slab.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  196. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  197. /* Max number of objs-per-slab for caches which use off-slab slabs.
  198. * Needed to avoid a possible looping condition in cache_grow().
  199. */
  200. static unsigned long offslab_limit;
  201. /*
  202. * struct slab
  203. *
  204. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  205. * for a slab, or allocated from an general cache.
  206. * Slabs are chained into three list: fully used, partial, fully free slabs.
  207. */
  208. struct slab {
  209. struct list_head list;
  210. unsigned long colouroff;
  211. void *s_mem; /* including colour offset */
  212. unsigned int inuse; /* num of objs active in slab */
  213. kmem_bufctl_t free;
  214. unsigned short nodeid;
  215. };
  216. /*
  217. * struct slab_rcu
  218. *
  219. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  220. * arrange for kmem_freepages to be called via RCU. This is useful if
  221. * we need to approach a kernel structure obliquely, from its address
  222. * obtained without the usual locking. We can lock the structure to
  223. * stabilize it and check it's still at the given address, only if we
  224. * can be sure that the memory has not been meanwhile reused for some
  225. * other kind of object (which our subsystem's lock might corrupt).
  226. *
  227. * rcu_read_lock before reading the address, then rcu_read_unlock after
  228. * taking the spinlock within the structure expected at that address.
  229. *
  230. * We assume struct slab_rcu can overlay struct slab when destroying.
  231. */
  232. struct slab_rcu {
  233. struct rcu_head head;
  234. struct kmem_cache *cachep;
  235. void *addr;
  236. };
  237. /*
  238. * struct array_cache
  239. *
  240. * Purpose:
  241. * - LIFO ordering, to hand out cache-warm objects from _alloc
  242. * - reduce the number of linked list operations
  243. * - reduce spinlock operations
  244. *
  245. * The limit is stored in the per-cpu structure to reduce the data cache
  246. * footprint.
  247. *
  248. */
  249. struct array_cache {
  250. unsigned int avail;
  251. unsigned int limit;
  252. unsigned int batchcount;
  253. unsigned int touched;
  254. spinlock_t lock;
  255. void *entry[0]; /*
  256. * Must have this definition in here for the proper
  257. * alignment of array_cache. Also simplifies accessing
  258. * the entries.
  259. * [0] is for gcc 2.95. It should really be [].
  260. */
  261. };
  262. /*
  263. * bootstrap: The caches do not work without cpuarrays anymore, but the
  264. * cpuarrays are allocated from the generic caches...
  265. */
  266. #define BOOT_CPUCACHE_ENTRIES 1
  267. struct arraycache_init {
  268. struct array_cache cache;
  269. void *entries[BOOT_CPUCACHE_ENTRIES];
  270. };
  271. /*
  272. * The slab lists for all objects.
  273. */
  274. struct kmem_list3 {
  275. struct list_head slabs_partial; /* partial list first, better asm code */
  276. struct list_head slabs_full;
  277. struct list_head slabs_free;
  278. unsigned long free_objects;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. unsigned long next_reap; /* updated without locking */
  285. int free_touched; /* updated without locking */
  286. };
  287. /*
  288. * Need this for bootstrapping a per node allocator.
  289. */
  290. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  291. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  292. #define CACHE_CACHE 0
  293. #define SIZE_AC 1
  294. #define SIZE_L3 (1 + MAX_NUMNODES)
  295. /*
  296. * This function must be completely optimized away if a constant is passed to
  297. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  298. */
  299. static __always_inline int index_of(const size_t size)
  300. {
  301. extern void __bad_size(void);
  302. if (__builtin_constant_p(size)) {
  303. int i = 0;
  304. #define CACHE(x) \
  305. if (size <=x) \
  306. return i; \
  307. else \
  308. i++;
  309. #include "linux/kmalloc_sizes.h"
  310. #undef CACHE
  311. __bad_size();
  312. } else
  313. __bad_size();
  314. return 0;
  315. }
  316. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  317. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  318. static void kmem_list3_init(struct kmem_list3 *parent)
  319. {
  320. INIT_LIST_HEAD(&parent->slabs_full);
  321. INIT_LIST_HEAD(&parent->slabs_partial);
  322. INIT_LIST_HEAD(&parent->slabs_free);
  323. parent->shared = NULL;
  324. parent->alien = NULL;
  325. parent->colour_next = 0;
  326. spin_lock_init(&parent->list_lock);
  327. parent->free_objects = 0;
  328. parent->free_touched = 0;
  329. }
  330. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  331. do { \
  332. INIT_LIST_HEAD(listp); \
  333. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  334. } while (0)
  335. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  336. do { \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  338. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  339. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  340. } while (0)
  341. /*
  342. * struct kmem_cache
  343. *
  344. * manages a cache.
  345. */
  346. struct kmem_cache {
  347. /* 1) per-cpu data, touched during every alloc/free */
  348. struct array_cache *array[NR_CPUS];
  349. /* 2) Cache tunables. Protected by cache_chain_mutex */
  350. unsigned int batchcount;
  351. unsigned int limit;
  352. unsigned int shared;
  353. unsigned int buffer_size;
  354. /* 3) touched by every alloc & free from the backend */
  355. struct kmem_list3 *nodelists[MAX_NUMNODES];
  356. unsigned int flags; /* constant flags */
  357. unsigned int num; /* # of objs per slab */
  358. /* 4) cache_grow/shrink */
  359. /* order of pgs per slab (2^n) */
  360. unsigned int gfporder;
  361. /* force GFP flags, e.g. GFP_DMA */
  362. gfp_t gfpflags;
  363. size_t colour; /* cache colouring range */
  364. unsigned int colour_off; /* colour offset */
  365. struct kmem_cache *slabp_cache;
  366. unsigned int slab_size;
  367. unsigned int dflags; /* dynamic flags */
  368. /* constructor func */
  369. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  370. /* de-constructor func */
  371. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  372. /* 5) cache creation/removal */
  373. const char *name;
  374. struct list_head next;
  375. /* 6) statistics */
  376. #if STATS
  377. unsigned long num_active;
  378. unsigned long num_allocations;
  379. unsigned long high_mark;
  380. unsigned long grown;
  381. unsigned long reaped;
  382. unsigned long errors;
  383. unsigned long max_freeable;
  384. unsigned long node_allocs;
  385. unsigned long node_frees;
  386. atomic_t allochit;
  387. atomic_t allocmiss;
  388. atomic_t freehit;
  389. atomic_t freemiss;
  390. #endif
  391. #if DEBUG
  392. /*
  393. * If debugging is enabled, then the allocator can add additional
  394. * fields and/or padding to every object. buffer_size contains the total
  395. * object size including these internal fields, the following two
  396. * variables contain the offset to the user object and its size.
  397. */
  398. int obj_offset;
  399. int obj_size;
  400. #endif
  401. };
  402. #define CFLGS_OFF_SLAB (0x80000000UL)
  403. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  404. #define BATCHREFILL_LIMIT 16
  405. /*
  406. * Optimization question: fewer reaps means less probability for unnessary
  407. * cpucache drain/refill cycles.
  408. *
  409. * OTOH the cpuarrays can contain lots of objects,
  410. * which could lock up otherwise freeable slabs.
  411. */
  412. #define REAPTIMEOUT_CPUC (2*HZ)
  413. #define REAPTIMEOUT_LIST3 (4*HZ)
  414. #if STATS
  415. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  416. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  417. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  418. #define STATS_INC_GROWN(x) ((x)->grown++)
  419. #define STATS_INC_REAPED(x) ((x)->reaped++)
  420. #define STATS_SET_HIGH(x) \
  421. do { \
  422. if ((x)->num_active > (x)->high_mark) \
  423. (x)->high_mark = (x)->num_active; \
  424. } while (0)
  425. #define STATS_INC_ERR(x) ((x)->errors++)
  426. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  427. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  428. #define STATS_SET_FREEABLE(x, i) \
  429. do { \
  430. if ((x)->max_freeable < i) \
  431. (x)->max_freeable = i; \
  432. } while (0)
  433. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  434. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  435. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  436. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  437. #else
  438. #define STATS_INC_ACTIVE(x) do { } while (0)
  439. #define STATS_DEC_ACTIVE(x) do { } while (0)
  440. #define STATS_INC_ALLOCED(x) do { } while (0)
  441. #define STATS_INC_GROWN(x) do { } while (0)
  442. #define STATS_INC_REAPED(x) do { } while (0)
  443. #define STATS_SET_HIGH(x) do { } while (0)
  444. #define STATS_INC_ERR(x) do { } while (0)
  445. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  446. #define STATS_INC_NODEFREES(x) do { } while (0)
  447. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  448. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  449. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  450. #define STATS_INC_FREEHIT(x) do { } while (0)
  451. #define STATS_INC_FREEMISS(x) do { } while (0)
  452. #endif
  453. #if DEBUG
  454. /*
  455. * Magic nums for obj red zoning.
  456. * Placed in the first word before and the first word after an obj.
  457. */
  458. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  459. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  460. /* ...and for poisoning */
  461. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  462. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  463. #define POISON_END 0xa5 /* end-byte of poisoning */
  464. /*
  465. * memory layout of objects:
  466. * 0 : objp
  467. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  468. * the end of an object is aligned with the end of the real
  469. * allocation. Catches writes behind the end of the allocation.
  470. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  471. * redzone word.
  472. * cachep->obj_offset: The real object.
  473. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  474. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  475. * [BYTES_PER_WORD long]
  476. */
  477. static int obj_offset(struct kmem_cache *cachep)
  478. {
  479. return cachep->obj_offset;
  480. }
  481. static int obj_size(struct kmem_cache *cachep)
  482. {
  483. return cachep->obj_size;
  484. }
  485. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  486. {
  487. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  488. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  489. }
  490. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  491. {
  492. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  493. if (cachep->flags & SLAB_STORE_USER)
  494. return (unsigned long *)(objp + cachep->buffer_size -
  495. 2 * BYTES_PER_WORD);
  496. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  497. }
  498. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  499. {
  500. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  501. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  502. }
  503. #else
  504. #define obj_offset(x) 0
  505. #define obj_size(cachep) (cachep->buffer_size)
  506. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  508. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  509. #endif
  510. /*
  511. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  512. * order.
  513. */
  514. #if defined(CONFIG_LARGE_ALLOCS)
  515. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  516. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  517. #elif defined(CONFIG_MMU)
  518. #define MAX_OBJ_ORDER 5 /* 32 pages */
  519. #define MAX_GFP_ORDER 5 /* 32 pages */
  520. #else
  521. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  522. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  523. #endif
  524. /*
  525. * Do not go above this order unless 0 objects fit into the slab.
  526. */
  527. #define BREAK_GFP_ORDER_HI 1
  528. #define BREAK_GFP_ORDER_LO 0
  529. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  530. /*
  531. * Functions for storing/retrieving the cachep and or slab from the page
  532. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  533. * these are used to find the cache which an obj belongs to.
  534. */
  535. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  536. {
  537. page->lru.next = (struct list_head *)cache;
  538. }
  539. static inline struct kmem_cache *page_get_cache(struct page *page)
  540. {
  541. if (unlikely(PageCompound(page)))
  542. page = (struct page *)page_private(page);
  543. return (struct kmem_cache *)page->lru.next;
  544. }
  545. static inline void page_set_slab(struct page *page, struct slab *slab)
  546. {
  547. page->lru.prev = (struct list_head *)slab;
  548. }
  549. static inline struct slab *page_get_slab(struct page *page)
  550. {
  551. if (unlikely(PageCompound(page)))
  552. page = (struct page *)page_private(page);
  553. return (struct slab *)page->lru.prev;
  554. }
  555. static inline struct kmem_cache *virt_to_cache(const void *obj)
  556. {
  557. struct page *page = virt_to_page(obj);
  558. return page_get_cache(page);
  559. }
  560. static inline struct slab *virt_to_slab(const void *obj)
  561. {
  562. struct page *page = virt_to_page(obj);
  563. return page_get_slab(page);
  564. }
  565. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  566. unsigned int idx)
  567. {
  568. return slab->s_mem + cache->buffer_size * idx;
  569. }
  570. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  571. struct slab *slab, void *obj)
  572. {
  573. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  574. }
  575. /*
  576. * These are the default caches for kmalloc. Custom caches can have other sizes.
  577. */
  578. struct cache_sizes malloc_sizes[] = {
  579. #define CACHE(x) { .cs_size = (x) },
  580. #include <linux/kmalloc_sizes.h>
  581. CACHE(ULONG_MAX)
  582. #undef CACHE
  583. };
  584. EXPORT_SYMBOL(malloc_sizes);
  585. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  586. struct cache_names {
  587. char *name;
  588. char *name_dma;
  589. };
  590. static struct cache_names __initdata cache_names[] = {
  591. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  592. #include <linux/kmalloc_sizes.h>
  593. {NULL,}
  594. #undef CACHE
  595. };
  596. static struct arraycache_init initarray_cache __initdata =
  597. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  598. static struct arraycache_init initarray_generic =
  599. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  600. /* internal cache of cache description objs */
  601. static struct kmem_cache cache_cache = {
  602. .batchcount = 1,
  603. .limit = BOOT_CPUCACHE_ENTRIES,
  604. .shared = 1,
  605. .buffer_size = sizeof(struct kmem_cache),
  606. .name = "kmem_cache",
  607. #if DEBUG
  608. .obj_size = sizeof(struct kmem_cache),
  609. #endif
  610. };
  611. /* Guard access to the cache-chain. */
  612. static DEFINE_MUTEX(cache_chain_mutex);
  613. static struct list_head cache_chain;
  614. /*
  615. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  616. * are possibly freeable under pressure
  617. *
  618. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  619. */
  620. atomic_t slab_reclaim_pages;
  621. /*
  622. * chicken and egg problem: delay the per-cpu array allocation
  623. * until the general caches are up.
  624. */
  625. static enum {
  626. NONE,
  627. PARTIAL_AC,
  628. PARTIAL_L3,
  629. FULL
  630. } g_cpucache_up;
  631. static DEFINE_PER_CPU(struct work_struct, reap_work);
  632. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  633. int node);
  634. static void enable_cpucache(struct kmem_cache *cachep);
  635. static void cache_reap(void *unused);
  636. static int __node_shrink(struct kmem_cache *cachep, int node);
  637. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  638. {
  639. return cachep->array[smp_processor_id()];
  640. }
  641. static inline struct kmem_cache *__find_general_cachep(size_t size,
  642. gfp_t gfpflags)
  643. {
  644. struct cache_sizes *csizep = malloc_sizes;
  645. #if DEBUG
  646. /* This happens if someone tries to call
  647. * kmem_cache_create(), or __kmalloc(), before
  648. * the generic caches are initialized.
  649. */
  650. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  651. #endif
  652. while (size > csizep->cs_size)
  653. csizep++;
  654. /*
  655. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  656. * has cs_{dma,}cachep==NULL. Thus no special case
  657. * for large kmalloc calls required.
  658. */
  659. if (unlikely(gfpflags & GFP_DMA))
  660. return csizep->cs_dmacachep;
  661. return csizep->cs_cachep;
  662. }
  663. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  664. {
  665. return __find_general_cachep(size, gfpflags);
  666. }
  667. EXPORT_SYMBOL(kmem_find_general_cachep);
  668. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  669. {
  670. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  671. }
  672. /*
  673. * Calculate the number of objects and left-over bytes for a given buffer size.
  674. */
  675. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  676. size_t align, int flags, size_t *left_over,
  677. unsigned int *num)
  678. {
  679. int nr_objs;
  680. size_t mgmt_size;
  681. size_t slab_size = PAGE_SIZE << gfporder;
  682. /*
  683. * The slab management structure can be either off the slab or
  684. * on it. For the latter case, the memory allocated for a
  685. * slab is used for:
  686. *
  687. * - The struct slab
  688. * - One kmem_bufctl_t for each object
  689. * - Padding to respect alignment of @align
  690. * - @buffer_size bytes for each object
  691. *
  692. * If the slab management structure is off the slab, then the
  693. * alignment will already be calculated into the size. Because
  694. * the slabs are all pages aligned, the objects will be at the
  695. * correct alignment when allocated.
  696. */
  697. if (flags & CFLGS_OFF_SLAB) {
  698. mgmt_size = 0;
  699. nr_objs = slab_size / buffer_size;
  700. if (nr_objs > SLAB_LIMIT)
  701. nr_objs = SLAB_LIMIT;
  702. } else {
  703. /*
  704. * Ignore padding for the initial guess. The padding
  705. * is at most @align-1 bytes, and @buffer_size is at
  706. * least @align. In the worst case, this result will
  707. * be one greater than the number of objects that fit
  708. * into the memory allocation when taking the padding
  709. * into account.
  710. */
  711. nr_objs = (slab_size - sizeof(struct slab)) /
  712. (buffer_size + sizeof(kmem_bufctl_t));
  713. /*
  714. * This calculated number will be either the right
  715. * amount, or one greater than what we want.
  716. */
  717. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  718. > slab_size)
  719. nr_objs--;
  720. if (nr_objs > SLAB_LIMIT)
  721. nr_objs = SLAB_LIMIT;
  722. mgmt_size = slab_mgmt_size(nr_objs, align);
  723. }
  724. *num = nr_objs;
  725. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  726. }
  727. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  728. static void __slab_error(const char *function, struct kmem_cache *cachep,
  729. char *msg)
  730. {
  731. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  732. function, cachep->name, msg);
  733. dump_stack();
  734. }
  735. #ifdef CONFIG_NUMA
  736. /*
  737. * Special reaping functions for NUMA systems called from cache_reap().
  738. * These take care of doing round robin flushing of alien caches (containing
  739. * objects freed on different nodes from which they were allocated) and the
  740. * flushing of remote pcps by calling drain_node_pages.
  741. */
  742. static DEFINE_PER_CPU(unsigned long, reap_node);
  743. static void init_reap_node(int cpu)
  744. {
  745. int node;
  746. node = next_node(cpu_to_node(cpu), node_online_map);
  747. if (node == MAX_NUMNODES)
  748. node = first_node(node_online_map);
  749. __get_cpu_var(reap_node) = node;
  750. }
  751. static void next_reap_node(void)
  752. {
  753. int node = __get_cpu_var(reap_node);
  754. /*
  755. * Also drain per cpu pages on remote zones
  756. */
  757. if (node != numa_node_id())
  758. drain_node_pages(node);
  759. node = next_node(node, node_online_map);
  760. if (unlikely(node >= MAX_NUMNODES))
  761. node = first_node(node_online_map);
  762. __get_cpu_var(reap_node) = node;
  763. }
  764. #else
  765. #define init_reap_node(cpu) do { } while (0)
  766. #define next_reap_node(void) do { } while (0)
  767. #endif
  768. /*
  769. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  770. * via the workqueue/eventd.
  771. * Add the CPU number into the expiration time to minimize the possibility of
  772. * the CPUs getting into lockstep and contending for the global cache chain
  773. * lock.
  774. */
  775. static void __devinit start_cpu_timer(int cpu)
  776. {
  777. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  778. /*
  779. * When this gets called from do_initcalls via cpucache_init(),
  780. * init_workqueues() has already run, so keventd will be setup
  781. * at that time.
  782. */
  783. if (keventd_up() && reap_work->func == NULL) {
  784. init_reap_node(cpu);
  785. INIT_WORK(reap_work, cache_reap, NULL);
  786. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  787. }
  788. }
  789. static struct array_cache *alloc_arraycache(int node, int entries,
  790. int batchcount)
  791. {
  792. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  793. struct array_cache *nc = NULL;
  794. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  795. if (nc) {
  796. nc->avail = 0;
  797. nc->limit = entries;
  798. nc->batchcount = batchcount;
  799. nc->touched = 0;
  800. spin_lock_init(&nc->lock);
  801. }
  802. return nc;
  803. }
  804. #ifdef CONFIG_NUMA
  805. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  806. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  807. static struct array_cache **alloc_alien_cache(int node, int limit)
  808. {
  809. struct array_cache **ac_ptr;
  810. int memsize = sizeof(void *) * MAX_NUMNODES;
  811. int i;
  812. if (limit > 1)
  813. limit = 12;
  814. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  815. if (ac_ptr) {
  816. for_each_node(i) {
  817. if (i == node || !node_online(i)) {
  818. ac_ptr[i] = NULL;
  819. continue;
  820. }
  821. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  822. if (!ac_ptr[i]) {
  823. for (i--; i <= 0; i--)
  824. kfree(ac_ptr[i]);
  825. kfree(ac_ptr);
  826. return NULL;
  827. }
  828. }
  829. }
  830. return ac_ptr;
  831. }
  832. static void free_alien_cache(struct array_cache **ac_ptr)
  833. {
  834. int i;
  835. if (!ac_ptr)
  836. return;
  837. for_each_node(i)
  838. kfree(ac_ptr[i]);
  839. kfree(ac_ptr);
  840. }
  841. static void __drain_alien_cache(struct kmem_cache *cachep,
  842. struct array_cache *ac, int node)
  843. {
  844. struct kmem_list3 *rl3 = cachep->nodelists[node];
  845. if (ac->avail) {
  846. spin_lock(&rl3->list_lock);
  847. free_block(cachep, ac->entry, ac->avail, node);
  848. ac->avail = 0;
  849. spin_unlock(&rl3->list_lock);
  850. }
  851. }
  852. /*
  853. * Called from cache_reap() to regularly drain alien caches round robin.
  854. */
  855. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  856. {
  857. int node = __get_cpu_var(reap_node);
  858. if (l3->alien) {
  859. struct array_cache *ac = l3->alien[node];
  860. if (ac && ac->avail) {
  861. spin_lock_irq(&ac->lock);
  862. __drain_alien_cache(cachep, ac, node);
  863. spin_unlock_irq(&ac->lock);
  864. }
  865. }
  866. }
  867. static void drain_alien_cache(struct kmem_cache *cachep,
  868. struct array_cache **alien)
  869. {
  870. int i = 0;
  871. struct array_cache *ac;
  872. unsigned long flags;
  873. for_each_online_node(i) {
  874. ac = alien[i];
  875. if (ac) {
  876. spin_lock_irqsave(&ac->lock, flags);
  877. __drain_alien_cache(cachep, ac, i);
  878. spin_unlock_irqrestore(&ac->lock, flags);
  879. }
  880. }
  881. }
  882. #else
  883. #define drain_alien_cache(cachep, alien) do { } while (0)
  884. #define reap_alien(cachep, l3) do { } while (0)
  885. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  886. {
  887. return (struct array_cache **) 0x01020304ul;
  888. }
  889. static inline void free_alien_cache(struct array_cache **ac_ptr)
  890. {
  891. }
  892. #endif
  893. static int __devinit cpuup_callback(struct notifier_block *nfb,
  894. unsigned long action, void *hcpu)
  895. {
  896. long cpu = (long)hcpu;
  897. struct kmem_cache *cachep;
  898. struct kmem_list3 *l3 = NULL;
  899. int node = cpu_to_node(cpu);
  900. int memsize = sizeof(struct kmem_list3);
  901. switch (action) {
  902. case CPU_UP_PREPARE:
  903. mutex_lock(&cache_chain_mutex);
  904. /*
  905. * We need to do this right in the beginning since
  906. * alloc_arraycache's are going to use this list.
  907. * kmalloc_node allows us to add the slab to the right
  908. * kmem_list3 and not this cpu's kmem_list3
  909. */
  910. list_for_each_entry(cachep, &cache_chain, next) {
  911. /*
  912. * Set up the size64 kmemlist for cpu before we can
  913. * begin anything. Make sure some other cpu on this
  914. * node has not already allocated this
  915. */
  916. if (!cachep->nodelists[node]) {
  917. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  918. if (!l3)
  919. goto bad;
  920. kmem_list3_init(l3);
  921. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  922. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  923. /*
  924. * The l3s don't come and go as CPUs come and
  925. * go. cache_chain_mutex is sufficient
  926. * protection here.
  927. */
  928. cachep->nodelists[node] = l3;
  929. }
  930. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  931. cachep->nodelists[node]->free_limit =
  932. (1 + nr_cpus_node(node)) *
  933. cachep->batchcount + cachep->num;
  934. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  935. }
  936. /*
  937. * Now we can go ahead with allocating the shared arrays and
  938. * array caches
  939. */
  940. list_for_each_entry(cachep, &cache_chain, next) {
  941. struct array_cache *nc;
  942. struct array_cache *shared;
  943. struct array_cache **alien;
  944. nc = alloc_arraycache(node, cachep->limit,
  945. cachep->batchcount);
  946. if (!nc)
  947. goto bad;
  948. shared = alloc_arraycache(node,
  949. cachep->shared * cachep->batchcount,
  950. 0xbaadf00d);
  951. if (!shared)
  952. goto bad;
  953. alien = alloc_alien_cache(node, cachep->limit);
  954. if (!alien)
  955. goto bad;
  956. cachep->array[cpu] = nc;
  957. l3 = cachep->nodelists[node];
  958. BUG_ON(!l3);
  959. spin_lock_irq(&l3->list_lock);
  960. if (!l3->shared) {
  961. /*
  962. * We are serialised from CPU_DEAD or
  963. * CPU_UP_CANCELLED by the cpucontrol lock
  964. */
  965. l3->shared = shared;
  966. shared = NULL;
  967. }
  968. #ifdef CONFIG_NUMA
  969. if (!l3->alien) {
  970. l3->alien = alien;
  971. alien = NULL;
  972. }
  973. #endif
  974. spin_unlock_irq(&l3->list_lock);
  975. kfree(shared);
  976. free_alien_cache(alien);
  977. }
  978. mutex_unlock(&cache_chain_mutex);
  979. break;
  980. case CPU_ONLINE:
  981. start_cpu_timer(cpu);
  982. break;
  983. #ifdef CONFIG_HOTPLUG_CPU
  984. case CPU_DEAD:
  985. /*
  986. * Even if all the cpus of a node are down, we don't free the
  987. * kmem_list3 of any cache. This to avoid a race between
  988. * cpu_down, and a kmalloc allocation from another cpu for
  989. * memory from the node of the cpu going down. The list3
  990. * structure is usually allocated from kmem_cache_create() and
  991. * gets destroyed at kmem_cache_destroy().
  992. */
  993. /* fall thru */
  994. case CPU_UP_CANCELED:
  995. mutex_lock(&cache_chain_mutex);
  996. list_for_each_entry(cachep, &cache_chain, next) {
  997. struct array_cache *nc;
  998. struct array_cache *shared;
  999. struct array_cache **alien;
  1000. cpumask_t mask;
  1001. mask = node_to_cpumask(node);
  1002. /* cpu is dead; no one can alloc from it. */
  1003. nc = cachep->array[cpu];
  1004. cachep->array[cpu] = NULL;
  1005. l3 = cachep->nodelists[node];
  1006. if (!l3)
  1007. goto free_array_cache;
  1008. spin_lock_irq(&l3->list_lock);
  1009. /* Free limit for this kmem_list3 */
  1010. l3->free_limit -= cachep->batchcount;
  1011. if (nc)
  1012. free_block(cachep, nc->entry, nc->avail, node);
  1013. if (!cpus_empty(mask)) {
  1014. spin_unlock_irq(&l3->list_lock);
  1015. goto free_array_cache;
  1016. }
  1017. shared = l3->shared;
  1018. if (shared) {
  1019. free_block(cachep, l3->shared->entry,
  1020. l3->shared->avail, node);
  1021. l3->shared = NULL;
  1022. }
  1023. alien = l3->alien;
  1024. l3->alien = NULL;
  1025. spin_unlock_irq(&l3->list_lock);
  1026. kfree(shared);
  1027. if (alien) {
  1028. drain_alien_cache(cachep, alien);
  1029. free_alien_cache(alien);
  1030. }
  1031. free_array_cache:
  1032. kfree(nc);
  1033. }
  1034. /*
  1035. * In the previous loop, all the objects were freed to
  1036. * the respective cache's slabs, now we can go ahead and
  1037. * shrink each nodelist to its limit.
  1038. */
  1039. list_for_each_entry(cachep, &cache_chain, next) {
  1040. l3 = cachep->nodelists[node];
  1041. if (!l3)
  1042. continue;
  1043. spin_lock_irq(&l3->list_lock);
  1044. /* free slabs belonging to this node */
  1045. __node_shrink(cachep, node);
  1046. spin_unlock_irq(&l3->list_lock);
  1047. }
  1048. mutex_unlock(&cache_chain_mutex);
  1049. break;
  1050. #endif
  1051. }
  1052. return NOTIFY_OK;
  1053. bad:
  1054. mutex_unlock(&cache_chain_mutex);
  1055. return NOTIFY_BAD;
  1056. }
  1057. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1058. /*
  1059. * swap the static kmem_list3 with kmalloced memory
  1060. */
  1061. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1062. int nodeid)
  1063. {
  1064. struct kmem_list3 *ptr;
  1065. BUG_ON(cachep->nodelists[nodeid] != list);
  1066. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1067. BUG_ON(!ptr);
  1068. local_irq_disable();
  1069. memcpy(ptr, list, sizeof(struct kmem_list3));
  1070. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1071. cachep->nodelists[nodeid] = ptr;
  1072. local_irq_enable();
  1073. }
  1074. /*
  1075. * Initialisation. Called after the page allocator have been initialised and
  1076. * before smp_init().
  1077. */
  1078. void __init kmem_cache_init(void)
  1079. {
  1080. size_t left_over;
  1081. struct cache_sizes *sizes;
  1082. struct cache_names *names;
  1083. int i;
  1084. int order;
  1085. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1086. kmem_list3_init(&initkmem_list3[i]);
  1087. if (i < MAX_NUMNODES)
  1088. cache_cache.nodelists[i] = NULL;
  1089. }
  1090. /*
  1091. * Fragmentation resistance on low memory - only use bigger
  1092. * page orders on machines with more than 32MB of memory.
  1093. */
  1094. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1095. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1096. /* Bootstrap is tricky, because several objects are allocated
  1097. * from caches that do not exist yet:
  1098. * 1) initialize the cache_cache cache: it contains the struct
  1099. * kmem_cache structures of all caches, except cache_cache itself:
  1100. * cache_cache is statically allocated.
  1101. * Initially an __init data area is used for the head array and the
  1102. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1103. * array at the end of the bootstrap.
  1104. * 2) Create the first kmalloc cache.
  1105. * The struct kmem_cache for the new cache is allocated normally.
  1106. * An __init data area is used for the head array.
  1107. * 3) Create the remaining kmalloc caches, with minimally sized
  1108. * head arrays.
  1109. * 4) Replace the __init data head arrays for cache_cache and the first
  1110. * kmalloc cache with kmalloc allocated arrays.
  1111. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1112. * the other cache's with kmalloc allocated memory.
  1113. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1114. */
  1115. /* 1) create the cache_cache */
  1116. INIT_LIST_HEAD(&cache_chain);
  1117. list_add(&cache_cache.next, &cache_chain);
  1118. cache_cache.colour_off = cache_line_size();
  1119. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1120. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1121. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1122. cache_line_size());
  1123. for (order = 0; order < MAX_ORDER; order++) {
  1124. cache_estimate(order, cache_cache.buffer_size,
  1125. cache_line_size(), 0, &left_over, &cache_cache.num);
  1126. if (cache_cache.num)
  1127. break;
  1128. }
  1129. if (!cache_cache.num)
  1130. BUG();
  1131. cache_cache.gfporder = order;
  1132. cache_cache.colour = left_over / cache_cache.colour_off;
  1133. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1134. sizeof(struct slab), cache_line_size());
  1135. /* 2+3) create the kmalloc caches */
  1136. sizes = malloc_sizes;
  1137. names = cache_names;
  1138. /*
  1139. * Initialize the caches that provide memory for the array cache and the
  1140. * kmem_list3 structures first. Without this, further allocations will
  1141. * bug.
  1142. */
  1143. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1144. sizes[INDEX_AC].cs_size,
  1145. ARCH_KMALLOC_MINALIGN,
  1146. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1147. NULL, NULL);
  1148. if (INDEX_AC != INDEX_L3) {
  1149. sizes[INDEX_L3].cs_cachep =
  1150. kmem_cache_create(names[INDEX_L3].name,
  1151. sizes[INDEX_L3].cs_size,
  1152. ARCH_KMALLOC_MINALIGN,
  1153. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1154. NULL, NULL);
  1155. }
  1156. while (sizes->cs_size != ULONG_MAX) {
  1157. /*
  1158. * For performance, all the general caches are L1 aligned.
  1159. * This should be particularly beneficial on SMP boxes, as it
  1160. * eliminates "false sharing".
  1161. * Note for systems short on memory removing the alignment will
  1162. * allow tighter packing of the smaller caches.
  1163. */
  1164. if (!sizes->cs_cachep) {
  1165. sizes->cs_cachep = kmem_cache_create(names->name,
  1166. sizes->cs_size,
  1167. ARCH_KMALLOC_MINALIGN,
  1168. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1169. NULL, NULL);
  1170. }
  1171. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1172. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1173. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1174. offslab_limit /= sizeof(kmem_bufctl_t);
  1175. }
  1176. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1177. sizes->cs_size,
  1178. ARCH_KMALLOC_MINALIGN,
  1179. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1180. SLAB_PANIC,
  1181. NULL, NULL);
  1182. sizes++;
  1183. names++;
  1184. }
  1185. /* 4) Replace the bootstrap head arrays */
  1186. {
  1187. void *ptr;
  1188. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1189. local_irq_disable();
  1190. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1191. memcpy(ptr, cpu_cache_get(&cache_cache),
  1192. sizeof(struct arraycache_init));
  1193. cache_cache.array[smp_processor_id()] = ptr;
  1194. local_irq_enable();
  1195. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1196. local_irq_disable();
  1197. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1198. != &initarray_generic.cache);
  1199. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1200. sizeof(struct arraycache_init));
  1201. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1202. ptr;
  1203. local_irq_enable();
  1204. }
  1205. /* 5) Replace the bootstrap kmem_list3's */
  1206. {
  1207. int node;
  1208. /* Replace the static kmem_list3 structures for the boot cpu */
  1209. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1210. numa_node_id());
  1211. for_each_online_node(node) {
  1212. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1213. &initkmem_list3[SIZE_AC + node], node);
  1214. if (INDEX_AC != INDEX_L3) {
  1215. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1216. &initkmem_list3[SIZE_L3 + node],
  1217. node);
  1218. }
  1219. }
  1220. }
  1221. /* 6) resize the head arrays to their final sizes */
  1222. {
  1223. struct kmem_cache *cachep;
  1224. mutex_lock(&cache_chain_mutex);
  1225. list_for_each_entry(cachep, &cache_chain, next)
  1226. enable_cpucache(cachep);
  1227. mutex_unlock(&cache_chain_mutex);
  1228. }
  1229. /* Done! */
  1230. g_cpucache_up = FULL;
  1231. /*
  1232. * Register a cpu startup notifier callback that initializes
  1233. * cpu_cache_get for all new cpus
  1234. */
  1235. register_cpu_notifier(&cpucache_notifier);
  1236. /*
  1237. * The reap timers are started later, with a module init call: That part
  1238. * of the kernel is not yet operational.
  1239. */
  1240. }
  1241. static int __init cpucache_init(void)
  1242. {
  1243. int cpu;
  1244. /*
  1245. * Register the timers that return unneeded pages to the page allocator
  1246. */
  1247. for_each_online_cpu(cpu)
  1248. start_cpu_timer(cpu);
  1249. return 0;
  1250. }
  1251. __initcall(cpucache_init);
  1252. /*
  1253. * Interface to system's page allocator. No need to hold the cache-lock.
  1254. *
  1255. * If we requested dmaable memory, we will get it. Even if we
  1256. * did not request dmaable memory, we might get it, but that
  1257. * would be relatively rare and ignorable.
  1258. */
  1259. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1260. {
  1261. struct page *page;
  1262. void *addr;
  1263. int i;
  1264. flags |= cachep->gfpflags;
  1265. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1266. if (!page)
  1267. return NULL;
  1268. addr = page_address(page);
  1269. i = (1 << cachep->gfporder);
  1270. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1271. atomic_add(i, &slab_reclaim_pages);
  1272. add_page_state(nr_slab, i);
  1273. while (i--) {
  1274. __SetPageSlab(page);
  1275. page++;
  1276. }
  1277. return addr;
  1278. }
  1279. /*
  1280. * Interface to system's page release.
  1281. */
  1282. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1283. {
  1284. unsigned long i = (1 << cachep->gfporder);
  1285. struct page *page = virt_to_page(addr);
  1286. const unsigned long nr_freed = i;
  1287. while (i--) {
  1288. BUG_ON(!PageSlab(page));
  1289. __ClearPageSlab(page);
  1290. page++;
  1291. }
  1292. sub_page_state(nr_slab, nr_freed);
  1293. if (current->reclaim_state)
  1294. current->reclaim_state->reclaimed_slab += nr_freed;
  1295. free_pages((unsigned long)addr, cachep->gfporder);
  1296. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1297. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1298. }
  1299. static void kmem_rcu_free(struct rcu_head *head)
  1300. {
  1301. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1302. struct kmem_cache *cachep = slab_rcu->cachep;
  1303. kmem_freepages(cachep, slab_rcu->addr);
  1304. if (OFF_SLAB(cachep))
  1305. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1306. }
  1307. #if DEBUG
  1308. #ifdef CONFIG_DEBUG_PAGEALLOC
  1309. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1310. unsigned long caller)
  1311. {
  1312. int size = obj_size(cachep);
  1313. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1314. if (size < 5 * sizeof(unsigned long))
  1315. return;
  1316. *addr++ = 0x12345678;
  1317. *addr++ = caller;
  1318. *addr++ = smp_processor_id();
  1319. size -= 3 * sizeof(unsigned long);
  1320. {
  1321. unsigned long *sptr = &caller;
  1322. unsigned long svalue;
  1323. while (!kstack_end(sptr)) {
  1324. svalue = *sptr++;
  1325. if (kernel_text_address(svalue)) {
  1326. *addr++ = svalue;
  1327. size -= sizeof(unsigned long);
  1328. if (size <= sizeof(unsigned long))
  1329. break;
  1330. }
  1331. }
  1332. }
  1333. *addr++ = 0x87654321;
  1334. }
  1335. #endif
  1336. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1337. {
  1338. int size = obj_size(cachep);
  1339. addr = &((char *)addr)[obj_offset(cachep)];
  1340. memset(addr, val, size);
  1341. *(unsigned char *)(addr + size - 1) = POISON_END;
  1342. }
  1343. static void dump_line(char *data, int offset, int limit)
  1344. {
  1345. int i;
  1346. printk(KERN_ERR "%03x:", offset);
  1347. for (i = 0; i < limit; i++)
  1348. printk(" %02x", (unsigned char)data[offset + i]);
  1349. printk("\n");
  1350. }
  1351. #endif
  1352. #if DEBUG
  1353. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1354. {
  1355. int i, size;
  1356. char *realobj;
  1357. if (cachep->flags & SLAB_RED_ZONE) {
  1358. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1359. *dbg_redzone1(cachep, objp),
  1360. *dbg_redzone2(cachep, objp));
  1361. }
  1362. if (cachep->flags & SLAB_STORE_USER) {
  1363. printk(KERN_ERR "Last user: [<%p>]",
  1364. *dbg_userword(cachep, objp));
  1365. print_symbol("(%s)",
  1366. (unsigned long)*dbg_userword(cachep, objp));
  1367. printk("\n");
  1368. }
  1369. realobj = (char *)objp + obj_offset(cachep);
  1370. size = obj_size(cachep);
  1371. for (i = 0; i < size && lines; i += 16, lines--) {
  1372. int limit;
  1373. limit = 16;
  1374. if (i + limit > size)
  1375. limit = size - i;
  1376. dump_line(realobj, i, limit);
  1377. }
  1378. }
  1379. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1380. {
  1381. char *realobj;
  1382. int size, i;
  1383. int lines = 0;
  1384. realobj = (char *)objp + obj_offset(cachep);
  1385. size = obj_size(cachep);
  1386. for (i = 0; i < size; i++) {
  1387. char exp = POISON_FREE;
  1388. if (i == size - 1)
  1389. exp = POISON_END;
  1390. if (realobj[i] != exp) {
  1391. int limit;
  1392. /* Mismatch ! */
  1393. /* Print header */
  1394. if (lines == 0) {
  1395. printk(KERN_ERR
  1396. "Slab corruption: start=%p, len=%d\n",
  1397. realobj, size);
  1398. print_objinfo(cachep, objp, 0);
  1399. }
  1400. /* Hexdump the affected line */
  1401. i = (i / 16) * 16;
  1402. limit = 16;
  1403. if (i + limit > size)
  1404. limit = size - i;
  1405. dump_line(realobj, i, limit);
  1406. i += 16;
  1407. lines++;
  1408. /* Limit to 5 lines */
  1409. if (lines > 5)
  1410. break;
  1411. }
  1412. }
  1413. if (lines != 0) {
  1414. /* Print some data about the neighboring objects, if they
  1415. * exist:
  1416. */
  1417. struct slab *slabp = virt_to_slab(objp);
  1418. unsigned int objnr;
  1419. objnr = obj_to_index(cachep, slabp, objp);
  1420. if (objnr) {
  1421. objp = index_to_obj(cachep, slabp, objnr - 1);
  1422. realobj = (char *)objp + obj_offset(cachep);
  1423. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1424. realobj, size);
  1425. print_objinfo(cachep, objp, 2);
  1426. }
  1427. if (objnr + 1 < cachep->num) {
  1428. objp = index_to_obj(cachep, slabp, objnr + 1);
  1429. realobj = (char *)objp + obj_offset(cachep);
  1430. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1431. realobj, size);
  1432. print_objinfo(cachep, objp, 2);
  1433. }
  1434. }
  1435. }
  1436. #endif
  1437. #if DEBUG
  1438. /**
  1439. * slab_destroy_objs - destroy a slab and its objects
  1440. * @cachep: cache pointer being destroyed
  1441. * @slabp: slab pointer being destroyed
  1442. *
  1443. * Call the registered destructor for each object in a slab that is being
  1444. * destroyed.
  1445. */
  1446. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1447. {
  1448. int i;
  1449. for (i = 0; i < cachep->num; i++) {
  1450. void *objp = index_to_obj(cachep, slabp, i);
  1451. if (cachep->flags & SLAB_POISON) {
  1452. #ifdef CONFIG_DEBUG_PAGEALLOC
  1453. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1454. OFF_SLAB(cachep))
  1455. kernel_map_pages(virt_to_page(objp),
  1456. cachep->buffer_size / PAGE_SIZE, 1);
  1457. else
  1458. check_poison_obj(cachep, objp);
  1459. #else
  1460. check_poison_obj(cachep, objp);
  1461. #endif
  1462. }
  1463. if (cachep->flags & SLAB_RED_ZONE) {
  1464. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1465. slab_error(cachep, "start of a freed object "
  1466. "was overwritten");
  1467. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1468. slab_error(cachep, "end of a freed object "
  1469. "was overwritten");
  1470. }
  1471. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1472. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1473. }
  1474. }
  1475. #else
  1476. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1477. {
  1478. if (cachep->dtor) {
  1479. int i;
  1480. for (i = 0; i < cachep->num; i++) {
  1481. void *objp = index_to_obj(cachep, slabp, i);
  1482. (cachep->dtor) (objp, cachep, 0);
  1483. }
  1484. }
  1485. }
  1486. #endif
  1487. /**
  1488. * slab_destroy - destroy and release all objects in a slab
  1489. * @cachep: cache pointer being destroyed
  1490. * @slabp: slab pointer being destroyed
  1491. *
  1492. * Destroy all the objs in a slab, and release the mem back to the system.
  1493. * Before calling the slab must have been unlinked from the cache. The
  1494. * cache-lock is not held/needed.
  1495. */
  1496. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1497. {
  1498. void *addr = slabp->s_mem - slabp->colouroff;
  1499. slab_destroy_objs(cachep, slabp);
  1500. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1501. struct slab_rcu *slab_rcu;
  1502. slab_rcu = (struct slab_rcu *)slabp;
  1503. slab_rcu->cachep = cachep;
  1504. slab_rcu->addr = addr;
  1505. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1506. } else {
  1507. kmem_freepages(cachep, addr);
  1508. if (OFF_SLAB(cachep))
  1509. kmem_cache_free(cachep->slabp_cache, slabp);
  1510. }
  1511. }
  1512. /*
  1513. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1514. * size of kmem_list3.
  1515. */
  1516. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1517. {
  1518. int node;
  1519. for_each_online_node(node) {
  1520. cachep->nodelists[node] = &initkmem_list3[index + node];
  1521. cachep->nodelists[node]->next_reap = jiffies +
  1522. REAPTIMEOUT_LIST3 +
  1523. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1524. }
  1525. }
  1526. /**
  1527. * calculate_slab_order - calculate size (page order) of slabs
  1528. * @cachep: pointer to the cache that is being created
  1529. * @size: size of objects to be created in this cache.
  1530. * @align: required alignment for the objects.
  1531. * @flags: slab allocation flags
  1532. *
  1533. * Also calculates the number of objects per slab.
  1534. *
  1535. * This could be made much more intelligent. For now, try to avoid using
  1536. * high order pages for slabs. When the gfp() functions are more friendly
  1537. * towards high-order requests, this should be changed.
  1538. */
  1539. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1540. size_t size, size_t align, unsigned long flags)
  1541. {
  1542. size_t left_over = 0;
  1543. int gfporder;
  1544. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1545. unsigned int num;
  1546. size_t remainder;
  1547. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1548. if (!num)
  1549. continue;
  1550. /* More than offslab_limit objects will cause problems */
  1551. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1552. break;
  1553. /* Found something acceptable - save it away */
  1554. cachep->num = num;
  1555. cachep->gfporder = gfporder;
  1556. left_over = remainder;
  1557. /*
  1558. * A VFS-reclaimable slab tends to have most allocations
  1559. * as GFP_NOFS and we really don't want to have to be allocating
  1560. * higher-order pages when we are unable to shrink dcache.
  1561. */
  1562. if (flags & SLAB_RECLAIM_ACCOUNT)
  1563. break;
  1564. /*
  1565. * Large number of objects is good, but very large slabs are
  1566. * currently bad for the gfp()s.
  1567. */
  1568. if (gfporder >= slab_break_gfp_order)
  1569. break;
  1570. /*
  1571. * Acceptable internal fragmentation?
  1572. */
  1573. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1574. break;
  1575. }
  1576. return left_over;
  1577. }
  1578. static void setup_cpu_cache(struct kmem_cache *cachep)
  1579. {
  1580. if (g_cpucache_up == FULL) {
  1581. enable_cpucache(cachep);
  1582. return;
  1583. }
  1584. if (g_cpucache_up == NONE) {
  1585. /*
  1586. * Note: the first kmem_cache_create must create the cache
  1587. * that's used by kmalloc(24), otherwise the creation of
  1588. * further caches will BUG().
  1589. */
  1590. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1591. /*
  1592. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1593. * the first cache, then we need to set up all its list3s,
  1594. * otherwise the creation of further caches will BUG().
  1595. */
  1596. set_up_list3s(cachep, SIZE_AC);
  1597. if (INDEX_AC == INDEX_L3)
  1598. g_cpucache_up = PARTIAL_L3;
  1599. else
  1600. g_cpucache_up = PARTIAL_AC;
  1601. } else {
  1602. cachep->array[smp_processor_id()] =
  1603. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1604. if (g_cpucache_up == PARTIAL_AC) {
  1605. set_up_list3s(cachep, SIZE_L3);
  1606. g_cpucache_up = PARTIAL_L3;
  1607. } else {
  1608. int node;
  1609. for_each_online_node(node) {
  1610. cachep->nodelists[node] =
  1611. kmalloc_node(sizeof(struct kmem_list3),
  1612. GFP_KERNEL, node);
  1613. BUG_ON(!cachep->nodelists[node]);
  1614. kmem_list3_init(cachep->nodelists[node]);
  1615. }
  1616. }
  1617. }
  1618. cachep->nodelists[numa_node_id()]->next_reap =
  1619. jiffies + REAPTIMEOUT_LIST3 +
  1620. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1621. cpu_cache_get(cachep)->avail = 0;
  1622. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1623. cpu_cache_get(cachep)->batchcount = 1;
  1624. cpu_cache_get(cachep)->touched = 0;
  1625. cachep->batchcount = 1;
  1626. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1627. }
  1628. /**
  1629. * kmem_cache_create - Create a cache.
  1630. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1631. * @size: The size of objects to be created in this cache.
  1632. * @align: The required alignment for the objects.
  1633. * @flags: SLAB flags
  1634. * @ctor: A constructor for the objects.
  1635. * @dtor: A destructor for the objects.
  1636. *
  1637. * Returns a ptr to the cache on success, NULL on failure.
  1638. * Cannot be called within a int, but can be interrupted.
  1639. * The @ctor is run when new pages are allocated by the cache
  1640. * and the @dtor is run before the pages are handed back.
  1641. *
  1642. * @name must be valid until the cache is destroyed. This implies that
  1643. * the module calling this has to destroy the cache before getting unloaded.
  1644. *
  1645. * The flags are
  1646. *
  1647. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1648. * to catch references to uninitialised memory.
  1649. *
  1650. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1651. * for buffer overruns.
  1652. *
  1653. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1654. * cacheline. This can be beneficial if you're counting cycles as closely
  1655. * as davem.
  1656. */
  1657. struct kmem_cache *
  1658. kmem_cache_create (const char *name, size_t size, size_t align,
  1659. unsigned long flags,
  1660. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1661. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1662. {
  1663. size_t left_over, slab_size, ralign;
  1664. struct kmem_cache *cachep = NULL;
  1665. struct list_head *p;
  1666. /*
  1667. * Sanity checks... these are all serious usage bugs.
  1668. */
  1669. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1670. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1671. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1672. name);
  1673. BUG();
  1674. }
  1675. /*
  1676. * Prevent CPUs from coming and going.
  1677. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1678. */
  1679. lock_cpu_hotplug();
  1680. mutex_lock(&cache_chain_mutex);
  1681. list_for_each(p, &cache_chain) {
  1682. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1683. mm_segment_t old_fs = get_fs();
  1684. char tmp;
  1685. int res;
  1686. /*
  1687. * This happens when the module gets unloaded and doesn't
  1688. * destroy its slab cache and no-one else reuses the vmalloc
  1689. * area of the module. Print a warning.
  1690. */
  1691. set_fs(KERNEL_DS);
  1692. res = __get_user(tmp, pc->name);
  1693. set_fs(old_fs);
  1694. if (res) {
  1695. printk("SLAB: cache with size %d has lost its name\n",
  1696. pc->buffer_size);
  1697. continue;
  1698. }
  1699. if (!strcmp(pc->name, name)) {
  1700. printk("kmem_cache_create: duplicate cache %s\n", name);
  1701. dump_stack();
  1702. goto oops;
  1703. }
  1704. }
  1705. #if DEBUG
  1706. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1707. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1708. /* No constructor, but inital state check requested */
  1709. printk(KERN_ERR "%s: No con, but init state check "
  1710. "requested - %s\n", __FUNCTION__, name);
  1711. flags &= ~SLAB_DEBUG_INITIAL;
  1712. }
  1713. #if FORCED_DEBUG
  1714. /*
  1715. * Enable redzoning and last user accounting, except for caches with
  1716. * large objects, if the increased size would increase the object size
  1717. * above the next power of two: caches with object sizes just above a
  1718. * power of two have a significant amount of internal fragmentation.
  1719. */
  1720. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1721. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1722. if (!(flags & SLAB_DESTROY_BY_RCU))
  1723. flags |= SLAB_POISON;
  1724. #endif
  1725. if (flags & SLAB_DESTROY_BY_RCU)
  1726. BUG_ON(flags & SLAB_POISON);
  1727. #endif
  1728. if (flags & SLAB_DESTROY_BY_RCU)
  1729. BUG_ON(dtor);
  1730. /*
  1731. * Always checks flags, a caller might be expecting debug support which
  1732. * isn't available.
  1733. */
  1734. if (flags & ~CREATE_MASK)
  1735. BUG();
  1736. /*
  1737. * Check that size is in terms of words. This is needed to avoid
  1738. * unaligned accesses for some archs when redzoning is used, and makes
  1739. * sure any on-slab bufctl's are also correctly aligned.
  1740. */
  1741. if (size & (BYTES_PER_WORD - 1)) {
  1742. size += (BYTES_PER_WORD - 1);
  1743. size &= ~(BYTES_PER_WORD - 1);
  1744. }
  1745. /* calculate the final buffer alignment: */
  1746. /* 1) arch recommendation: can be overridden for debug */
  1747. if (flags & SLAB_HWCACHE_ALIGN) {
  1748. /*
  1749. * Default alignment: as specified by the arch code. Except if
  1750. * an object is really small, then squeeze multiple objects into
  1751. * one cacheline.
  1752. */
  1753. ralign = cache_line_size();
  1754. while (size <= ralign / 2)
  1755. ralign /= 2;
  1756. } else {
  1757. ralign = BYTES_PER_WORD;
  1758. }
  1759. /* 2) arch mandated alignment: disables debug if necessary */
  1760. if (ralign < ARCH_SLAB_MINALIGN) {
  1761. ralign = ARCH_SLAB_MINALIGN;
  1762. if (ralign > BYTES_PER_WORD)
  1763. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1764. }
  1765. /* 3) caller mandated alignment: disables debug if necessary */
  1766. if (ralign < align) {
  1767. ralign = align;
  1768. if (ralign > BYTES_PER_WORD)
  1769. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1770. }
  1771. /*
  1772. * 4) Store it. Note that the debug code below can reduce
  1773. * the alignment to BYTES_PER_WORD.
  1774. */
  1775. align = ralign;
  1776. /* Get cache's description obj. */
  1777. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1778. if (!cachep)
  1779. goto oops;
  1780. memset(cachep, 0, sizeof(struct kmem_cache));
  1781. #if DEBUG
  1782. cachep->obj_size = size;
  1783. if (flags & SLAB_RED_ZONE) {
  1784. /* redzoning only works with word aligned caches */
  1785. align = BYTES_PER_WORD;
  1786. /* add space for red zone words */
  1787. cachep->obj_offset += BYTES_PER_WORD;
  1788. size += 2 * BYTES_PER_WORD;
  1789. }
  1790. if (flags & SLAB_STORE_USER) {
  1791. /* user store requires word alignment and
  1792. * one word storage behind the end of the real
  1793. * object.
  1794. */
  1795. align = BYTES_PER_WORD;
  1796. size += BYTES_PER_WORD;
  1797. }
  1798. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1799. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1800. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1801. cachep->obj_offset += PAGE_SIZE - size;
  1802. size = PAGE_SIZE;
  1803. }
  1804. #endif
  1805. #endif
  1806. /* Determine if the slab management is 'on' or 'off' slab. */
  1807. if (size >= (PAGE_SIZE >> 3))
  1808. /*
  1809. * Size is large, assume best to place the slab management obj
  1810. * off-slab (should allow better packing of objs).
  1811. */
  1812. flags |= CFLGS_OFF_SLAB;
  1813. size = ALIGN(size, align);
  1814. left_over = calculate_slab_order(cachep, size, align, flags);
  1815. if (!cachep->num) {
  1816. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1817. kmem_cache_free(&cache_cache, cachep);
  1818. cachep = NULL;
  1819. goto oops;
  1820. }
  1821. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1822. + sizeof(struct slab), align);
  1823. /*
  1824. * If the slab has been placed off-slab, and we have enough space then
  1825. * move it on-slab. This is at the expense of any extra colouring.
  1826. */
  1827. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1828. flags &= ~CFLGS_OFF_SLAB;
  1829. left_over -= slab_size;
  1830. }
  1831. if (flags & CFLGS_OFF_SLAB) {
  1832. /* really off slab. No need for manual alignment */
  1833. slab_size =
  1834. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1835. }
  1836. cachep->colour_off = cache_line_size();
  1837. /* Offset must be a multiple of the alignment. */
  1838. if (cachep->colour_off < align)
  1839. cachep->colour_off = align;
  1840. cachep->colour = left_over / cachep->colour_off;
  1841. cachep->slab_size = slab_size;
  1842. cachep->flags = flags;
  1843. cachep->gfpflags = 0;
  1844. if (flags & SLAB_CACHE_DMA)
  1845. cachep->gfpflags |= GFP_DMA;
  1846. cachep->buffer_size = size;
  1847. if (flags & CFLGS_OFF_SLAB)
  1848. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1849. cachep->ctor = ctor;
  1850. cachep->dtor = dtor;
  1851. cachep->name = name;
  1852. setup_cpu_cache(cachep);
  1853. /* cache setup completed, link it into the list */
  1854. list_add(&cachep->next, &cache_chain);
  1855. oops:
  1856. if (!cachep && (flags & SLAB_PANIC))
  1857. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1858. name);
  1859. mutex_unlock(&cache_chain_mutex);
  1860. unlock_cpu_hotplug();
  1861. return cachep;
  1862. }
  1863. EXPORT_SYMBOL(kmem_cache_create);
  1864. #if DEBUG
  1865. static void check_irq_off(void)
  1866. {
  1867. BUG_ON(!irqs_disabled());
  1868. }
  1869. static void check_irq_on(void)
  1870. {
  1871. BUG_ON(irqs_disabled());
  1872. }
  1873. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1874. {
  1875. #ifdef CONFIG_SMP
  1876. check_irq_off();
  1877. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1878. #endif
  1879. }
  1880. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1881. {
  1882. #ifdef CONFIG_SMP
  1883. check_irq_off();
  1884. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1885. #endif
  1886. }
  1887. #else
  1888. #define check_irq_off() do { } while(0)
  1889. #define check_irq_on() do { } while(0)
  1890. #define check_spinlock_acquired(x) do { } while(0)
  1891. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1892. #endif
  1893. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1894. struct array_cache *ac,
  1895. int force, int node);
  1896. static void do_drain(void *arg)
  1897. {
  1898. struct kmem_cache *cachep = arg;
  1899. struct array_cache *ac;
  1900. int node = numa_node_id();
  1901. check_irq_off();
  1902. ac = cpu_cache_get(cachep);
  1903. spin_lock(&cachep->nodelists[node]->list_lock);
  1904. free_block(cachep, ac->entry, ac->avail, node);
  1905. spin_unlock(&cachep->nodelists[node]->list_lock);
  1906. ac->avail = 0;
  1907. }
  1908. static void drain_cpu_caches(struct kmem_cache *cachep)
  1909. {
  1910. struct kmem_list3 *l3;
  1911. int node;
  1912. on_each_cpu(do_drain, cachep, 1, 1);
  1913. check_irq_on();
  1914. for_each_online_node(node) {
  1915. l3 = cachep->nodelists[node];
  1916. if (l3) {
  1917. drain_array(cachep, l3, l3->shared, 1, node);
  1918. if (l3->alien)
  1919. drain_alien_cache(cachep, l3->alien);
  1920. }
  1921. }
  1922. }
  1923. static int __node_shrink(struct kmem_cache *cachep, int node)
  1924. {
  1925. struct slab *slabp;
  1926. struct kmem_list3 *l3 = cachep->nodelists[node];
  1927. int ret;
  1928. for (;;) {
  1929. struct list_head *p;
  1930. p = l3->slabs_free.prev;
  1931. if (p == &l3->slabs_free)
  1932. break;
  1933. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1934. #if DEBUG
  1935. if (slabp->inuse)
  1936. BUG();
  1937. #endif
  1938. list_del(&slabp->list);
  1939. l3->free_objects -= cachep->num;
  1940. spin_unlock_irq(&l3->list_lock);
  1941. slab_destroy(cachep, slabp);
  1942. spin_lock_irq(&l3->list_lock);
  1943. }
  1944. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1945. return ret;
  1946. }
  1947. static int __cache_shrink(struct kmem_cache *cachep)
  1948. {
  1949. int ret = 0, i = 0;
  1950. struct kmem_list3 *l3;
  1951. drain_cpu_caches(cachep);
  1952. check_irq_on();
  1953. for_each_online_node(i) {
  1954. l3 = cachep->nodelists[i];
  1955. if (l3) {
  1956. spin_lock_irq(&l3->list_lock);
  1957. ret += __node_shrink(cachep, i);
  1958. spin_unlock_irq(&l3->list_lock);
  1959. }
  1960. }
  1961. return (ret ? 1 : 0);
  1962. }
  1963. /**
  1964. * kmem_cache_shrink - Shrink a cache.
  1965. * @cachep: The cache to shrink.
  1966. *
  1967. * Releases as many slabs as possible for a cache.
  1968. * To help debugging, a zero exit status indicates all slabs were released.
  1969. */
  1970. int kmem_cache_shrink(struct kmem_cache *cachep)
  1971. {
  1972. if (!cachep || in_interrupt())
  1973. BUG();
  1974. return __cache_shrink(cachep);
  1975. }
  1976. EXPORT_SYMBOL(kmem_cache_shrink);
  1977. /**
  1978. * kmem_cache_destroy - delete a cache
  1979. * @cachep: the cache to destroy
  1980. *
  1981. * Remove a struct kmem_cache object from the slab cache.
  1982. * Returns 0 on success.
  1983. *
  1984. * It is expected this function will be called by a module when it is
  1985. * unloaded. This will remove the cache completely, and avoid a duplicate
  1986. * cache being allocated each time a module is loaded and unloaded, if the
  1987. * module doesn't have persistent in-kernel storage across loads and unloads.
  1988. *
  1989. * The cache must be empty before calling this function.
  1990. *
  1991. * The caller must guarantee that noone will allocate memory from the cache
  1992. * during the kmem_cache_destroy().
  1993. */
  1994. int kmem_cache_destroy(struct kmem_cache *cachep)
  1995. {
  1996. int i;
  1997. struct kmem_list3 *l3;
  1998. if (!cachep || in_interrupt())
  1999. BUG();
  2000. /* Don't let CPUs to come and go */
  2001. lock_cpu_hotplug();
  2002. /* Find the cache in the chain of caches. */
  2003. mutex_lock(&cache_chain_mutex);
  2004. /*
  2005. * the chain is never empty, cache_cache is never destroyed
  2006. */
  2007. list_del(&cachep->next);
  2008. mutex_unlock(&cache_chain_mutex);
  2009. if (__cache_shrink(cachep)) {
  2010. slab_error(cachep, "Can't free all objects");
  2011. mutex_lock(&cache_chain_mutex);
  2012. list_add(&cachep->next, &cache_chain);
  2013. mutex_unlock(&cache_chain_mutex);
  2014. unlock_cpu_hotplug();
  2015. return 1;
  2016. }
  2017. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2018. synchronize_rcu();
  2019. for_each_online_cpu(i)
  2020. kfree(cachep->array[i]);
  2021. /* NUMA: free the list3 structures */
  2022. for_each_online_node(i) {
  2023. l3 = cachep->nodelists[i];
  2024. if (l3) {
  2025. kfree(l3->shared);
  2026. free_alien_cache(l3->alien);
  2027. kfree(l3);
  2028. }
  2029. }
  2030. kmem_cache_free(&cache_cache, cachep);
  2031. unlock_cpu_hotplug();
  2032. return 0;
  2033. }
  2034. EXPORT_SYMBOL(kmem_cache_destroy);
  2035. /* Get the memory for a slab management obj. */
  2036. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2037. int colour_off, gfp_t local_flags)
  2038. {
  2039. struct slab *slabp;
  2040. if (OFF_SLAB(cachep)) {
  2041. /* Slab management obj is off-slab. */
  2042. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2043. if (!slabp)
  2044. return NULL;
  2045. } else {
  2046. slabp = objp + colour_off;
  2047. colour_off += cachep->slab_size;
  2048. }
  2049. slabp->inuse = 0;
  2050. slabp->colouroff = colour_off;
  2051. slabp->s_mem = objp + colour_off;
  2052. return slabp;
  2053. }
  2054. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2055. {
  2056. return (kmem_bufctl_t *) (slabp + 1);
  2057. }
  2058. static void cache_init_objs(struct kmem_cache *cachep,
  2059. struct slab *slabp, unsigned long ctor_flags)
  2060. {
  2061. int i;
  2062. for (i = 0; i < cachep->num; i++) {
  2063. void *objp = index_to_obj(cachep, slabp, i);
  2064. #if DEBUG
  2065. /* need to poison the objs? */
  2066. if (cachep->flags & SLAB_POISON)
  2067. poison_obj(cachep, objp, POISON_FREE);
  2068. if (cachep->flags & SLAB_STORE_USER)
  2069. *dbg_userword(cachep, objp) = NULL;
  2070. if (cachep->flags & SLAB_RED_ZONE) {
  2071. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2072. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2073. }
  2074. /*
  2075. * Constructors are not allowed to allocate memory from the same
  2076. * cache which they are a constructor for. Otherwise, deadlock.
  2077. * They must also be threaded.
  2078. */
  2079. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2080. cachep->ctor(objp + obj_offset(cachep), cachep,
  2081. ctor_flags);
  2082. if (cachep->flags & SLAB_RED_ZONE) {
  2083. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2084. slab_error(cachep, "constructor overwrote the"
  2085. " end of an object");
  2086. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2087. slab_error(cachep, "constructor overwrote the"
  2088. " start of an object");
  2089. }
  2090. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2091. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2092. kernel_map_pages(virt_to_page(objp),
  2093. cachep->buffer_size / PAGE_SIZE, 0);
  2094. #else
  2095. if (cachep->ctor)
  2096. cachep->ctor(objp, cachep, ctor_flags);
  2097. #endif
  2098. slab_bufctl(slabp)[i] = i + 1;
  2099. }
  2100. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2101. slabp->free = 0;
  2102. }
  2103. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2104. {
  2105. if (flags & SLAB_DMA)
  2106. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2107. else
  2108. BUG_ON(cachep->gfpflags & GFP_DMA);
  2109. }
  2110. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2111. int nodeid)
  2112. {
  2113. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2114. kmem_bufctl_t next;
  2115. slabp->inuse++;
  2116. next = slab_bufctl(slabp)[slabp->free];
  2117. #if DEBUG
  2118. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2119. WARN_ON(slabp->nodeid != nodeid);
  2120. #endif
  2121. slabp->free = next;
  2122. return objp;
  2123. }
  2124. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2125. void *objp, int nodeid)
  2126. {
  2127. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2128. #if DEBUG
  2129. /* Verify that the slab belongs to the intended node */
  2130. WARN_ON(slabp->nodeid != nodeid);
  2131. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2132. printk(KERN_ERR "slab: double free detected in cache "
  2133. "'%s', objp %p\n", cachep->name, objp);
  2134. BUG();
  2135. }
  2136. #endif
  2137. slab_bufctl(slabp)[objnr] = slabp->free;
  2138. slabp->free = objnr;
  2139. slabp->inuse--;
  2140. }
  2141. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2142. void *objp)
  2143. {
  2144. int i;
  2145. struct page *page;
  2146. /* Nasty!!!!!! I hope this is OK. */
  2147. page = virt_to_page(objp);
  2148. i = 1;
  2149. if (likely(!PageCompound(page)))
  2150. i <<= cachep->gfporder;
  2151. do {
  2152. page_set_cache(page, cachep);
  2153. page_set_slab(page, slabp);
  2154. page++;
  2155. } while (--i);
  2156. }
  2157. /*
  2158. * Grow (by 1) the number of slabs within a cache. This is called by
  2159. * kmem_cache_alloc() when there are no active objs left in a cache.
  2160. */
  2161. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2162. {
  2163. struct slab *slabp;
  2164. void *objp;
  2165. size_t offset;
  2166. gfp_t local_flags;
  2167. unsigned long ctor_flags;
  2168. struct kmem_list3 *l3;
  2169. /*
  2170. * Be lazy and only check for valid flags here, keeping it out of the
  2171. * critical path in kmem_cache_alloc().
  2172. */
  2173. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2174. BUG();
  2175. if (flags & SLAB_NO_GROW)
  2176. return 0;
  2177. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2178. local_flags = (flags & SLAB_LEVEL_MASK);
  2179. if (!(local_flags & __GFP_WAIT))
  2180. /*
  2181. * Not allowed to sleep. Need to tell a constructor about
  2182. * this - it might need to know...
  2183. */
  2184. ctor_flags |= SLAB_CTOR_ATOMIC;
  2185. /* Take the l3 list lock to change the colour_next on this node */
  2186. check_irq_off();
  2187. l3 = cachep->nodelists[nodeid];
  2188. spin_lock(&l3->list_lock);
  2189. /* Get colour for the slab, and cal the next value. */
  2190. offset = l3->colour_next;
  2191. l3->colour_next++;
  2192. if (l3->colour_next >= cachep->colour)
  2193. l3->colour_next = 0;
  2194. spin_unlock(&l3->list_lock);
  2195. offset *= cachep->colour_off;
  2196. if (local_flags & __GFP_WAIT)
  2197. local_irq_enable();
  2198. /*
  2199. * The test for missing atomic flag is performed here, rather than
  2200. * the more obvious place, simply to reduce the critical path length
  2201. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2202. * will eventually be caught here (where it matters).
  2203. */
  2204. kmem_flagcheck(cachep, flags);
  2205. /*
  2206. * Get mem for the objs. Attempt to allocate a physical page from
  2207. * 'nodeid'.
  2208. */
  2209. objp = kmem_getpages(cachep, flags, nodeid);
  2210. if (!objp)
  2211. goto failed;
  2212. /* Get slab management. */
  2213. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2214. if (!slabp)
  2215. goto opps1;
  2216. slabp->nodeid = nodeid;
  2217. set_slab_attr(cachep, slabp, objp);
  2218. cache_init_objs(cachep, slabp, ctor_flags);
  2219. if (local_flags & __GFP_WAIT)
  2220. local_irq_disable();
  2221. check_irq_off();
  2222. spin_lock(&l3->list_lock);
  2223. /* Make slab active. */
  2224. list_add_tail(&slabp->list, &(l3->slabs_free));
  2225. STATS_INC_GROWN(cachep);
  2226. l3->free_objects += cachep->num;
  2227. spin_unlock(&l3->list_lock);
  2228. return 1;
  2229. opps1:
  2230. kmem_freepages(cachep, objp);
  2231. failed:
  2232. if (local_flags & __GFP_WAIT)
  2233. local_irq_disable();
  2234. return 0;
  2235. }
  2236. #if DEBUG
  2237. /*
  2238. * Perform extra freeing checks:
  2239. * - detect bad pointers.
  2240. * - POISON/RED_ZONE checking
  2241. * - destructor calls, for caches with POISON+dtor
  2242. */
  2243. static void kfree_debugcheck(const void *objp)
  2244. {
  2245. struct page *page;
  2246. if (!virt_addr_valid(objp)) {
  2247. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2248. (unsigned long)objp);
  2249. BUG();
  2250. }
  2251. page = virt_to_page(objp);
  2252. if (!PageSlab(page)) {
  2253. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2254. (unsigned long)objp);
  2255. BUG();
  2256. }
  2257. }
  2258. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2259. void *caller)
  2260. {
  2261. struct page *page;
  2262. unsigned int objnr;
  2263. struct slab *slabp;
  2264. objp -= obj_offset(cachep);
  2265. kfree_debugcheck(objp);
  2266. page = virt_to_page(objp);
  2267. if (page_get_cache(page) != cachep) {
  2268. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2269. "cache %p, got %p\n",
  2270. page_get_cache(page), cachep);
  2271. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2272. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2273. page_get_cache(page)->name);
  2274. WARN_ON(1);
  2275. }
  2276. slabp = page_get_slab(page);
  2277. if (cachep->flags & SLAB_RED_ZONE) {
  2278. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2279. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2280. slab_error(cachep, "double free, or memory outside"
  2281. " object was overwritten");
  2282. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2283. "redzone 2:0x%lx.\n",
  2284. objp, *dbg_redzone1(cachep, objp),
  2285. *dbg_redzone2(cachep, objp));
  2286. }
  2287. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2288. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2289. }
  2290. if (cachep->flags & SLAB_STORE_USER)
  2291. *dbg_userword(cachep, objp) = caller;
  2292. objnr = obj_to_index(cachep, slabp, objp);
  2293. BUG_ON(objnr >= cachep->num);
  2294. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2295. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2296. /*
  2297. * Need to call the slab's constructor so the caller can
  2298. * perform a verify of its state (debugging). Called without
  2299. * the cache-lock held.
  2300. */
  2301. cachep->ctor(objp + obj_offset(cachep),
  2302. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2303. }
  2304. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2305. /* we want to cache poison the object,
  2306. * call the destruction callback
  2307. */
  2308. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2309. }
  2310. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2311. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2312. #endif
  2313. if (cachep->flags & SLAB_POISON) {
  2314. #ifdef CONFIG_DEBUG_PAGEALLOC
  2315. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2316. store_stackinfo(cachep, objp, (unsigned long)caller);
  2317. kernel_map_pages(virt_to_page(objp),
  2318. cachep->buffer_size / PAGE_SIZE, 0);
  2319. } else {
  2320. poison_obj(cachep, objp, POISON_FREE);
  2321. }
  2322. #else
  2323. poison_obj(cachep, objp, POISON_FREE);
  2324. #endif
  2325. }
  2326. return objp;
  2327. }
  2328. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2329. {
  2330. kmem_bufctl_t i;
  2331. int entries = 0;
  2332. /* Check slab's freelist to see if this obj is there. */
  2333. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2334. entries++;
  2335. if (entries > cachep->num || i >= cachep->num)
  2336. goto bad;
  2337. }
  2338. if (entries != cachep->num - slabp->inuse) {
  2339. bad:
  2340. printk(KERN_ERR "slab: Internal list corruption detected in "
  2341. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2342. cachep->name, cachep->num, slabp, slabp->inuse);
  2343. for (i = 0;
  2344. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2345. i++) {
  2346. if (i % 16 == 0)
  2347. printk("\n%03x:", i);
  2348. printk(" %02x", ((unsigned char *)slabp)[i]);
  2349. }
  2350. printk("\n");
  2351. BUG();
  2352. }
  2353. }
  2354. #else
  2355. #define kfree_debugcheck(x) do { } while(0)
  2356. #define cache_free_debugcheck(x,objp,z) (objp)
  2357. #define check_slabp(x,y) do { } while(0)
  2358. #endif
  2359. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2360. {
  2361. int batchcount;
  2362. struct kmem_list3 *l3;
  2363. struct array_cache *ac;
  2364. check_irq_off();
  2365. ac = cpu_cache_get(cachep);
  2366. retry:
  2367. batchcount = ac->batchcount;
  2368. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2369. /*
  2370. * If there was little recent activity on this cache, then
  2371. * perform only a partial refill. Otherwise we could generate
  2372. * refill bouncing.
  2373. */
  2374. batchcount = BATCHREFILL_LIMIT;
  2375. }
  2376. l3 = cachep->nodelists[numa_node_id()];
  2377. BUG_ON(ac->avail > 0 || !l3);
  2378. spin_lock(&l3->list_lock);
  2379. if (l3->shared) {
  2380. struct array_cache *shared_array = l3->shared;
  2381. if (shared_array->avail) {
  2382. if (batchcount > shared_array->avail)
  2383. batchcount = shared_array->avail;
  2384. shared_array->avail -= batchcount;
  2385. ac->avail = batchcount;
  2386. memcpy(ac->entry,
  2387. &(shared_array->entry[shared_array->avail]),
  2388. sizeof(void *) * batchcount);
  2389. shared_array->touched = 1;
  2390. goto alloc_done;
  2391. }
  2392. }
  2393. while (batchcount > 0) {
  2394. struct list_head *entry;
  2395. struct slab *slabp;
  2396. /* Get slab alloc is to come from. */
  2397. entry = l3->slabs_partial.next;
  2398. if (entry == &l3->slabs_partial) {
  2399. l3->free_touched = 1;
  2400. entry = l3->slabs_free.next;
  2401. if (entry == &l3->slabs_free)
  2402. goto must_grow;
  2403. }
  2404. slabp = list_entry(entry, struct slab, list);
  2405. check_slabp(cachep, slabp);
  2406. check_spinlock_acquired(cachep);
  2407. while (slabp->inuse < cachep->num && batchcount--) {
  2408. STATS_INC_ALLOCED(cachep);
  2409. STATS_INC_ACTIVE(cachep);
  2410. STATS_SET_HIGH(cachep);
  2411. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2412. numa_node_id());
  2413. }
  2414. check_slabp(cachep, slabp);
  2415. /* move slabp to correct slabp list: */
  2416. list_del(&slabp->list);
  2417. if (slabp->free == BUFCTL_END)
  2418. list_add(&slabp->list, &l3->slabs_full);
  2419. else
  2420. list_add(&slabp->list, &l3->slabs_partial);
  2421. }
  2422. must_grow:
  2423. l3->free_objects -= ac->avail;
  2424. alloc_done:
  2425. spin_unlock(&l3->list_lock);
  2426. if (unlikely(!ac->avail)) {
  2427. int x;
  2428. x = cache_grow(cachep, flags, numa_node_id());
  2429. /* cache_grow can reenable interrupts, then ac could change. */
  2430. ac = cpu_cache_get(cachep);
  2431. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2432. return NULL;
  2433. if (!ac->avail) /* objects refilled by interrupt? */
  2434. goto retry;
  2435. }
  2436. ac->touched = 1;
  2437. return ac->entry[--ac->avail];
  2438. }
  2439. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2440. gfp_t flags)
  2441. {
  2442. might_sleep_if(flags & __GFP_WAIT);
  2443. #if DEBUG
  2444. kmem_flagcheck(cachep, flags);
  2445. #endif
  2446. }
  2447. #if DEBUG
  2448. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2449. gfp_t flags, void *objp, void *caller)
  2450. {
  2451. if (!objp)
  2452. return objp;
  2453. if (cachep->flags & SLAB_POISON) {
  2454. #ifdef CONFIG_DEBUG_PAGEALLOC
  2455. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2456. kernel_map_pages(virt_to_page(objp),
  2457. cachep->buffer_size / PAGE_SIZE, 1);
  2458. else
  2459. check_poison_obj(cachep, objp);
  2460. #else
  2461. check_poison_obj(cachep, objp);
  2462. #endif
  2463. poison_obj(cachep, objp, POISON_INUSE);
  2464. }
  2465. if (cachep->flags & SLAB_STORE_USER)
  2466. *dbg_userword(cachep, objp) = caller;
  2467. if (cachep->flags & SLAB_RED_ZONE) {
  2468. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2469. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2470. slab_error(cachep, "double free, or memory outside"
  2471. " object was overwritten");
  2472. printk(KERN_ERR
  2473. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2474. objp, *dbg_redzone1(cachep, objp),
  2475. *dbg_redzone2(cachep, objp));
  2476. }
  2477. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2478. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2479. }
  2480. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2481. {
  2482. struct slab *slabp;
  2483. unsigned objnr;
  2484. slabp = page_get_slab(virt_to_page(objp));
  2485. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2486. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2487. }
  2488. #endif
  2489. objp += obj_offset(cachep);
  2490. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2491. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2492. if (!(flags & __GFP_WAIT))
  2493. ctor_flags |= SLAB_CTOR_ATOMIC;
  2494. cachep->ctor(objp, cachep, ctor_flags);
  2495. }
  2496. return objp;
  2497. }
  2498. #else
  2499. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2500. #endif
  2501. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2502. {
  2503. void *objp;
  2504. struct array_cache *ac;
  2505. #ifdef CONFIG_NUMA
  2506. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2507. objp = alternate_node_alloc(cachep, flags);
  2508. if (objp != NULL)
  2509. return objp;
  2510. }
  2511. #endif
  2512. check_irq_off();
  2513. ac = cpu_cache_get(cachep);
  2514. if (likely(ac->avail)) {
  2515. STATS_INC_ALLOCHIT(cachep);
  2516. ac->touched = 1;
  2517. objp = ac->entry[--ac->avail];
  2518. } else {
  2519. STATS_INC_ALLOCMISS(cachep);
  2520. objp = cache_alloc_refill(cachep, flags);
  2521. }
  2522. return objp;
  2523. }
  2524. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2525. gfp_t flags, void *caller)
  2526. {
  2527. unsigned long save_flags;
  2528. void *objp;
  2529. cache_alloc_debugcheck_before(cachep, flags);
  2530. local_irq_save(save_flags);
  2531. objp = ____cache_alloc(cachep, flags);
  2532. local_irq_restore(save_flags);
  2533. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2534. caller);
  2535. prefetchw(objp);
  2536. return objp;
  2537. }
  2538. #ifdef CONFIG_NUMA
  2539. /*
  2540. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2541. *
  2542. * If we are in_interrupt, then process context, including cpusets and
  2543. * mempolicy, may not apply and should not be used for allocation policy.
  2544. */
  2545. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2546. {
  2547. int nid_alloc, nid_here;
  2548. if (in_interrupt())
  2549. return NULL;
  2550. nid_alloc = nid_here = numa_node_id();
  2551. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2552. nid_alloc = cpuset_mem_spread_node();
  2553. else if (current->mempolicy)
  2554. nid_alloc = slab_node(current->mempolicy);
  2555. if (nid_alloc != nid_here)
  2556. return __cache_alloc_node(cachep, flags, nid_alloc);
  2557. return NULL;
  2558. }
  2559. /*
  2560. * A interface to enable slab creation on nodeid
  2561. */
  2562. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2563. int nodeid)
  2564. {
  2565. struct list_head *entry;
  2566. struct slab *slabp;
  2567. struct kmem_list3 *l3;
  2568. void *obj;
  2569. int x;
  2570. l3 = cachep->nodelists[nodeid];
  2571. BUG_ON(!l3);
  2572. retry:
  2573. check_irq_off();
  2574. spin_lock(&l3->list_lock);
  2575. entry = l3->slabs_partial.next;
  2576. if (entry == &l3->slabs_partial) {
  2577. l3->free_touched = 1;
  2578. entry = l3->slabs_free.next;
  2579. if (entry == &l3->slabs_free)
  2580. goto must_grow;
  2581. }
  2582. slabp = list_entry(entry, struct slab, list);
  2583. check_spinlock_acquired_node(cachep, nodeid);
  2584. check_slabp(cachep, slabp);
  2585. STATS_INC_NODEALLOCS(cachep);
  2586. STATS_INC_ACTIVE(cachep);
  2587. STATS_SET_HIGH(cachep);
  2588. BUG_ON(slabp->inuse == cachep->num);
  2589. obj = slab_get_obj(cachep, slabp, nodeid);
  2590. check_slabp(cachep, slabp);
  2591. l3->free_objects--;
  2592. /* move slabp to correct slabp list: */
  2593. list_del(&slabp->list);
  2594. if (slabp->free == BUFCTL_END)
  2595. list_add(&slabp->list, &l3->slabs_full);
  2596. else
  2597. list_add(&slabp->list, &l3->slabs_partial);
  2598. spin_unlock(&l3->list_lock);
  2599. goto done;
  2600. must_grow:
  2601. spin_unlock(&l3->list_lock);
  2602. x = cache_grow(cachep, flags, nodeid);
  2603. if (!x)
  2604. return NULL;
  2605. goto retry;
  2606. done:
  2607. return obj;
  2608. }
  2609. #endif
  2610. /*
  2611. * Caller needs to acquire correct kmem_list's list_lock
  2612. */
  2613. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2614. int node)
  2615. {
  2616. int i;
  2617. struct kmem_list3 *l3;
  2618. for (i = 0; i < nr_objects; i++) {
  2619. void *objp = objpp[i];
  2620. struct slab *slabp;
  2621. slabp = virt_to_slab(objp);
  2622. l3 = cachep->nodelists[node];
  2623. list_del(&slabp->list);
  2624. check_spinlock_acquired_node(cachep, node);
  2625. check_slabp(cachep, slabp);
  2626. slab_put_obj(cachep, slabp, objp, node);
  2627. STATS_DEC_ACTIVE(cachep);
  2628. l3->free_objects++;
  2629. check_slabp(cachep, slabp);
  2630. /* fixup slab chains */
  2631. if (slabp->inuse == 0) {
  2632. if (l3->free_objects > l3->free_limit) {
  2633. l3->free_objects -= cachep->num;
  2634. slab_destroy(cachep, slabp);
  2635. } else {
  2636. list_add(&slabp->list, &l3->slabs_free);
  2637. }
  2638. } else {
  2639. /* Unconditionally move a slab to the end of the
  2640. * partial list on free - maximum time for the
  2641. * other objects to be freed, too.
  2642. */
  2643. list_add_tail(&slabp->list, &l3->slabs_partial);
  2644. }
  2645. }
  2646. }
  2647. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2648. {
  2649. int batchcount;
  2650. struct kmem_list3 *l3;
  2651. int node = numa_node_id();
  2652. batchcount = ac->batchcount;
  2653. #if DEBUG
  2654. BUG_ON(!batchcount || batchcount > ac->avail);
  2655. #endif
  2656. check_irq_off();
  2657. l3 = cachep->nodelists[node];
  2658. spin_lock(&l3->list_lock);
  2659. if (l3->shared) {
  2660. struct array_cache *shared_array = l3->shared;
  2661. int max = shared_array->limit - shared_array->avail;
  2662. if (max) {
  2663. if (batchcount > max)
  2664. batchcount = max;
  2665. memcpy(&(shared_array->entry[shared_array->avail]),
  2666. ac->entry, sizeof(void *) * batchcount);
  2667. shared_array->avail += batchcount;
  2668. goto free_done;
  2669. }
  2670. }
  2671. free_block(cachep, ac->entry, batchcount, node);
  2672. free_done:
  2673. #if STATS
  2674. {
  2675. int i = 0;
  2676. struct list_head *p;
  2677. p = l3->slabs_free.next;
  2678. while (p != &(l3->slabs_free)) {
  2679. struct slab *slabp;
  2680. slabp = list_entry(p, struct slab, list);
  2681. BUG_ON(slabp->inuse);
  2682. i++;
  2683. p = p->next;
  2684. }
  2685. STATS_SET_FREEABLE(cachep, i);
  2686. }
  2687. #endif
  2688. spin_unlock(&l3->list_lock);
  2689. ac->avail -= batchcount;
  2690. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2691. }
  2692. /*
  2693. * Release an obj back to its cache. If the obj has a constructed state, it must
  2694. * be in this state _before_ it is released. Called with disabled ints.
  2695. */
  2696. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2697. {
  2698. struct array_cache *ac = cpu_cache_get(cachep);
  2699. check_irq_off();
  2700. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2701. /* Make sure we are not freeing a object from another
  2702. * node to the array cache on this cpu.
  2703. */
  2704. #ifdef CONFIG_NUMA
  2705. {
  2706. struct slab *slabp;
  2707. slabp = virt_to_slab(objp);
  2708. if (unlikely(slabp->nodeid != numa_node_id())) {
  2709. struct array_cache *alien = NULL;
  2710. int nodeid = slabp->nodeid;
  2711. struct kmem_list3 *l3;
  2712. l3 = cachep->nodelists[numa_node_id()];
  2713. STATS_INC_NODEFREES(cachep);
  2714. if (l3->alien && l3->alien[nodeid]) {
  2715. alien = l3->alien[nodeid];
  2716. spin_lock(&alien->lock);
  2717. if (unlikely(alien->avail == alien->limit))
  2718. __drain_alien_cache(cachep,
  2719. alien, nodeid);
  2720. alien->entry[alien->avail++] = objp;
  2721. spin_unlock(&alien->lock);
  2722. } else {
  2723. spin_lock(&(cachep->nodelists[nodeid])->
  2724. list_lock);
  2725. free_block(cachep, &objp, 1, nodeid);
  2726. spin_unlock(&(cachep->nodelists[nodeid])->
  2727. list_lock);
  2728. }
  2729. return;
  2730. }
  2731. }
  2732. #endif
  2733. if (likely(ac->avail < ac->limit)) {
  2734. STATS_INC_FREEHIT(cachep);
  2735. ac->entry[ac->avail++] = objp;
  2736. return;
  2737. } else {
  2738. STATS_INC_FREEMISS(cachep);
  2739. cache_flusharray(cachep, ac);
  2740. ac->entry[ac->avail++] = objp;
  2741. }
  2742. }
  2743. /**
  2744. * kmem_cache_alloc - Allocate an object
  2745. * @cachep: The cache to allocate from.
  2746. * @flags: See kmalloc().
  2747. *
  2748. * Allocate an object from this cache. The flags are only relevant
  2749. * if the cache has no available objects.
  2750. */
  2751. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2752. {
  2753. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2754. }
  2755. EXPORT_SYMBOL(kmem_cache_alloc);
  2756. /**
  2757. * kmem_ptr_validate - check if an untrusted pointer might
  2758. * be a slab entry.
  2759. * @cachep: the cache we're checking against
  2760. * @ptr: pointer to validate
  2761. *
  2762. * This verifies that the untrusted pointer looks sane:
  2763. * it is _not_ a guarantee that the pointer is actually
  2764. * part of the slab cache in question, but it at least
  2765. * validates that the pointer can be dereferenced and
  2766. * looks half-way sane.
  2767. *
  2768. * Currently only used for dentry validation.
  2769. */
  2770. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2771. {
  2772. unsigned long addr = (unsigned long)ptr;
  2773. unsigned long min_addr = PAGE_OFFSET;
  2774. unsigned long align_mask = BYTES_PER_WORD - 1;
  2775. unsigned long size = cachep->buffer_size;
  2776. struct page *page;
  2777. if (unlikely(addr < min_addr))
  2778. goto out;
  2779. if (unlikely(addr > (unsigned long)high_memory - size))
  2780. goto out;
  2781. if (unlikely(addr & align_mask))
  2782. goto out;
  2783. if (unlikely(!kern_addr_valid(addr)))
  2784. goto out;
  2785. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2786. goto out;
  2787. page = virt_to_page(ptr);
  2788. if (unlikely(!PageSlab(page)))
  2789. goto out;
  2790. if (unlikely(page_get_cache(page) != cachep))
  2791. goto out;
  2792. return 1;
  2793. out:
  2794. return 0;
  2795. }
  2796. #ifdef CONFIG_NUMA
  2797. /**
  2798. * kmem_cache_alloc_node - Allocate an object on the specified node
  2799. * @cachep: The cache to allocate from.
  2800. * @flags: See kmalloc().
  2801. * @nodeid: node number of the target node.
  2802. *
  2803. * Identical to kmem_cache_alloc, except that this function is slow
  2804. * and can sleep. And it will allocate memory on the given node, which
  2805. * can improve the performance for cpu bound structures.
  2806. * New and improved: it will now make sure that the object gets
  2807. * put on the correct node list so that there is no false sharing.
  2808. */
  2809. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2810. {
  2811. unsigned long save_flags;
  2812. void *ptr;
  2813. cache_alloc_debugcheck_before(cachep, flags);
  2814. local_irq_save(save_flags);
  2815. if (nodeid == -1 || nodeid == numa_node_id() ||
  2816. !cachep->nodelists[nodeid])
  2817. ptr = ____cache_alloc(cachep, flags);
  2818. else
  2819. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2820. local_irq_restore(save_flags);
  2821. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2822. __builtin_return_address(0));
  2823. return ptr;
  2824. }
  2825. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2826. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2827. {
  2828. struct kmem_cache *cachep;
  2829. cachep = kmem_find_general_cachep(size, flags);
  2830. if (unlikely(cachep == NULL))
  2831. return NULL;
  2832. return kmem_cache_alloc_node(cachep, flags, node);
  2833. }
  2834. EXPORT_SYMBOL(kmalloc_node);
  2835. #endif
  2836. /**
  2837. * kmalloc - allocate memory
  2838. * @size: how many bytes of memory are required.
  2839. * @flags: the type of memory to allocate.
  2840. * @caller: function caller for debug tracking of the caller
  2841. *
  2842. * kmalloc is the normal method of allocating memory
  2843. * in the kernel.
  2844. *
  2845. * The @flags argument may be one of:
  2846. *
  2847. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2848. *
  2849. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2850. *
  2851. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2852. *
  2853. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2854. * must be suitable for DMA. This can mean different things on different
  2855. * platforms. For example, on i386, it means that the memory must come
  2856. * from the first 16MB.
  2857. */
  2858. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2859. void *caller)
  2860. {
  2861. struct kmem_cache *cachep;
  2862. /* If you want to save a few bytes .text space: replace
  2863. * __ with kmem_.
  2864. * Then kmalloc uses the uninlined functions instead of the inline
  2865. * functions.
  2866. */
  2867. cachep = __find_general_cachep(size, flags);
  2868. if (unlikely(cachep == NULL))
  2869. return NULL;
  2870. return __cache_alloc(cachep, flags, caller);
  2871. }
  2872. void *__kmalloc(size_t size, gfp_t flags)
  2873. {
  2874. #ifndef CONFIG_DEBUG_SLAB
  2875. return __do_kmalloc(size, flags, NULL);
  2876. #else
  2877. return __do_kmalloc(size, flags, __builtin_return_address(0));
  2878. #endif
  2879. }
  2880. EXPORT_SYMBOL(__kmalloc);
  2881. #ifdef CONFIG_DEBUG_SLAB
  2882. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2883. {
  2884. return __do_kmalloc(size, flags, caller);
  2885. }
  2886. EXPORT_SYMBOL(__kmalloc_track_caller);
  2887. #endif
  2888. #ifdef CONFIG_SMP
  2889. /**
  2890. * __alloc_percpu - allocate one copy of the object for every present
  2891. * cpu in the system, zeroing them.
  2892. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2893. *
  2894. * @size: how many bytes of memory are required.
  2895. */
  2896. void *__alloc_percpu(size_t size)
  2897. {
  2898. int i;
  2899. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2900. if (!pdata)
  2901. return NULL;
  2902. /*
  2903. * Cannot use for_each_online_cpu since a cpu may come online
  2904. * and we have no way of figuring out how to fix the array
  2905. * that we have allocated then....
  2906. */
  2907. for_each_cpu(i) {
  2908. int node = cpu_to_node(i);
  2909. if (node_online(node))
  2910. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2911. else
  2912. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2913. if (!pdata->ptrs[i])
  2914. goto unwind_oom;
  2915. memset(pdata->ptrs[i], 0, size);
  2916. }
  2917. /* Catch derefs w/o wrappers */
  2918. return (void *)(~(unsigned long)pdata);
  2919. unwind_oom:
  2920. while (--i >= 0) {
  2921. if (!cpu_possible(i))
  2922. continue;
  2923. kfree(pdata->ptrs[i]);
  2924. }
  2925. kfree(pdata);
  2926. return NULL;
  2927. }
  2928. EXPORT_SYMBOL(__alloc_percpu);
  2929. #endif
  2930. /**
  2931. * kmem_cache_free - Deallocate an object
  2932. * @cachep: The cache the allocation was from.
  2933. * @objp: The previously allocated object.
  2934. *
  2935. * Free an object which was previously allocated from this
  2936. * cache.
  2937. */
  2938. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2939. {
  2940. unsigned long flags;
  2941. local_irq_save(flags);
  2942. __cache_free(cachep, objp);
  2943. local_irq_restore(flags);
  2944. }
  2945. EXPORT_SYMBOL(kmem_cache_free);
  2946. /**
  2947. * kfree - free previously allocated memory
  2948. * @objp: pointer returned by kmalloc.
  2949. *
  2950. * If @objp is NULL, no operation is performed.
  2951. *
  2952. * Don't free memory not originally allocated by kmalloc()
  2953. * or you will run into trouble.
  2954. */
  2955. void kfree(const void *objp)
  2956. {
  2957. struct kmem_cache *c;
  2958. unsigned long flags;
  2959. if (unlikely(!objp))
  2960. return;
  2961. local_irq_save(flags);
  2962. kfree_debugcheck(objp);
  2963. c = virt_to_cache(objp);
  2964. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2965. __cache_free(c, (void *)objp);
  2966. local_irq_restore(flags);
  2967. }
  2968. EXPORT_SYMBOL(kfree);
  2969. #ifdef CONFIG_SMP
  2970. /**
  2971. * free_percpu - free previously allocated percpu memory
  2972. * @objp: pointer returned by alloc_percpu.
  2973. *
  2974. * Don't free memory not originally allocated by alloc_percpu()
  2975. * The complemented objp is to check for that.
  2976. */
  2977. void free_percpu(const void *objp)
  2978. {
  2979. int i;
  2980. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2981. /*
  2982. * We allocate for all cpus so we cannot use for online cpu here.
  2983. */
  2984. for_each_cpu(i)
  2985. kfree(p->ptrs[i]);
  2986. kfree(p);
  2987. }
  2988. EXPORT_SYMBOL(free_percpu);
  2989. #endif
  2990. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2991. {
  2992. return obj_size(cachep);
  2993. }
  2994. EXPORT_SYMBOL(kmem_cache_size);
  2995. const char *kmem_cache_name(struct kmem_cache *cachep)
  2996. {
  2997. return cachep->name;
  2998. }
  2999. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3000. /*
  3001. * This initializes kmem_list3 for all nodes.
  3002. */
  3003. static int alloc_kmemlist(struct kmem_cache *cachep)
  3004. {
  3005. int node;
  3006. struct kmem_list3 *l3;
  3007. int err = 0;
  3008. for_each_online_node(node) {
  3009. struct array_cache *nc = NULL, *new;
  3010. struct array_cache **new_alien = NULL;
  3011. #ifdef CONFIG_NUMA
  3012. new_alien = alloc_alien_cache(node, cachep->limit);
  3013. if (!new_alien)
  3014. goto fail;
  3015. #endif
  3016. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  3017. 0xbaadf00d);
  3018. if (!new)
  3019. goto fail;
  3020. l3 = cachep->nodelists[node];
  3021. if (l3) {
  3022. spin_lock_irq(&l3->list_lock);
  3023. nc = cachep->nodelists[node]->shared;
  3024. if (nc)
  3025. free_block(cachep, nc->entry, nc->avail, node);
  3026. l3->shared = new;
  3027. if (!cachep->nodelists[node]->alien) {
  3028. l3->alien = new_alien;
  3029. new_alien = NULL;
  3030. }
  3031. l3->free_limit = (1 + nr_cpus_node(node)) *
  3032. cachep->batchcount + cachep->num;
  3033. spin_unlock_irq(&l3->list_lock);
  3034. kfree(nc);
  3035. free_alien_cache(new_alien);
  3036. continue;
  3037. }
  3038. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3039. if (!l3)
  3040. goto fail;
  3041. kmem_list3_init(l3);
  3042. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3043. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3044. l3->shared = new;
  3045. l3->alien = new_alien;
  3046. l3->free_limit = (1 + nr_cpus_node(node)) *
  3047. cachep->batchcount + cachep->num;
  3048. cachep->nodelists[node] = l3;
  3049. }
  3050. return err;
  3051. fail:
  3052. err = -ENOMEM;
  3053. return err;
  3054. }
  3055. struct ccupdate_struct {
  3056. struct kmem_cache *cachep;
  3057. struct array_cache *new[NR_CPUS];
  3058. };
  3059. static void do_ccupdate_local(void *info)
  3060. {
  3061. struct ccupdate_struct *new = info;
  3062. struct array_cache *old;
  3063. check_irq_off();
  3064. old = cpu_cache_get(new->cachep);
  3065. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3066. new->new[smp_processor_id()] = old;
  3067. }
  3068. /* Always called with the cache_chain_mutex held */
  3069. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3070. int batchcount, int shared)
  3071. {
  3072. struct ccupdate_struct new;
  3073. int i, err;
  3074. memset(&new.new, 0, sizeof(new.new));
  3075. for_each_online_cpu(i) {
  3076. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3077. batchcount);
  3078. if (!new.new[i]) {
  3079. for (i--; i >= 0; i--)
  3080. kfree(new.new[i]);
  3081. return -ENOMEM;
  3082. }
  3083. }
  3084. new.cachep = cachep;
  3085. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3086. check_irq_on();
  3087. cachep->batchcount = batchcount;
  3088. cachep->limit = limit;
  3089. cachep->shared = shared;
  3090. for_each_online_cpu(i) {
  3091. struct array_cache *ccold = new.new[i];
  3092. if (!ccold)
  3093. continue;
  3094. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3095. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3096. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3097. kfree(ccold);
  3098. }
  3099. err = alloc_kmemlist(cachep);
  3100. if (err) {
  3101. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3102. cachep->name, -err);
  3103. BUG();
  3104. }
  3105. return 0;
  3106. }
  3107. /* Called with cache_chain_mutex held always */
  3108. static void enable_cpucache(struct kmem_cache *cachep)
  3109. {
  3110. int err;
  3111. int limit, shared;
  3112. /*
  3113. * The head array serves three purposes:
  3114. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3115. * - reduce the number of spinlock operations.
  3116. * - reduce the number of linked list operations on the slab and
  3117. * bufctl chains: array operations are cheaper.
  3118. * The numbers are guessed, we should auto-tune as described by
  3119. * Bonwick.
  3120. */
  3121. if (cachep->buffer_size > 131072)
  3122. limit = 1;
  3123. else if (cachep->buffer_size > PAGE_SIZE)
  3124. limit = 8;
  3125. else if (cachep->buffer_size > 1024)
  3126. limit = 24;
  3127. else if (cachep->buffer_size > 256)
  3128. limit = 54;
  3129. else
  3130. limit = 120;
  3131. /*
  3132. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3133. * allocation behaviour: Most allocs on one cpu, most free operations
  3134. * on another cpu. For these cases, an efficient object passing between
  3135. * cpus is necessary. This is provided by a shared array. The array
  3136. * replaces Bonwick's magazine layer.
  3137. * On uniprocessor, it's functionally equivalent (but less efficient)
  3138. * to a larger limit. Thus disabled by default.
  3139. */
  3140. shared = 0;
  3141. #ifdef CONFIG_SMP
  3142. if (cachep->buffer_size <= PAGE_SIZE)
  3143. shared = 8;
  3144. #endif
  3145. #if DEBUG
  3146. /*
  3147. * With debugging enabled, large batchcount lead to excessively long
  3148. * periods with disabled local interrupts. Limit the batchcount
  3149. */
  3150. if (limit > 32)
  3151. limit = 32;
  3152. #endif
  3153. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3154. if (err)
  3155. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3156. cachep->name, -err);
  3157. }
  3158. /*
  3159. * Drain an array if it contains any elements taking the l3 lock only if
  3160. * necessary. Note that the l3 listlock also protects the array_cache
  3161. * if drain_array() is used on the shared array.
  3162. */
  3163. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3164. struct array_cache *ac, int force, int node)
  3165. {
  3166. int tofree;
  3167. if (!ac || !ac->avail)
  3168. return;
  3169. if (ac->touched && !force) {
  3170. ac->touched = 0;
  3171. } else {
  3172. spin_lock_irq(&l3->list_lock);
  3173. if (ac->avail) {
  3174. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3175. if (tofree > ac->avail)
  3176. tofree = (ac->avail + 1) / 2;
  3177. free_block(cachep, ac->entry, tofree, node);
  3178. ac->avail -= tofree;
  3179. memmove(ac->entry, &(ac->entry[tofree]),
  3180. sizeof(void *) * ac->avail);
  3181. }
  3182. spin_unlock_irq(&l3->list_lock);
  3183. }
  3184. }
  3185. /**
  3186. * cache_reap - Reclaim memory from caches.
  3187. * @unused: unused parameter
  3188. *
  3189. * Called from workqueue/eventd every few seconds.
  3190. * Purpose:
  3191. * - clear the per-cpu caches for this CPU.
  3192. * - return freeable pages to the main free memory pool.
  3193. *
  3194. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3195. * again on the next iteration.
  3196. */
  3197. static void cache_reap(void *unused)
  3198. {
  3199. struct list_head *walk;
  3200. struct kmem_list3 *l3;
  3201. int node = numa_node_id();
  3202. if (!mutex_trylock(&cache_chain_mutex)) {
  3203. /* Give up. Setup the next iteration. */
  3204. schedule_delayed_work(&__get_cpu_var(reap_work),
  3205. REAPTIMEOUT_CPUC);
  3206. return;
  3207. }
  3208. list_for_each(walk, &cache_chain) {
  3209. struct kmem_cache *searchp;
  3210. struct list_head *p;
  3211. int tofree;
  3212. struct slab *slabp;
  3213. searchp = list_entry(walk, struct kmem_cache, next);
  3214. check_irq_on();
  3215. /*
  3216. * We only take the l3 lock if absolutely necessary and we
  3217. * have established with reasonable certainty that
  3218. * we can do some work if the lock was obtained.
  3219. */
  3220. l3 = searchp->nodelists[node];
  3221. reap_alien(searchp, l3);
  3222. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3223. /*
  3224. * These are racy checks but it does not matter
  3225. * if we skip one check or scan twice.
  3226. */
  3227. if (time_after(l3->next_reap, jiffies))
  3228. goto next;
  3229. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3230. drain_array(searchp, l3, l3->shared, 0, node);
  3231. if (l3->free_touched) {
  3232. l3->free_touched = 0;
  3233. goto next;
  3234. }
  3235. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3236. (5 * searchp->num);
  3237. do {
  3238. /*
  3239. * Do not lock if there are no free blocks.
  3240. */
  3241. if (list_empty(&l3->slabs_free))
  3242. break;
  3243. spin_lock_irq(&l3->list_lock);
  3244. p = l3->slabs_free.next;
  3245. if (p == &(l3->slabs_free)) {
  3246. spin_unlock_irq(&l3->list_lock);
  3247. break;
  3248. }
  3249. slabp = list_entry(p, struct slab, list);
  3250. BUG_ON(slabp->inuse);
  3251. list_del(&slabp->list);
  3252. STATS_INC_REAPED(searchp);
  3253. /*
  3254. * Safe to drop the lock. The slab is no longer linked
  3255. * to the cache. searchp cannot disappear, we hold
  3256. * cache_chain_lock
  3257. */
  3258. l3->free_objects -= searchp->num;
  3259. spin_unlock_irq(&l3->list_lock);
  3260. slab_destroy(searchp, slabp);
  3261. } while (--tofree > 0);
  3262. next:
  3263. cond_resched();
  3264. }
  3265. check_irq_on();
  3266. mutex_unlock(&cache_chain_mutex);
  3267. next_reap_node();
  3268. /* Set up the next iteration */
  3269. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3270. }
  3271. #ifdef CONFIG_PROC_FS
  3272. static void print_slabinfo_header(struct seq_file *m)
  3273. {
  3274. /*
  3275. * Output format version, so at least we can change it
  3276. * without _too_ many complaints.
  3277. */
  3278. #if STATS
  3279. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3280. #else
  3281. seq_puts(m, "slabinfo - version: 2.1\n");
  3282. #endif
  3283. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3284. "<objperslab> <pagesperslab>");
  3285. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3286. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3287. #if STATS
  3288. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3289. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3290. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3291. #endif
  3292. seq_putc(m, '\n');
  3293. }
  3294. static void *s_start(struct seq_file *m, loff_t *pos)
  3295. {
  3296. loff_t n = *pos;
  3297. struct list_head *p;
  3298. mutex_lock(&cache_chain_mutex);
  3299. if (!n)
  3300. print_slabinfo_header(m);
  3301. p = cache_chain.next;
  3302. while (n--) {
  3303. p = p->next;
  3304. if (p == &cache_chain)
  3305. return NULL;
  3306. }
  3307. return list_entry(p, struct kmem_cache, next);
  3308. }
  3309. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3310. {
  3311. struct kmem_cache *cachep = p;
  3312. ++*pos;
  3313. return cachep->next.next == &cache_chain ?
  3314. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3315. }
  3316. static void s_stop(struct seq_file *m, void *p)
  3317. {
  3318. mutex_unlock(&cache_chain_mutex);
  3319. }
  3320. static int s_show(struct seq_file *m, void *p)
  3321. {
  3322. struct kmem_cache *cachep = p;
  3323. struct list_head *q;
  3324. struct slab *slabp;
  3325. unsigned long active_objs;
  3326. unsigned long num_objs;
  3327. unsigned long active_slabs = 0;
  3328. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3329. const char *name;
  3330. char *error = NULL;
  3331. int node;
  3332. struct kmem_list3 *l3;
  3333. active_objs = 0;
  3334. num_slabs = 0;
  3335. for_each_online_node(node) {
  3336. l3 = cachep->nodelists[node];
  3337. if (!l3)
  3338. continue;
  3339. check_irq_on();
  3340. spin_lock_irq(&l3->list_lock);
  3341. list_for_each(q, &l3->slabs_full) {
  3342. slabp = list_entry(q, struct slab, list);
  3343. if (slabp->inuse != cachep->num && !error)
  3344. error = "slabs_full accounting error";
  3345. active_objs += cachep->num;
  3346. active_slabs++;
  3347. }
  3348. list_for_each(q, &l3->slabs_partial) {
  3349. slabp = list_entry(q, struct slab, list);
  3350. if (slabp->inuse == cachep->num && !error)
  3351. error = "slabs_partial inuse accounting error";
  3352. if (!slabp->inuse && !error)
  3353. error = "slabs_partial/inuse accounting error";
  3354. active_objs += slabp->inuse;
  3355. active_slabs++;
  3356. }
  3357. list_for_each(q, &l3->slabs_free) {
  3358. slabp = list_entry(q, struct slab, list);
  3359. if (slabp->inuse && !error)
  3360. error = "slabs_free/inuse accounting error";
  3361. num_slabs++;
  3362. }
  3363. free_objects += l3->free_objects;
  3364. if (l3->shared)
  3365. shared_avail += l3->shared->avail;
  3366. spin_unlock_irq(&l3->list_lock);
  3367. }
  3368. num_slabs += active_slabs;
  3369. num_objs = num_slabs * cachep->num;
  3370. if (num_objs - active_objs != free_objects && !error)
  3371. error = "free_objects accounting error";
  3372. name = cachep->name;
  3373. if (error)
  3374. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3375. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3376. name, active_objs, num_objs, cachep->buffer_size,
  3377. cachep->num, (1 << cachep->gfporder));
  3378. seq_printf(m, " : tunables %4u %4u %4u",
  3379. cachep->limit, cachep->batchcount, cachep->shared);
  3380. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3381. active_slabs, num_slabs, shared_avail);
  3382. #if STATS
  3383. { /* list3 stats */
  3384. unsigned long high = cachep->high_mark;
  3385. unsigned long allocs = cachep->num_allocations;
  3386. unsigned long grown = cachep->grown;
  3387. unsigned long reaped = cachep->reaped;
  3388. unsigned long errors = cachep->errors;
  3389. unsigned long max_freeable = cachep->max_freeable;
  3390. unsigned long node_allocs = cachep->node_allocs;
  3391. unsigned long node_frees = cachep->node_frees;
  3392. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3393. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3394. reaped, errors, max_freeable, node_allocs,
  3395. node_frees);
  3396. }
  3397. /* cpu stats */
  3398. {
  3399. unsigned long allochit = atomic_read(&cachep->allochit);
  3400. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3401. unsigned long freehit = atomic_read(&cachep->freehit);
  3402. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3403. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3404. allochit, allocmiss, freehit, freemiss);
  3405. }
  3406. #endif
  3407. seq_putc(m, '\n');
  3408. return 0;
  3409. }
  3410. /*
  3411. * slabinfo_op - iterator that generates /proc/slabinfo
  3412. *
  3413. * Output layout:
  3414. * cache-name
  3415. * num-active-objs
  3416. * total-objs
  3417. * object size
  3418. * num-active-slabs
  3419. * total-slabs
  3420. * num-pages-per-slab
  3421. * + further values on SMP and with statistics enabled
  3422. */
  3423. struct seq_operations slabinfo_op = {
  3424. .start = s_start,
  3425. .next = s_next,
  3426. .stop = s_stop,
  3427. .show = s_show,
  3428. };
  3429. #define MAX_SLABINFO_WRITE 128
  3430. /**
  3431. * slabinfo_write - Tuning for the slab allocator
  3432. * @file: unused
  3433. * @buffer: user buffer
  3434. * @count: data length
  3435. * @ppos: unused
  3436. */
  3437. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3438. size_t count, loff_t *ppos)
  3439. {
  3440. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3441. int limit, batchcount, shared, res;
  3442. struct list_head *p;
  3443. if (count > MAX_SLABINFO_WRITE)
  3444. return -EINVAL;
  3445. if (copy_from_user(&kbuf, buffer, count))
  3446. return -EFAULT;
  3447. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3448. tmp = strchr(kbuf, ' ');
  3449. if (!tmp)
  3450. return -EINVAL;
  3451. *tmp = '\0';
  3452. tmp++;
  3453. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3454. return -EINVAL;
  3455. /* Find the cache in the chain of caches. */
  3456. mutex_lock(&cache_chain_mutex);
  3457. res = -EINVAL;
  3458. list_for_each(p, &cache_chain) {
  3459. struct kmem_cache *cachep;
  3460. cachep = list_entry(p, struct kmem_cache, next);
  3461. if (!strcmp(cachep->name, kbuf)) {
  3462. if (limit < 1 || batchcount < 1 ||
  3463. batchcount > limit || shared < 0) {
  3464. res = 0;
  3465. } else {
  3466. res = do_tune_cpucache(cachep, limit,
  3467. batchcount, shared);
  3468. }
  3469. break;
  3470. }
  3471. }
  3472. mutex_unlock(&cache_chain_mutex);
  3473. if (res >= 0)
  3474. res = count;
  3475. return res;
  3476. }
  3477. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3478. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3479. {
  3480. loff_t n = *pos;
  3481. struct list_head *p;
  3482. mutex_lock(&cache_chain_mutex);
  3483. p = cache_chain.next;
  3484. while (n--) {
  3485. p = p->next;
  3486. if (p == &cache_chain)
  3487. return NULL;
  3488. }
  3489. return list_entry(p, struct kmem_cache, next);
  3490. }
  3491. static inline int add_caller(unsigned long *n, unsigned long v)
  3492. {
  3493. unsigned long *p;
  3494. int l;
  3495. if (!v)
  3496. return 1;
  3497. l = n[1];
  3498. p = n + 2;
  3499. while (l) {
  3500. int i = l/2;
  3501. unsigned long *q = p + 2 * i;
  3502. if (*q == v) {
  3503. q[1]++;
  3504. return 1;
  3505. }
  3506. if (*q > v) {
  3507. l = i;
  3508. } else {
  3509. p = q + 2;
  3510. l -= i + 1;
  3511. }
  3512. }
  3513. if (++n[1] == n[0])
  3514. return 0;
  3515. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3516. p[0] = v;
  3517. p[1] = 1;
  3518. return 1;
  3519. }
  3520. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3521. {
  3522. void *p;
  3523. int i;
  3524. if (n[0] == n[1])
  3525. return;
  3526. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3527. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3528. continue;
  3529. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3530. return;
  3531. }
  3532. }
  3533. static void show_symbol(struct seq_file *m, unsigned long address)
  3534. {
  3535. #ifdef CONFIG_KALLSYMS
  3536. char *modname;
  3537. const char *name;
  3538. unsigned long offset, size;
  3539. char namebuf[KSYM_NAME_LEN+1];
  3540. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3541. if (name) {
  3542. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3543. if (modname)
  3544. seq_printf(m, " [%s]", modname);
  3545. return;
  3546. }
  3547. #endif
  3548. seq_printf(m, "%p", (void *)address);
  3549. }
  3550. static int leaks_show(struct seq_file *m, void *p)
  3551. {
  3552. struct kmem_cache *cachep = p;
  3553. struct list_head *q;
  3554. struct slab *slabp;
  3555. struct kmem_list3 *l3;
  3556. const char *name;
  3557. unsigned long *n = m->private;
  3558. int node;
  3559. int i;
  3560. if (!(cachep->flags & SLAB_STORE_USER))
  3561. return 0;
  3562. if (!(cachep->flags & SLAB_RED_ZONE))
  3563. return 0;
  3564. /* OK, we can do it */
  3565. n[1] = 0;
  3566. for_each_online_node(node) {
  3567. l3 = cachep->nodelists[node];
  3568. if (!l3)
  3569. continue;
  3570. check_irq_on();
  3571. spin_lock_irq(&l3->list_lock);
  3572. list_for_each(q, &l3->slabs_full) {
  3573. slabp = list_entry(q, struct slab, list);
  3574. handle_slab(n, cachep, slabp);
  3575. }
  3576. list_for_each(q, &l3->slabs_partial) {
  3577. slabp = list_entry(q, struct slab, list);
  3578. handle_slab(n, cachep, slabp);
  3579. }
  3580. spin_unlock_irq(&l3->list_lock);
  3581. }
  3582. name = cachep->name;
  3583. if (n[0] == n[1]) {
  3584. /* Increase the buffer size */
  3585. mutex_unlock(&cache_chain_mutex);
  3586. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3587. if (!m->private) {
  3588. /* Too bad, we are really out */
  3589. m->private = n;
  3590. mutex_lock(&cache_chain_mutex);
  3591. return -ENOMEM;
  3592. }
  3593. *(unsigned long *)m->private = n[0] * 2;
  3594. kfree(n);
  3595. mutex_lock(&cache_chain_mutex);
  3596. /* Now make sure this entry will be retried */
  3597. m->count = m->size;
  3598. return 0;
  3599. }
  3600. for (i = 0; i < n[1]; i++) {
  3601. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3602. show_symbol(m, n[2*i+2]);
  3603. seq_putc(m, '\n');
  3604. }
  3605. return 0;
  3606. }
  3607. struct seq_operations slabstats_op = {
  3608. .start = leaks_start,
  3609. .next = s_next,
  3610. .stop = s_stop,
  3611. .show = leaks_show,
  3612. };
  3613. #endif
  3614. #endif
  3615. /**
  3616. * ksize - get the actual amount of memory allocated for a given object
  3617. * @objp: Pointer to the object
  3618. *
  3619. * kmalloc may internally round up allocations and return more memory
  3620. * than requested. ksize() can be used to determine the actual amount of
  3621. * memory allocated. The caller may use this additional memory, even though
  3622. * a smaller amount of memory was initially specified with the kmalloc call.
  3623. * The caller must guarantee that objp points to a valid object previously
  3624. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3625. * must not be freed during the duration of the call.
  3626. */
  3627. unsigned int ksize(const void *objp)
  3628. {
  3629. if (unlikely(objp == NULL))
  3630. return 0;
  3631. return obj_size(virt_to_cache(objp));
  3632. }