(busiest->migration_thread);
  2490. /*
  2491. * We've kicked active balancing, reset the failure
  2492. * counter.
  2493. */
  2494. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2495. }
  2496. } else
  2497. sd->nr_balance_failed = 0;
  2498. if (likely(!active_balance)) {
  2499. /* We were unbalanced, so reset the balancing interval */
  2500. sd->balance_interval = sd->min_interval;
  2501. } else {
  2502. /*
  2503. * If we've begun active balancing, start to back off. This
  2504. * case may not be covered by the all_pinned logic if there
  2505. * is only 1 task on the busy runqueue (because we don't call
  2506. * move_tasks).
  2507. */
  2508. if (sd->balance_interval < sd->max_interval)
  2509. sd->balance_interval *= 2;
  2510. }
  2511. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2512. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2513. ld_moved = -1;
  2514. goto out;
  2515. out_balanced:
  2516. schedstat_inc(sd, lb_balanced[idle]);
  2517. sd->nr_balance_failed = 0;
  2518. out_one_pinned:
  2519. /* tune up the balancing interval */
  2520. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2521. (sd->balance_interval < sd->max_interval))
  2522. sd->balance_interval *= 2;
  2523. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2524. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2525. ld_moved = -1;
  2526. else
  2527. ld_moved = 0;
  2528. out:
  2529. if (ld_moved)
  2530. update_shares(sd);
  2531. return ld_moved;
  2532. }
  2533. /*
  2534. * idle_balance is called by schedule() if this_cpu is about to become
  2535. * idle. Attempts to pull tasks from other CPUs.
  2536. */
  2537. static void idle_balance(int this_cpu, struct rq *this_rq)
  2538. {
  2539. struct sched_domain *sd;
  2540. int pulled_task = 0;
  2541. unsigned long next_balance = jiffies + HZ;
  2542. this_rq->idle_stamp = this_rq->clock;
  2543. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2544. return;
  2545. /*
  2546. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2547. */
  2548. raw_spin_unlock(&this_rq->lock);
  2549. for_each_domain(this_cpu, sd) {
  2550. unsigned long interval;
  2551. int balance = 1;
  2552. if (!(sd->flags & SD_LOAD_BALANCE))
  2553. continue;
  2554. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2555. /* If we've pulled tasks over stop searching: */
  2556. pulled_task = load_balance(this_cpu, this_rq,
  2557. sd, CPU_NEWLY_IDLE, &balance);
  2558. }
  2559. interval = msecs_to_jiffies(sd->balance_interval);
  2560. if (time_after(next_balance, sd->last_balance + interval))
  2561. next_balance = sd->last_balance + interval;
  2562. if (pulled_task) {
  2563. this_rq->idle_stamp = 0;
  2564. break;
  2565. }
  2566. }
  2567. raw_spin_lock(&this_rq->lock);
  2568. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2569. /*
  2570. * We are going idle. next_balance may be set based on
  2571. * a busy processor. So reset next_balance.
  2572. */
  2573. this_rq->next_balance = next_balance;
  2574. }
  2575. }
  2576. /*
  2577. * active_load_balance is run by migration threads. It pushes running tasks
  2578. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2579. * running on each physical CPU where possible, and avoids physical /
  2580. * logical imbalances.
  2581. *
  2582. * Called with busiest_rq locked.
  2583. */
  2584. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2585. {
  2586. int target_cpu = busiest_rq->push_cpu;
  2587. struct sched_domain *sd;
  2588. struct rq *target_rq;
  2589. /* Is there any task to move? */
  2590. if (busiest_rq->nr_running <= 1)
  2591. return;
  2592. target_rq = cpu_rq(target_cpu);
  2593. /*
  2594. * This condition is "impossible", if it occurs
  2595. * we need to fix it. Originally reported by
  2596. * Bjorn Helgaas on a 128-cpu setup.
  2597. */
  2598. BUG_ON(busiest_rq == target_rq);
  2599. /* move a task from busiest_rq to target_rq */
  2600. double_lock_balance(busiest_rq, target_rq);
  2601. update_rq_clock(busiest_rq);
  2602. update_rq_clock(target_rq);
  2603. /* Search for an sd spanning us and the target CPU. */
  2604. for_each_domain(target_cpu, sd) {
  2605. if ((sd->flags & SD_LOAD_BALANCE) &&
  2606. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2607. break;
  2608. }
  2609. if (likely(sd)) {
  2610. schedstat_inc(sd, alb_count);
  2611. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2612. sd, CPU_IDLE))
  2613. schedstat_inc(sd, alb_pushed);
  2614. else
  2615. schedstat_inc(sd, alb_failed);
  2616. }
  2617. double_unlock_balance(busiest_rq, target_rq);
  2618. }
  2619. #ifdef CONFIG_NO_HZ
  2620. static struct {
  2621. atomic_t load_balancer;
  2622. cpumask_var_t cpu_mask;
  2623. cpumask_var_t ilb_grp_nohz_mask;
  2624. } nohz ____cacheline_aligned = {
  2625. .load_balancer = ATOMIC_INIT(-1),
  2626. };
  2627. int get_nohz_load_balancer(void)
  2628. {
  2629. return atomic_read(&nohz.load_balancer);
  2630. }
  2631. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2632. /**
  2633. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2634. * @cpu: The cpu whose lowest level of sched domain is to
  2635. * be returned.
  2636. * @flag: The flag to check for the lowest sched_domain
  2637. * for the given cpu.
  2638. *
  2639. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2640. */
  2641. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2642. {
  2643. struct sched_domain *sd;
  2644. for_each_domain(cpu, sd)
  2645. if (sd && (sd->flags & flag))
  2646. break;
  2647. return sd;
  2648. }
  2649. /**
  2650. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2651. * @cpu: The cpu whose domains we're iterating over.
  2652. * @sd: variable holding the value of the power_savings_sd
  2653. * for cpu.
  2654. * @flag: The flag to filter the sched_domains to be iterated.
  2655. *
  2656. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2657. * set, starting from the lowest sched_domain to the highest.
  2658. */
  2659. #define for_each_flag_domain(cpu, sd, flag) \
  2660. for (sd = lowest_flag_domain(cpu, flag); \
  2661. (sd && (sd->flags & flag)); sd = sd->parent)
  2662. /**
  2663. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2664. * @ilb_group: group to be checked for semi-idleness
  2665. *
  2666. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2667. *
  2668. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2669. * and atleast one non-idle CPU. This helper function checks if the given
  2670. * sched_group is semi-idle or not.
  2671. */
  2672. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2673. {
  2674. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  2675. sched_group_cpus(ilb_group));
  2676. /*
  2677. * A sched_group is semi-idle when it has atleast one busy cpu
  2678. * and atleast one idle cpu.
  2679. */
  2680. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  2681. return 0;
  2682. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  2683. return 0;
  2684. return 1;
  2685. }
  2686. /**
  2687. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2688. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2689. *
  2690. * Returns: Returns the id of the idle load balancer if it exists,
  2691. * Else, returns >= nr_cpu_ids.
  2692. *
  2693. * This algorithm picks the idle load balancer such that it belongs to a
  2694. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2695. * completely idle packages/cores just for the purpose of idle load balancing
  2696. * when there are other idle cpu's which are better suited for that job.
  2697. */
  2698. static int find_new_ilb(int cpu)
  2699. {
  2700. struct sched_domain *sd;
  2701. struct sched_group *ilb_group;
  2702. /*
  2703. * Have idle load balancer selection from semi-idle packages only
  2704. * when power-aware load balancing is enabled
  2705. */
  2706. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2707. goto out_done;
  2708. /*
  2709. * Optimize for the case when we have no idle CPUs or only one
  2710. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2711. */
  2712. if (cpumask_weight(nohz.cpu_mask) < 2)
  2713. goto out_done;
  2714. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2715. ilb_group = sd->groups;
  2716. do {
  2717. if (is_semi_idle_group(ilb_group))
  2718. return cpumask_first(nohz.ilb_grp_nohz_mask);
  2719. ilb_group = ilb_group->next;
  2720. } while (ilb_group != sd->groups);
  2721. }
  2722. out_done:
  2723. return cpumask_first(nohz.cpu_mask);
  2724. }
  2725. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2726. static inline int find_new_ilb(int call_cpu)
  2727. {
  2728. return cpumask_first(nohz.cpu_mask);
  2729. }
  2730. #endif
  2731. /*
  2732. * This routine will try to nominate the ilb (idle load balancing)
  2733. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2734. * load balancing on behalf of all those cpus. If all the cpus in the system
  2735. * go into this tickless mode, then there will be no ilb owner (as there is
  2736. * no need for one) and all the cpus will sleep till the next wakeup event
  2737. * arrives...
  2738. *
  2739. * For the ilb owner, tick is not stopped. And this tick will be used
  2740. * for idle load balancing. ilb owner will still be part of
  2741. * nohz.cpu_mask..
  2742. *
  2743. * While stopping the tick, this cpu will become the ilb owner if there
  2744. * is no other owner. And will be the owner till that cpu becomes busy
  2745. * or if all cpus in the system stop their ticks at which point
  2746. * there is no need for ilb owner.
  2747. *
  2748. * When the ilb owner becomes busy, it nominates another owner, during the
  2749. * next busy scheduler_tick()
  2750. */
  2751. int select_nohz_load_balancer(int stop_tick)
  2752. {
  2753. int cpu = smp_processor_id();
  2754. if (stop_tick) {
  2755. cpu_rq(cpu)->in_nohz_recently = 1;
  2756. if (!cpu_active(cpu)) {
  2757. if (atomic_read(&nohz.load_balancer) != cpu)
  2758. return 0;
  2759. /*
  2760. * If we are going offline and still the leader,
  2761. * give up!
  2762. */
  2763. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2764. BUG();
  2765. return 0;
  2766. }
  2767. cpumask_set_cpu(cpu, nohz.cpu_mask);
  2768. /* time for ilb owner also to sleep */
  2769. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  2770. if (atomic_read(&nohz.load_balancer) == cpu)
  2771. atomic_set(&nohz.load_balancer, -1);
  2772. return 0;
  2773. }
  2774. if (atomic_read(&nohz.load_balancer) == -1) {
  2775. /* make me the ilb owner */
  2776. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2777. return 1;
  2778. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  2779. int new_ilb;
  2780. if (!(sched_smt_power_savings ||
  2781. sched_mc_power_savings))
  2782. return 1;
  2783. /*
  2784. * Check to see if there is a more power-efficient
  2785. * ilb.
  2786. */
  2787. new_ilb = find_new_ilb(cpu);
  2788. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2789. atomic_set(&nohz.load_balancer, -1);
  2790. resched_cpu(new_ilb);
  2791. return 0;
  2792. }
  2793. return 1;
  2794. }
  2795. } else {
  2796. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  2797. return 0;
  2798. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2799. if (atomic_read(&nohz.load_balancer) == cpu)
  2800. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2801. BUG();
  2802. }
  2803. return 0;
  2804. }
  2805. #endif
  2806. static DEFINE_SPINLOCK(balancing);
  2807. /*
  2808. * It checks each scheduling domain to see if it is due to be balanced,
  2809. * and initiates a balancing operation if so.
  2810. *
  2811. * Balancing parameters are set up in arch_init_sched_domains.
  2812. */
  2813. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2814. {
  2815. int balance = 1;
  2816. struct rq *rq = cpu_rq(cpu);
  2817. unsigned long interval;
  2818. struct sched_domain *sd;
  2819. /* Earliest time when we have to do rebalance again */
  2820. unsigned long next_balance = jiffies + 60*HZ;
  2821. int update_next_balance = 0;
  2822. int need_serialize;
  2823. for_each_domain(cpu, sd) {
  2824. if (!(sd->flags & SD_LOAD_BALANCE))
  2825. continue;
  2826. interval = sd->balance_interval;
  2827. if (idle != CPU_IDLE)
  2828. interval *= sd->busy_factor;
  2829. /* scale ms to jiffies */
  2830. interval = msecs_to_jiffies(interval);
  2831. if (unlikely(!interval))
  2832. interval = 1;
  2833. if (interval > HZ*NR_CPUS/10)
  2834. interval = HZ*NR_CPUS/10;
  2835. need_serialize = sd->flags & SD_SERIALIZE;
  2836. if (need_serialize) {
  2837. if (!spin_trylock(&balancing))
  2838. goto out;
  2839. }
  2840. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2841. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2842. /*
  2843. * We've pulled tasks over so either we're no
  2844. * longer idle, or one of our SMT siblings is
  2845. * not idle.
  2846. */
  2847. idle = CPU_NOT_IDLE;
  2848. }
  2849. sd->last_balance = jiffies;
  2850. }
  2851. if (need_serialize)
  2852. spin_unlock(&balancing);
  2853. out:
  2854. if (time_after(next_balance, sd->last_balance + interval)) {
  2855. next_balance = sd->last_balance + interval;
  2856. update_next_balance = 1;
  2857. }
  2858. /*
  2859. * Stop the load balance at this level. There is another
  2860. * CPU in our sched group which is doing load balancing more
  2861. * actively.
  2862. */
  2863. if (!balance)
  2864. break;
  2865. }
  2866. /*
  2867. * next_balance will be updated only when there is a need.
  2868. * When the cpu is attached to null domain for ex, it will not be
  2869. * updated.
  2870. */
  2871. if (likely(update_next_balance))
  2872. rq->next_balance = next_balance;
  2873. }
  2874. /*
  2875. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2876. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2877. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2878. */
  2879. static void run_rebalance_domains(struct softirq_action *h)
  2880. {
  2881. int this_cpu = smp_processor_id();
  2882. struct rq *this_rq = cpu_rq(this_cpu);
  2883. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2884. CPU_IDLE : CPU_NOT_IDLE;
  2885. rebalance_domains(this_cpu, idle);
  2886. #ifdef CONFIG_NO_HZ
  2887. /*
  2888. * If this cpu is the owner for idle load balancing, then do the
  2889. * balancing on behalf of the other idle cpus whose ticks are
  2890. * stopped.
  2891. */
  2892. if (this_rq->idle_at_tick &&
  2893. atomic_read(&nohz.load_balancer) == this_cpu) {
  2894. struct rq *rq;
  2895. int balance_cpu;
  2896. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  2897. if (balance_cpu == this_cpu)
  2898. continue;
  2899. /*
  2900. * If this cpu gets work to do, stop the load balancing
  2901. * work being done for other cpus. Next load
  2902. * balancing owner will pick it up.
  2903. */
  2904. if (need_resched())
  2905. break;
  2906. rebalance_domains(balance_cpu, CPU_IDLE);
  2907. rq = cpu_rq(balance_cpu);
  2908. if (time_after(this_rq->next_balance, rq->next_balance))
  2909. this_rq->next_balance = rq->next_balance;
  2910. }
  2911. }
  2912. #endif
  2913. }
  2914. static inline int on_null_domain(int cpu)
  2915. {
  2916. return !rcu_dereference(cpu_rq(cpu)->sd);
  2917. }
  2918. /*
  2919. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2920. *
  2921. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2922. * idle load balancing owner or decide to stop the periodic load balancing,
  2923. * if the whole system is idle.
  2924. */
  2925. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2926. {
  2927. #ifdef CONFIG_NO_HZ
  2928. /*
  2929. * If we were in the nohz mode recently and busy at the current
  2930. * scheduler tick, then check if we need to nominate new idle
  2931. * load balancer.
  2932. */
  2933. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2934. rq->in_nohz_recently = 0;
  2935. if (atomic_read(&nohz.load_balancer) == cpu) {
  2936. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  2937. atomic_set(&nohz.load_balancer, -1);
  2938. }
  2939. if (atomic_read(&nohz.load_balancer) == -1) {
  2940. int ilb = find_new_ilb(cpu);
  2941. if (ilb < nr_cpu_ids)
  2942. resched_cpu(ilb);
  2943. }
  2944. }
  2945. /*
  2946. * If this cpu is idle and doing idle load balancing for all the
  2947. * cpus with ticks stopped, is it time for that to stop?
  2948. */
  2949. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2950. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  2951. resched_cpu(cpu);
  2952. return;
  2953. }
  2954. /*
  2955. * If this cpu is idle and the idle load balancing is done by
  2956. * someone else, then no need raise the SCHED_SOFTIRQ
  2957. */
  2958. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2959. cpumask_test_cpu(cpu, nohz.cpu_mask))
  2960. return;
  2961. #endif
  2962. /* Don't need to rebalance while attached to NULL domain */
  2963. if (time_after_eq(jiffies, rq->next_balance) &&
  2964. likely(!on_null_domain(cpu)))
  2965. raise_softirq(SCHED_SOFTIRQ);
  2966. }
  2967. static void rq_online_fair(struct rq *rq)
  2968. {
  2969. update_sysctl();
  2970. }
  2971. static void rq_offline_fair(struct rq *rq)
  2972. {
  2973. update_sysctl();
  2974. }
  2975. #else /* CONFIG_SMP */
  2976. /*
  2977. * on UP we do not need to balance between CPUs:
  2978. */
  2979. static inline void idle_balance(int cpu, struct rq *rq)
  2980. {
  2981. }
  2982. #endif /* CONFIG_SMP */
  2983. /*
  2984. * scheduler tick hitting a task of our scheduling class:
  2985. */
  2986. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  2987. {
  2988. struct cfs_rq *cfs_rq;
  2989. struct sched_entity *se = &curr->se;
  2990. for_each_sched_entity(se) {
  2991. cfs_rq = cfs_rq_of(se);
  2992. entity_tick(cfs_rq, se, queued);
  2993. }
  2994. }
  2995. /*
  2996. * called on fork with the child task as argument from the parent's context
  2997. * - child not yet on the tasklist
  2998. * - preemption disabled
  2999. */
  3000. static void task_fork_fair(struct task_struct *p)
  3001. {
  3002. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3003. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3004. int this_cpu = smp_processor_id();
  3005. struct rq *rq = this_rq();
  3006. unsigned long flags;
  3007. raw_spin_lock_irqsave(&rq->lock, flags);
  3008. if (unlikely(task_cpu(p) != this_cpu))
  3009. __set_task_cpu(p, this_cpu);
  3010. update_curr(cfs_rq);
  3011. if (curr)
  3012. se->vruntime = curr->vruntime;
  3013. place_entity(cfs_rq, se, 1);
  3014. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3015. /*
  3016. * Upon rescheduling, sched_class::put_prev_task() will place
  3017. * 'current' within the tree based on its new key value.
  3018. */
  3019. swap(curr->vruntime, se->vruntime);
  3020. resched_task(rq->curr);
  3021. }
  3022. se->vruntime -= cfs_rq->min_vruntime;
  3023. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3024. }
  3025. /*
  3026. * Priority of the task has changed. Check to see if we preempt
  3027. * the current task.
  3028. */
  3029. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3030. int oldprio, int running)
  3031. {
  3032. /*
  3033. * Reschedule if we are currently running on this runqueue and
  3034. * our priority decreased, or if we are not currently running on
  3035. * this runqueue and our priority is higher than the current's
  3036. */
  3037. if (running) {
  3038. if (p->prio > oldprio)
  3039. resched_task(rq->curr);
  3040. } else
  3041. check_preempt_curr(rq, p, 0);
  3042. }
  3043. /*
  3044. * We switched to the sched_fair class.
  3045. */
  3046. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3047. int running)
  3048. {
  3049. /*
  3050. * We were most likely switched from sched_rt, so
  3051. * kick off the schedule if running, otherwise just see
  3052. * if we can still preempt the current task.
  3053. */
  3054. if (running)
  3055. resched_task(rq->curr);
  3056. else
  3057. check_preempt_curr(rq, p, 0);
  3058. }
  3059. /* Account for a task changing its policy or group.
  3060. *
  3061. * This routine is mostly called to set cfs_rq->curr field when a task
  3062. * migrates between groups/classes.
  3063. */
  3064. static void set_curr_task_fair(struct rq *rq)
  3065. {
  3066. struct sched_entity *se = &rq->curr->se;
  3067. for_each_sched_entity(se)
  3068. set_next_entity(cfs_rq_of(se), se);
  3069. }
  3070. #ifdef CONFIG_FAIR_GROUP_SCHED
  3071. static void moved_group_fair(struct task_struct *p, int on_rq)
  3072. {
  3073. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3074. update_curr(cfs_rq);
  3075. if (!on_rq)
  3076. place_entity(cfs_rq, &p->se, 1);
  3077. }
  3078. #endif
  3079. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3080. {
  3081. struct sched_entity *se = &task->se;
  3082. unsigned int rr_interval = 0;
  3083. /*
  3084. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3085. * idle runqueue:
  3086. */
  3087. if (rq->cfs.load.weight)
  3088. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3089. return rr_interval;
  3090. }
  3091. /*
  3092. * All the scheduling class methods:
  3093. */
  3094. static const struct sched_class fair_sched_class = {
  3095. .next = &idle_sched_class,
  3096. .enqueue_task = enqueue_task_fair,
  3097. .dequeue_task = dequeue_task_fair,
  3098. .yield_task = yield_task_fair,
  3099. .check_preempt_curr = check_preempt_wakeup,
  3100. .pick_next_task = pick_next_task_fair,
  3101. .put_prev_task = put_prev_task_fair,
  3102. #ifdef CONFIG_SMP
  3103. .select_task_rq = select_task_rq_fair,
  3104. .rq_online = rq_online_fair,
  3105. .rq_offline = rq_offline_fair,
  3106. .task_waking = task_waking_fair,
  3107. #endif
  3108. .set_curr_task = set_curr_task_fair,
  3109. .task_tick = task_tick_fair,
  3110. .task_fork = task_fork_fair,
  3111. .prio_changed = prio_changed_fair,
  3112. .switched_to = switched_to_fair,
  3113. .get_rr_interval = get_rr_interval_fair,
  3114. #ifdef CONFIG_FAIR_GROUP_SCHED
  3115. .moved_group = moved_group_fair,
  3116. #endif
  3117. };
  3118. #ifdef CONFIG_SCHED_DEBUG
  3119. static void print_cfs_stats(struct seq_file *m, int cpu)
  3120. {
  3121. struct cfs_rq *cfs_rq;
  3122. rcu_read_lock();
  3123. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3124. print_cfs_rq(m, cpu, cfs_rq);
  3125. rcu_read_unlock();
  3126. }
  3127. #endif