forcedeth.c 148 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. *
  115. * Known bugs:
  116. * We suspect that on some hardware no TX done interrupts are generated.
  117. * This means recovery from netif_stop_queue only happens if the hw timer
  118. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  119. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  120. * If your hardware reliably generates tx done interrupts, then you can remove
  121. * DEV_NEED_TIMERIRQ from the driver_data flags.
  122. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  123. * superfluous timer interrupts from the nic.
  124. */
  125. #ifdef CONFIG_FORCEDETH_NAPI
  126. #define DRIVERNAPI "-NAPI"
  127. #else
  128. #define DRIVERNAPI
  129. #endif
  130. #define FORCEDETH_VERSION "0.59"
  131. #define DRV_NAME "forcedeth"
  132. #include <linux/module.h>
  133. #include <linux/types.h>
  134. #include <linux/pci.h>
  135. #include <linux/interrupt.h>
  136. #include <linux/netdevice.h>
  137. #include <linux/etherdevice.h>
  138. #include <linux/delay.h>
  139. #include <linux/spinlock.h>
  140. #include <linux/ethtool.h>
  141. #include <linux/timer.h>
  142. #include <linux/skbuff.h>
  143. #include <linux/mii.h>
  144. #include <linux/random.h>
  145. #include <linux/init.h>
  146. #include <linux/if_vlan.h>
  147. #include <linux/dma-mapping.h>
  148. #include <asm/irq.h>
  149. #include <asm/io.h>
  150. #include <asm/uaccess.h>
  151. #include <asm/system.h>
  152. #if 0
  153. #define dprintk printk
  154. #else
  155. #define dprintk(x...) do { } while (0)
  156. #endif
  157. /*
  158. * Hardware access:
  159. */
  160. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  161. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  162. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  163. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  164. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  165. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  166. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  167. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  168. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  169. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  170. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  171. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  172. #define DEV_HAS_MGMT_UNIT 0x1000 /* device supports management unit */
  173. enum {
  174. NvRegIrqStatus = 0x000,
  175. #define NVREG_IRQSTAT_MIIEVENT 0x040
  176. #define NVREG_IRQSTAT_MASK 0x81ff
  177. NvRegIrqMask = 0x004,
  178. #define NVREG_IRQ_RX_ERROR 0x0001
  179. #define NVREG_IRQ_RX 0x0002
  180. #define NVREG_IRQ_RX_NOBUF 0x0004
  181. #define NVREG_IRQ_TX_ERR 0x0008
  182. #define NVREG_IRQ_TX_OK 0x0010
  183. #define NVREG_IRQ_TIMER 0x0020
  184. #define NVREG_IRQ_LINK 0x0040
  185. #define NVREG_IRQ_RX_FORCED 0x0080
  186. #define NVREG_IRQ_TX_FORCED 0x0100
  187. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  188. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  189. #define NVREG_IRQMASK_CPU 0x0040
  190. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  191. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  192. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  193. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  194. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  195. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  196. NvRegUnknownSetupReg6 = 0x008,
  197. #define NVREG_UNKSETUP6_VAL 3
  198. /*
  199. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  200. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  201. */
  202. NvRegPollingInterval = 0x00c,
  203. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  204. #define NVREG_POLL_DEFAULT_CPU 13
  205. NvRegMSIMap0 = 0x020,
  206. NvRegMSIMap1 = 0x024,
  207. NvRegMSIIrqMask = 0x030,
  208. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  209. NvRegMisc1 = 0x080,
  210. #define NVREG_MISC1_PAUSE_TX 0x01
  211. #define NVREG_MISC1_HD 0x02
  212. #define NVREG_MISC1_FORCE 0x3b0f3c
  213. NvRegMacReset = 0x3c,
  214. #define NVREG_MAC_RESET_ASSERT 0x0F3
  215. NvRegTransmitterControl = 0x084,
  216. #define NVREG_XMITCTL_START 0x01
  217. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  218. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  219. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  220. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  221. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  222. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  223. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  224. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  225. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  226. NvRegTransmitterStatus = 0x088,
  227. #define NVREG_XMITSTAT_BUSY 0x01
  228. NvRegPacketFilterFlags = 0x8c,
  229. #define NVREG_PFF_PAUSE_RX 0x08
  230. #define NVREG_PFF_ALWAYS 0x7F0000
  231. #define NVREG_PFF_PROMISC 0x80
  232. #define NVREG_PFF_MYADDR 0x20
  233. #define NVREG_PFF_LOOPBACK 0x10
  234. NvRegOffloadConfig = 0x90,
  235. #define NVREG_OFFLOAD_HOMEPHY 0x601
  236. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  237. NvRegReceiverControl = 0x094,
  238. #define NVREG_RCVCTL_START 0x01
  239. NvRegReceiverStatus = 0x98,
  240. #define NVREG_RCVSTAT_BUSY 0x01
  241. NvRegRandomSeed = 0x9c,
  242. #define NVREG_RNDSEED_MASK 0x00ff
  243. #define NVREG_RNDSEED_FORCE 0x7f00
  244. #define NVREG_RNDSEED_FORCE2 0x2d00
  245. #define NVREG_RNDSEED_FORCE3 0x7400
  246. NvRegTxDeferral = 0xA0,
  247. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  248. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  249. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  250. NvRegRxDeferral = 0xA4,
  251. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  252. NvRegMacAddrA = 0xA8,
  253. NvRegMacAddrB = 0xAC,
  254. NvRegMulticastAddrA = 0xB0,
  255. #define NVREG_MCASTADDRA_FORCE 0x01
  256. NvRegMulticastAddrB = 0xB4,
  257. NvRegMulticastMaskA = 0xB8,
  258. NvRegMulticastMaskB = 0xBC,
  259. NvRegPhyInterface = 0xC0,
  260. #define PHY_RGMII 0x10000000
  261. NvRegTxRingPhysAddr = 0x100,
  262. NvRegRxRingPhysAddr = 0x104,
  263. NvRegRingSizes = 0x108,
  264. #define NVREG_RINGSZ_TXSHIFT 0
  265. #define NVREG_RINGSZ_RXSHIFT 16
  266. NvRegTransmitPoll = 0x10c,
  267. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  268. NvRegLinkSpeed = 0x110,
  269. #define NVREG_LINKSPEED_FORCE 0x10000
  270. #define NVREG_LINKSPEED_10 1000
  271. #define NVREG_LINKSPEED_100 100
  272. #define NVREG_LINKSPEED_1000 50
  273. #define NVREG_LINKSPEED_MASK (0xFFF)
  274. NvRegUnknownSetupReg5 = 0x130,
  275. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  276. NvRegTxWatermark = 0x13c,
  277. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  278. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  279. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  280. NvRegTxRxControl = 0x144,
  281. #define NVREG_TXRXCTL_KICK 0x0001
  282. #define NVREG_TXRXCTL_BIT1 0x0002
  283. #define NVREG_TXRXCTL_BIT2 0x0004
  284. #define NVREG_TXRXCTL_IDLE 0x0008
  285. #define NVREG_TXRXCTL_RESET 0x0010
  286. #define NVREG_TXRXCTL_RXCHECK 0x0400
  287. #define NVREG_TXRXCTL_DESC_1 0
  288. #define NVREG_TXRXCTL_DESC_2 0x02100
  289. #define NVREG_TXRXCTL_DESC_3 0x02200
  290. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  291. #define NVREG_TXRXCTL_VLANINS 0x00080
  292. NvRegTxRingPhysAddrHigh = 0x148,
  293. NvRegRxRingPhysAddrHigh = 0x14C,
  294. NvRegTxPauseFrame = 0x170,
  295. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  296. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  297. NvRegMIIStatus = 0x180,
  298. #define NVREG_MIISTAT_ERROR 0x0001
  299. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  300. #define NVREG_MIISTAT_MASK 0x000f
  301. #define NVREG_MIISTAT_MASK2 0x000f
  302. NvRegMIIMask = 0x184,
  303. #define NVREG_MII_LINKCHANGE 0x0008
  304. NvRegAdapterControl = 0x188,
  305. #define NVREG_ADAPTCTL_START 0x02
  306. #define NVREG_ADAPTCTL_LINKUP 0x04
  307. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  308. #define NVREG_ADAPTCTL_RUNNING 0x100000
  309. #define NVREG_ADAPTCTL_PHYSHIFT 24
  310. NvRegMIISpeed = 0x18c,
  311. #define NVREG_MIISPEED_BIT8 (1<<8)
  312. #define NVREG_MIIDELAY 5
  313. NvRegMIIControl = 0x190,
  314. #define NVREG_MIICTL_INUSE 0x08000
  315. #define NVREG_MIICTL_WRITE 0x00400
  316. #define NVREG_MIICTL_ADDRSHIFT 5
  317. NvRegMIIData = 0x194,
  318. NvRegWakeUpFlags = 0x200,
  319. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  320. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  321. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  322. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  323. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  324. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  325. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  326. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  327. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  328. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  329. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  330. NvRegPatternCRC = 0x204,
  331. NvRegPatternMask = 0x208,
  332. NvRegPowerCap = 0x268,
  333. #define NVREG_POWERCAP_D3SUPP (1<<30)
  334. #define NVREG_POWERCAP_D2SUPP (1<<26)
  335. #define NVREG_POWERCAP_D1SUPP (1<<25)
  336. NvRegPowerState = 0x26c,
  337. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  338. #define NVREG_POWERSTATE_VALID 0x0100
  339. #define NVREG_POWERSTATE_MASK 0x0003
  340. #define NVREG_POWERSTATE_D0 0x0000
  341. #define NVREG_POWERSTATE_D1 0x0001
  342. #define NVREG_POWERSTATE_D2 0x0002
  343. #define NVREG_POWERSTATE_D3 0x0003
  344. NvRegTxCnt = 0x280,
  345. NvRegTxZeroReXmt = 0x284,
  346. NvRegTxOneReXmt = 0x288,
  347. NvRegTxManyReXmt = 0x28c,
  348. NvRegTxLateCol = 0x290,
  349. NvRegTxUnderflow = 0x294,
  350. NvRegTxLossCarrier = 0x298,
  351. NvRegTxExcessDef = 0x29c,
  352. NvRegTxRetryErr = 0x2a0,
  353. NvRegRxFrameErr = 0x2a4,
  354. NvRegRxExtraByte = 0x2a8,
  355. NvRegRxLateCol = 0x2ac,
  356. NvRegRxRunt = 0x2b0,
  357. NvRegRxFrameTooLong = 0x2b4,
  358. NvRegRxOverflow = 0x2b8,
  359. NvRegRxFCSErr = 0x2bc,
  360. NvRegRxFrameAlignErr = 0x2c0,
  361. NvRegRxLenErr = 0x2c4,
  362. NvRegRxUnicast = 0x2c8,
  363. NvRegRxMulticast = 0x2cc,
  364. NvRegRxBroadcast = 0x2d0,
  365. NvRegTxDef = 0x2d4,
  366. NvRegTxFrame = 0x2d8,
  367. NvRegRxCnt = 0x2dc,
  368. NvRegTxPause = 0x2e0,
  369. NvRegRxPause = 0x2e4,
  370. NvRegRxDropFrame = 0x2e8,
  371. NvRegVlanControl = 0x300,
  372. #define NVREG_VLANCONTROL_ENABLE 0x2000
  373. NvRegMSIXMap0 = 0x3e0,
  374. NvRegMSIXMap1 = 0x3e4,
  375. NvRegMSIXIrqStatus = 0x3f0,
  376. NvRegPowerState2 = 0x600,
  377. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  378. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  379. };
  380. /* Big endian: should work, but is untested */
  381. struct ring_desc {
  382. __le32 buf;
  383. __le32 flaglen;
  384. };
  385. struct ring_desc_ex {
  386. __le32 bufhigh;
  387. __le32 buflow;
  388. __le32 txvlan;
  389. __le32 flaglen;
  390. };
  391. union ring_type {
  392. struct ring_desc* orig;
  393. struct ring_desc_ex* ex;
  394. };
  395. #define FLAG_MASK_V1 0xffff0000
  396. #define FLAG_MASK_V2 0xffffc000
  397. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  398. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  399. #define NV_TX_LASTPACKET (1<<16)
  400. #define NV_TX_RETRYERROR (1<<19)
  401. #define NV_TX_FORCED_INTERRUPT (1<<24)
  402. #define NV_TX_DEFERRED (1<<26)
  403. #define NV_TX_CARRIERLOST (1<<27)
  404. #define NV_TX_LATECOLLISION (1<<28)
  405. #define NV_TX_UNDERFLOW (1<<29)
  406. #define NV_TX_ERROR (1<<30)
  407. #define NV_TX_VALID (1<<31)
  408. #define NV_TX2_LASTPACKET (1<<29)
  409. #define NV_TX2_RETRYERROR (1<<18)
  410. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  411. #define NV_TX2_DEFERRED (1<<25)
  412. #define NV_TX2_CARRIERLOST (1<<26)
  413. #define NV_TX2_LATECOLLISION (1<<27)
  414. #define NV_TX2_UNDERFLOW (1<<28)
  415. /* error and valid are the same for both */
  416. #define NV_TX2_ERROR (1<<30)
  417. #define NV_TX2_VALID (1<<31)
  418. #define NV_TX2_TSO (1<<28)
  419. #define NV_TX2_TSO_SHIFT 14
  420. #define NV_TX2_TSO_MAX_SHIFT 14
  421. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  422. #define NV_TX2_CHECKSUM_L3 (1<<27)
  423. #define NV_TX2_CHECKSUM_L4 (1<<26)
  424. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  425. #define NV_RX_DESCRIPTORVALID (1<<16)
  426. #define NV_RX_MISSEDFRAME (1<<17)
  427. #define NV_RX_SUBSTRACT1 (1<<18)
  428. #define NV_RX_ERROR1 (1<<23)
  429. #define NV_RX_ERROR2 (1<<24)
  430. #define NV_RX_ERROR3 (1<<25)
  431. #define NV_RX_ERROR4 (1<<26)
  432. #define NV_RX_CRCERR (1<<27)
  433. #define NV_RX_OVERFLOW (1<<28)
  434. #define NV_RX_FRAMINGERR (1<<29)
  435. #define NV_RX_ERROR (1<<30)
  436. #define NV_RX_AVAIL (1<<31)
  437. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  438. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  439. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  440. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  441. #define NV_RX2_DESCRIPTORVALID (1<<29)
  442. #define NV_RX2_SUBSTRACT1 (1<<25)
  443. #define NV_RX2_ERROR1 (1<<18)
  444. #define NV_RX2_ERROR2 (1<<19)
  445. #define NV_RX2_ERROR3 (1<<20)
  446. #define NV_RX2_ERROR4 (1<<21)
  447. #define NV_RX2_CRCERR (1<<22)
  448. #define NV_RX2_OVERFLOW (1<<23)
  449. #define NV_RX2_FRAMINGERR (1<<24)
  450. /* error and avail are the same for both */
  451. #define NV_RX2_ERROR (1<<30)
  452. #define NV_RX2_AVAIL (1<<31)
  453. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  454. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  455. /* Miscelaneous hardware related defines: */
  456. #define NV_PCI_REGSZ_VER1 0x270
  457. #define NV_PCI_REGSZ_VER2 0x604
  458. /* various timeout delays: all in usec */
  459. #define NV_TXRX_RESET_DELAY 4
  460. #define NV_TXSTOP_DELAY1 10
  461. #define NV_TXSTOP_DELAY1MAX 500000
  462. #define NV_TXSTOP_DELAY2 100
  463. #define NV_RXSTOP_DELAY1 10
  464. #define NV_RXSTOP_DELAY1MAX 500000
  465. #define NV_RXSTOP_DELAY2 100
  466. #define NV_SETUP5_DELAY 5
  467. #define NV_SETUP5_DELAYMAX 50000
  468. #define NV_POWERUP_DELAY 5
  469. #define NV_POWERUP_DELAYMAX 5000
  470. #define NV_MIIBUSY_DELAY 50
  471. #define NV_MIIPHY_DELAY 10
  472. #define NV_MIIPHY_DELAYMAX 10000
  473. #define NV_MAC_RESET_DELAY 64
  474. #define NV_WAKEUPPATTERNS 5
  475. #define NV_WAKEUPMASKENTRIES 4
  476. /* General driver defaults */
  477. #define NV_WATCHDOG_TIMEO (5*HZ)
  478. #define RX_RING_DEFAULT 128
  479. #define TX_RING_DEFAULT 256
  480. #define RX_RING_MIN 128
  481. #define TX_RING_MIN 64
  482. #define RING_MAX_DESC_VER_1 1024
  483. #define RING_MAX_DESC_VER_2_3 16384
  484. /*
  485. * Difference between the get and put pointers for the tx ring.
  486. * This is used to throttle the amount of data outstanding in the
  487. * tx ring.
  488. */
  489. #define TX_LIMIT_DIFFERENCE 1
  490. /* rx/tx mac addr + type + vlan + align + slack*/
  491. #define NV_RX_HEADERS (64)
  492. /* even more slack. */
  493. #define NV_RX_ALLOC_PAD (64)
  494. /* maximum mtu size */
  495. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  496. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  497. #define OOM_REFILL (1+HZ/20)
  498. #define POLL_WAIT (1+HZ/100)
  499. #define LINK_TIMEOUT (3*HZ)
  500. #define STATS_INTERVAL (10*HZ)
  501. /*
  502. * desc_ver values:
  503. * The nic supports three different descriptor types:
  504. * - DESC_VER_1: Original
  505. * - DESC_VER_2: support for jumbo frames.
  506. * - DESC_VER_3: 64-bit format.
  507. */
  508. #define DESC_VER_1 1
  509. #define DESC_VER_2 2
  510. #define DESC_VER_3 3
  511. /* PHY defines */
  512. #define PHY_OUI_MARVELL 0x5043
  513. #define PHY_OUI_CICADA 0x03f1
  514. #define PHYID1_OUI_MASK 0x03ff
  515. #define PHYID1_OUI_SHFT 6
  516. #define PHYID2_OUI_MASK 0xfc00
  517. #define PHYID2_OUI_SHFT 10
  518. #define PHYID2_MODEL_MASK 0x03f0
  519. #define PHY_MODEL_MARVELL_E3016 0x220
  520. #define PHY_MARVELL_E3016_INITMASK 0x0300
  521. #define PHY_INIT1 0x0f000
  522. #define PHY_INIT2 0x0e00
  523. #define PHY_INIT3 0x01000
  524. #define PHY_INIT4 0x0200
  525. #define PHY_INIT5 0x0004
  526. #define PHY_INIT6 0x02000
  527. #define PHY_GIGABIT 0x0100
  528. #define PHY_TIMEOUT 0x1
  529. #define PHY_ERROR 0x2
  530. #define PHY_100 0x1
  531. #define PHY_1000 0x2
  532. #define PHY_HALF 0x100
  533. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  534. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  535. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  536. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  537. #define NV_PAUSEFRAME_RX_REQ 0x0010
  538. #define NV_PAUSEFRAME_TX_REQ 0x0020
  539. #define NV_PAUSEFRAME_AUTONEG 0x0040
  540. /* MSI/MSI-X defines */
  541. #define NV_MSI_X_MAX_VECTORS 8
  542. #define NV_MSI_X_VECTORS_MASK 0x000f
  543. #define NV_MSI_CAPABLE 0x0010
  544. #define NV_MSI_X_CAPABLE 0x0020
  545. #define NV_MSI_ENABLED 0x0040
  546. #define NV_MSI_X_ENABLED 0x0080
  547. #define NV_MSI_X_VECTOR_ALL 0x0
  548. #define NV_MSI_X_VECTOR_RX 0x0
  549. #define NV_MSI_X_VECTOR_TX 0x1
  550. #define NV_MSI_X_VECTOR_OTHER 0x2
  551. /* statistics */
  552. struct nv_ethtool_str {
  553. char name[ETH_GSTRING_LEN];
  554. };
  555. static const struct nv_ethtool_str nv_estats_str[] = {
  556. { "tx_bytes" },
  557. { "tx_zero_rexmt" },
  558. { "tx_one_rexmt" },
  559. { "tx_many_rexmt" },
  560. { "tx_late_collision" },
  561. { "tx_fifo_errors" },
  562. { "tx_carrier_errors" },
  563. { "tx_excess_deferral" },
  564. { "tx_retry_error" },
  565. { "tx_deferral" },
  566. { "tx_packets" },
  567. { "tx_pause" },
  568. { "rx_frame_error" },
  569. { "rx_extra_byte" },
  570. { "rx_late_collision" },
  571. { "rx_runt" },
  572. { "rx_frame_too_long" },
  573. { "rx_over_errors" },
  574. { "rx_crc_errors" },
  575. { "rx_frame_align_error" },
  576. { "rx_length_error" },
  577. { "rx_unicast" },
  578. { "rx_multicast" },
  579. { "rx_broadcast" },
  580. { "rx_bytes" },
  581. { "rx_pause" },
  582. { "rx_drop_frame" },
  583. { "rx_packets" },
  584. { "rx_errors_total" }
  585. };
  586. struct nv_ethtool_stats {
  587. u64 tx_bytes;
  588. u64 tx_zero_rexmt;
  589. u64 tx_one_rexmt;
  590. u64 tx_many_rexmt;
  591. u64 tx_late_collision;
  592. u64 tx_fifo_errors;
  593. u64 tx_carrier_errors;
  594. u64 tx_excess_deferral;
  595. u64 tx_retry_error;
  596. u64 tx_deferral;
  597. u64 tx_packets;
  598. u64 tx_pause;
  599. u64 rx_frame_error;
  600. u64 rx_extra_byte;
  601. u64 rx_late_collision;
  602. u64 rx_runt;
  603. u64 rx_frame_too_long;
  604. u64 rx_over_errors;
  605. u64 rx_crc_errors;
  606. u64 rx_frame_align_error;
  607. u64 rx_length_error;
  608. u64 rx_unicast;
  609. u64 rx_multicast;
  610. u64 rx_broadcast;
  611. u64 rx_bytes;
  612. u64 rx_pause;
  613. u64 rx_drop_frame;
  614. u64 rx_packets;
  615. u64 rx_errors_total;
  616. };
  617. /* diagnostics */
  618. #define NV_TEST_COUNT_BASE 3
  619. #define NV_TEST_COUNT_EXTENDED 4
  620. static const struct nv_ethtool_str nv_etests_str[] = {
  621. { "link (online/offline)" },
  622. { "register (offline) " },
  623. { "interrupt (offline) " },
  624. { "loopback (offline) " }
  625. };
  626. struct register_test {
  627. __le32 reg;
  628. __le32 mask;
  629. };
  630. static const struct register_test nv_registers_test[] = {
  631. { NvRegUnknownSetupReg6, 0x01 },
  632. { NvRegMisc1, 0x03c },
  633. { NvRegOffloadConfig, 0x03ff },
  634. { NvRegMulticastAddrA, 0xffffffff },
  635. { NvRegTxWatermark, 0x0ff },
  636. { NvRegWakeUpFlags, 0x07777 },
  637. { 0,0 }
  638. };
  639. /*
  640. * SMP locking:
  641. * All hardware access under dev->priv->lock, except the performance
  642. * critical parts:
  643. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  644. * by the arch code for interrupts.
  645. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  646. * needs dev->priv->lock :-(
  647. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  648. */
  649. /* in dev: base, irq */
  650. struct fe_priv {
  651. spinlock_t lock;
  652. /* General data:
  653. * Locking: spin_lock(&np->lock); */
  654. struct net_device_stats stats;
  655. struct nv_ethtool_stats estats;
  656. int in_shutdown;
  657. u32 linkspeed;
  658. int duplex;
  659. int autoneg;
  660. int fixed_mode;
  661. int phyaddr;
  662. int wolenabled;
  663. unsigned int phy_oui;
  664. unsigned int phy_model;
  665. u16 gigabit;
  666. int intr_test;
  667. int recover_error;
  668. /* General data: RO fields */
  669. dma_addr_t ring_addr;
  670. struct pci_dev *pci_dev;
  671. u32 orig_mac[2];
  672. u32 irqmask;
  673. u32 desc_ver;
  674. u32 txrxctl_bits;
  675. u32 vlanctl_bits;
  676. u32 driver_data;
  677. u32 register_size;
  678. int rx_csum;
  679. u32 mac_in_use;
  680. void __iomem *base;
  681. /* rx specific fields.
  682. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  683. */
  684. union ring_type rx_ring;
  685. unsigned int cur_rx, refill_rx;
  686. struct sk_buff **rx_skbuff;
  687. dma_addr_t *rx_dma;
  688. unsigned int rx_buf_sz;
  689. unsigned int pkt_limit;
  690. struct timer_list oom_kick;
  691. struct timer_list nic_poll;
  692. struct timer_list stats_poll;
  693. u32 nic_poll_irq;
  694. int rx_ring_size;
  695. /* media detection workaround.
  696. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  697. */
  698. int need_linktimer;
  699. unsigned long link_timeout;
  700. /*
  701. * tx specific fields.
  702. */
  703. union ring_type tx_ring;
  704. unsigned int next_tx, nic_tx;
  705. struct sk_buff **tx_skbuff;
  706. dma_addr_t *tx_dma;
  707. unsigned int *tx_dma_len;
  708. u32 tx_flags;
  709. int tx_ring_size;
  710. int tx_limit_start;
  711. int tx_limit_stop;
  712. /* vlan fields */
  713. struct vlan_group *vlangrp;
  714. /* msi/msi-x fields */
  715. u32 msi_flags;
  716. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  717. /* flow control */
  718. u32 pause_flags;
  719. };
  720. /*
  721. * Maximum number of loops until we assume that a bit in the irq mask
  722. * is stuck. Overridable with module param.
  723. */
  724. static int max_interrupt_work = 5;
  725. /*
  726. * Optimization can be either throuput mode or cpu mode
  727. *
  728. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  729. * CPU Mode: Interrupts are controlled by a timer.
  730. */
  731. enum {
  732. NV_OPTIMIZATION_MODE_THROUGHPUT,
  733. NV_OPTIMIZATION_MODE_CPU
  734. };
  735. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  736. /*
  737. * Poll interval for timer irq
  738. *
  739. * This interval determines how frequent an interrupt is generated.
  740. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  741. * Min = 0, and Max = 65535
  742. */
  743. static int poll_interval = -1;
  744. /*
  745. * MSI interrupts
  746. */
  747. enum {
  748. NV_MSI_INT_DISABLED,
  749. NV_MSI_INT_ENABLED
  750. };
  751. static int msi = NV_MSI_INT_ENABLED;
  752. /*
  753. * MSIX interrupts
  754. */
  755. enum {
  756. NV_MSIX_INT_DISABLED,
  757. NV_MSIX_INT_ENABLED
  758. };
  759. static int msix = NV_MSIX_INT_ENABLED;
  760. /*
  761. * DMA 64bit
  762. */
  763. enum {
  764. NV_DMA_64BIT_DISABLED,
  765. NV_DMA_64BIT_ENABLED
  766. };
  767. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  768. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  769. {
  770. return netdev_priv(dev);
  771. }
  772. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  773. {
  774. return ((struct fe_priv *)netdev_priv(dev))->base;
  775. }
  776. static inline void pci_push(u8 __iomem *base)
  777. {
  778. /* force out pending posted writes */
  779. readl(base);
  780. }
  781. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  782. {
  783. return le32_to_cpu(prd->flaglen)
  784. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  785. }
  786. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  787. {
  788. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  789. }
  790. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  791. int delay, int delaymax, const char *msg)
  792. {
  793. u8 __iomem *base = get_hwbase(dev);
  794. pci_push(base);
  795. do {
  796. udelay(delay);
  797. delaymax -= delay;
  798. if (delaymax < 0) {
  799. if (msg)
  800. printk(msg);
  801. return 1;
  802. }
  803. } while ((readl(base + offset) & mask) != target);
  804. return 0;
  805. }
  806. #define NV_SETUP_RX_RING 0x01
  807. #define NV_SETUP_TX_RING 0x02
  808. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  809. {
  810. struct fe_priv *np = get_nvpriv(dev);
  811. u8 __iomem *base = get_hwbase(dev);
  812. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  813. if (rxtx_flags & NV_SETUP_RX_RING) {
  814. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  815. }
  816. if (rxtx_flags & NV_SETUP_TX_RING) {
  817. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  818. }
  819. } else {
  820. if (rxtx_flags & NV_SETUP_RX_RING) {
  821. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  822. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  823. }
  824. if (rxtx_flags & NV_SETUP_TX_RING) {
  825. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  826. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  827. }
  828. }
  829. }
  830. static void free_rings(struct net_device *dev)
  831. {
  832. struct fe_priv *np = get_nvpriv(dev);
  833. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  834. if (np->rx_ring.orig)
  835. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  836. np->rx_ring.orig, np->ring_addr);
  837. } else {
  838. if (np->rx_ring.ex)
  839. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  840. np->rx_ring.ex, np->ring_addr);
  841. }
  842. if (np->rx_skbuff)
  843. kfree(np->rx_skbuff);
  844. if (np->rx_dma)
  845. kfree(np->rx_dma);
  846. if (np->tx_skbuff)
  847. kfree(np->tx_skbuff);
  848. if (np->tx_dma)
  849. kfree(np->tx_dma);
  850. if (np->tx_dma_len)
  851. kfree(np->tx_dma_len);
  852. }
  853. static int using_multi_irqs(struct net_device *dev)
  854. {
  855. struct fe_priv *np = get_nvpriv(dev);
  856. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  857. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  858. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  859. return 0;
  860. else
  861. return 1;
  862. }
  863. static void nv_enable_irq(struct net_device *dev)
  864. {
  865. struct fe_priv *np = get_nvpriv(dev);
  866. if (!using_multi_irqs(dev)) {
  867. if (np->msi_flags & NV_MSI_X_ENABLED)
  868. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  869. else
  870. enable_irq(dev->irq);
  871. } else {
  872. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  873. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  874. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  875. }
  876. }
  877. static void nv_disable_irq(struct net_device *dev)
  878. {
  879. struct fe_priv *np = get_nvpriv(dev);
  880. if (!using_multi_irqs(dev)) {
  881. if (np->msi_flags & NV_MSI_X_ENABLED)
  882. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  883. else
  884. disable_irq(dev->irq);
  885. } else {
  886. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  887. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  888. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  889. }
  890. }
  891. /* In MSIX mode, a write to irqmask behaves as XOR */
  892. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  893. {
  894. u8 __iomem *base = get_hwbase(dev);
  895. writel(mask, base + NvRegIrqMask);
  896. }
  897. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  898. {
  899. struct fe_priv *np = get_nvpriv(dev);
  900. u8 __iomem *base = get_hwbase(dev);
  901. if (np->msi_flags & NV_MSI_X_ENABLED) {
  902. writel(mask, base + NvRegIrqMask);
  903. } else {
  904. if (np->msi_flags & NV_MSI_ENABLED)
  905. writel(0, base + NvRegMSIIrqMask);
  906. writel(0, base + NvRegIrqMask);
  907. }
  908. }
  909. #define MII_READ (-1)
  910. /* mii_rw: read/write a register on the PHY.
  911. *
  912. * Caller must guarantee serialization
  913. */
  914. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  915. {
  916. u8 __iomem *base = get_hwbase(dev);
  917. u32 reg;
  918. int retval;
  919. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  920. reg = readl(base + NvRegMIIControl);
  921. if (reg & NVREG_MIICTL_INUSE) {
  922. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  923. udelay(NV_MIIBUSY_DELAY);
  924. }
  925. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  926. if (value != MII_READ) {
  927. writel(value, base + NvRegMIIData);
  928. reg |= NVREG_MIICTL_WRITE;
  929. }
  930. writel(reg, base + NvRegMIIControl);
  931. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  932. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  933. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  934. dev->name, miireg, addr);
  935. retval = -1;
  936. } else if (value != MII_READ) {
  937. /* it was a write operation - fewer failures are detectable */
  938. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  939. dev->name, value, miireg, addr);
  940. retval = 0;
  941. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  942. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  943. dev->name, miireg, addr);
  944. retval = -1;
  945. } else {
  946. retval = readl(base + NvRegMIIData);
  947. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  948. dev->name, miireg, addr, retval);
  949. }
  950. return retval;
  951. }
  952. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  953. {
  954. struct fe_priv *np = netdev_priv(dev);
  955. u32 miicontrol;
  956. unsigned int tries = 0;
  957. miicontrol = BMCR_RESET | bmcr_setup;
  958. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  959. return -1;
  960. }
  961. /* wait for 500ms */
  962. msleep(500);
  963. /* must wait till reset is deasserted */
  964. while (miicontrol & BMCR_RESET) {
  965. msleep(10);
  966. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  967. /* FIXME: 100 tries seem excessive */
  968. if (tries++ > 100)
  969. return -1;
  970. }
  971. return 0;
  972. }
  973. static int phy_init(struct net_device *dev)
  974. {
  975. struct fe_priv *np = get_nvpriv(dev);
  976. u8 __iomem *base = get_hwbase(dev);
  977. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  978. /* phy errata for E3016 phy */
  979. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  980. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  981. reg &= ~PHY_MARVELL_E3016_INITMASK;
  982. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  983. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  984. return PHY_ERROR;
  985. }
  986. }
  987. /* set advertise register */
  988. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  989. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  990. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  991. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  992. return PHY_ERROR;
  993. }
  994. /* get phy interface type */
  995. phyinterface = readl(base + NvRegPhyInterface);
  996. /* see if gigabit phy */
  997. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  998. if (mii_status & PHY_GIGABIT) {
  999. np->gigabit = PHY_GIGABIT;
  1000. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1001. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1002. if (phyinterface & PHY_RGMII)
  1003. mii_control_1000 |= ADVERTISE_1000FULL;
  1004. else
  1005. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1006. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1007. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1008. return PHY_ERROR;
  1009. }
  1010. }
  1011. else
  1012. np->gigabit = 0;
  1013. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1014. mii_control |= BMCR_ANENABLE;
  1015. /* reset the phy
  1016. * (certain phys need bmcr to be setup with reset)
  1017. */
  1018. if (phy_reset(dev, mii_control)) {
  1019. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1020. return PHY_ERROR;
  1021. }
  1022. /* phy vendor specific configuration */
  1023. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1024. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1025. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  1026. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  1027. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1032. phy_reserved |= PHY_INIT5;
  1033. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1034. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1035. return PHY_ERROR;
  1036. }
  1037. }
  1038. if (np->phy_oui == PHY_OUI_CICADA) {
  1039. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1040. phy_reserved |= PHY_INIT6;
  1041. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1042. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1043. return PHY_ERROR;
  1044. }
  1045. }
  1046. /* some phys clear out pause advertisment on reset, set it back */
  1047. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1048. /* restart auto negotiation */
  1049. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1050. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1051. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1052. return PHY_ERROR;
  1053. }
  1054. return 0;
  1055. }
  1056. static void nv_start_rx(struct net_device *dev)
  1057. {
  1058. struct fe_priv *np = netdev_priv(dev);
  1059. u8 __iomem *base = get_hwbase(dev);
  1060. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1061. /* Already running? Stop it. */
  1062. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  1063. writel(0, base + NvRegReceiverControl);
  1064. pci_push(base);
  1065. }
  1066. writel(np->linkspeed, base + NvRegLinkSpeed);
  1067. pci_push(base);
  1068. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  1069. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1070. dev->name, np->duplex, np->linkspeed);
  1071. pci_push(base);
  1072. }
  1073. static void nv_stop_rx(struct net_device *dev)
  1074. {
  1075. u8 __iomem *base = get_hwbase(dev);
  1076. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1077. writel(0, base + NvRegReceiverControl);
  1078. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1079. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1080. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1081. udelay(NV_RXSTOP_DELAY2);
  1082. writel(0, base + NvRegLinkSpeed);
  1083. }
  1084. static void nv_start_tx(struct net_device *dev)
  1085. {
  1086. u8 __iomem *base = get_hwbase(dev);
  1087. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1088. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1089. pci_push(base);
  1090. }
  1091. static void nv_stop_tx(struct net_device *dev)
  1092. {
  1093. u8 __iomem *base = get_hwbase(dev);
  1094. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1095. writel(0, base + NvRegTransmitterControl);
  1096. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1097. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1098. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1099. udelay(NV_TXSTOP_DELAY2);
  1100. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  1101. }
  1102. static void nv_txrx_reset(struct net_device *dev)
  1103. {
  1104. struct fe_priv *np = netdev_priv(dev);
  1105. u8 __iomem *base = get_hwbase(dev);
  1106. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1107. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1108. pci_push(base);
  1109. udelay(NV_TXRX_RESET_DELAY);
  1110. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1111. pci_push(base);
  1112. }
  1113. static void nv_mac_reset(struct net_device *dev)
  1114. {
  1115. struct fe_priv *np = netdev_priv(dev);
  1116. u8 __iomem *base = get_hwbase(dev);
  1117. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1118. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1119. pci_push(base);
  1120. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1121. pci_push(base);
  1122. udelay(NV_MAC_RESET_DELAY);
  1123. writel(0, base + NvRegMacReset);
  1124. pci_push(base);
  1125. udelay(NV_MAC_RESET_DELAY);
  1126. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1127. pci_push(base);
  1128. }
  1129. /*
  1130. * nv_get_stats: dev->get_stats function
  1131. * Get latest stats value from the nic.
  1132. * Called with read_lock(&dev_base_lock) held for read -
  1133. * only synchronized against unregister_netdevice.
  1134. */
  1135. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1136. {
  1137. struct fe_priv *np = netdev_priv(dev);
  1138. /* It seems that the nic always generates interrupts and doesn't
  1139. * accumulate errors internally. Thus the current values in np->stats
  1140. * are already up to date.
  1141. */
  1142. return &np->stats;
  1143. }
  1144. /*
  1145. * nv_alloc_rx: fill rx ring entries.
  1146. * Return 1 if the allocations for the skbs failed and the
  1147. * rx engine is without Available descriptors
  1148. */
  1149. static int nv_alloc_rx(struct net_device *dev)
  1150. {
  1151. struct fe_priv *np = netdev_priv(dev);
  1152. unsigned int refill_rx = np->refill_rx;
  1153. int nr;
  1154. while (np->cur_rx != refill_rx) {
  1155. struct sk_buff *skb;
  1156. nr = refill_rx % np->rx_ring_size;
  1157. if (np->rx_skbuff[nr] == NULL) {
  1158. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1159. if (!skb)
  1160. break;
  1161. skb->dev = dev;
  1162. np->rx_skbuff[nr] = skb;
  1163. } else {
  1164. skb = np->rx_skbuff[nr];
  1165. }
  1166. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1167. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1168. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1169. np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
  1170. wmb();
  1171. np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1172. } else {
  1173. np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1174. np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1175. wmb();
  1176. np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1177. }
  1178. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1179. dev->name, refill_rx);
  1180. refill_rx++;
  1181. }
  1182. np->refill_rx = refill_rx;
  1183. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1184. return 1;
  1185. return 0;
  1186. }
  1187. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1188. #ifdef CONFIG_FORCEDETH_NAPI
  1189. static void nv_do_rx_refill(unsigned long data)
  1190. {
  1191. struct net_device *dev = (struct net_device *) data;
  1192. /* Just reschedule NAPI rx processing */
  1193. netif_rx_schedule(dev);
  1194. }
  1195. #else
  1196. static void nv_do_rx_refill(unsigned long data)
  1197. {
  1198. struct net_device *dev = (struct net_device *) data;
  1199. struct fe_priv *np = netdev_priv(dev);
  1200. if (!using_multi_irqs(dev)) {
  1201. if (np->msi_flags & NV_MSI_X_ENABLED)
  1202. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1203. else
  1204. disable_irq(dev->irq);
  1205. } else {
  1206. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1207. }
  1208. if (nv_alloc_rx(dev)) {
  1209. spin_lock_irq(&np->lock);
  1210. if (!np->in_shutdown)
  1211. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1212. spin_unlock_irq(&np->lock);
  1213. }
  1214. if (!using_multi_irqs(dev)) {
  1215. if (np->msi_flags & NV_MSI_X_ENABLED)
  1216. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1217. else
  1218. enable_irq(dev->irq);
  1219. } else {
  1220. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1221. }
  1222. }
  1223. #endif
  1224. static void nv_init_rx(struct net_device *dev)
  1225. {
  1226. struct fe_priv *np = netdev_priv(dev);
  1227. int i;
  1228. np->cur_rx = np->rx_ring_size;
  1229. np->refill_rx = 0;
  1230. for (i = 0; i < np->rx_ring_size; i++)
  1231. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1232. np->rx_ring.orig[i].flaglen = 0;
  1233. else
  1234. np->rx_ring.ex[i].flaglen = 0;
  1235. }
  1236. static void nv_init_tx(struct net_device *dev)
  1237. {
  1238. struct fe_priv *np = netdev_priv(dev);
  1239. int i;
  1240. np->next_tx = np->nic_tx = 0;
  1241. for (i = 0; i < np->tx_ring_size; i++) {
  1242. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1243. np->tx_ring.orig[i].flaglen = 0;
  1244. else
  1245. np->tx_ring.ex[i].flaglen = 0;
  1246. np->tx_skbuff[i] = NULL;
  1247. np->tx_dma[i] = 0;
  1248. }
  1249. }
  1250. static int nv_init_ring(struct net_device *dev)
  1251. {
  1252. nv_init_tx(dev);
  1253. nv_init_rx(dev);
  1254. return nv_alloc_rx(dev);
  1255. }
  1256. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1257. {
  1258. struct fe_priv *np = netdev_priv(dev);
  1259. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1260. dev->name, skbnr);
  1261. if (np->tx_dma[skbnr]) {
  1262. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1263. np->tx_dma_len[skbnr],
  1264. PCI_DMA_TODEVICE);
  1265. np->tx_dma[skbnr] = 0;
  1266. }
  1267. if (np->tx_skbuff[skbnr]) {
  1268. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1269. np->tx_skbuff[skbnr] = NULL;
  1270. return 1;
  1271. } else {
  1272. return 0;
  1273. }
  1274. }
  1275. static void nv_drain_tx(struct net_device *dev)
  1276. {
  1277. struct fe_priv *np = netdev_priv(dev);
  1278. unsigned int i;
  1279. for (i = 0; i < np->tx_ring_size; i++) {
  1280. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1281. np->tx_ring.orig[i].flaglen = 0;
  1282. else
  1283. np->tx_ring.ex[i].flaglen = 0;
  1284. if (nv_release_txskb(dev, i))
  1285. np->stats.tx_dropped++;
  1286. }
  1287. }
  1288. static void nv_drain_rx(struct net_device *dev)
  1289. {
  1290. struct fe_priv *np = netdev_priv(dev);
  1291. int i;
  1292. for (i = 0; i < np->rx_ring_size; i++) {
  1293. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1294. np->rx_ring.orig[i].flaglen = 0;
  1295. else
  1296. np->rx_ring.ex[i].flaglen = 0;
  1297. wmb();
  1298. if (np->rx_skbuff[i]) {
  1299. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1300. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1301. PCI_DMA_FROMDEVICE);
  1302. dev_kfree_skb(np->rx_skbuff[i]);
  1303. np->rx_skbuff[i] = NULL;
  1304. }
  1305. }
  1306. }
  1307. static void drain_ring(struct net_device *dev)
  1308. {
  1309. nv_drain_tx(dev);
  1310. nv_drain_rx(dev);
  1311. }
  1312. /*
  1313. * nv_start_xmit: dev->hard_start_xmit function
  1314. * Called with netif_tx_lock held.
  1315. */
  1316. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1317. {
  1318. struct fe_priv *np = netdev_priv(dev);
  1319. u32 tx_flags = 0;
  1320. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1321. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1322. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1323. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1324. unsigned int i;
  1325. u32 offset = 0;
  1326. u32 bcnt;
  1327. u32 size = skb->len-skb->data_len;
  1328. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1329. u32 tx_flags_vlan = 0;
  1330. /* add fragments to entries count */
  1331. for (i = 0; i < fragments; i++) {
  1332. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1333. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1334. }
  1335. spin_lock_irq(&np->lock);
  1336. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1337. spin_unlock_irq(&np->lock);
  1338. netif_stop_queue(dev);
  1339. return NETDEV_TX_BUSY;
  1340. }
  1341. /* setup the header buffer */
  1342. do {
  1343. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1344. nr = (nr + 1) % np->tx_ring_size;
  1345. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1346. PCI_DMA_TODEVICE);
  1347. np->tx_dma_len[nr] = bcnt;
  1348. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1349. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1350. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1351. } else {
  1352. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1353. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1354. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1355. }
  1356. tx_flags = np->tx_flags;
  1357. offset += bcnt;
  1358. size -= bcnt;
  1359. } while (size);
  1360. /* setup the fragments */
  1361. for (i = 0; i < fragments; i++) {
  1362. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1363. u32 size = frag->size;
  1364. offset = 0;
  1365. do {
  1366. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1367. nr = (nr + 1) % np->tx_ring_size;
  1368. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1369. PCI_DMA_TODEVICE);
  1370. np->tx_dma_len[nr] = bcnt;
  1371. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1372. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1373. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1374. } else {
  1375. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1376. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1377. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1378. }
  1379. offset += bcnt;
  1380. size -= bcnt;
  1381. } while (size);
  1382. }
  1383. /* set last fragment flag */
  1384. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1385. np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1386. } else {
  1387. np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1388. }
  1389. np->tx_skbuff[nr] = skb;
  1390. #ifdef NETIF_F_TSO
  1391. if (skb_is_gso(skb))
  1392. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1393. else
  1394. #endif
  1395. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1396. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1397. /* vlan tag */
  1398. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1399. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1400. }
  1401. /* set tx flags */
  1402. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1403. np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1404. } else {
  1405. np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
  1406. np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1407. }
  1408. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1409. dev->name, np->next_tx, entries, tx_flags_extra);
  1410. {
  1411. int j;
  1412. for (j=0; j<64; j++) {
  1413. if ((j%16) == 0)
  1414. dprintk("\n%03x:", j);
  1415. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1416. }
  1417. dprintk("\n");
  1418. }
  1419. np->next_tx += entries;
  1420. dev->trans_start = jiffies;
  1421. spin_unlock_irq(&np->lock);
  1422. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1423. pci_push(get_hwbase(dev));
  1424. return NETDEV_TX_OK;
  1425. }
  1426. /*
  1427. * nv_tx_done: check for completed packets, release the skbs.
  1428. *
  1429. * Caller must own np->lock.
  1430. */
  1431. static void nv_tx_done(struct net_device *dev)
  1432. {
  1433. struct fe_priv *np = netdev_priv(dev);
  1434. u32 flags;
  1435. unsigned int i;
  1436. struct sk_buff *skb;
  1437. while (np->nic_tx != np->next_tx) {
  1438. i = np->nic_tx % np->tx_ring_size;
  1439. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1440. flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
  1441. else
  1442. flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
  1443. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
  1444. dev->name, np->nic_tx, flags);
  1445. if (flags & NV_TX_VALID)
  1446. break;
  1447. if (np->desc_ver == DESC_VER_1) {
  1448. if (flags & NV_TX_LASTPACKET) {
  1449. skb = np->tx_skbuff[i];
  1450. if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1451. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1452. if (flags & NV_TX_UNDERFLOW)
  1453. np->stats.tx_fifo_errors++;
  1454. if (flags & NV_TX_CARRIERLOST)
  1455. np->stats.tx_carrier_errors++;
  1456. np->stats.tx_errors++;
  1457. } else {
  1458. np->stats.tx_packets++;
  1459. np->stats.tx_bytes += skb->len;
  1460. }
  1461. }
  1462. } else {
  1463. if (flags & NV_TX2_LASTPACKET) {
  1464. skb = np->tx_skbuff[i];
  1465. if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1466. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1467. if (flags & NV_TX2_UNDERFLOW)
  1468. np->stats.tx_fifo_errors++;
  1469. if (flags & NV_TX2_CARRIERLOST)
  1470. np->stats.tx_carrier_errors++;
  1471. np->stats.tx_errors++;
  1472. } else {
  1473. np->stats.tx_packets++;
  1474. np->stats.tx_bytes += skb->len;
  1475. }
  1476. }
  1477. }
  1478. nv_release_txskb(dev, i);
  1479. np->nic_tx++;
  1480. }
  1481. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1482. netif_wake_queue(dev);
  1483. }
  1484. /*
  1485. * nv_tx_timeout: dev->tx_timeout function
  1486. * Called with netif_tx_lock held.
  1487. */
  1488. static void nv_tx_timeout(struct net_device *dev)
  1489. {
  1490. struct fe_priv *np = netdev_priv(dev);
  1491. u8 __iomem *base = get_hwbase(dev);
  1492. u32 status;
  1493. if (np->msi_flags & NV_MSI_X_ENABLED)
  1494. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1495. else
  1496. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1497. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1498. {
  1499. int i;
  1500. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1501. dev->name, (unsigned long)np->ring_addr,
  1502. np->next_tx, np->nic_tx);
  1503. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1504. for (i=0;i<=np->register_size;i+= 32) {
  1505. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1506. i,
  1507. readl(base + i + 0), readl(base + i + 4),
  1508. readl(base + i + 8), readl(base + i + 12),
  1509. readl(base + i + 16), readl(base + i + 20),
  1510. readl(base + i + 24), readl(base + i + 28));
  1511. }
  1512. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1513. for (i=0;i<np->tx_ring_size;i+= 4) {
  1514. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1515. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1516. i,
  1517. le32_to_cpu(np->tx_ring.orig[i].buf),
  1518. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1519. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1520. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1521. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1522. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1523. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1524. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1525. } else {
  1526. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1527. i,
  1528. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1529. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1530. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1531. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1532. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1533. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1534. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1535. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1536. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1537. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1538. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1539. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1540. }
  1541. }
  1542. }
  1543. spin_lock_irq(&np->lock);
  1544. /* 1) stop tx engine */
  1545. nv_stop_tx(dev);
  1546. /* 2) check that the packets were not sent already: */
  1547. nv_tx_done(dev);
  1548. /* 3) if there are dead entries: clear everything */
  1549. if (np->next_tx != np->nic_tx) {
  1550. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1551. nv_drain_tx(dev);
  1552. np->next_tx = np->nic_tx = 0;
  1553. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1554. netif_wake_queue(dev);
  1555. }
  1556. /* 4) restart tx engine */
  1557. nv_start_tx(dev);
  1558. spin_unlock_irq(&np->lock);
  1559. }
  1560. /*
  1561. * Called when the nic notices a mismatch between the actual data len on the
  1562. * wire and the len indicated in the 802 header
  1563. */
  1564. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1565. {
  1566. int hdrlen; /* length of the 802 header */
  1567. int protolen; /* length as stored in the proto field */
  1568. /* 1) calculate len according to header */
  1569. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1570. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1571. hdrlen = VLAN_HLEN;
  1572. } else {
  1573. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1574. hdrlen = ETH_HLEN;
  1575. }
  1576. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1577. dev->name, datalen, protolen, hdrlen);
  1578. if (protolen > ETH_DATA_LEN)
  1579. return datalen; /* Value in proto field not a len, no checks possible */
  1580. protolen += hdrlen;
  1581. /* consistency checks: */
  1582. if (datalen > ETH_ZLEN) {
  1583. if (datalen >= protolen) {
  1584. /* more data on wire than in 802 header, trim of
  1585. * additional data.
  1586. */
  1587. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1588. dev->name, protolen);
  1589. return protolen;
  1590. } else {
  1591. /* less data on wire than mentioned in header.
  1592. * Discard the packet.
  1593. */
  1594. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1595. dev->name);
  1596. return -1;
  1597. }
  1598. } else {
  1599. /* short packet. Accept only if 802 values are also short */
  1600. if (protolen > ETH_ZLEN) {
  1601. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1602. dev->name);
  1603. return -1;
  1604. }
  1605. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1606. dev->name, datalen);
  1607. return datalen;
  1608. }
  1609. }
  1610. static int nv_rx_process(struct net_device *dev, int limit)
  1611. {
  1612. struct fe_priv *np = netdev_priv(dev);
  1613. u32 flags;
  1614. u32 vlanflags = 0;
  1615. int count;
  1616. for (count = 0; count < limit; ++count) {
  1617. struct sk_buff *skb;
  1618. int len;
  1619. int i;
  1620. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1621. break; /* we scanned the whole ring - do not continue */
  1622. i = np->cur_rx % np->rx_ring_size;
  1623. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1624. flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
  1625. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1626. } else {
  1627. flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
  1628. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1629. vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
  1630. }
  1631. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
  1632. dev->name, np->cur_rx, flags);
  1633. if (flags & NV_RX_AVAIL)
  1634. break; /* still owned by hardware, */
  1635. /*
  1636. * the packet is for us - immediately tear down the pci mapping.
  1637. * TODO: check if a prefetch of the first cacheline improves
  1638. * the performance.
  1639. */
  1640. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1641. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1642. PCI_DMA_FROMDEVICE);
  1643. {
  1644. int j;
  1645. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  1646. for (j=0; j<64; j++) {
  1647. if ((j%16) == 0)
  1648. dprintk("\n%03x:", j);
  1649. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1650. }
  1651. dprintk("\n");
  1652. }
  1653. /* look at what we actually got: */
  1654. if (np->desc_ver == DESC_VER_1) {
  1655. if (!(flags & NV_RX_DESCRIPTORVALID))
  1656. goto next_pkt;
  1657. if (flags & NV_RX_ERROR) {
  1658. if (flags & NV_RX_MISSEDFRAME) {
  1659. np->stats.rx_missed_errors++;
  1660. np->stats.rx_errors++;
  1661. goto next_pkt;
  1662. }
  1663. if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1664. np->stats.rx_errors++;
  1665. goto next_pkt;
  1666. }
  1667. if (flags & NV_RX_CRCERR) {
  1668. np->stats.rx_crc_errors++;
  1669. np->stats.rx_errors++;
  1670. goto next_pkt;
  1671. }
  1672. if (flags & NV_RX_OVERFLOW) {
  1673. np->stats.rx_over_errors++;
  1674. np->stats.rx_errors++;
  1675. goto next_pkt;
  1676. }
  1677. if (flags & NV_RX_ERROR4) {
  1678. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1679. if (len < 0) {
  1680. np->stats.rx_errors++;
  1681. goto next_pkt;
  1682. }
  1683. }
  1684. /* framing errors are soft errors. */
  1685. if (flags & NV_RX_FRAMINGERR) {
  1686. if (flags & NV_RX_SUBSTRACT1) {
  1687. len--;
  1688. }
  1689. }
  1690. }
  1691. } else {
  1692. if (!(flags & NV_RX2_DESCRIPTORVALID))
  1693. goto next_pkt;
  1694. if (flags & NV_RX2_ERROR) {
  1695. if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1696. np->stats.rx_errors++;
  1697. goto next_pkt;
  1698. }
  1699. if (flags & NV_RX2_CRCERR) {
  1700. np->stats.rx_crc_errors++;
  1701. np->stats.rx_errors++;
  1702. goto next_pkt;
  1703. }
  1704. if (flags & NV_RX2_OVERFLOW) {
  1705. np->stats.rx_over_errors++;
  1706. np->stats.rx_errors++;
  1707. goto next_pkt;
  1708. }
  1709. if (flags & NV_RX2_ERROR4) {
  1710. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1711. if (len < 0) {
  1712. np->stats.rx_errors++;
  1713. goto next_pkt;
  1714. }
  1715. }
  1716. /* framing errors are soft errors */
  1717. if (flags & NV_RX2_FRAMINGERR) {
  1718. if (flags & NV_RX2_SUBSTRACT1) {
  1719. len--;
  1720. }
  1721. }
  1722. }
  1723. if (np->rx_csum) {
  1724. flags &= NV_RX2_CHECKSUMMASK;
  1725. if (flags == NV_RX2_CHECKSUMOK1 ||
  1726. flags == NV_RX2_CHECKSUMOK2 ||
  1727. flags == NV_RX2_CHECKSUMOK3) {
  1728. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1729. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1730. } else {
  1731. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1732. }
  1733. }
  1734. }
  1735. /* got a valid packet - forward it to the network core */
  1736. skb = np->rx_skbuff[i];
  1737. np->rx_skbuff[i] = NULL;
  1738. skb_put(skb, len);
  1739. skb->protocol = eth_type_trans(skb, dev);
  1740. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1741. dev->name, np->cur_rx, len, skb->protocol);
  1742. #ifdef CONFIG_FORCEDETH_NAPI
  1743. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1744. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  1745. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1746. else
  1747. netif_receive_skb(skb);
  1748. #else
  1749. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1750. vlan_hwaccel_rx(skb, np->vlangrp,
  1751. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1752. else
  1753. netif_rx(skb);
  1754. #endif
  1755. dev->last_rx = jiffies;
  1756. np->stats.rx_packets++;
  1757. np->stats.rx_bytes += len;
  1758. next_pkt:
  1759. np->cur_rx++;
  1760. }
  1761. return count;
  1762. }
  1763. static void set_bufsize(struct net_device *dev)
  1764. {
  1765. struct fe_priv *np = netdev_priv(dev);
  1766. if (dev->mtu <= ETH_DATA_LEN)
  1767. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1768. else
  1769. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1770. }
  1771. /*
  1772. * nv_change_mtu: dev->change_mtu function
  1773. * Called with dev_base_lock held for read.
  1774. */
  1775. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1776. {
  1777. struct fe_priv *np = netdev_priv(dev);
  1778. int old_mtu;
  1779. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1780. return -EINVAL;
  1781. old_mtu = dev->mtu;
  1782. dev->mtu = new_mtu;
  1783. /* return early if the buffer sizes will not change */
  1784. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1785. return 0;
  1786. if (old_mtu == new_mtu)
  1787. return 0;
  1788. /* synchronized against open : rtnl_lock() held by caller */
  1789. if (netif_running(dev)) {
  1790. u8 __iomem *base = get_hwbase(dev);
  1791. /*
  1792. * It seems that the nic preloads valid ring entries into an
  1793. * internal buffer. The procedure for flushing everything is
  1794. * guessed, there is probably a simpler approach.
  1795. * Changing the MTU is a rare event, it shouldn't matter.
  1796. */
  1797. nv_disable_irq(dev);
  1798. netif_tx_lock_bh(dev);
  1799. spin_lock(&np->lock);
  1800. /* stop engines */
  1801. nv_stop_rx(dev);
  1802. nv_stop_tx(dev);
  1803. nv_txrx_reset(dev);
  1804. /* drain rx queue */
  1805. nv_drain_rx(dev);
  1806. nv_drain_tx(dev);
  1807. /* reinit driver view of the rx queue */
  1808. set_bufsize(dev);
  1809. if (nv_init_ring(dev)) {
  1810. if (!np->in_shutdown)
  1811. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1812. }
  1813. /* reinit nic view of the rx queue */
  1814. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1815. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1816. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1817. base + NvRegRingSizes);
  1818. pci_push(base);
  1819. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1820. pci_push(base);
  1821. /* restart rx engine */
  1822. nv_start_rx(dev);
  1823. nv_start_tx(dev);
  1824. spin_unlock(&np->lock);
  1825. netif_tx_unlock_bh(dev);
  1826. nv_enable_irq(dev);
  1827. }
  1828. return 0;
  1829. }
  1830. static void nv_copy_mac_to_hw(struct net_device *dev)
  1831. {
  1832. u8 __iomem *base = get_hwbase(dev);
  1833. u32 mac[2];
  1834. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1835. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1836. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1837. writel(mac[0], base + NvRegMacAddrA);
  1838. writel(mac[1], base + NvRegMacAddrB);
  1839. }
  1840. /*
  1841. * nv_set_mac_address: dev->set_mac_address function
  1842. * Called with rtnl_lock() held.
  1843. */
  1844. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1845. {
  1846. struct fe_priv *np = netdev_priv(dev);
  1847. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1848. if (!is_valid_ether_addr(macaddr->sa_data))
  1849. return -EADDRNOTAVAIL;
  1850. /* synchronized against open : rtnl_lock() held by caller */
  1851. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1852. if (netif_running(dev)) {
  1853. netif_tx_lock_bh(dev);
  1854. spin_lock_irq(&np->lock);
  1855. /* stop rx engine */
  1856. nv_stop_rx(dev);
  1857. /* set mac address */
  1858. nv_copy_mac_to_hw(dev);
  1859. /* restart rx engine */
  1860. nv_start_rx(dev);
  1861. spin_unlock_irq(&np->lock);
  1862. netif_tx_unlock_bh(dev);
  1863. } else {
  1864. nv_copy_mac_to_hw(dev);
  1865. }
  1866. return 0;
  1867. }
  1868. /*
  1869. * nv_set_multicast: dev->set_multicast function
  1870. * Called with netif_tx_lock held.
  1871. */
  1872. static void nv_set_multicast(struct net_device *dev)
  1873. {
  1874. struct fe_priv *np = netdev_priv(dev);
  1875. u8 __iomem *base = get_hwbase(dev);
  1876. u32 addr[2];
  1877. u32 mask[2];
  1878. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1879. memset(addr, 0, sizeof(addr));
  1880. memset(mask, 0, sizeof(mask));
  1881. if (dev->flags & IFF_PROMISC) {
  1882. pff |= NVREG_PFF_PROMISC;
  1883. } else {
  1884. pff |= NVREG_PFF_MYADDR;
  1885. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1886. u32 alwaysOff[2];
  1887. u32 alwaysOn[2];
  1888. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1889. if (dev->flags & IFF_ALLMULTI) {
  1890. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1891. } else {
  1892. struct dev_mc_list *walk;
  1893. walk = dev->mc_list;
  1894. while (walk != NULL) {
  1895. u32 a, b;
  1896. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1897. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1898. alwaysOn[0] &= a;
  1899. alwaysOff[0] &= ~a;
  1900. alwaysOn[1] &= b;
  1901. alwaysOff[1] &= ~b;
  1902. walk = walk->next;
  1903. }
  1904. }
  1905. addr[0] = alwaysOn[0];
  1906. addr[1] = alwaysOn[1];
  1907. mask[0] = alwaysOn[0] | alwaysOff[0];
  1908. mask[1] = alwaysOn[1] | alwaysOff[1];
  1909. }
  1910. }
  1911. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1912. pff |= NVREG_PFF_ALWAYS;
  1913. spin_lock_irq(&np->lock);
  1914. nv_stop_rx(dev);
  1915. writel(addr[0], base + NvRegMulticastAddrA);
  1916. writel(addr[1], base + NvRegMulticastAddrB);
  1917. writel(mask[0], base + NvRegMulticastMaskA);
  1918. writel(mask[1], base + NvRegMulticastMaskB);
  1919. writel(pff, base + NvRegPacketFilterFlags);
  1920. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1921. dev->name);
  1922. nv_start_rx(dev);
  1923. spin_unlock_irq(&np->lock);
  1924. }
  1925. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1926. {
  1927. struct fe_priv *np = netdev_priv(dev);
  1928. u8 __iomem *base = get_hwbase(dev);
  1929. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1930. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1931. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1932. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1933. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1934. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1935. } else {
  1936. writel(pff, base + NvRegPacketFilterFlags);
  1937. }
  1938. }
  1939. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1940. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1941. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1942. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1943. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1944. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1945. } else {
  1946. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1947. writel(regmisc, base + NvRegMisc1);
  1948. }
  1949. }
  1950. }
  1951. /**
  1952. * nv_update_linkspeed: Setup the MAC according to the link partner
  1953. * @dev: Network device to be configured
  1954. *
  1955. * The function queries the PHY and checks if there is a link partner.
  1956. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1957. * set to 10 MBit HD.
  1958. *
  1959. * The function returns 0 if there is no link partner and 1 if there is
  1960. * a good link partner.
  1961. */
  1962. static int nv_update_linkspeed(struct net_device *dev)
  1963. {
  1964. struct fe_priv *np = netdev_priv(dev);
  1965. u8 __iomem *base = get_hwbase(dev);
  1966. int adv = 0;
  1967. int lpa = 0;
  1968. int adv_lpa, adv_pause, lpa_pause;
  1969. int newls = np->linkspeed;
  1970. int newdup = np->duplex;
  1971. int mii_status;
  1972. int retval = 0;
  1973. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  1974. /* BMSR_LSTATUS is latched, read it twice:
  1975. * we want the current value.
  1976. */
  1977. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1978. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1979. if (!(mii_status & BMSR_LSTATUS)) {
  1980. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1981. dev->name);
  1982. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1983. newdup = 0;
  1984. retval = 0;
  1985. goto set_speed;
  1986. }
  1987. if (np->autoneg == 0) {
  1988. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1989. dev->name, np->fixed_mode);
  1990. if (np->fixed_mode & LPA_100FULL) {
  1991. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1992. newdup = 1;
  1993. } else if (np->fixed_mode & LPA_100HALF) {
  1994. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1995. newdup = 0;
  1996. } else if (np->fixed_mode & LPA_10FULL) {
  1997. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1998. newdup = 1;
  1999. } else {
  2000. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2001. newdup = 0;
  2002. }
  2003. retval = 1;
  2004. goto set_speed;
  2005. }
  2006. /* check auto negotiation is complete */
  2007. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2008. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2009. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2010. newdup = 0;
  2011. retval = 0;
  2012. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2013. goto set_speed;
  2014. }
  2015. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2016. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2017. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2018. dev->name, adv, lpa);
  2019. retval = 1;
  2020. if (np->gigabit == PHY_GIGABIT) {
  2021. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2022. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2023. if ((control_1000 & ADVERTISE_1000FULL) &&
  2024. (status_1000 & LPA_1000FULL)) {
  2025. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2026. dev->name);
  2027. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2028. newdup = 1;
  2029. goto set_speed;
  2030. }
  2031. }
  2032. /* FIXME: handle parallel detection properly */
  2033. adv_lpa = lpa & adv;
  2034. if (adv_lpa & LPA_100FULL) {
  2035. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2036. newdup = 1;
  2037. } else if (adv_lpa & LPA_100HALF) {
  2038. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2039. newdup = 0;
  2040. } else if (adv_lpa & LPA_10FULL) {
  2041. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2042. newdup = 1;
  2043. } else if (adv_lpa & LPA_10HALF) {
  2044. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2045. newdup = 0;
  2046. } else {
  2047. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2048. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2049. newdup = 0;
  2050. }
  2051. set_speed:
  2052. if (np->duplex == newdup && np->linkspeed == newls)
  2053. return retval;
  2054. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2055. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2056. np->duplex = newdup;
  2057. np->linkspeed = newls;
  2058. if (np->gigabit == PHY_GIGABIT) {
  2059. phyreg = readl(base + NvRegRandomSeed);
  2060. phyreg &= ~(0x3FF00);
  2061. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2062. phyreg |= NVREG_RNDSEED_FORCE3;
  2063. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2064. phyreg |= NVREG_RNDSEED_FORCE2;
  2065. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2066. phyreg |= NVREG_RNDSEED_FORCE;
  2067. writel(phyreg, base + NvRegRandomSeed);
  2068. }
  2069. phyreg = readl(base + NvRegPhyInterface);
  2070. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2071. if (np->duplex == 0)
  2072. phyreg |= PHY_HALF;
  2073. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2074. phyreg |= PHY_100;
  2075. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2076. phyreg |= PHY_1000;
  2077. writel(phyreg, base + NvRegPhyInterface);
  2078. if (phyreg & PHY_RGMII) {
  2079. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2080. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2081. else
  2082. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2083. } else {
  2084. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2085. }
  2086. writel(txreg, base + NvRegTxDeferral);
  2087. if (np->desc_ver == DESC_VER_1) {
  2088. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2089. } else {
  2090. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2091. txreg = NVREG_TX_WM_DESC2_3_1000;
  2092. else
  2093. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2094. }
  2095. writel(txreg, base + NvRegTxWatermark);
  2096. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2097. base + NvRegMisc1);
  2098. pci_push(base);
  2099. writel(np->linkspeed, base + NvRegLinkSpeed);
  2100. pci_push(base);
  2101. pause_flags = 0;
  2102. /* setup pause frame */
  2103. if (np->duplex != 0) {
  2104. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2105. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2106. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2107. switch (adv_pause) {
  2108. case ADVERTISE_PAUSE_CAP:
  2109. if (lpa_pause & LPA_PAUSE_CAP) {
  2110. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2111. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2112. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2113. }
  2114. break;
  2115. case ADVERTISE_PAUSE_ASYM:
  2116. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2117. {
  2118. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2119. }
  2120. break;
  2121. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2122. if (lpa_pause & LPA_PAUSE_CAP)
  2123. {
  2124. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2125. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2126. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2127. }
  2128. if (lpa_pause == LPA_PAUSE_ASYM)
  2129. {
  2130. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2131. }
  2132. break;
  2133. }
  2134. } else {
  2135. pause_flags = np->pause_flags;
  2136. }
  2137. }
  2138. nv_update_pause(dev, pause_flags);
  2139. return retval;
  2140. }
  2141. static void nv_linkchange(struct net_device *dev)
  2142. {
  2143. if (nv_update_linkspeed(dev)) {
  2144. if (!netif_carrier_ok(dev)) {
  2145. netif_carrier_on(dev);
  2146. printk(KERN_INFO "%s: link up.\n", dev->name);
  2147. nv_start_rx(dev);
  2148. }
  2149. } else {
  2150. if (netif_carrier_ok(dev)) {
  2151. netif_carrier_off(dev);
  2152. printk(KERN_INFO "%s: link down.\n", dev->name);
  2153. nv_stop_rx(dev);
  2154. }
  2155. }
  2156. }
  2157. static void nv_link_irq(struct net_device *dev)
  2158. {
  2159. u8 __iomem *base = get_hwbase(dev);
  2160. u32 miistat;
  2161. miistat = readl(base + NvRegMIIStatus);
  2162. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2163. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2164. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2165. nv_linkchange(dev);
  2166. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2167. }
  2168. static irqreturn_t nv_nic_irq(int foo, void *data)
  2169. {
  2170. struct net_device *dev = (struct net_device *) data;
  2171. struct fe_priv *np = netdev_priv(dev);
  2172. u8 __iomem *base = get_hwbase(dev);
  2173. u32 events;
  2174. int i;
  2175. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2176. for (i=0; ; i++) {
  2177. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2178. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2179. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2180. } else {
  2181. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2182. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2183. }
  2184. pci_push(base);
  2185. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2186. if (!(events & np->irqmask))
  2187. break;
  2188. spin_lock(&np->lock);
  2189. nv_tx_done(dev);
  2190. spin_unlock(&np->lock);
  2191. if (events & NVREG_IRQ_LINK) {
  2192. spin_lock(&np->lock);
  2193. nv_link_irq(dev);
  2194. spin_unlock(&np->lock);
  2195. }
  2196. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2197. spin_lock(&np->lock);
  2198. nv_linkchange(dev);
  2199. spin_unlock(&np->lock);
  2200. np->link_timeout = jiffies + LINK_TIMEOUT;
  2201. }
  2202. if (events & (NVREG_IRQ_TX_ERR)) {
  2203. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2204. dev->name, events);
  2205. }
  2206. if (events & (NVREG_IRQ_UNKNOWN)) {
  2207. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2208. dev->name, events);
  2209. }
  2210. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2211. spin_lock(&np->lock);
  2212. /* disable interrupts on the nic */
  2213. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2214. writel(0, base + NvRegIrqMask);
  2215. else
  2216. writel(np->irqmask, base + NvRegIrqMask);
  2217. pci_push(base);
  2218. if (!np->in_shutdown) {
  2219. np->nic_poll_irq = np->irqmask;
  2220. np->recover_error = 1;
  2221. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2222. }
  2223. spin_unlock(&np->lock);
  2224. break;
  2225. }
  2226. #ifdef CONFIG_FORCEDETH_NAPI
  2227. if (events & NVREG_IRQ_RX_ALL) {
  2228. netif_rx_schedule(dev);
  2229. /* Disable furthur receive irq's */
  2230. spin_lock(&np->lock);
  2231. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2232. if (np->msi_flags & NV_MSI_X_ENABLED)
  2233. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2234. else
  2235. writel(np->irqmask, base + NvRegIrqMask);
  2236. spin_unlock(&np->lock);
  2237. }
  2238. #else
  2239. nv_rx_process(dev, dev->weight);
  2240. if (nv_alloc_rx(dev)) {
  2241. spin_lock(&np->lock);
  2242. if (!np->in_shutdown)
  2243. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2244. spin_unlock(&np->lock);
  2245. }
  2246. #endif
  2247. if (i > max_interrupt_work) {
  2248. spin_lock(&np->lock);
  2249. /* disable interrupts on the nic */
  2250. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2251. writel(0, base + NvRegIrqMask);
  2252. else
  2253. writel(np->irqmask, base + NvRegIrqMask);
  2254. pci_push(base);
  2255. if (!np->in_shutdown) {
  2256. np->nic_poll_irq = np->irqmask;
  2257. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2258. }
  2259. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2260. spin_unlock(&np->lock);
  2261. break;
  2262. }
  2263. }
  2264. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2265. return IRQ_RETVAL(i);
  2266. }
  2267. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2268. {
  2269. struct net_device *dev = (struct net_device *) data;
  2270. struct fe_priv *np = netdev_priv(dev);
  2271. u8 __iomem *base = get_hwbase(dev);
  2272. u32 events;
  2273. int i;
  2274. unsigned long flags;
  2275. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2276. for (i=0; ; i++) {
  2277. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2278. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2279. pci_push(base);
  2280. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2281. if (!(events & np->irqmask))
  2282. break;
  2283. spin_lock_irqsave(&np->lock, flags);
  2284. nv_tx_done(dev);
  2285. spin_unlock_irqrestore(&np->lock, flags);
  2286. if (events & (NVREG_IRQ_TX_ERR)) {
  2287. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2288. dev->name, events);
  2289. }
  2290. if (i > max_interrupt_work) {
  2291. spin_lock_irqsave(&np->lock, flags);
  2292. /* disable interrupts on the nic */
  2293. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2294. pci_push(base);
  2295. if (!np->in_shutdown) {
  2296. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2297. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2298. }
  2299. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2300. spin_unlock_irqrestore(&np->lock, flags);
  2301. break;
  2302. }
  2303. }
  2304. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2305. return IRQ_RETVAL(i);
  2306. }
  2307. #ifdef CONFIG_FORCEDETH_NAPI
  2308. static int nv_napi_poll(struct net_device *dev, int *budget)
  2309. {
  2310. int pkts, limit = min(*budget, dev->quota);
  2311. struct fe_priv *np = netdev_priv(dev);
  2312. u8 __iomem *base = get_hwbase(dev);
  2313. unsigned long flags;
  2314. pkts = nv_rx_process(dev, limit);
  2315. if (nv_alloc_rx(dev)) {
  2316. spin_lock_irqsave(&np->lock, flags);
  2317. if (!np->in_shutdown)
  2318. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2319. spin_unlock_irqrestore(&np->lock, flags);
  2320. }
  2321. if (pkts < limit) {
  2322. /* all done, no more packets present */
  2323. netif_rx_complete(dev);
  2324. /* re-enable receive interrupts */
  2325. spin_lock_irqsave(&np->lock, flags);
  2326. np->irqmask |= NVREG_IRQ_RX_ALL;
  2327. if (np->msi_flags & NV_MSI_X_ENABLED)
  2328. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2329. else
  2330. writel(np->irqmask, base + NvRegIrqMask);
  2331. spin_unlock_irqrestore(&np->lock, flags);
  2332. return 0;
  2333. } else {
  2334. /* used up our quantum, so reschedule */
  2335. dev->quota -= pkts;
  2336. *budget -= pkts;
  2337. return 1;
  2338. }
  2339. }
  2340. #endif
  2341. #ifdef CONFIG_FORCEDETH_NAPI
  2342. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2343. {
  2344. struct net_device *dev = (struct net_device *) data;
  2345. u8 __iomem *base = get_hwbase(dev);
  2346. u32 events;
  2347. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2348. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2349. if (events) {
  2350. netif_rx_schedule(dev);
  2351. /* disable receive interrupts on the nic */
  2352. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2353. pci_push(base);
  2354. }
  2355. return IRQ_HANDLED;
  2356. }
  2357. #else
  2358. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2359. {
  2360. struct net_device *dev = (struct net_device *) data;
  2361. struct fe_priv *np = netdev_priv(dev);
  2362. u8 __iomem *base = get_hwbase(dev);
  2363. u32 events;
  2364. int i;
  2365. unsigned long flags;
  2366. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2367. for (i=0; ; i++) {
  2368. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2369. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2370. pci_push(base);
  2371. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2372. if (!(events & np->irqmask))
  2373. break;
  2374. nv_rx_process(dev, dev->weight);
  2375. if (nv_alloc_rx(dev)) {
  2376. spin_lock_irqsave(&np->lock, flags);
  2377. if (!np->in_shutdown)
  2378. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2379. spin_unlock_irqrestore(&np->lock, flags);
  2380. }
  2381. if (i > max_interrupt_work) {
  2382. spin_lock_irqsave(&np->lock, flags);
  2383. /* disable interrupts on the nic */
  2384. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2385. pci_push(base);
  2386. if (!np->in_shutdown) {
  2387. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2388. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2389. }
  2390. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2391. spin_unlock_irqrestore(&np->lock, flags);
  2392. break;
  2393. }
  2394. }
  2395. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2396. return IRQ_RETVAL(i);
  2397. }
  2398. #endif
  2399. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  2400. {
  2401. struct net_device *dev = (struct net_device *) data;
  2402. struct fe_priv *np = netdev_priv(dev);
  2403. u8 __iomem *base = get_hwbase(dev);
  2404. u32 events;
  2405. int i;
  2406. unsigned long flags;
  2407. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2408. for (i=0; ; i++) {
  2409. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2410. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2411. pci_push(base);
  2412. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2413. if (!(events & np->irqmask))
  2414. break;
  2415. if (events & NVREG_IRQ_LINK) {
  2416. spin_lock_irqsave(&np->lock, flags);
  2417. nv_link_irq(dev);
  2418. spin_unlock_irqrestore(&np->lock, flags);
  2419. }
  2420. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2421. spin_lock_irqsave(&np->lock, flags);
  2422. nv_linkchange(dev);
  2423. spin_unlock_irqrestore(&np->lock, flags);
  2424. np->link_timeout = jiffies + LINK_TIMEOUT;
  2425. }
  2426. if (events & NVREG_IRQ_RECOVER_ERROR) {
  2427. spin_lock_irq(&np->lock);
  2428. /* disable interrupts on the nic */
  2429. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2430. pci_push(base);
  2431. if (!np->in_shutdown) {
  2432. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2433. np->recover_error = 1;
  2434. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2435. }
  2436. spin_unlock_irq(&np->lock);
  2437. break;
  2438. }
  2439. if (events & (NVREG_IRQ_UNKNOWN)) {
  2440. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2441. dev->name, events);
  2442. }
  2443. if (i > max_interrupt_work) {
  2444. spin_lock_irqsave(&np->lock, flags);
  2445. /* disable interrupts on the nic */
  2446. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2447. pci_push(base);
  2448. if (!np->in_shutdown) {
  2449. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2450. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2451. }
  2452. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2453. spin_unlock_irqrestore(&np->lock, flags);
  2454. break;
  2455. }
  2456. }
  2457. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2458. return IRQ_RETVAL(i);
  2459. }
  2460. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  2461. {
  2462. struct net_device *dev = (struct net_device *) data;
  2463. struct fe_priv *np = netdev_priv(dev);
  2464. u8 __iomem *base = get_hwbase(dev);
  2465. u32 events;
  2466. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2467. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2468. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2469. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2470. } else {
  2471. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2472. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2473. }
  2474. pci_push(base);
  2475. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2476. if (!(events & NVREG_IRQ_TIMER))
  2477. return IRQ_RETVAL(0);
  2478. spin_lock(&np->lock);
  2479. np->intr_test = 1;
  2480. spin_unlock(&np->lock);
  2481. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2482. return IRQ_RETVAL(1);
  2483. }
  2484. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2485. {
  2486. u8 __iomem *base = get_hwbase(dev);
  2487. int i;
  2488. u32 msixmap = 0;
  2489. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2490. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2491. * the remaining 8 interrupts.
  2492. */
  2493. for (i = 0; i < 8; i++) {
  2494. if ((irqmask >> i) & 0x1) {
  2495. msixmap |= vector << (i << 2);
  2496. }
  2497. }
  2498. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2499. msixmap = 0;
  2500. for (i = 0; i < 8; i++) {
  2501. if ((irqmask >> (i + 8)) & 0x1) {
  2502. msixmap |= vector << (i << 2);
  2503. }
  2504. }
  2505. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2506. }
  2507. static int nv_request_irq(struct net_device *dev, int intr_test)
  2508. {
  2509. struct fe_priv *np = get_nvpriv(dev);
  2510. u8 __iomem *base = get_hwbase(dev);
  2511. int ret = 1;
  2512. int i;
  2513. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2514. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2515. np->msi_x_entry[i].entry = i;
  2516. }
  2517. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2518. np->msi_flags |= NV_MSI_X_ENABLED;
  2519. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2520. /* Request irq for rx handling */
  2521. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2522. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2523. pci_disable_msix(np->pci_dev);
  2524. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2525. goto out_err;
  2526. }
  2527. /* Request irq for tx handling */
  2528. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2529. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2530. pci_disable_msix(np->pci_dev);
  2531. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2532. goto out_free_rx;
  2533. }
  2534. /* Request irq for link and timer handling */
  2535. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2536. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2537. pci_disable_msix(np->pci_dev);
  2538. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2539. goto out_free_tx;
  2540. }
  2541. /* map interrupts to their respective vector */
  2542. writel(0, base + NvRegMSIXMap0);
  2543. writel(0, base + NvRegMSIXMap1);
  2544. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2545. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2546. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2547. } else {
  2548. /* Request irq for all interrupts */
  2549. if ((!intr_test &&
  2550. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2551. (intr_test &&
  2552. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2553. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2554. pci_disable_msix(np->pci_dev);
  2555. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2556. goto out_err;
  2557. }
  2558. /* map interrupts to vector 0 */
  2559. writel(0, base + NvRegMSIXMap0);
  2560. writel(0, base + NvRegMSIXMap1);
  2561. }
  2562. }
  2563. }
  2564. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2565. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2566. np->msi_flags |= NV_MSI_ENABLED;
  2567. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2568. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2569. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2570. pci_disable_msi(np->pci_dev);
  2571. np->msi_flags &= ~NV_MSI_ENABLED;
  2572. goto out_err;
  2573. }
  2574. /* map interrupts to vector 0 */
  2575. writel(0, base + NvRegMSIMap0);
  2576. writel(0, base + NvRegMSIMap1);
  2577. /* enable msi vector 0 */
  2578. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2579. }
  2580. }
  2581. if (ret != 0) {
  2582. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2583. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2584. goto out_err;
  2585. }
  2586. return 0;
  2587. out_free_tx:
  2588. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2589. out_free_rx:
  2590. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2591. out_err:
  2592. return 1;
  2593. }
  2594. static void nv_free_irq(struct net_device *dev)
  2595. {
  2596. struct fe_priv *np = get_nvpriv(dev);
  2597. int i;
  2598. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2599. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2600. free_irq(np->msi_x_entry[i].vector, dev);
  2601. }
  2602. pci_disable_msix(np->pci_dev);
  2603. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2604. } else {
  2605. free_irq(np->pci_dev->irq, dev);
  2606. if (np->msi_flags & NV_MSI_ENABLED) {
  2607. pci_disable_msi(np->pci_dev);
  2608. np->msi_flags &= ~NV_MSI_ENABLED;
  2609. }
  2610. }
  2611. }
  2612. static void nv_do_nic_poll(unsigned long data)
  2613. {
  2614. struct net_device *dev = (struct net_device *) data;
  2615. struct fe_priv *np = netdev_priv(dev);
  2616. u8 __iomem *base = get_hwbase(dev);
  2617. u32 mask = 0;
  2618. /*
  2619. * First disable irq(s) and then
  2620. * reenable interrupts on the nic, we have to do this before calling
  2621. * nv_nic_irq because that may decide to do otherwise
  2622. */
  2623. if (!using_multi_irqs(dev)) {
  2624. if (np->msi_flags & NV_MSI_X_ENABLED)
  2625. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2626. else
  2627. disable_irq_lockdep(dev->irq);
  2628. mask = np->irqmask;
  2629. } else {
  2630. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2631. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2632. mask |= NVREG_IRQ_RX_ALL;
  2633. }
  2634. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2635. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2636. mask |= NVREG_IRQ_TX_ALL;
  2637. }
  2638. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2639. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2640. mask |= NVREG_IRQ_OTHER;
  2641. }
  2642. }
  2643. np->nic_poll_irq = 0;
  2644. if (np->recover_error) {
  2645. np->recover_error = 0;
  2646. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  2647. if (netif_running(dev)) {
  2648. netif_tx_lock_bh(dev);
  2649. spin_lock(&np->lock);
  2650. /* stop engines */
  2651. nv_stop_rx(dev);
  2652. nv_stop_tx(dev);
  2653. nv_txrx_reset(dev);
  2654. /* drain rx queue */
  2655. nv_drain_rx(dev);
  2656. nv_drain_tx(dev);
  2657. /* reinit driver view of the rx queue */
  2658. set_bufsize(dev);
  2659. if (nv_init_ring(dev)) {
  2660. if (!np->in_shutdown)
  2661. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2662. }
  2663. /* reinit nic view of the rx queue */
  2664. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2665. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2666. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2667. base + NvRegRingSizes);
  2668. pci_push(base);
  2669. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2670. pci_push(base);
  2671. /* restart rx engine */
  2672. nv_start_rx(dev);
  2673. nv_start_tx(dev);
  2674. spin_unlock(&np->lock);
  2675. netif_tx_unlock_bh(dev);
  2676. }
  2677. }
  2678. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2679. writel(mask, base + NvRegIrqMask);
  2680. pci_push(base);
  2681. if (!using_multi_irqs(dev)) {
  2682. nv_nic_irq(0, dev);
  2683. if (np->msi_flags & NV_MSI_X_ENABLED)
  2684. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2685. else
  2686. enable_irq_lockdep(dev->irq);
  2687. } else {
  2688. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2689. nv_nic_irq_rx(0, dev);
  2690. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2691. }
  2692. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2693. nv_nic_irq_tx(0, dev);
  2694. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2695. }
  2696. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2697. nv_nic_irq_other(0, dev);
  2698. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2699. }
  2700. }
  2701. }
  2702. #ifdef CONFIG_NET_POLL_CONTROLLER
  2703. static void nv_poll_controller(struct net_device *dev)
  2704. {
  2705. nv_do_nic_poll((unsigned long) dev);
  2706. }
  2707. #endif
  2708. static void nv_do_stats_poll(unsigned long data)
  2709. {
  2710. struct net_device *dev = (struct net_device *) data;
  2711. struct fe_priv *np = netdev_priv(dev);
  2712. u8 __iomem *base = get_hwbase(dev);
  2713. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2714. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2715. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2716. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2717. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2718. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2719. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2720. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2721. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2722. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2723. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2724. np->estats.tx_pause += readl(base + NvRegTxPause);
  2725. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2726. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2727. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2728. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2729. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2730. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2731. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2732. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2733. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2734. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2735. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2736. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2737. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2738. np->estats.rx_pause += readl(base + NvRegRxPause);
  2739. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2740. np->estats.rx_packets =
  2741. np->estats.rx_unicast +
  2742. np->estats.rx_multicast +
  2743. np->estats.rx_broadcast;
  2744. np->estats.rx_errors_total =
  2745. np->estats.rx_crc_errors +
  2746. np->estats.rx_over_errors +
  2747. np->estats.rx_frame_error +
  2748. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2749. np->estats.rx_late_collision +
  2750. np->estats.rx_runt +
  2751. np->estats.rx_frame_too_long;
  2752. if (!np->in_shutdown)
  2753. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2754. }
  2755. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2756. {
  2757. struct fe_priv *np = netdev_priv(dev);
  2758. strcpy(info->driver, "forcedeth");
  2759. strcpy(info->version, FORCEDETH_VERSION);
  2760. strcpy(info->bus_info, pci_name(np->pci_dev));
  2761. }
  2762. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2763. {
  2764. struct fe_priv *np = netdev_priv(dev);
  2765. wolinfo->supported = WAKE_MAGIC;
  2766. spin_lock_irq(&np->lock);
  2767. if (np->wolenabled)
  2768. wolinfo->wolopts = WAKE_MAGIC;
  2769. spin_unlock_irq(&np->lock);
  2770. }
  2771. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2772. {
  2773. struct fe_priv *np = netdev_priv(dev);
  2774. u8 __iomem *base = get_hwbase(dev);
  2775. u32 flags = 0;
  2776. if (wolinfo->wolopts == 0) {
  2777. np->wolenabled = 0;
  2778. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2779. np->wolenabled = 1;
  2780. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2781. }
  2782. if (netif_running(dev)) {
  2783. spin_lock_irq(&np->lock);
  2784. writel(flags, base + NvRegWakeUpFlags);
  2785. spin_unlock_irq(&np->lock);
  2786. }
  2787. return 0;
  2788. }
  2789. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2790. {
  2791. struct fe_priv *np = netdev_priv(dev);
  2792. int adv;
  2793. spin_lock_irq(&np->lock);
  2794. ecmd->port = PORT_MII;
  2795. if (!netif_running(dev)) {
  2796. /* We do not track link speed / duplex setting if the
  2797. * interface is disabled. Force a link check */
  2798. if (nv_update_linkspeed(dev)) {
  2799. if (!netif_carrier_ok(dev))
  2800. netif_carrier_on(dev);
  2801. } else {
  2802. if (netif_carrier_ok(dev))
  2803. netif_carrier_off(dev);
  2804. }
  2805. }
  2806. if (netif_carrier_ok(dev)) {
  2807. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2808. case NVREG_LINKSPEED_10:
  2809. ecmd->speed = SPEED_10;
  2810. break;
  2811. case NVREG_LINKSPEED_100:
  2812. ecmd->speed = SPEED_100;
  2813. break;
  2814. case NVREG_LINKSPEED_1000:
  2815. ecmd->speed = SPEED_1000;
  2816. break;
  2817. }
  2818. ecmd->duplex = DUPLEX_HALF;
  2819. if (np->duplex)
  2820. ecmd->duplex = DUPLEX_FULL;
  2821. } else {
  2822. ecmd->speed = -1;
  2823. ecmd->duplex = -1;
  2824. }
  2825. ecmd->autoneg = np->autoneg;
  2826. ecmd->advertising = ADVERTISED_MII;
  2827. if (np->autoneg) {
  2828. ecmd->advertising |= ADVERTISED_Autoneg;
  2829. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2830. if (adv & ADVERTISE_10HALF)
  2831. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2832. if (adv & ADVERTISE_10FULL)
  2833. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2834. if (adv & ADVERTISE_100HALF)
  2835. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2836. if (adv & ADVERTISE_100FULL)
  2837. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2838. if (np->gigabit == PHY_GIGABIT) {
  2839. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2840. if (adv & ADVERTISE_1000FULL)
  2841. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2842. }
  2843. }
  2844. ecmd->supported = (SUPPORTED_Autoneg |
  2845. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2846. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2847. SUPPORTED_MII);
  2848. if (np->gigabit == PHY_GIGABIT)
  2849. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2850. ecmd->phy_address = np->phyaddr;
  2851. ecmd->transceiver = XCVR_EXTERNAL;
  2852. /* ignore maxtxpkt, maxrxpkt for now */
  2853. spin_unlock_irq(&np->lock);
  2854. return 0;
  2855. }
  2856. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2857. {
  2858. struct fe_priv *np = netdev_priv(dev);
  2859. if (ecmd->port != PORT_MII)
  2860. return -EINVAL;
  2861. if (ecmd->transceiver != XCVR_EXTERNAL)
  2862. return -EINVAL;
  2863. if (ecmd->phy_address != np->phyaddr) {
  2864. /* TODO: support switching between multiple phys. Should be
  2865. * trivial, but not enabled due to lack of test hardware. */
  2866. return -EINVAL;
  2867. }
  2868. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2869. u32 mask;
  2870. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2871. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2872. if (np->gigabit == PHY_GIGABIT)
  2873. mask |= ADVERTISED_1000baseT_Full;
  2874. if ((ecmd->advertising & mask) == 0)
  2875. return -EINVAL;
  2876. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2877. /* Note: autonegotiation disable, speed 1000 intentionally
  2878. * forbidden - noone should need that. */
  2879. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2880. return -EINVAL;
  2881. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2882. return -EINVAL;
  2883. } else {
  2884. return -EINVAL;
  2885. }
  2886. netif_carrier_off(dev);
  2887. if (netif_running(dev)) {
  2888. nv_disable_irq(dev);
  2889. netif_tx_lock_bh(dev);
  2890. spin_lock(&np->lock);
  2891. /* stop engines */
  2892. nv_stop_rx(dev);
  2893. nv_stop_tx(dev);
  2894. spin_unlock(&np->lock);
  2895. netif_tx_unlock_bh(dev);
  2896. }
  2897. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2898. int adv, bmcr;
  2899. np->autoneg = 1;
  2900. /* advertise only what has been requested */
  2901. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2902. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2903. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2904. adv |= ADVERTISE_10HALF;
  2905. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2906. adv |= ADVERTISE_10FULL;
  2907. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2908. adv |= ADVERTISE_100HALF;
  2909. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2910. adv |= ADVERTISE_100FULL;
  2911. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2912. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2913. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2914. adv |= ADVERTISE_PAUSE_ASYM;
  2915. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2916. if (np->gigabit == PHY_GIGABIT) {
  2917. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2918. adv &= ~ADVERTISE_1000FULL;
  2919. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2920. adv |= ADVERTISE_1000FULL;
  2921. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2922. }
  2923. if (netif_running(dev))
  2924. printk(KERN_INFO "%s: link down.\n", dev->name);
  2925. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2926. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  2927. bmcr |= BMCR_ANENABLE;
  2928. /* reset the phy in order for settings to stick,
  2929. * and cause autoneg to start */
  2930. if (phy_reset(dev, bmcr)) {
  2931. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2932. return -EINVAL;
  2933. }
  2934. } else {
  2935. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2936. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2937. }
  2938. } else {
  2939. int adv, bmcr;
  2940. np->autoneg = 0;
  2941. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2942. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2943. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2944. adv |= ADVERTISE_10HALF;
  2945. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2946. adv |= ADVERTISE_10FULL;
  2947. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2948. adv |= ADVERTISE_100HALF;
  2949. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2950. adv |= ADVERTISE_100FULL;
  2951. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2952. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2953. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2954. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2955. }
  2956. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2957. adv |= ADVERTISE_PAUSE_ASYM;
  2958. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2959. }
  2960. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2961. np->fixed_mode = adv;
  2962. if (np->gigabit == PHY_GIGABIT) {
  2963. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2964. adv &= ~ADVERTISE_1000FULL;
  2965. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2966. }
  2967. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2968. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2969. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2970. bmcr |= BMCR_FULLDPLX;
  2971. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2972. bmcr |= BMCR_SPEED100;
  2973. if (np->phy_oui == PHY_OUI_MARVELL) {
  2974. /* reset the phy in order for forced mode settings to stick */
  2975. if (phy_reset(dev, bmcr)) {
  2976. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2977. return -EINVAL;
  2978. }
  2979. } else {
  2980. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2981. if (netif_running(dev)) {
  2982. /* Wait a bit and then reconfigure the nic. */
  2983. udelay(10);
  2984. nv_linkchange(dev);
  2985. }
  2986. }
  2987. }
  2988. if (netif_running(dev)) {
  2989. nv_start_rx(dev);
  2990. nv_start_tx(dev);
  2991. nv_enable_irq(dev);
  2992. }
  2993. return 0;
  2994. }
  2995. #define FORCEDETH_REGS_VER 1
  2996. static int nv_get_regs_len(struct net_device *dev)
  2997. {
  2998. struct fe_priv *np = netdev_priv(dev);
  2999. return np->register_size;
  3000. }
  3001. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3002. {
  3003. struct fe_priv *np = netdev_priv(dev);
  3004. u8 __iomem *base = get_hwbase(dev);
  3005. u32 *rbuf = buf;
  3006. int i;
  3007. regs->version = FORCEDETH_REGS_VER;
  3008. spin_lock_irq(&np->lock);
  3009. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3010. rbuf[i] = readl(base + i*sizeof(u32));
  3011. spin_unlock_irq(&np->lock);
  3012. }
  3013. static int nv_nway_reset(struct net_device *dev)
  3014. {
  3015. struct fe_priv *np = netdev_priv(dev);
  3016. int ret;
  3017. if (np->autoneg) {
  3018. int bmcr;
  3019. netif_carrier_off(dev);
  3020. if (netif_running(dev)) {
  3021. nv_disable_irq(dev);
  3022. netif_tx_lock_bh(dev);
  3023. spin_lock(&np->lock);
  3024. /* stop engines */
  3025. nv_stop_rx(dev);
  3026. nv_stop_tx(dev);
  3027. spin_unlock(&np->lock);
  3028. netif_tx_unlock_bh(dev);
  3029. printk(KERN_INFO "%s: link down.\n", dev->name);
  3030. }
  3031. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3032. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3033. bmcr |= BMCR_ANENABLE;
  3034. /* reset the phy in order for settings to stick*/
  3035. if (phy_reset(dev, bmcr)) {
  3036. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3037. return -EINVAL;
  3038. }
  3039. } else {
  3040. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3041. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3042. }
  3043. if (netif_running(dev)) {
  3044. nv_start_rx(dev);
  3045. nv_start_tx(dev);
  3046. nv_enable_irq(dev);
  3047. }
  3048. ret = 0;
  3049. } else {
  3050. ret = -EINVAL;
  3051. }
  3052. return ret;
  3053. }
  3054. static int nv_set_tso(struct net_device *dev, u32 value)
  3055. {
  3056. struct fe_priv *np = netdev_priv(dev);
  3057. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3058. return ethtool_op_set_tso(dev, value);
  3059. else
  3060. return -EOPNOTSUPP;
  3061. }
  3062. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3063. {
  3064. struct fe_priv *np = netdev_priv(dev);
  3065. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3066. ring->rx_mini_max_pending = 0;
  3067. ring->rx_jumbo_max_pending = 0;
  3068. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3069. ring->rx_pending = np->rx_ring_size;
  3070. ring->rx_mini_pending = 0;
  3071. ring->rx_jumbo_pending = 0;
  3072. ring->tx_pending = np->tx_ring_size;
  3073. }
  3074. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3075. {
  3076. struct fe_priv *np = netdev_priv(dev);
  3077. u8 __iomem *base = get_hwbase(dev);
  3078. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  3079. dma_addr_t ring_addr;
  3080. if (ring->rx_pending < RX_RING_MIN ||
  3081. ring->tx_pending < TX_RING_MIN ||
  3082. ring->rx_mini_pending != 0 ||
  3083. ring->rx_jumbo_pending != 0 ||
  3084. (np->desc_ver == DESC_VER_1 &&
  3085. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3086. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3087. (np->desc_ver != DESC_VER_1 &&
  3088. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3089. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3090. return -EINVAL;
  3091. }
  3092. /* allocate new rings */
  3093. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3094. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3095. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3096. &ring_addr);
  3097. } else {
  3098. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3099. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3100. &ring_addr);
  3101. }
  3102. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  3103. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  3104. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  3105. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  3106. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  3107. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  3108. /* fall back to old rings */
  3109. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3110. if (rxtx_ring)
  3111. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3112. rxtx_ring, ring_addr);
  3113. } else {
  3114. if (rxtx_ring)
  3115. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3116. rxtx_ring, ring_addr);
  3117. }
  3118. if (rx_skbuff)
  3119. kfree(rx_skbuff);
  3120. if (rx_dma)
  3121. kfree(rx_dma);
  3122. if (tx_skbuff)
  3123. kfree(tx_skbuff);
  3124. if (tx_dma)
  3125. kfree(tx_dma);
  3126. if (tx_dma_len)
  3127. kfree(tx_dma_len);
  3128. goto exit;
  3129. }
  3130. if (netif_running(dev)) {
  3131. nv_disable_irq(dev);
  3132. netif_tx_lock_bh(dev);
  3133. spin_lock(&np->lock);
  3134. /* stop engines */
  3135. nv_stop_rx(dev);
  3136. nv_stop_tx(dev);
  3137. nv_txrx_reset(dev);
  3138. /* drain queues */
  3139. nv_drain_rx(dev);
  3140. nv_drain_tx(dev);
  3141. /* delete queues */
  3142. free_rings(dev);
  3143. }
  3144. /* set new values */
  3145. np->rx_ring_size = ring->rx_pending;
  3146. np->tx_ring_size = ring->tx_pending;
  3147. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  3148. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  3149. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3150. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3151. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3152. } else {
  3153. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3154. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3155. }
  3156. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  3157. np->rx_dma = (dma_addr_t*)rx_dma;
  3158. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  3159. np->tx_dma = (dma_addr_t*)tx_dma;
  3160. np->tx_dma_len = (unsigned int*)tx_dma_len;
  3161. np->ring_addr = ring_addr;
  3162. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3163. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3164. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3165. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3166. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3167. if (netif_running(dev)) {
  3168. /* reinit driver view of the queues */
  3169. set_bufsize(dev);
  3170. if (nv_init_ring(dev)) {
  3171. if (!np->in_shutdown)
  3172. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3173. }
  3174. /* reinit nic view of the queues */
  3175. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3176. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3177. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3178. base + NvRegRingSizes);
  3179. pci_push(base);
  3180. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3181. pci_push(base);
  3182. /* restart engines */
  3183. nv_start_rx(dev);
  3184. nv_start_tx(dev);
  3185. spin_unlock(&np->lock);
  3186. netif_tx_unlock_bh(dev);
  3187. nv_enable_irq(dev);
  3188. }
  3189. return 0;
  3190. exit:
  3191. return -ENOMEM;
  3192. }
  3193. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3194. {
  3195. struct fe_priv *np = netdev_priv(dev);
  3196. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3197. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3198. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3199. }
  3200. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3201. {
  3202. struct fe_priv *np = netdev_priv(dev);
  3203. int adv, bmcr;
  3204. if ((!np->autoneg && np->duplex == 0) ||
  3205. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3206. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3207. dev->name);
  3208. return -EINVAL;
  3209. }
  3210. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3211. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3212. return -EINVAL;
  3213. }
  3214. netif_carrier_off(dev);
  3215. if (netif_running(dev)) {
  3216. nv_disable_irq(dev);
  3217. netif_tx_lock_bh(dev);
  3218. spin_lock(&np->lock);
  3219. /* stop engines */
  3220. nv_stop_rx(dev);
  3221. nv_stop_tx(dev);
  3222. spin_unlock(&np->lock);
  3223. netif_tx_unlock_bh(dev);
  3224. }
  3225. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3226. if (pause->rx_pause)
  3227. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3228. if (pause->tx_pause)
  3229. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3230. if (np->autoneg && pause->autoneg) {
  3231. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3232. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3233. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3234. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3235. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3236. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3237. adv |= ADVERTISE_PAUSE_ASYM;
  3238. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3239. if (netif_running(dev))
  3240. printk(KERN_INFO "%s: link down.\n", dev->name);
  3241. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3242. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3243. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3244. } else {
  3245. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3246. if (pause->rx_pause)
  3247. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3248. if (pause->tx_pause)
  3249. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3250. if (!netif_running(dev))
  3251. nv_update_linkspeed(dev);
  3252. else
  3253. nv_update_pause(dev, np->pause_flags);
  3254. }
  3255. if (netif_running(dev)) {
  3256. nv_start_rx(dev);
  3257. nv_start_tx(dev);
  3258. nv_enable_irq(dev);
  3259. }
  3260. return 0;
  3261. }
  3262. static u32 nv_get_rx_csum(struct net_device *dev)
  3263. {
  3264. struct fe_priv *np = netdev_priv(dev);
  3265. return (np->rx_csum) != 0;
  3266. }
  3267. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3268. {
  3269. struct fe_priv *np = netdev_priv(dev);
  3270. u8 __iomem *base = get_hwbase(dev);
  3271. int retcode = 0;
  3272. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3273. if (data) {
  3274. np->rx_csum = 1;
  3275. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3276. } else {
  3277. np->rx_csum = 0;
  3278. /* vlan is dependent on rx checksum offload */
  3279. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3280. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3281. }
  3282. if (netif_running(dev)) {
  3283. spin_lock_irq(&np->lock);
  3284. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3285. spin_unlock_irq(&np->lock);
  3286. }
  3287. } else {
  3288. return -EINVAL;
  3289. }
  3290. return retcode;
  3291. }
  3292. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3293. {
  3294. struct fe_priv *np = netdev_priv(dev);
  3295. if (np->driver_data & DEV_HAS_CHECKSUM)
  3296. return ethtool_op_set_tx_hw_csum(dev, data);
  3297. else
  3298. return -EOPNOTSUPP;
  3299. }
  3300. static int nv_set_sg(struct net_device *dev, u32 data)
  3301. {
  3302. struct fe_priv *np = netdev_priv(dev);
  3303. if (np->driver_data & DEV_HAS_CHECKSUM)
  3304. return ethtool_op_set_sg(dev, data);
  3305. else
  3306. return -EOPNOTSUPP;
  3307. }
  3308. static int nv_get_stats_count(struct net_device *dev)
  3309. {
  3310. struct fe_priv *np = netdev_priv(dev);
  3311. if (np->driver_data & DEV_HAS_STATISTICS)
  3312. return sizeof(struct nv_ethtool_stats)/sizeof(u64);
  3313. else
  3314. return 0;
  3315. }
  3316. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3317. {
  3318. struct fe_priv *np = netdev_priv(dev);
  3319. /* update stats */
  3320. nv_do_stats_poll((unsigned long)dev);
  3321. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3322. }
  3323. static int nv_self_test_count(struct net_device *dev)
  3324. {
  3325. struct fe_priv *np = netdev_priv(dev);
  3326. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3327. return NV_TEST_COUNT_EXTENDED;
  3328. else
  3329. return NV_TEST_COUNT_BASE;
  3330. }
  3331. static int nv_link_test(struct net_device *dev)
  3332. {
  3333. struct fe_priv *np = netdev_priv(dev);
  3334. int mii_status;
  3335. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3336. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3337. /* check phy link status */
  3338. if (!(mii_status & BMSR_LSTATUS))
  3339. return 0;
  3340. else
  3341. return 1;
  3342. }
  3343. static int nv_register_test(struct net_device *dev)
  3344. {
  3345. u8 __iomem *base = get_hwbase(dev);
  3346. int i = 0;
  3347. u32 orig_read, new_read;
  3348. do {
  3349. orig_read = readl(base + nv_registers_test[i].reg);
  3350. /* xor with mask to toggle bits */
  3351. orig_read ^= nv_registers_test[i].mask;
  3352. writel(orig_read, base + nv_registers_test[i].reg);
  3353. new_read = readl(base + nv_registers_test[i].reg);
  3354. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3355. return 0;
  3356. /* restore original value */
  3357. orig_read ^= nv_registers_test[i].mask;
  3358. writel(orig_read, base + nv_registers_test[i].reg);
  3359. } while (nv_registers_test[++i].reg != 0);
  3360. return 1;
  3361. }
  3362. static int nv_interrupt_test(struct net_device *dev)
  3363. {
  3364. struct fe_priv *np = netdev_priv(dev);
  3365. u8 __iomem *base = get_hwbase(dev);
  3366. int ret = 1;
  3367. int testcnt;
  3368. u32 save_msi_flags, save_poll_interval = 0;
  3369. if (netif_running(dev)) {
  3370. /* free current irq */
  3371. nv_free_irq(dev);
  3372. save_poll_interval = readl(base+NvRegPollingInterval);
  3373. }
  3374. /* flag to test interrupt handler */
  3375. np->intr_test = 0;
  3376. /* setup test irq */
  3377. save_msi_flags = np->msi_flags;
  3378. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3379. np->msi_flags |= 0x001; /* setup 1 vector */
  3380. if (nv_request_irq(dev, 1))
  3381. return 0;
  3382. /* setup timer interrupt */
  3383. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3384. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3385. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3386. /* wait for at least one interrupt */
  3387. msleep(100);
  3388. spin_lock_irq(&np->lock);
  3389. /* flag should be set within ISR */
  3390. testcnt = np->intr_test;
  3391. if (!testcnt)
  3392. ret = 2;
  3393. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3394. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3395. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3396. else
  3397. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3398. spin_unlock_irq(&np->lock);
  3399. nv_free_irq(dev);
  3400. np->msi_flags = save_msi_flags;
  3401. if (netif_running(dev)) {
  3402. writel(save_poll_interval, base + NvRegPollingInterval);
  3403. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3404. /* restore original irq */
  3405. if (nv_request_irq(dev, 0))
  3406. return 0;
  3407. }
  3408. return ret;
  3409. }
  3410. static int nv_loopback_test(struct net_device *dev)
  3411. {
  3412. struct fe_priv *np = netdev_priv(dev);
  3413. u8 __iomem *base = get_hwbase(dev);
  3414. struct sk_buff *tx_skb, *rx_skb;
  3415. dma_addr_t test_dma_addr;
  3416. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3417. u32 flags;
  3418. int len, i, pkt_len;
  3419. u8 *pkt_data;
  3420. u32 filter_flags = 0;
  3421. u32 misc1_flags = 0;
  3422. int ret = 1;
  3423. if (netif_running(dev)) {
  3424. nv_disable_irq(dev);
  3425. filter_flags = readl(base + NvRegPacketFilterFlags);
  3426. misc1_flags = readl(base + NvRegMisc1);
  3427. } else {
  3428. nv_txrx_reset(dev);
  3429. }
  3430. /* reinit driver view of the rx queue */
  3431. set_bufsize(dev);
  3432. nv_init_ring(dev);
  3433. /* setup hardware for loopback */
  3434. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3435. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3436. /* reinit nic view of the rx queue */
  3437. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3438. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3439. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3440. base + NvRegRingSizes);
  3441. pci_push(base);
  3442. /* restart rx engine */
  3443. nv_start_rx(dev);
  3444. nv_start_tx(dev);
  3445. /* setup packet for tx */
  3446. pkt_len = ETH_DATA_LEN;
  3447. tx_skb = dev_alloc_skb(pkt_len);
  3448. if (!tx_skb) {
  3449. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  3450. " of %s\n", dev->name);
  3451. ret = 0;
  3452. goto out;
  3453. }
  3454. pkt_data = skb_put(tx_skb, pkt_len);
  3455. for (i = 0; i < pkt_len; i++)
  3456. pkt_data[i] = (u8)(i & 0xff);
  3457. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3458. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3459. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3460. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3461. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3462. } else {
  3463. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3464. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3465. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3466. }
  3467. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3468. pci_push(get_hwbase(dev));
  3469. msleep(500);
  3470. /* check for rx of the packet */
  3471. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3472. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  3473. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3474. } else {
  3475. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  3476. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3477. }
  3478. if (flags & NV_RX_AVAIL) {
  3479. ret = 0;
  3480. } else if (np->desc_ver == DESC_VER_1) {
  3481. if (flags & NV_RX_ERROR)
  3482. ret = 0;
  3483. } else {
  3484. if (flags & NV_RX2_ERROR) {
  3485. ret = 0;
  3486. }
  3487. }
  3488. if (ret) {
  3489. if (len != pkt_len) {
  3490. ret = 0;
  3491. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3492. dev->name, len, pkt_len);
  3493. } else {
  3494. rx_skb = np->rx_skbuff[0];
  3495. for (i = 0; i < pkt_len; i++) {
  3496. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3497. ret = 0;
  3498. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3499. dev->name, i);
  3500. break;
  3501. }
  3502. }
  3503. }
  3504. } else {
  3505. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3506. }
  3507. pci_unmap_page(np->pci_dev, test_dma_addr,
  3508. tx_skb->end-tx_skb->data,
  3509. PCI_DMA_TODEVICE);
  3510. dev_kfree_skb_any(tx_skb);
  3511. out:
  3512. /* stop engines */
  3513. nv_stop_rx(dev);
  3514. nv_stop_tx(dev);
  3515. nv_txrx_reset(dev);
  3516. /* drain rx queue */
  3517. nv_drain_rx(dev);
  3518. nv_drain_tx(dev);
  3519. if (netif_running(dev)) {
  3520. writel(misc1_flags, base + NvRegMisc1);
  3521. writel(filter_flags, base + NvRegPacketFilterFlags);
  3522. nv_enable_irq(dev);
  3523. }
  3524. return ret;
  3525. }
  3526. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3527. {
  3528. struct fe_priv *np = netdev_priv(dev);
  3529. u8 __iomem *base = get_hwbase(dev);
  3530. int result;
  3531. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3532. if (!nv_link_test(dev)) {
  3533. test->flags |= ETH_TEST_FL_FAILED;
  3534. buffer[0] = 1;
  3535. }
  3536. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3537. if (netif_running(dev)) {
  3538. netif_stop_queue(dev);
  3539. netif_poll_disable(dev);
  3540. netif_tx_lock_bh(dev);
  3541. spin_lock_irq(&np->lock);
  3542. nv_disable_hw_interrupts(dev, np->irqmask);
  3543. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3544. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3545. } else {
  3546. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3547. }
  3548. /* stop engines */
  3549. nv_stop_rx(dev);
  3550. nv_stop_tx(dev);
  3551. nv_txrx_reset(dev);
  3552. /* drain rx queue */
  3553. nv_drain_rx(dev);
  3554. nv_drain_tx(dev);
  3555. spin_unlock_irq(&np->lock);
  3556. netif_tx_unlock_bh(dev);
  3557. }
  3558. if (!nv_register_test(dev)) {
  3559. test->flags |= ETH_TEST_FL_FAILED;
  3560. buffer[1] = 1;
  3561. }
  3562. result = nv_interrupt_test(dev);
  3563. if (result != 1) {
  3564. test->flags |= ETH_TEST_FL_FAILED;
  3565. buffer[2] = 1;
  3566. }
  3567. if (result == 0) {
  3568. /* bail out */
  3569. return;
  3570. }
  3571. if (!nv_loopback_test(dev)) {
  3572. test->flags |= ETH_TEST_FL_FAILED;
  3573. buffer[3] = 1;
  3574. }
  3575. if (netif_running(dev)) {
  3576. /* reinit driver view of the rx queue */
  3577. set_bufsize(dev);
  3578. if (nv_init_ring(dev)) {
  3579. if (!np->in_shutdown)
  3580. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3581. }
  3582. /* reinit nic view of the rx queue */
  3583. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3584. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3585. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3586. base + NvRegRingSizes);
  3587. pci_push(base);
  3588. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3589. pci_push(base);
  3590. /* restart rx engine */
  3591. nv_start_rx(dev);
  3592. nv_start_tx(dev);
  3593. netif_start_queue(dev);
  3594. netif_poll_enable(dev);
  3595. nv_enable_hw_interrupts(dev, np->irqmask);
  3596. }
  3597. }
  3598. }
  3599. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3600. {
  3601. switch (stringset) {
  3602. case ETH_SS_STATS:
  3603. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3604. break;
  3605. case ETH_SS_TEST:
  3606. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3607. break;
  3608. }
  3609. }
  3610. static const struct ethtool_ops ops = {
  3611. .get_drvinfo = nv_get_drvinfo,
  3612. .get_link = ethtool_op_get_link,
  3613. .get_wol = nv_get_wol,
  3614. .set_wol = nv_set_wol,
  3615. .get_settings = nv_get_settings,
  3616. .set_settings = nv_set_settings,
  3617. .get_regs_len = nv_get_regs_len,
  3618. .get_regs = nv_get_regs,
  3619. .nway_reset = nv_nway_reset,
  3620. .get_perm_addr = ethtool_op_get_perm_addr,
  3621. .get_tso = ethtool_op_get_tso,
  3622. .set_tso = nv_set_tso,
  3623. .get_ringparam = nv_get_ringparam,
  3624. .set_ringparam = nv_set_ringparam,
  3625. .get_pauseparam = nv_get_pauseparam,
  3626. .set_pauseparam = nv_set_pauseparam,
  3627. .get_rx_csum = nv_get_rx_csum,
  3628. .set_rx_csum = nv_set_rx_csum,
  3629. .get_tx_csum = ethtool_op_get_tx_csum,
  3630. .set_tx_csum = nv_set_tx_csum,
  3631. .get_sg = ethtool_op_get_sg,
  3632. .set_sg = nv_set_sg,
  3633. .get_strings = nv_get_strings,
  3634. .get_stats_count = nv_get_stats_count,
  3635. .get_ethtool_stats = nv_get_ethtool_stats,
  3636. .self_test_count = nv_self_test_count,
  3637. .self_test = nv_self_test,
  3638. };
  3639. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3640. {
  3641. struct fe_priv *np = get_nvpriv(dev);
  3642. spin_lock_irq(&np->lock);
  3643. /* save vlan group */
  3644. np->vlangrp = grp;
  3645. if (grp) {
  3646. /* enable vlan on MAC */
  3647. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3648. } else {
  3649. /* disable vlan on MAC */
  3650. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3651. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3652. }
  3653. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3654. spin_unlock_irq(&np->lock);
  3655. };
  3656. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3657. {
  3658. /* nothing to do */
  3659. };
  3660. /* The mgmt unit and driver use a semaphore to access the phy during init */
  3661. static int nv_mgmt_acquire_sema(struct net_device *dev)
  3662. {
  3663. u8 __iomem *base = get_hwbase(dev);
  3664. int i;
  3665. u32 tx_ctrl, mgmt_sema;
  3666. for (i = 0; i < 10; i++) {
  3667. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  3668. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  3669. break;
  3670. msleep(500);
  3671. }
  3672. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  3673. return 0;
  3674. for (i = 0; i < 2; i++) {
  3675. tx_ctrl = readl(base + NvRegTransmitterControl);
  3676. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  3677. writel(tx_ctrl, base + NvRegTransmitterControl);
  3678. /* verify that semaphore was acquired */
  3679. tx_ctrl = readl(base + NvRegTransmitterControl);
  3680. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  3681. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  3682. return 1;
  3683. else
  3684. udelay(50);
  3685. }
  3686. return 0;
  3687. }
  3688. /* Indicate to mgmt unit whether driver is loaded or not */
  3689. static void nv_mgmt_driver_loaded(struct net_device *dev, int loaded)
  3690. {
  3691. u8 __iomem *base = get_hwbase(dev);
  3692. u32 tx_ctrl;
  3693. tx_ctrl = readl(base + NvRegTransmitterControl);
  3694. if (loaded)
  3695. tx_ctrl |= NVREG_XMITCTL_HOST_LOADED;
  3696. else
  3697. tx_ctrl &= ~NVREG_XMITCTL_HOST_LOADED;
  3698. writel(tx_ctrl, base + NvRegTransmitterControl);
  3699. }
  3700. static int nv_open(struct net_device *dev)
  3701. {
  3702. struct fe_priv *np = netdev_priv(dev);
  3703. u8 __iomem *base = get_hwbase(dev);
  3704. int ret = 1;
  3705. int oom, i;
  3706. dprintk(KERN_DEBUG "nv_open: begin\n");
  3707. /* erase previous misconfiguration */
  3708. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3709. nv_mac_reset(dev);
  3710. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3711. writel(0, base + NvRegMulticastAddrB);
  3712. writel(0, base + NvRegMulticastMaskA);
  3713. writel(0, base + NvRegMulticastMaskB);
  3714. writel(0, base + NvRegPacketFilterFlags);
  3715. writel(0, base + NvRegTransmitterControl);
  3716. writel(0, base + NvRegReceiverControl);
  3717. writel(0, base + NvRegAdapterControl);
  3718. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3719. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3720. /* initialize descriptor rings */
  3721. set_bufsize(dev);
  3722. oom = nv_init_ring(dev);
  3723. writel(0, base + NvRegLinkSpeed);
  3724. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3725. nv_txrx_reset(dev);
  3726. writel(0, base + NvRegUnknownSetupReg6);
  3727. np->in_shutdown = 0;
  3728. /* give hw rings */
  3729. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3730. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3731. base + NvRegRingSizes);
  3732. writel(np->linkspeed, base + NvRegLinkSpeed);
  3733. if (np->desc_ver == DESC_VER_1)
  3734. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3735. else
  3736. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3737. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3738. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3739. pci_push(base);
  3740. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3741. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3742. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3743. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3744. writel(0, base + NvRegMIIMask);
  3745. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3746. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3747. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3748. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3749. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3750. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3751. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3752. get_random_bytes(&i, sizeof(i));
  3753. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3754. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3755. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3756. if (poll_interval == -1) {
  3757. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3758. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3759. else
  3760. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3761. }
  3762. else
  3763. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3764. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3765. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3766. base + NvRegAdapterControl);
  3767. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3768. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  3769. if (np->wolenabled)
  3770. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3771. i = readl(base + NvRegPowerState);
  3772. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3773. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3774. pci_push(base);
  3775. udelay(10);
  3776. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3777. nv_disable_hw_interrupts(dev, np->irqmask);
  3778. pci_push(base);
  3779. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3780. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3781. pci_push(base);
  3782. if (nv_request_irq(dev, 0)) {
  3783. goto out_drain;
  3784. }
  3785. /* ask for interrupts */
  3786. nv_enable_hw_interrupts(dev, np->irqmask);
  3787. spin_lock_irq(&np->lock);
  3788. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3789. writel(0, base + NvRegMulticastAddrB);
  3790. writel(0, base + NvRegMulticastMaskA);
  3791. writel(0, base + NvRegMulticastMaskB);
  3792. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3793. /* One manual link speed update: Interrupts are enabled, future link
  3794. * speed changes cause interrupts and are handled by nv_link_irq().
  3795. */
  3796. {
  3797. u32 miistat;
  3798. miistat = readl(base + NvRegMIIStatus);
  3799. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3800. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3801. }
  3802. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3803. * to init hw */
  3804. np->linkspeed = 0;
  3805. ret = nv_update_linkspeed(dev);
  3806. nv_start_rx(dev);
  3807. nv_start_tx(dev);
  3808. netif_start_queue(dev);
  3809. netif_poll_enable(dev);
  3810. if (ret) {
  3811. netif_carrier_on(dev);
  3812. } else {
  3813. printk("%s: no link during initialization.\n", dev->name);
  3814. netif_carrier_off(dev);
  3815. }
  3816. if (oom)
  3817. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3818. /* start statistics timer */
  3819. if (np->driver_data & DEV_HAS_STATISTICS)
  3820. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3821. spin_unlock_irq(&np->lock);
  3822. return 0;
  3823. out_drain:
  3824. drain_ring(dev);
  3825. return ret;
  3826. }
  3827. static int nv_close(struct net_device *dev)
  3828. {
  3829. struct fe_priv *np = netdev_priv(dev);
  3830. u8 __iomem *base;
  3831. spin_lock_irq(&np->lock);
  3832. np->in_shutdown = 1;
  3833. spin_unlock_irq(&np->lock);
  3834. netif_poll_disable(dev);
  3835. synchronize_irq(dev->irq);
  3836. del_timer_sync(&np->oom_kick);
  3837. del_timer_sync(&np->nic_poll);
  3838. del_timer_sync(&np->stats_poll);
  3839. netif_stop_queue(dev);
  3840. spin_lock_irq(&np->lock);
  3841. nv_stop_tx(dev);
  3842. nv_stop_rx(dev);
  3843. nv_txrx_reset(dev);
  3844. /* disable interrupts on the nic or we will lock up */
  3845. base = get_hwbase(dev);
  3846. nv_disable_hw_interrupts(dev, np->irqmask);
  3847. pci_push(base);
  3848. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3849. spin_unlock_irq(&np->lock);
  3850. nv_free_irq(dev);
  3851. drain_ring(dev);
  3852. if (np->wolenabled)
  3853. nv_start_rx(dev);
  3854. /* FIXME: power down nic */
  3855. return 0;
  3856. }
  3857. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3858. {
  3859. struct net_device *dev;
  3860. struct fe_priv *np;
  3861. unsigned long addr;
  3862. u8 __iomem *base;
  3863. int err, i;
  3864. u32 powerstate, txreg;
  3865. u32 phystate_orig = 0, phystate;
  3866. int phyinitialized = 0;
  3867. dev = alloc_etherdev(sizeof(struct fe_priv));
  3868. err = -ENOMEM;
  3869. if (!dev)
  3870. goto out;
  3871. np = netdev_priv(dev);
  3872. np->pci_dev = pci_dev;
  3873. spin_lock_init(&np->lock);
  3874. SET_MODULE_OWNER(dev);
  3875. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3876. init_timer(&np->oom_kick);
  3877. np->oom_kick.data = (unsigned long) dev;
  3878. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3879. init_timer(&np->nic_poll);
  3880. np->nic_poll.data = (unsigned long) dev;
  3881. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3882. init_timer(&np->stats_poll);
  3883. np->stats_poll.data = (unsigned long) dev;
  3884. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3885. err = pci_enable_device(pci_dev);
  3886. if (err) {
  3887. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3888. err, pci_name(pci_dev));
  3889. goto out_free;
  3890. }
  3891. pci_set_master(pci_dev);
  3892. err = pci_request_regions(pci_dev, DRV_NAME);
  3893. if (err < 0)
  3894. goto out_disable;
  3895. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3896. np->register_size = NV_PCI_REGSZ_VER2;
  3897. else
  3898. np->register_size = NV_PCI_REGSZ_VER1;
  3899. err = -EINVAL;
  3900. addr = 0;
  3901. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3902. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3903. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3904. pci_resource_len(pci_dev, i),
  3905. pci_resource_flags(pci_dev, i));
  3906. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3907. pci_resource_len(pci_dev, i) >= np->register_size) {
  3908. addr = pci_resource_start(pci_dev, i);
  3909. break;
  3910. }
  3911. }
  3912. if (i == DEVICE_COUNT_RESOURCE) {
  3913. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3914. pci_name(pci_dev));
  3915. goto out_relreg;
  3916. }
  3917. /* copy of driver data */
  3918. np->driver_data = id->driver_data;
  3919. /* handle different descriptor versions */
  3920. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3921. /* packet format 3: supports 40-bit addressing */
  3922. np->desc_ver = DESC_VER_3;
  3923. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3924. if (dma_64bit) {
  3925. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3926. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3927. pci_name(pci_dev));
  3928. } else {
  3929. dev->features |= NETIF_F_HIGHDMA;
  3930. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3931. }
  3932. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3933. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  3934. pci_name(pci_dev));
  3935. }
  3936. }
  3937. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3938. /* packet format 2: supports jumbo frames */
  3939. np->desc_ver = DESC_VER_2;
  3940. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3941. } else {
  3942. /* original packet format */
  3943. np->desc_ver = DESC_VER_1;
  3944. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3945. }
  3946. np->pkt_limit = NV_PKTLIMIT_1;
  3947. if (id->driver_data & DEV_HAS_LARGEDESC)
  3948. np->pkt_limit = NV_PKTLIMIT_2;
  3949. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3950. np->rx_csum = 1;
  3951. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3952. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3953. #ifdef NETIF_F_TSO
  3954. dev->features |= NETIF_F_TSO;
  3955. #endif
  3956. }
  3957. np->vlanctl_bits = 0;
  3958. if (id->driver_data & DEV_HAS_VLAN) {
  3959. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3960. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3961. dev->vlan_rx_register = nv_vlan_rx_register;
  3962. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3963. }
  3964. np->msi_flags = 0;
  3965. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  3966. np->msi_flags |= NV_MSI_CAPABLE;
  3967. }
  3968. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  3969. np->msi_flags |= NV_MSI_X_CAPABLE;
  3970. }
  3971. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3972. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3973. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3974. }
  3975. err = -ENOMEM;
  3976. np->base = ioremap(addr, np->register_size);
  3977. if (!np->base)
  3978. goto out_relreg;
  3979. dev->base_addr = (unsigned long)np->base;
  3980. dev->irq = pci_dev->irq;
  3981. np->rx_ring_size = RX_RING_DEFAULT;
  3982. np->tx_ring_size = TX_RING_DEFAULT;
  3983. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3984. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3985. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3986. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3987. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3988. &np->ring_addr);
  3989. if (!np->rx_ring.orig)
  3990. goto out_unmap;
  3991. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3992. } else {
  3993. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3994. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3995. &np->ring_addr);
  3996. if (!np->rx_ring.ex)
  3997. goto out_unmap;
  3998. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3999. }
  4000. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  4001. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  4002. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  4003. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  4004. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  4005. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  4006. goto out_freering;
  4007. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  4008. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  4009. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  4010. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  4011. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  4012. dev->open = nv_open;
  4013. dev->stop = nv_close;
  4014. dev->hard_start_xmit = nv_start_xmit;
  4015. dev->get_stats = nv_get_stats;
  4016. dev->change_mtu = nv_change_mtu;
  4017. dev->set_mac_address = nv_set_mac_address;
  4018. dev->set_multicast_list = nv_set_multicast;
  4019. #ifdef CONFIG_NET_POLL_CONTROLLER
  4020. dev->poll_controller = nv_poll_controller;
  4021. #endif
  4022. dev->weight = 64;
  4023. #ifdef CONFIG_FORCEDETH_NAPI
  4024. dev->poll = nv_napi_poll;
  4025. #endif
  4026. SET_ETHTOOL_OPS(dev, &ops);
  4027. dev->tx_timeout = nv_tx_timeout;
  4028. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4029. pci_set_drvdata(pci_dev, dev);
  4030. /* read the mac address */
  4031. base = get_hwbase(dev);
  4032. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4033. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4034. /* check the workaround bit for correct mac address order */
  4035. txreg = readl(base + NvRegTransmitPoll);
  4036. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4037. /* mac address is already in correct order */
  4038. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4039. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4040. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4041. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4042. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4043. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4044. } else {
  4045. /* need to reverse mac address to correct order */
  4046. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4047. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4048. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4049. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4050. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4051. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4052. /* set permanent address to be correct aswell */
  4053. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4054. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4055. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4056. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4057. }
  4058. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4059. if (!is_valid_ether_addr(dev->perm_addr)) {
  4060. /*
  4061. * Bad mac address. At least one bios sets the mac address
  4062. * to 01:23:45:67:89:ab
  4063. */
  4064. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  4065. pci_name(pci_dev),
  4066. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4067. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4068. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4069. dev->dev_addr[0] = 0x00;
  4070. dev->dev_addr[1] = 0x00;
  4071. dev->dev_addr[2] = 0x6c;
  4072. get_random_bytes(&dev->dev_addr[3], 3);
  4073. }
  4074. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4075. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4076. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4077. /* set mac address */
  4078. nv_copy_mac_to_hw(dev);
  4079. /* disable WOL */
  4080. writel(0, base + NvRegWakeUpFlags);
  4081. np->wolenabled = 0;
  4082. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4083. u8 revision_id;
  4084. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  4085. /* take phy and nic out of low power mode */
  4086. powerstate = readl(base + NvRegPowerState2);
  4087. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4088. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4089. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4090. revision_id >= 0xA3)
  4091. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4092. writel(powerstate, base + NvRegPowerState2);
  4093. }
  4094. if (np->desc_ver == DESC_VER_1) {
  4095. np->tx_flags = NV_TX_VALID;
  4096. } else {
  4097. np->tx_flags = NV_TX2_VALID;
  4098. }
  4099. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4100. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4101. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4102. np->msi_flags |= 0x0003;
  4103. } else {
  4104. np->irqmask = NVREG_IRQMASK_CPU;
  4105. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4106. np->msi_flags |= 0x0001;
  4107. }
  4108. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4109. np->irqmask |= NVREG_IRQ_TIMER;
  4110. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4111. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4112. np->need_linktimer = 1;
  4113. np->link_timeout = jiffies + LINK_TIMEOUT;
  4114. } else {
  4115. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4116. np->need_linktimer = 0;
  4117. }
  4118. /* clear phy state and temporarily halt phy interrupts */
  4119. writel(0, base + NvRegMIIMask);
  4120. phystate = readl(base + NvRegAdapterControl);
  4121. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4122. phystate_orig = 1;
  4123. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4124. writel(phystate, base + NvRegAdapterControl);
  4125. }
  4126. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4127. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4128. writel(0x1, base + 0x204); pci_push(base);
  4129. msleep(500);
  4130. /* management unit running on the mac? */
  4131. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4132. if (np->mac_in_use) {
  4133. u32 mgmt_sync;
  4134. /* management unit setup the phy already? */
  4135. mgmt_sync = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK;
  4136. if (mgmt_sync == NVREG_XMITCTL_SYNC_NOT_READY) {
  4137. if (!nv_mgmt_acquire_sema(dev)) {
  4138. for (i = 0; i < 5000; i++) {
  4139. msleep(1);
  4140. mgmt_sync = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK;
  4141. if (mgmt_sync == NVREG_XMITCTL_SYNC_NOT_READY)
  4142. continue;
  4143. if (mgmt_sync == NVREG_XMITCTL_SYNC_PHY_INIT)
  4144. phyinitialized = 1;
  4145. break;
  4146. }
  4147. } else {
  4148. /* we need to init the phy */
  4149. }
  4150. } else if (mgmt_sync == NVREG_XMITCTL_SYNC_PHY_INIT) {
  4151. /* phy is inited by SMU */
  4152. phyinitialized = 1;
  4153. } else {
  4154. /* we need to init the phy */
  4155. }
  4156. }
  4157. }
  4158. /* find a suitable phy */
  4159. for (i = 1; i <= 32; i++) {
  4160. int id1, id2;
  4161. int phyaddr = i & 0x1F;
  4162. spin_lock_irq(&np->lock);
  4163. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4164. spin_unlock_irq(&np->lock);
  4165. if (id1 < 0 || id1 == 0xffff)
  4166. continue;
  4167. spin_lock_irq(&np->lock);
  4168. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4169. spin_unlock_irq(&np->lock);
  4170. if (id2 < 0 || id2 == 0xffff)
  4171. continue;
  4172. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4173. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4174. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4175. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4176. pci_name(pci_dev), id1, id2, phyaddr);
  4177. np->phyaddr = phyaddr;
  4178. np->phy_oui = id1 | id2;
  4179. break;
  4180. }
  4181. if (i == 33) {
  4182. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4183. pci_name(pci_dev));
  4184. goto out_error;
  4185. }
  4186. if (!phyinitialized) {
  4187. /* reset it */
  4188. phy_init(dev);
  4189. }
  4190. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4191. nv_mgmt_driver_loaded(dev, 1);
  4192. }
  4193. /* set default link speed settings */
  4194. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4195. np->duplex = 0;
  4196. np->autoneg = 1;
  4197. err = register_netdev(dev);
  4198. if (err) {
  4199. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4200. goto out_error;
  4201. }
  4202. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4203. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4204. pci_name(pci_dev));
  4205. return 0;
  4206. out_error:
  4207. if (phystate_orig)
  4208. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4209. if (np->mac_in_use)
  4210. nv_mgmt_driver_loaded(dev, 0);
  4211. pci_set_drvdata(pci_dev, NULL);
  4212. out_freering:
  4213. free_rings(dev);
  4214. out_unmap:
  4215. iounmap(get_hwbase(dev));
  4216. out_relreg:
  4217. pci_release_regions(pci_dev);
  4218. out_disable:
  4219. pci_disable_device(pci_dev);
  4220. out_free:
  4221. free_netdev(dev);
  4222. out:
  4223. return err;
  4224. }
  4225. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4226. {
  4227. struct net_device *dev = pci_get_drvdata(pci_dev);
  4228. struct fe_priv *np = netdev_priv(dev);
  4229. u8 __iomem *base = get_hwbase(dev);
  4230. unregister_netdev(dev);
  4231. /* special op: write back the misordered MAC address - otherwise
  4232. * the next nv_probe would see a wrong address.
  4233. */
  4234. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4235. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4236. if (np->mac_in_use)
  4237. nv_mgmt_driver_loaded(dev, 0);
  4238. /* free all structures */
  4239. free_rings(dev);
  4240. iounmap(get_hwbase(dev));
  4241. pci_release_regions(pci_dev);
  4242. pci_disable_device(pci_dev);
  4243. free_netdev(dev);
  4244. pci_set_drvdata(pci_dev, NULL);
  4245. }
  4246. #ifdef CONFIG_PM
  4247. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4248. {
  4249. struct net_device *dev = pci_get_drvdata(pdev);
  4250. struct fe_priv *np = netdev_priv(dev);
  4251. if (!netif_running(dev))
  4252. goto out;
  4253. netif_device_detach(dev);
  4254. // Gross.
  4255. nv_close(dev);
  4256. pci_save_state(pdev);
  4257. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4258. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4259. out:
  4260. return 0;
  4261. }
  4262. static int nv_resume(struct pci_dev *pdev)
  4263. {
  4264. struct net_device *dev = pci_get_drvdata(pdev);
  4265. int rc = 0;
  4266. if (!netif_running(dev))
  4267. goto out;
  4268. netif_device_attach(dev);
  4269. pci_set_power_state(pdev, PCI_D0);
  4270. pci_restore_state(pdev);
  4271. pci_enable_wake(pdev, PCI_D0, 0);
  4272. rc = nv_open(dev);
  4273. out:
  4274. return rc;
  4275. }
  4276. #else
  4277. #define nv_suspend NULL
  4278. #define nv_resume NULL
  4279. #endif /* CONFIG_PM */
  4280. static struct pci_device_id pci_tbl[] = {
  4281. { /* nForce Ethernet Controller */
  4282. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4283. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4284. },
  4285. { /* nForce2 Ethernet Controller */
  4286. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4287. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4288. },
  4289. { /* nForce3 Ethernet Controller */
  4290. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4291. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4292. },
  4293. { /* nForce3 Ethernet Controller */
  4294. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4295. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4296. },
  4297. { /* nForce3 Ethernet Controller */
  4298. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4299. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4300. },
  4301. { /* nForce3 Ethernet Controller */
  4302. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4303. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4304. },
  4305. { /* nForce3 Ethernet Controller */
  4306. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4307. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4308. },
  4309. { /* CK804 Ethernet Controller */
  4310. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4311. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4312. },
  4313. { /* CK804 Ethernet Controller */
  4314. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4315. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4316. },
  4317. { /* MCP04 Ethernet Controller */
  4318. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4319. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4320. },
  4321. { /* MCP04 Ethernet Controller */
  4322. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4323. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4324. },
  4325. { /* MCP51 Ethernet Controller */
  4326. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4327. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4328. },
  4329. { /* MCP51 Ethernet Controller */
  4330. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4331. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4332. },
  4333. { /* MCP55 Ethernet Controller */
  4334. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4335. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4336. },
  4337. { /* MCP55 Ethernet Controller */
  4338. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4339. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4340. },
  4341. { /* MCP61 Ethernet Controller */
  4342. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4343. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4344. },
  4345. { /* MCP61 Ethernet Controller */
  4346. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4347. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4348. },
  4349. { /* MCP61 Ethernet Controller */
  4350. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4351. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4352. },
  4353. { /* MCP61 Ethernet Controller */
  4354. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4355. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4356. },
  4357. { /* MCP65 Ethernet Controller */
  4358. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4359. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4360. },
  4361. { /* MCP65 Ethernet Controller */
  4362. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4363. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4364. },
  4365. { /* MCP65 Ethernet Controller */
  4366. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4367. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4368. },
  4369. { /* MCP65 Ethernet Controller */
  4370. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4371. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4372. },
  4373. { /* MCP67 Ethernet Controller */
  4374. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4375. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4376. },
  4377. { /* MCP67 Ethernet Controller */
  4378. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4379. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4380. },
  4381. { /* MCP67 Ethernet Controller */
  4382. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4383. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4384. },
  4385. { /* MCP67 Ethernet Controller */
  4386. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4387. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4388. },
  4389. {0,},
  4390. };
  4391. static struct pci_driver driver = {
  4392. .name = "forcedeth",
  4393. .id_table = pci_tbl,
  4394. .probe = nv_probe,
  4395. .remove = __devexit_p(nv_remove),
  4396. .suspend = nv_suspend,
  4397. .resume = nv_resume,
  4398. };
  4399. static int __init init_nic(void)
  4400. {
  4401. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4402. return pci_register_driver(&driver);
  4403. }
  4404. static void __exit exit_nic(void)
  4405. {
  4406. pci_unregister_driver(&driver);
  4407. }
  4408. module_param(max_interrupt_work, int, 0);
  4409. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4410. module_param(optimization_mode, int, 0);
  4411. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4412. module_param(poll_interval, int, 0);
  4413. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4414. module_param(msi, int, 0);
  4415. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4416. module_param(msix, int, 0);
  4417. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4418. module_param(dma_64bit, int, 0);
  4419. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4420. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4421. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4422. MODULE_LICENSE("GPL");
  4423. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4424. module_init(init_nic);
  4425. module_exit(exit_nic);