mmu.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
  359. }
  360. static bool spte_has_volatile_bits(u64 spte)
  361. {
  362. /*
  363. * Always atomicly update spte if it can be updated
  364. * out of mmu-lock, it can ensure dirty bit is not lost,
  365. * also, it can help us to get a stable is_writable_pte()
  366. * to ensure tlb flush is not missed.
  367. */
  368. if (spte_is_locklessly_modifiable(spte))
  369. return true;
  370. if (!shadow_accessed_mask)
  371. return false;
  372. if (!is_shadow_present_pte(spte))
  373. return false;
  374. if ((spte & shadow_accessed_mask) &&
  375. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  376. return false;
  377. return true;
  378. }
  379. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  380. {
  381. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  382. }
  383. /* Rules for using mmu_spte_set:
  384. * Set the sptep from nonpresent to present.
  385. * Note: the sptep being assigned *must* be either not present
  386. * or in a state where the hardware will not attempt to update
  387. * the spte.
  388. */
  389. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  390. {
  391. WARN_ON(is_shadow_present_pte(*sptep));
  392. __set_spte(sptep, new_spte);
  393. }
  394. /* Rules for using mmu_spte_update:
  395. * Update the state bits, it means the mapped pfn is not changged.
  396. *
  397. * Whenever we overwrite a writable spte with a read-only one we
  398. * should flush remote TLBs. Otherwise rmap_write_protect
  399. * will find a read-only spte, even though the writable spte
  400. * might be cached on a CPU's TLB, the return value indicates this
  401. * case.
  402. */
  403. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  404. {
  405. u64 old_spte = *sptep;
  406. bool ret = false;
  407. WARN_ON(!is_rmap_spte(new_spte));
  408. if (!is_shadow_present_pte(old_spte)) {
  409. mmu_spte_set(sptep, new_spte);
  410. return ret;
  411. }
  412. if (!spte_has_volatile_bits(old_spte))
  413. __update_clear_spte_fast(sptep, new_spte);
  414. else
  415. old_spte = __update_clear_spte_slow(sptep, new_spte);
  416. /*
  417. * For the spte updated out of mmu-lock is safe, since
  418. * we always atomicly update it, see the comments in
  419. * spte_has_volatile_bits().
  420. */
  421. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  422. ret = true;
  423. if (!shadow_accessed_mask)
  424. return ret;
  425. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  426. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  427. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  428. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  429. return ret;
  430. }
  431. /*
  432. * Rules for using mmu_spte_clear_track_bits:
  433. * It sets the sptep from present to nonpresent, and track the
  434. * state bits, it is used to clear the last level sptep.
  435. */
  436. static int mmu_spte_clear_track_bits(u64 *sptep)
  437. {
  438. pfn_t pfn;
  439. u64 old_spte = *sptep;
  440. if (!spte_has_volatile_bits(old_spte))
  441. __update_clear_spte_fast(sptep, 0ull);
  442. else
  443. old_spte = __update_clear_spte_slow(sptep, 0ull);
  444. if (!is_rmap_spte(old_spte))
  445. return 0;
  446. pfn = spte_to_pfn(old_spte);
  447. /*
  448. * KVM does not hold the refcount of the page used by
  449. * kvm mmu, before reclaiming the page, we should
  450. * unmap it from mmu first.
  451. */
  452. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  453. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  454. kvm_set_pfn_accessed(pfn);
  455. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  456. kvm_set_pfn_dirty(pfn);
  457. return 1;
  458. }
  459. /*
  460. * Rules for using mmu_spte_clear_no_track:
  461. * Directly clear spte without caring the state bits of sptep,
  462. * it is used to set the upper level spte.
  463. */
  464. static void mmu_spte_clear_no_track(u64 *sptep)
  465. {
  466. __update_clear_spte_fast(sptep, 0ull);
  467. }
  468. static u64 mmu_spte_get_lockless(u64 *sptep)
  469. {
  470. return __get_spte_lockless(sptep);
  471. }
  472. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  473. {
  474. /*
  475. * Prevent page table teardown by making any free-er wait during
  476. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  477. */
  478. local_irq_disable();
  479. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  480. /*
  481. * Make sure a following spte read is not reordered ahead of the write
  482. * to vcpu->mode.
  483. */
  484. smp_mb();
  485. }
  486. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  487. {
  488. /*
  489. * Make sure the write to vcpu->mode is not reordered in front of
  490. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  491. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  492. */
  493. smp_mb();
  494. vcpu->mode = OUTSIDE_GUEST_MODE;
  495. local_irq_enable();
  496. }
  497. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  498. struct kmem_cache *base_cache, int min)
  499. {
  500. void *obj;
  501. if (cache->nobjs >= min)
  502. return 0;
  503. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  504. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  505. if (!obj)
  506. return -ENOMEM;
  507. cache->objects[cache->nobjs++] = obj;
  508. }
  509. return 0;
  510. }
  511. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  512. {
  513. return cache->nobjs;
  514. }
  515. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  516. struct kmem_cache *cache)
  517. {
  518. while (mc->nobjs)
  519. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  520. }
  521. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  522. int min)
  523. {
  524. void *page;
  525. if (cache->nobjs >= min)
  526. return 0;
  527. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  528. page = (void *)__get_free_page(GFP_KERNEL);
  529. if (!page)
  530. return -ENOMEM;
  531. cache->objects[cache->nobjs++] = page;
  532. }
  533. return 0;
  534. }
  535. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  536. {
  537. while (mc->nobjs)
  538. free_page((unsigned long)mc->objects[--mc->nobjs]);
  539. }
  540. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  541. {
  542. int r;
  543. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  544. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  545. if (r)
  546. goto out;
  547. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  548. if (r)
  549. goto out;
  550. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  551. mmu_page_header_cache, 4);
  552. out:
  553. return r;
  554. }
  555. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  556. {
  557. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  558. pte_list_desc_cache);
  559. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  560. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  561. mmu_page_header_cache);
  562. }
  563. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  564. {
  565. void *p;
  566. BUG_ON(!mc->nobjs);
  567. p = mc->objects[--mc->nobjs];
  568. return p;
  569. }
  570. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  571. {
  572. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  573. }
  574. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  575. {
  576. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  577. }
  578. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  579. {
  580. if (!sp->role.direct)
  581. return sp->gfns[index];
  582. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  583. }
  584. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  585. {
  586. if (sp->role.direct)
  587. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  588. else
  589. sp->gfns[index] = gfn;
  590. }
  591. /*
  592. * Return the pointer to the large page information for a given gfn,
  593. * handling slots that are not large page aligned.
  594. */
  595. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  596. struct kvm_memory_slot *slot,
  597. int level)
  598. {
  599. unsigned long idx;
  600. idx = gfn_to_index(gfn, slot->base_gfn, level);
  601. return &slot->arch.lpage_info[level - 2][idx];
  602. }
  603. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  604. {
  605. struct kvm_memory_slot *slot;
  606. struct kvm_lpage_info *linfo;
  607. int i;
  608. slot = gfn_to_memslot(kvm, gfn);
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. linfo = lpage_info_slot(gfn, slot, i);
  612. linfo->write_count += 1;
  613. }
  614. kvm->arch.indirect_shadow_pages++;
  615. }
  616. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  617. {
  618. struct kvm_memory_slot *slot;
  619. struct kvm_lpage_info *linfo;
  620. int i;
  621. slot = gfn_to_memslot(kvm, gfn);
  622. for (i = PT_DIRECTORY_LEVEL;
  623. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  624. linfo = lpage_info_slot(gfn, slot, i);
  625. linfo->write_count -= 1;
  626. WARN_ON(linfo->write_count < 0);
  627. }
  628. kvm->arch.indirect_shadow_pages--;
  629. }
  630. static int has_wrprotected_page(struct kvm *kvm,
  631. gfn_t gfn,
  632. int level)
  633. {
  634. struct kvm_memory_slot *slot;
  635. struct kvm_lpage_info *linfo;
  636. slot = gfn_to_memslot(kvm, gfn);
  637. if (slot) {
  638. linfo = lpage_info_slot(gfn, slot, level);
  639. return linfo->write_count;
  640. }
  641. return 1;
  642. }
  643. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  644. {
  645. unsigned long page_size;
  646. int i, ret = 0;
  647. page_size = kvm_host_page_size(kvm, gfn);
  648. for (i = PT_PAGE_TABLE_LEVEL;
  649. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  650. if (page_size >= KVM_HPAGE_SIZE(i))
  651. ret = i;
  652. else
  653. break;
  654. }
  655. return ret;
  656. }
  657. static struct kvm_memory_slot *
  658. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  659. bool no_dirty_log)
  660. {
  661. struct kvm_memory_slot *slot;
  662. slot = gfn_to_memslot(vcpu->kvm, gfn);
  663. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  664. (no_dirty_log && slot->dirty_bitmap))
  665. slot = NULL;
  666. return slot;
  667. }
  668. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  669. {
  670. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  671. }
  672. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  673. {
  674. int host_level, level, max_level;
  675. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  676. if (host_level == PT_PAGE_TABLE_LEVEL)
  677. return host_level;
  678. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  679. kvm_x86_ops->get_lpage_level() : host_level;
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. if (likely(level == PT_PAGE_TABLE_LEVEL))
  804. return &slot->rmap[gfn - slot->base_gfn];
  805. idx = gfn_to_index(gfn, slot->base_gfn, level);
  806. return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
  807. }
  808. /*
  809. * Take gfn and return the reverse mapping to it.
  810. */
  811. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  812. {
  813. struct kvm_memory_slot *slot;
  814. slot = gfn_to_memslot(kvm, gfn);
  815. return __gfn_to_rmap(gfn, level, slot);
  816. }
  817. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  818. {
  819. struct kvm_mmu_memory_cache *cache;
  820. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  821. return mmu_memory_cache_free_objects(cache);
  822. }
  823. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  824. {
  825. struct kvm_mmu_page *sp;
  826. unsigned long *rmapp;
  827. sp = page_header(__pa(spte));
  828. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  829. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  830. return pte_list_add(vcpu, spte, rmapp);
  831. }
  832. static void rmap_remove(struct kvm *kvm, u64 *spte)
  833. {
  834. struct kvm_mmu_page *sp;
  835. gfn_t gfn;
  836. unsigned long *rmapp;
  837. sp = page_header(__pa(spte));
  838. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  839. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  840. pte_list_remove(spte, rmapp);
  841. }
  842. /*
  843. * Used by the following functions to iterate through the sptes linked by a
  844. * rmap. All fields are private and not assumed to be used outside.
  845. */
  846. struct rmap_iterator {
  847. /* private fields */
  848. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  849. int pos; /* index of the sptep */
  850. };
  851. /*
  852. * Iteration must be started by this function. This should also be used after
  853. * removing/dropping sptes from the rmap link because in such cases the
  854. * information in the itererator may not be valid.
  855. *
  856. * Returns sptep if found, NULL otherwise.
  857. */
  858. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  859. {
  860. if (!rmap)
  861. return NULL;
  862. if (!(rmap & 1)) {
  863. iter->desc = NULL;
  864. return (u64 *)rmap;
  865. }
  866. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  867. iter->pos = 0;
  868. return iter->desc->sptes[iter->pos];
  869. }
  870. /*
  871. * Must be used with a valid iterator: e.g. after rmap_get_first().
  872. *
  873. * Returns sptep if found, NULL otherwise.
  874. */
  875. static u64 *rmap_get_next(struct rmap_iterator *iter)
  876. {
  877. if (iter->desc) {
  878. if (iter->pos < PTE_LIST_EXT - 1) {
  879. u64 *sptep;
  880. ++iter->pos;
  881. sptep = iter->desc->sptes[iter->pos];
  882. if (sptep)
  883. return sptep;
  884. }
  885. iter->desc = iter->desc->more;
  886. if (iter->desc) {
  887. iter->pos = 0;
  888. /* desc->sptes[0] cannot be NULL */
  889. return iter->desc->sptes[iter->pos];
  890. }
  891. }
  892. return NULL;
  893. }
  894. static void drop_spte(struct kvm *kvm, u64 *sptep)
  895. {
  896. if (mmu_spte_clear_track_bits(sptep))
  897. rmap_remove(kvm, sptep);
  898. }
  899. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  900. {
  901. if (is_large_pte(*sptep)) {
  902. WARN_ON(page_header(__pa(sptep))->role.level ==
  903. PT_PAGE_TABLE_LEVEL);
  904. drop_spte(kvm, sptep);
  905. --kvm->stat.lpages;
  906. return true;
  907. }
  908. return false;
  909. }
  910. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  911. {
  912. if (__drop_large_spte(vcpu->kvm, sptep))
  913. kvm_flush_remote_tlbs(vcpu->kvm);
  914. }
  915. /*
  916. * Write-protect on the specified @sptep, @pt_protect indicates whether
  917. * spte writ-protection is caused by protecting shadow page table.
  918. * @flush indicates whether tlb need be flushed.
  919. *
  920. * Note: write protection is difference between drity logging and spte
  921. * protection:
  922. * - for dirty logging, the spte can be set to writable at anytime if
  923. * its dirty bitmap is properly set.
  924. * - for spte protection, the spte can be writable only after unsync-ing
  925. * shadow page.
  926. *
  927. * Return true if the spte is dropped.
  928. */
  929. static bool
  930. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  931. {
  932. u64 spte = *sptep;
  933. if (!is_writable_pte(spte) &&
  934. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  935. return false;
  936. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  937. if (__drop_large_spte(kvm, sptep)) {
  938. *flush |= true;
  939. return true;
  940. }
  941. if (pt_protect)
  942. spte &= ~SPTE_MMU_WRITEABLE;
  943. spte = spte & ~PT_WRITABLE_MASK;
  944. *flush |= mmu_spte_update(sptep, spte);
  945. return false;
  946. }
  947. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  948. int level, bool pt_protect)
  949. {
  950. u64 *sptep;
  951. struct rmap_iterator iter;
  952. bool flush = false;
  953. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  954. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  955. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  956. sptep = rmap_get_first(*rmapp, &iter);
  957. continue;
  958. }
  959. sptep = rmap_get_next(&iter);
  960. }
  961. return flush;
  962. }
  963. /**
  964. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  965. * @kvm: kvm instance
  966. * @slot: slot to protect
  967. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  968. * @mask: indicates which pages we should protect
  969. *
  970. * Used when we do not need to care about huge page mappings: e.g. during dirty
  971. * logging we do not have any such mappings.
  972. */
  973. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  974. struct kvm_memory_slot *slot,
  975. gfn_t gfn_offset, unsigned long mask)
  976. {
  977. unsigned long *rmapp;
  978. while (mask) {
  979. rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
  980. __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
  981. /* clear the first set bit */
  982. mask &= mask - 1;
  983. }
  984. }
  985. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  986. {
  987. struct kvm_memory_slot *slot;
  988. unsigned long *rmapp;
  989. int i;
  990. bool write_protected = false;
  991. slot = gfn_to_memslot(kvm, gfn);
  992. for (i = PT_PAGE_TABLE_LEVEL;
  993. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  994. rmapp = __gfn_to_rmap(gfn, i, slot);
  995. write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
  996. }
  997. return write_protected;
  998. }
  999. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1000. struct kvm_memory_slot *slot, unsigned long data)
  1001. {
  1002. u64 *sptep;
  1003. struct rmap_iterator iter;
  1004. int need_tlb_flush = 0;
  1005. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1006. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1007. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1008. drop_spte(kvm, sptep);
  1009. need_tlb_flush = 1;
  1010. }
  1011. return need_tlb_flush;
  1012. }
  1013. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1014. struct kvm_memory_slot *slot, unsigned long data)
  1015. {
  1016. u64 *sptep;
  1017. struct rmap_iterator iter;
  1018. int need_flush = 0;
  1019. u64 new_spte;
  1020. pte_t *ptep = (pte_t *)data;
  1021. pfn_t new_pfn;
  1022. WARN_ON(pte_huge(*ptep));
  1023. new_pfn = pte_pfn(*ptep);
  1024. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1025. BUG_ON(!is_shadow_present_pte(*sptep));
  1026. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1027. need_flush = 1;
  1028. if (pte_write(*ptep)) {
  1029. drop_spte(kvm, sptep);
  1030. sptep = rmap_get_first(*rmapp, &iter);
  1031. } else {
  1032. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1033. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1034. new_spte &= ~PT_WRITABLE_MASK;
  1035. new_spte &= ~SPTE_HOST_WRITEABLE;
  1036. new_spte &= ~shadow_accessed_mask;
  1037. mmu_spte_clear_track_bits(sptep);
  1038. mmu_spte_set(sptep, new_spte);
  1039. sptep = rmap_get_next(&iter);
  1040. }
  1041. }
  1042. if (need_flush)
  1043. kvm_flush_remote_tlbs(kvm);
  1044. return 0;
  1045. }
  1046. static int kvm_handle_hva_range(struct kvm *kvm,
  1047. unsigned long start,
  1048. unsigned long end,
  1049. unsigned long data,
  1050. int (*handler)(struct kvm *kvm,
  1051. unsigned long *rmapp,
  1052. struct kvm_memory_slot *slot,
  1053. unsigned long data))
  1054. {
  1055. int j;
  1056. int ret = 0;
  1057. struct kvm_memslots *slots;
  1058. struct kvm_memory_slot *memslot;
  1059. slots = kvm_memslots(kvm);
  1060. kvm_for_each_memslot(memslot, slots) {
  1061. unsigned long hva_start, hva_end;
  1062. gfn_t gfn_start, gfn_end;
  1063. hva_start = max(start, memslot->userspace_addr);
  1064. hva_end = min(end, memslot->userspace_addr +
  1065. (memslot->npages << PAGE_SHIFT));
  1066. if (hva_start >= hva_end)
  1067. continue;
  1068. /*
  1069. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1070. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1071. */
  1072. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1073. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1074. for (j = PT_PAGE_TABLE_LEVEL;
  1075. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1076. unsigned long idx, idx_end;
  1077. unsigned long *rmapp;
  1078. /*
  1079. * {idx(page_j) | page_j intersects with
  1080. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1081. */
  1082. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1083. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1084. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1085. for (; idx <= idx_end; ++idx)
  1086. ret |= handler(kvm, rmapp++, memslot, data);
  1087. }
  1088. }
  1089. return ret;
  1090. }
  1091. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1092. unsigned long data,
  1093. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1094. struct kvm_memory_slot *slot,
  1095. unsigned long data))
  1096. {
  1097. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1098. }
  1099. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1100. {
  1101. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1102. }
  1103. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1104. {
  1105. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1106. }
  1107. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1108. {
  1109. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1110. }
  1111. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1112. struct kvm_memory_slot *slot, unsigned long data)
  1113. {
  1114. u64 *sptep;
  1115. struct rmap_iterator uninitialized_var(iter);
  1116. int young = 0;
  1117. /*
  1118. * In case of absence of EPT Access and Dirty Bits supports,
  1119. * emulate the accessed bit for EPT, by checking if this page has
  1120. * an EPT mapping, and clearing it if it does. On the next access,
  1121. * a new EPT mapping will be established.
  1122. * This has some overhead, but not as much as the cost of swapping
  1123. * out actively used pages or breaking up actively used hugepages.
  1124. */
  1125. if (!shadow_accessed_mask) {
  1126. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1127. goto out;
  1128. }
  1129. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1130. sptep = rmap_get_next(&iter)) {
  1131. BUG_ON(!is_shadow_present_pte(*sptep));
  1132. if (*sptep & shadow_accessed_mask) {
  1133. young = 1;
  1134. clear_bit((ffs(shadow_accessed_mask) - 1),
  1135. (unsigned long *)sptep);
  1136. }
  1137. }
  1138. out:
  1139. /* @data has hva passed to kvm_age_hva(). */
  1140. trace_kvm_age_page(data, slot, young);
  1141. return young;
  1142. }
  1143. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1144. struct kvm_memory_slot *slot, unsigned long data)
  1145. {
  1146. u64 *sptep;
  1147. struct rmap_iterator iter;
  1148. int young = 0;
  1149. /*
  1150. * If there's no access bit in the secondary pte set by the
  1151. * hardware it's up to gup-fast/gup to set the access bit in
  1152. * the primary pte or in the page structure.
  1153. */
  1154. if (!shadow_accessed_mask)
  1155. goto out;
  1156. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1157. sptep = rmap_get_next(&iter)) {
  1158. BUG_ON(!is_shadow_present_pte(*sptep));
  1159. if (*sptep & shadow_accessed_mask) {
  1160. young = 1;
  1161. break;
  1162. }
  1163. }
  1164. out:
  1165. return young;
  1166. }
  1167. #define RMAP_RECYCLE_THRESHOLD 1000
  1168. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1169. {
  1170. unsigned long *rmapp;
  1171. struct kvm_mmu_page *sp;
  1172. sp = page_header(__pa(spte));
  1173. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1174. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1175. kvm_flush_remote_tlbs(vcpu->kvm);
  1176. }
  1177. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1178. {
  1179. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1180. }
  1181. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1182. {
  1183. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1184. }
  1185. #ifdef MMU_DEBUG
  1186. static int is_empty_shadow_page(u64 *spt)
  1187. {
  1188. u64 *pos;
  1189. u64 *end;
  1190. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1191. if (is_shadow_present_pte(*pos)) {
  1192. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1193. pos, *pos);
  1194. return 0;
  1195. }
  1196. return 1;
  1197. }
  1198. #endif
  1199. /*
  1200. * This value is the sum of all of the kvm instances's
  1201. * kvm->arch.n_used_mmu_pages values. We need a global,
  1202. * aggregate version in order to make the slab shrinker
  1203. * faster
  1204. */
  1205. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1206. {
  1207. kvm->arch.n_used_mmu_pages += nr;
  1208. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1209. }
  1210. /*
  1211. * Remove the sp from shadow page cache, after call it,
  1212. * we can not find this sp from the cache, and the shadow
  1213. * page table is still valid.
  1214. * It should be under the protection of mmu lock.
  1215. */
  1216. static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
  1217. {
  1218. ASSERT(is_empty_shadow_page(sp->spt));
  1219. hlist_del(&sp->hash_link);
  1220. if (!sp->role.direct)
  1221. free_page((unsigned long)sp->gfns);
  1222. }
  1223. /*
  1224. * Free the shadow page table and the sp, we can do it
  1225. * out of the protection of mmu lock.
  1226. */
  1227. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1228. {
  1229. list_del(&sp->link);
  1230. free_page((unsigned long)sp->spt);
  1231. kmem_cache_free(mmu_page_header_cache, sp);
  1232. }
  1233. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1234. {
  1235. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1236. }
  1237. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1238. struct kvm_mmu_page *sp, u64 *parent_pte)
  1239. {
  1240. if (!parent_pte)
  1241. return;
  1242. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1243. }
  1244. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1245. u64 *parent_pte)
  1246. {
  1247. pte_list_remove(parent_pte, &sp->parent_ptes);
  1248. }
  1249. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1250. u64 *parent_pte)
  1251. {
  1252. mmu_page_remove_parent_pte(sp, parent_pte);
  1253. mmu_spte_clear_no_track(parent_pte);
  1254. }
  1255. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1256. u64 *parent_pte, int direct)
  1257. {
  1258. struct kvm_mmu_page *sp;
  1259. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1260. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1261. if (!direct)
  1262. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1263. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1264. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1265. bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
  1266. sp->parent_ptes = 0;
  1267. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1268. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1269. return sp;
  1270. }
  1271. static void mark_unsync(u64 *spte);
  1272. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1273. {
  1274. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1275. }
  1276. static void mark_unsync(u64 *spte)
  1277. {
  1278. struct kvm_mmu_page *sp;
  1279. unsigned int index;
  1280. sp = page_header(__pa(spte));
  1281. index = spte - sp->spt;
  1282. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1283. return;
  1284. if (sp->unsync_children++)
  1285. return;
  1286. kvm_mmu_mark_parents_unsync(sp);
  1287. }
  1288. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1289. struct kvm_mmu_page *sp)
  1290. {
  1291. return 1;
  1292. }
  1293. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1294. {
  1295. }
  1296. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1297. struct kvm_mmu_page *sp, u64 *spte,
  1298. const void *pte)
  1299. {
  1300. WARN_ON(1);
  1301. }
  1302. #define KVM_PAGE_ARRAY_NR 16
  1303. struct kvm_mmu_pages {
  1304. struct mmu_page_and_offset {
  1305. struct kvm_mmu_page *sp;
  1306. unsigned int idx;
  1307. } page[KVM_PAGE_ARRAY_NR];
  1308. unsigned int nr;
  1309. };
  1310. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1311. int idx)
  1312. {
  1313. int i;
  1314. if (sp->unsync)
  1315. for (i=0; i < pvec->nr; i++)
  1316. if (pvec->page[i].sp == sp)
  1317. return 0;
  1318. pvec->page[pvec->nr].sp = sp;
  1319. pvec->page[pvec->nr].idx = idx;
  1320. pvec->nr++;
  1321. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1322. }
  1323. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1324. struct kvm_mmu_pages *pvec)
  1325. {
  1326. int i, ret, nr_unsync_leaf = 0;
  1327. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1328. struct kvm_mmu_page *child;
  1329. u64 ent = sp->spt[i];
  1330. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1331. goto clear_child_bitmap;
  1332. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1333. if (child->unsync_children) {
  1334. if (mmu_pages_add(pvec, child, i))
  1335. return -ENOSPC;
  1336. ret = __mmu_unsync_walk(child, pvec);
  1337. if (!ret)
  1338. goto clear_child_bitmap;
  1339. else if (ret > 0)
  1340. nr_unsync_leaf += ret;
  1341. else
  1342. return ret;
  1343. } else if (child->unsync) {
  1344. nr_unsync_leaf++;
  1345. if (mmu_pages_add(pvec, child, i))
  1346. return -ENOSPC;
  1347. } else
  1348. goto clear_child_bitmap;
  1349. continue;
  1350. clear_child_bitmap:
  1351. __clear_bit(i, sp->unsync_child_bitmap);
  1352. sp->unsync_children--;
  1353. WARN_ON((int)sp->unsync_children < 0);
  1354. }
  1355. return nr_unsync_leaf;
  1356. }
  1357. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1358. struct kvm_mmu_pages *pvec)
  1359. {
  1360. if (!sp->unsync_children)
  1361. return 0;
  1362. mmu_pages_add(pvec, sp, 0);
  1363. return __mmu_unsync_walk(sp, pvec);
  1364. }
  1365. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1366. {
  1367. WARN_ON(!sp->unsync);
  1368. trace_kvm_mmu_sync_page(sp);
  1369. sp->unsync = 0;
  1370. --kvm->stat.mmu_unsync;
  1371. }
  1372. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1373. struct list_head *invalid_list);
  1374. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1375. struct list_head *invalid_list);
  1376. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1377. hlist_for_each_entry(sp, pos, \
  1378. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1379. if ((sp)->gfn != (gfn)) {} else
  1380. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1381. hlist_for_each_entry(sp, pos, \
  1382. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1383. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1384. (sp)->role.invalid) {} else
  1385. /* @sp->gfn should be write-protected at the call site */
  1386. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1387. struct list_head *invalid_list, bool clear_unsync)
  1388. {
  1389. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1390. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1391. return 1;
  1392. }
  1393. if (clear_unsync)
  1394. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1395. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1396. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1397. return 1;
  1398. }
  1399. kvm_mmu_flush_tlb(vcpu);
  1400. return 0;
  1401. }
  1402. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1403. struct kvm_mmu_page *sp)
  1404. {
  1405. LIST_HEAD(invalid_list);
  1406. int ret;
  1407. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1408. if (ret)
  1409. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1410. return ret;
  1411. }
  1412. #ifdef CONFIG_KVM_MMU_AUDIT
  1413. #include "mmu_audit.c"
  1414. #else
  1415. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1416. static void mmu_audit_disable(void) { }
  1417. #endif
  1418. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1419. struct list_head *invalid_list)
  1420. {
  1421. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1422. }
  1423. /* @gfn should be write-protected at the call site */
  1424. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1425. {
  1426. struct kvm_mmu_page *s;
  1427. struct hlist_node *node;
  1428. LIST_HEAD(invalid_list);
  1429. bool flush = false;
  1430. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1431. if (!s->unsync)
  1432. continue;
  1433. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1434. kvm_unlink_unsync_page(vcpu->kvm, s);
  1435. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1436. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1437. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1438. continue;
  1439. }
  1440. flush = true;
  1441. }
  1442. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1443. if (flush)
  1444. kvm_mmu_flush_tlb(vcpu);
  1445. }
  1446. struct mmu_page_path {
  1447. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1448. unsigned int idx[PT64_ROOT_LEVEL-1];
  1449. };
  1450. #define for_each_sp(pvec, sp, parents, i) \
  1451. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1452. sp = pvec.page[i].sp; \
  1453. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1454. i = mmu_pages_next(&pvec, &parents, i))
  1455. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1456. struct mmu_page_path *parents,
  1457. int i)
  1458. {
  1459. int n;
  1460. for (n = i+1; n < pvec->nr; n++) {
  1461. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1462. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1463. parents->idx[0] = pvec->page[n].idx;
  1464. return n;
  1465. }
  1466. parents->parent[sp->role.level-2] = sp;
  1467. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1468. }
  1469. return n;
  1470. }
  1471. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1472. {
  1473. struct kvm_mmu_page *sp;
  1474. unsigned int level = 0;
  1475. do {
  1476. unsigned int idx = parents->idx[level];
  1477. sp = parents->parent[level];
  1478. if (!sp)
  1479. return;
  1480. --sp->unsync_children;
  1481. WARN_ON((int)sp->unsync_children < 0);
  1482. __clear_bit(idx, sp->unsync_child_bitmap);
  1483. level++;
  1484. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1485. }
  1486. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1487. struct mmu_page_path *parents,
  1488. struct kvm_mmu_pages *pvec)
  1489. {
  1490. parents->parent[parent->role.level-1] = NULL;
  1491. pvec->nr = 0;
  1492. }
  1493. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1494. struct kvm_mmu_page *parent)
  1495. {
  1496. int i;
  1497. struct kvm_mmu_page *sp;
  1498. struct mmu_page_path parents;
  1499. struct kvm_mmu_pages pages;
  1500. LIST_HEAD(invalid_list);
  1501. kvm_mmu_pages_init(parent, &parents, &pages);
  1502. while (mmu_unsync_walk(parent, &pages)) {
  1503. bool protected = false;
  1504. for_each_sp(pages, sp, parents, i)
  1505. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1506. if (protected)
  1507. kvm_flush_remote_tlbs(vcpu->kvm);
  1508. for_each_sp(pages, sp, parents, i) {
  1509. kvm_sync_page(vcpu, sp, &invalid_list);
  1510. mmu_pages_clear_parents(&parents);
  1511. }
  1512. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1513. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1514. kvm_mmu_pages_init(parent, &parents, &pages);
  1515. }
  1516. }
  1517. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1518. {
  1519. int i;
  1520. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1521. sp->spt[i] = 0ull;
  1522. }
  1523. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1524. {
  1525. sp->write_flooding_count = 0;
  1526. }
  1527. static void clear_sp_write_flooding_count(u64 *spte)
  1528. {
  1529. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1530. __clear_sp_write_flooding_count(sp);
  1531. }
  1532. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1533. gfn_t gfn,
  1534. gva_t gaddr,
  1535. unsigned level,
  1536. int direct,
  1537. unsigned access,
  1538. u64 *parent_pte)
  1539. {
  1540. union kvm_mmu_page_role role;
  1541. unsigned quadrant;
  1542. struct kvm_mmu_page *sp;
  1543. struct hlist_node *node;
  1544. bool need_sync = false;
  1545. role = vcpu->arch.mmu.base_role;
  1546. role.level = level;
  1547. role.direct = direct;
  1548. if (role.direct)
  1549. role.cr4_pae = 0;
  1550. role.access = access;
  1551. if (!vcpu->arch.mmu.direct_map
  1552. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1553. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1554. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1555. role.quadrant = quadrant;
  1556. }
  1557. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1558. if (!need_sync && sp->unsync)
  1559. need_sync = true;
  1560. if (sp->role.word != role.word)
  1561. continue;
  1562. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1563. break;
  1564. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1565. if (sp->unsync_children) {
  1566. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1567. kvm_mmu_mark_parents_unsync(sp);
  1568. } else if (sp->unsync)
  1569. kvm_mmu_mark_parents_unsync(sp);
  1570. __clear_sp_write_flooding_count(sp);
  1571. trace_kvm_mmu_get_page(sp, false);
  1572. return sp;
  1573. }
  1574. ++vcpu->kvm->stat.mmu_cache_miss;
  1575. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1576. if (!sp)
  1577. return sp;
  1578. sp->gfn = gfn;
  1579. sp->role = role;
  1580. hlist_add_head(&sp->hash_link,
  1581. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1582. if (!direct) {
  1583. if (rmap_write_protect(vcpu->kvm, gfn))
  1584. kvm_flush_remote_tlbs(vcpu->kvm);
  1585. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1586. kvm_sync_pages(vcpu, gfn);
  1587. account_shadowed(vcpu->kvm, gfn);
  1588. }
  1589. init_shadow_page_table(sp);
  1590. trace_kvm_mmu_get_page(sp, true);
  1591. return sp;
  1592. }
  1593. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1594. struct kvm_vcpu *vcpu, u64 addr)
  1595. {
  1596. iterator->addr = addr;
  1597. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1598. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1599. if (iterator->level == PT64_ROOT_LEVEL &&
  1600. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1601. !vcpu->arch.mmu.direct_map)
  1602. --iterator->level;
  1603. if (iterator->level == PT32E_ROOT_LEVEL) {
  1604. iterator->shadow_addr
  1605. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1606. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1607. --iterator->level;
  1608. if (!iterator->shadow_addr)
  1609. iterator->level = 0;
  1610. }
  1611. }
  1612. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1613. {
  1614. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1615. return false;
  1616. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1617. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1618. return true;
  1619. }
  1620. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1621. u64 spte)
  1622. {
  1623. if (is_last_spte(spte, iterator->level)) {
  1624. iterator->level = 0;
  1625. return;
  1626. }
  1627. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1628. --iterator->level;
  1629. }
  1630. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1631. {
  1632. return __shadow_walk_next(iterator, *iterator->sptep);
  1633. }
  1634. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1635. {
  1636. u64 spte;
  1637. spte = __pa(sp->spt)
  1638. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1639. | PT_WRITABLE_MASK | PT_USER_MASK;
  1640. mmu_spte_set(sptep, spte);
  1641. }
  1642. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1643. unsigned direct_access)
  1644. {
  1645. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1646. struct kvm_mmu_page *child;
  1647. /*
  1648. * For the direct sp, if the guest pte's dirty bit
  1649. * changed form clean to dirty, it will corrupt the
  1650. * sp's access: allow writable in the read-only sp,
  1651. * so we should update the spte at this point to get
  1652. * a new sp with the correct access.
  1653. */
  1654. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1655. if (child->role.access == direct_access)
  1656. return;
  1657. drop_parent_pte(child, sptep);
  1658. kvm_flush_remote_tlbs(vcpu->kvm);
  1659. }
  1660. }
  1661. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1662. u64 *spte)
  1663. {
  1664. u64 pte;
  1665. struct kvm_mmu_page *child;
  1666. pte = *spte;
  1667. if (is_shadow_present_pte(pte)) {
  1668. if (is_last_spte(pte, sp->role.level)) {
  1669. drop_spte(kvm, spte);
  1670. if (is_large_pte(pte))
  1671. --kvm->stat.lpages;
  1672. } else {
  1673. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1674. drop_parent_pte(child, spte);
  1675. }
  1676. return true;
  1677. }
  1678. if (is_mmio_spte(pte))
  1679. mmu_spte_clear_no_track(spte);
  1680. return false;
  1681. }
  1682. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1683. struct kvm_mmu_page *sp)
  1684. {
  1685. unsigned i;
  1686. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1687. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1688. }
  1689. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1690. {
  1691. mmu_page_remove_parent_pte(sp, parent_pte);
  1692. }
  1693. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1694. {
  1695. u64 *sptep;
  1696. struct rmap_iterator iter;
  1697. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1698. drop_parent_pte(sp, sptep);
  1699. }
  1700. static int mmu_zap_unsync_children(struct kvm *kvm,
  1701. struct kvm_mmu_page *parent,
  1702. struct list_head *invalid_list)
  1703. {
  1704. int i, zapped = 0;
  1705. struct mmu_page_path parents;
  1706. struct kvm_mmu_pages pages;
  1707. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1708. return 0;
  1709. kvm_mmu_pages_init(parent, &parents, &pages);
  1710. while (mmu_unsync_walk(parent, &pages)) {
  1711. struct kvm_mmu_page *sp;
  1712. for_each_sp(pages, sp, parents, i) {
  1713. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1714. mmu_pages_clear_parents(&parents);
  1715. zapped++;
  1716. }
  1717. kvm_mmu_pages_init(parent, &parents, &pages);
  1718. }
  1719. return zapped;
  1720. }
  1721. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1722. struct list_head *invalid_list)
  1723. {
  1724. int ret;
  1725. trace_kvm_mmu_prepare_zap_page(sp);
  1726. ++kvm->stat.mmu_shadow_zapped;
  1727. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1728. kvm_mmu_page_unlink_children(kvm, sp);
  1729. kvm_mmu_unlink_parents(kvm, sp);
  1730. if (!sp->role.invalid && !sp->role.direct)
  1731. unaccount_shadowed(kvm, sp->gfn);
  1732. if (sp->unsync)
  1733. kvm_unlink_unsync_page(kvm, sp);
  1734. if (!sp->root_count) {
  1735. /* Count self */
  1736. ret++;
  1737. list_move(&sp->link, invalid_list);
  1738. kvm_mod_used_mmu_pages(kvm, -1);
  1739. } else {
  1740. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1741. kvm_reload_remote_mmus(kvm);
  1742. }
  1743. sp->role.invalid = 1;
  1744. return ret;
  1745. }
  1746. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1747. struct list_head *invalid_list)
  1748. {
  1749. struct kvm_mmu_page *sp;
  1750. if (list_empty(invalid_list))
  1751. return;
  1752. /*
  1753. * wmb: make sure everyone sees our modifications to the page tables
  1754. * rmb: make sure we see changes to vcpu->mode
  1755. */
  1756. smp_mb();
  1757. /*
  1758. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1759. * page table walks.
  1760. */
  1761. kvm_flush_remote_tlbs(kvm);
  1762. do {
  1763. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1764. WARN_ON(!sp->role.invalid || sp->root_count);
  1765. kvm_mmu_isolate_page(sp);
  1766. kvm_mmu_free_page(sp);
  1767. } while (!list_empty(invalid_list));
  1768. }
  1769. /*
  1770. * Changing the number of mmu pages allocated to the vm
  1771. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1772. */
  1773. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1774. {
  1775. LIST_HEAD(invalid_list);
  1776. /*
  1777. * If we set the number of mmu pages to be smaller be than the
  1778. * number of actived pages , we must to free some mmu pages before we
  1779. * change the value
  1780. */
  1781. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1782. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1783. !list_empty(&kvm->arch.active_mmu_pages)) {
  1784. struct kvm_mmu_page *page;
  1785. page = container_of(kvm->arch.active_mmu_pages.prev,
  1786. struct kvm_mmu_page, link);
  1787. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1788. }
  1789. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1790. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1791. }
  1792. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1793. }
  1794. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1795. {
  1796. struct kvm_mmu_page *sp;
  1797. struct hlist_node *node;
  1798. LIST_HEAD(invalid_list);
  1799. int r;
  1800. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1801. r = 0;
  1802. spin_lock(&kvm->mmu_lock);
  1803. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1804. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1805. sp->role.word);
  1806. r = 1;
  1807. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1808. }
  1809. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1810. spin_unlock(&kvm->mmu_lock);
  1811. return r;
  1812. }
  1813. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1814. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1815. {
  1816. int slot = memslot_id(kvm, gfn);
  1817. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1818. __set_bit(slot, sp->slot_bitmap);
  1819. }
  1820. /*
  1821. * The function is based on mtrr_type_lookup() in
  1822. * arch/x86/kernel/cpu/mtrr/generic.c
  1823. */
  1824. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1825. u64 start, u64 end)
  1826. {
  1827. int i;
  1828. u64 base, mask;
  1829. u8 prev_match, curr_match;
  1830. int num_var_ranges = KVM_NR_VAR_MTRR;
  1831. if (!mtrr_state->enabled)
  1832. return 0xFF;
  1833. /* Make end inclusive end, instead of exclusive */
  1834. end--;
  1835. /* Look in fixed ranges. Just return the type as per start */
  1836. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1837. int idx;
  1838. if (start < 0x80000) {
  1839. idx = 0;
  1840. idx += (start >> 16);
  1841. return mtrr_state->fixed_ranges[idx];
  1842. } else if (start < 0xC0000) {
  1843. idx = 1 * 8;
  1844. idx += ((start - 0x80000) >> 14);
  1845. return mtrr_state->fixed_ranges[idx];
  1846. } else if (start < 0x1000000) {
  1847. idx = 3 * 8;
  1848. idx += ((start - 0xC0000) >> 12);
  1849. return mtrr_state->fixed_ranges[idx];
  1850. }
  1851. }
  1852. /*
  1853. * Look in variable ranges
  1854. * Look of multiple ranges matching this address and pick type
  1855. * as per MTRR precedence
  1856. */
  1857. if (!(mtrr_state->enabled & 2))
  1858. return mtrr_state->def_type;
  1859. prev_match = 0xFF;
  1860. for (i = 0; i < num_var_ranges; ++i) {
  1861. unsigned short start_state, end_state;
  1862. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1863. continue;
  1864. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1865. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1866. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1867. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1868. start_state = ((start & mask) == (base & mask));
  1869. end_state = ((end & mask) == (base & mask));
  1870. if (start_state != end_state)
  1871. return 0xFE;
  1872. if ((start & mask) != (base & mask))
  1873. continue;
  1874. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1875. if (prev_match == 0xFF) {
  1876. prev_match = curr_match;
  1877. continue;
  1878. }
  1879. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1880. curr_match == MTRR_TYPE_UNCACHABLE)
  1881. return MTRR_TYPE_UNCACHABLE;
  1882. if ((prev_match == MTRR_TYPE_WRBACK &&
  1883. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1884. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1885. curr_match == MTRR_TYPE_WRBACK)) {
  1886. prev_match = MTRR_TYPE_WRTHROUGH;
  1887. curr_match = MTRR_TYPE_WRTHROUGH;
  1888. }
  1889. if (prev_match != curr_match)
  1890. return MTRR_TYPE_UNCACHABLE;
  1891. }
  1892. if (prev_match != 0xFF)
  1893. return prev_match;
  1894. return mtrr_state->def_type;
  1895. }
  1896. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1897. {
  1898. u8 mtrr;
  1899. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1900. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1901. if (mtrr == 0xfe || mtrr == 0xff)
  1902. mtrr = MTRR_TYPE_WRBACK;
  1903. return mtrr;
  1904. }
  1905. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1906. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1907. {
  1908. trace_kvm_mmu_unsync_page(sp);
  1909. ++vcpu->kvm->stat.mmu_unsync;
  1910. sp->unsync = 1;
  1911. kvm_mmu_mark_parents_unsync(sp);
  1912. }
  1913. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1914. {
  1915. struct kvm_mmu_page *s;
  1916. struct hlist_node *node;
  1917. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1918. if (s->unsync)
  1919. continue;
  1920. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1921. __kvm_unsync_page(vcpu, s);
  1922. }
  1923. }
  1924. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1925. bool can_unsync)
  1926. {
  1927. struct kvm_mmu_page *s;
  1928. struct hlist_node *node;
  1929. bool need_unsync = false;
  1930. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1931. if (!can_unsync)
  1932. return 1;
  1933. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1934. return 1;
  1935. if (!need_unsync && !s->unsync) {
  1936. need_unsync = true;
  1937. }
  1938. }
  1939. if (need_unsync)
  1940. kvm_unsync_pages(vcpu, gfn);
  1941. return 0;
  1942. }
  1943. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1944. unsigned pte_access, int user_fault,
  1945. int write_fault, int level,
  1946. gfn_t gfn, pfn_t pfn, bool speculative,
  1947. bool can_unsync, bool host_writable)
  1948. {
  1949. u64 spte;
  1950. int ret = 0;
  1951. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1952. return 0;
  1953. spte = PT_PRESENT_MASK;
  1954. if (!speculative)
  1955. spte |= shadow_accessed_mask;
  1956. if (pte_access & ACC_EXEC_MASK)
  1957. spte |= shadow_x_mask;
  1958. else
  1959. spte |= shadow_nx_mask;
  1960. if (pte_access & ACC_USER_MASK)
  1961. spte |= shadow_user_mask;
  1962. if (level > PT_PAGE_TABLE_LEVEL)
  1963. spte |= PT_PAGE_SIZE_MASK;
  1964. if (tdp_enabled)
  1965. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1966. kvm_is_mmio_pfn(pfn));
  1967. if (host_writable)
  1968. spte |= SPTE_HOST_WRITEABLE;
  1969. else
  1970. pte_access &= ~ACC_WRITE_MASK;
  1971. spte |= (u64)pfn << PAGE_SHIFT;
  1972. if ((pte_access & ACC_WRITE_MASK)
  1973. || (!vcpu->arch.mmu.direct_map && write_fault
  1974. && !is_write_protection(vcpu) && !user_fault)) {
  1975. if (level > PT_PAGE_TABLE_LEVEL &&
  1976. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1977. ret = 1;
  1978. drop_spte(vcpu->kvm, sptep);
  1979. goto done;
  1980. }
  1981. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1982. if (!vcpu->arch.mmu.direct_map
  1983. && !(pte_access & ACC_WRITE_MASK)) {
  1984. spte &= ~PT_USER_MASK;
  1985. /*
  1986. * If we converted a user page to a kernel page,
  1987. * so that the kernel can write to it when cr0.wp=0,
  1988. * then we should prevent the kernel from executing it
  1989. * if SMEP is enabled.
  1990. */
  1991. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1992. spte |= PT64_NX_MASK;
  1993. }
  1994. /*
  1995. * Optimization: for pte sync, if spte was writable the hash
  1996. * lookup is unnecessary (and expensive). Write protection
  1997. * is responsibility of mmu_get_page / kvm_sync_page.
  1998. * Same reasoning can be applied to dirty page accounting.
  1999. */
  2000. if (!can_unsync && is_writable_pte(*sptep))
  2001. goto set_pte;
  2002. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2003. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2004. __func__, gfn);
  2005. ret = 1;
  2006. pte_access &= ~ACC_WRITE_MASK;
  2007. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2008. }
  2009. }
  2010. if (pte_access & ACC_WRITE_MASK)
  2011. mark_page_dirty(vcpu->kvm, gfn);
  2012. set_pte:
  2013. if (mmu_spte_update(sptep, spte))
  2014. kvm_flush_remote_tlbs(vcpu->kvm);
  2015. done:
  2016. return ret;
  2017. }
  2018. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2019. unsigned pt_access, unsigned pte_access,
  2020. int user_fault, int write_fault,
  2021. int *emulate, int level, gfn_t gfn,
  2022. pfn_t pfn, bool speculative,
  2023. bool host_writable)
  2024. {
  2025. int was_rmapped = 0;
  2026. int rmap_count;
  2027. pgprintk("%s: spte %llx access %x write_fault %d"
  2028. " user_fault %d gfn %llx\n",
  2029. __func__, *sptep, pt_access,
  2030. write_fault, user_fault, gfn);
  2031. if (is_rmap_spte(*sptep)) {
  2032. /*
  2033. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2034. * the parent of the now unreachable PTE.
  2035. */
  2036. if (level > PT_PAGE_TABLE_LEVEL &&
  2037. !is_large_pte(*sptep)) {
  2038. struct kvm_mmu_page *child;
  2039. u64 pte = *sptep;
  2040. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2041. drop_parent_pte(child, sptep);
  2042. kvm_flush_remote_tlbs(vcpu->kvm);
  2043. } else if (pfn != spte_to_pfn(*sptep)) {
  2044. pgprintk("hfn old %llx new %llx\n",
  2045. spte_to_pfn(*sptep), pfn);
  2046. drop_spte(vcpu->kvm, sptep);
  2047. kvm_flush_remote_tlbs(vcpu->kvm);
  2048. } else
  2049. was_rmapped = 1;
  2050. }
  2051. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  2052. level, gfn, pfn, speculative, true,
  2053. host_writable)) {
  2054. if (write_fault)
  2055. *emulate = 1;
  2056. kvm_mmu_flush_tlb(vcpu);
  2057. }
  2058. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2059. *emulate = 1;
  2060. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2061. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2062. is_large_pte(*sptep)? "2MB" : "4kB",
  2063. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2064. *sptep, sptep);
  2065. if (!was_rmapped && is_large_pte(*sptep))
  2066. ++vcpu->kvm->stat.lpages;
  2067. if (is_shadow_present_pte(*sptep)) {
  2068. page_header_update_slot(vcpu->kvm, sptep, gfn);
  2069. if (!was_rmapped) {
  2070. rmap_count = rmap_add(vcpu, sptep, gfn);
  2071. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2072. rmap_recycle(vcpu, sptep, gfn);
  2073. }
  2074. }
  2075. kvm_release_pfn_clean(pfn);
  2076. }
  2077. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2078. {
  2079. mmu_free_roots(vcpu);
  2080. }
  2081. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2082. bool no_dirty_log)
  2083. {
  2084. struct kvm_memory_slot *slot;
  2085. unsigned long hva;
  2086. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2087. if (!slot) {
  2088. get_page(fault_page);
  2089. return page_to_pfn(fault_page);
  2090. }
  2091. hva = gfn_to_hva_memslot(slot, gfn);
  2092. return hva_to_pfn_atomic(vcpu->kvm, hva);
  2093. }
  2094. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2095. struct kvm_mmu_page *sp,
  2096. u64 *start, u64 *end)
  2097. {
  2098. struct page *pages[PTE_PREFETCH_NUM];
  2099. unsigned access = sp->role.access;
  2100. int i, ret;
  2101. gfn_t gfn;
  2102. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2103. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2104. return -1;
  2105. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2106. if (ret <= 0)
  2107. return -1;
  2108. for (i = 0; i < ret; i++, gfn++, start++)
  2109. mmu_set_spte(vcpu, start, ACC_ALL,
  2110. access, 0, 0, NULL,
  2111. sp->role.level, gfn,
  2112. page_to_pfn(pages[i]), true, true);
  2113. return 0;
  2114. }
  2115. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2116. struct kvm_mmu_page *sp, u64 *sptep)
  2117. {
  2118. u64 *spte, *start = NULL;
  2119. int i;
  2120. WARN_ON(!sp->role.direct);
  2121. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2122. spte = sp->spt + i;
  2123. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2124. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2125. if (!start)
  2126. continue;
  2127. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2128. break;
  2129. start = NULL;
  2130. } else if (!start)
  2131. start = spte;
  2132. }
  2133. }
  2134. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2135. {
  2136. struct kvm_mmu_page *sp;
  2137. /*
  2138. * Since it's no accessed bit on EPT, it's no way to
  2139. * distinguish between actually accessed translations
  2140. * and prefetched, so disable pte prefetch if EPT is
  2141. * enabled.
  2142. */
  2143. if (!shadow_accessed_mask)
  2144. return;
  2145. sp = page_header(__pa(sptep));
  2146. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2147. return;
  2148. __direct_pte_prefetch(vcpu, sp, sptep);
  2149. }
  2150. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2151. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2152. bool prefault)
  2153. {
  2154. struct kvm_shadow_walk_iterator iterator;
  2155. struct kvm_mmu_page *sp;
  2156. int emulate = 0;
  2157. gfn_t pseudo_gfn;
  2158. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2159. if (iterator.level == level) {
  2160. unsigned pte_access = ACC_ALL;
  2161. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  2162. 0, write, &emulate,
  2163. level, gfn, pfn, prefault, map_writable);
  2164. direct_pte_prefetch(vcpu, iterator.sptep);
  2165. ++vcpu->stat.pf_fixed;
  2166. break;
  2167. }
  2168. if (!is_shadow_present_pte(*iterator.sptep)) {
  2169. u64 base_addr = iterator.addr;
  2170. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2171. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2172. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2173. iterator.level - 1,
  2174. 1, ACC_ALL, iterator.sptep);
  2175. if (!sp) {
  2176. pgprintk("nonpaging_map: ENOMEM\n");
  2177. kvm_release_pfn_clean(pfn);
  2178. return -ENOMEM;
  2179. }
  2180. mmu_spte_set(iterator.sptep,
  2181. __pa(sp->spt)
  2182. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  2183. | shadow_user_mask | shadow_x_mask
  2184. | shadow_accessed_mask);
  2185. }
  2186. }
  2187. return emulate;
  2188. }
  2189. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2190. {
  2191. siginfo_t info;
  2192. info.si_signo = SIGBUS;
  2193. info.si_errno = 0;
  2194. info.si_code = BUS_MCEERR_AR;
  2195. info.si_addr = (void __user *)address;
  2196. info.si_addr_lsb = PAGE_SHIFT;
  2197. send_sig_info(SIGBUS, &info, tsk);
  2198. }
  2199. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2200. {
  2201. kvm_release_pfn_clean(pfn);
  2202. if (is_hwpoison_pfn(pfn)) {
  2203. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2204. return 0;
  2205. }
  2206. return -EFAULT;
  2207. }
  2208. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2209. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2210. {
  2211. pfn_t pfn = *pfnp;
  2212. gfn_t gfn = *gfnp;
  2213. int level = *levelp;
  2214. /*
  2215. * Check if it's a transparent hugepage. If this would be an
  2216. * hugetlbfs page, level wouldn't be set to
  2217. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2218. * here.
  2219. */
  2220. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2221. level == PT_PAGE_TABLE_LEVEL &&
  2222. PageTransCompound(pfn_to_page(pfn)) &&
  2223. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2224. unsigned long mask;
  2225. /*
  2226. * mmu_notifier_retry was successful and we hold the
  2227. * mmu_lock here, so the pmd can't become splitting
  2228. * from under us, and in turn
  2229. * __split_huge_page_refcount() can't run from under
  2230. * us and we can safely transfer the refcount from
  2231. * PG_tail to PG_head as we switch the pfn to tail to
  2232. * head.
  2233. */
  2234. *levelp = level = PT_DIRECTORY_LEVEL;
  2235. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2236. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2237. if (pfn & mask) {
  2238. gfn &= ~mask;
  2239. *gfnp = gfn;
  2240. kvm_release_pfn_clean(pfn);
  2241. pfn &= ~mask;
  2242. kvm_get_pfn(pfn);
  2243. *pfnp = pfn;
  2244. }
  2245. }
  2246. }
  2247. static bool mmu_invalid_pfn(pfn_t pfn)
  2248. {
  2249. return unlikely(is_invalid_pfn(pfn));
  2250. }
  2251. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2252. pfn_t pfn, unsigned access, int *ret_val)
  2253. {
  2254. bool ret = true;
  2255. /* The pfn is invalid, report the error! */
  2256. if (unlikely(is_invalid_pfn(pfn))) {
  2257. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2258. goto exit;
  2259. }
  2260. if (unlikely(is_noslot_pfn(pfn)))
  2261. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2262. ret = false;
  2263. exit:
  2264. return ret;
  2265. }
  2266. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2267. {
  2268. /*
  2269. * #PF can be fast only if the shadow page table is present and it
  2270. * is caused by write-protect, that means we just need change the
  2271. * W bit of the spte which can be done out of mmu-lock.
  2272. */
  2273. if (!(error_code & PFERR_PRESENT_MASK) ||
  2274. !(error_code & PFERR_WRITE_MASK))
  2275. return false;
  2276. return true;
  2277. }
  2278. static bool
  2279. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2280. {
  2281. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2282. gfn_t gfn;
  2283. WARN_ON(!sp->role.direct);
  2284. /*
  2285. * The gfn of direct spte is stable since it is calculated
  2286. * by sp->gfn.
  2287. */
  2288. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2289. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2290. mark_page_dirty(vcpu->kvm, gfn);
  2291. return true;
  2292. }
  2293. /*
  2294. * Return value:
  2295. * - true: let the vcpu to access on the same address again.
  2296. * - false: let the real page fault path to fix it.
  2297. */
  2298. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2299. u32 error_code)
  2300. {
  2301. struct kvm_shadow_walk_iterator iterator;
  2302. bool ret = false;
  2303. u64 spte = 0ull;
  2304. if (!page_fault_can_be_fast(vcpu, error_code))
  2305. return false;
  2306. walk_shadow_page_lockless_begin(vcpu);
  2307. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2308. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2309. break;
  2310. /*
  2311. * If the mapping has been changed, let the vcpu fault on the
  2312. * same address again.
  2313. */
  2314. if (!is_rmap_spte(spte)) {
  2315. ret = true;
  2316. goto exit;
  2317. }
  2318. if (!is_last_spte(spte, level))
  2319. goto exit;
  2320. /*
  2321. * Check if it is a spurious fault caused by TLB lazily flushed.
  2322. *
  2323. * Need not check the access of upper level table entries since
  2324. * they are always ACC_ALL.
  2325. */
  2326. if (is_writable_pte(spte)) {
  2327. ret = true;
  2328. goto exit;
  2329. }
  2330. /*
  2331. * Currently, to simplify the code, only the spte write-protected
  2332. * by dirty-log can be fast fixed.
  2333. */
  2334. if (!spte_is_locklessly_modifiable(spte))
  2335. goto exit;
  2336. /*
  2337. * Currently, fast page fault only works for direct mapping since
  2338. * the gfn is not stable for indirect shadow page.
  2339. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2340. */
  2341. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2342. exit:
  2343. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2344. spte, ret);
  2345. walk_shadow_page_lockless_end(vcpu);
  2346. return ret;
  2347. }
  2348. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2349. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2350. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2351. gfn_t gfn, bool prefault)
  2352. {
  2353. int r;
  2354. int level;
  2355. int force_pt_level;
  2356. pfn_t pfn;
  2357. unsigned long mmu_seq;
  2358. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2359. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2360. if (likely(!force_pt_level)) {
  2361. level = mapping_level(vcpu, gfn);
  2362. /*
  2363. * This path builds a PAE pagetable - so we can map
  2364. * 2mb pages at maximum. Therefore check if the level
  2365. * is larger than that.
  2366. */
  2367. if (level > PT_DIRECTORY_LEVEL)
  2368. level = PT_DIRECTORY_LEVEL;
  2369. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2370. } else
  2371. level = PT_PAGE_TABLE_LEVEL;
  2372. if (fast_page_fault(vcpu, v, level, error_code))
  2373. return 0;
  2374. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2375. smp_rmb();
  2376. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2377. return 0;
  2378. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2379. return r;
  2380. spin_lock(&vcpu->kvm->mmu_lock);
  2381. if (mmu_notifier_retry(vcpu, mmu_seq))
  2382. goto out_unlock;
  2383. kvm_mmu_free_some_pages(vcpu);
  2384. if (likely(!force_pt_level))
  2385. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2386. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2387. prefault);
  2388. spin_unlock(&vcpu->kvm->mmu_lock);
  2389. return r;
  2390. out_unlock:
  2391. spin_unlock(&vcpu->kvm->mmu_lock);
  2392. kvm_release_pfn_clean(pfn);
  2393. return 0;
  2394. }
  2395. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2396. {
  2397. int i;
  2398. struct kvm_mmu_page *sp;
  2399. LIST_HEAD(invalid_list);
  2400. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2401. return;
  2402. spin_lock(&vcpu->kvm->mmu_lock);
  2403. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2404. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2405. vcpu->arch.mmu.direct_map)) {
  2406. hpa_t root = vcpu->arch.mmu.root_hpa;
  2407. sp = page_header(root);
  2408. --sp->root_count;
  2409. if (!sp->root_count && sp->role.invalid) {
  2410. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2411. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2412. }
  2413. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2414. spin_unlock(&vcpu->kvm->mmu_lock);
  2415. return;
  2416. }
  2417. for (i = 0; i < 4; ++i) {
  2418. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2419. if (root) {
  2420. root &= PT64_BASE_ADDR_MASK;
  2421. sp = page_header(root);
  2422. --sp->root_count;
  2423. if (!sp->root_count && sp->role.invalid)
  2424. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2425. &invalid_list);
  2426. }
  2427. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2428. }
  2429. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2430. spin_unlock(&vcpu->kvm->mmu_lock);
  2431. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2432. }
  2433. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2434. {
  2435. int ret = 0;
  2436. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2437. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2438. ret = 1;
  2439. }
  2440. return ret;
  2441. }
  2442. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2443. {
  2444. struct kvm_mmu_page *sp;
  2445. unsigned i;
  2446. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2447. spin_lock(&vcpu->kvm->mmu_lock);
  2448. kvm_mmu_free_some_pages(vcpu);
  2449. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2450. 1, ACC_ALL, NULL);
  2451. ++sp->root_count;
  2452. spin_unlock(&vcpu->kvm->mmu_lock);
  2453. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2454. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2455. for (i = 0; i < 4; ++i) {
  2456. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2457. ASSERT(!VALID_PAGE(root));
  2458. spin_lock(&vcpu->kvm->mmu_lock);
  2459. kvm_mmu_free_some_pages(vcpu);
  2460. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2461. i << 30,
  2462. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2463. NULL);
  2464. root = __pa(sp->spt);
  2465. ++sp->root_count;
  2466. spin_unlock(&vcpu->kvm->mmu_lock);
  2467. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2468. }
  2469. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2470. } else
  2471. BUG();
  2472. return 0;
  2473. }
  2474. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2475. {
  2476. struct kvm_mmu_page *sp;
  2477. u64 pdptr, pm_mask;
  2478. gfn_t root_gfn;
  2479. int i;
  2480. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2481. if (mmu_check_root(vcpu, root_gfn))
  2482. return 1;
  2483. /*
  2484. * Do we shadow a long mode page table? If so we need to
  2485. * write-protect the guests page table root.
  2486. */
  2487. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2488. hpa_t root = vcpu->arch.mmu.root_hpa;
  2489. ASSERT(!VALID_PAGE(root));
  2490. spin_lock(&vcpu->kvm->mmu_lock);
  2491. kvm_mmu_free_some_pages(vcpu);
  2492. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2493. 0, ACC_ALL, NULL);
  2494. root = __pa(sp->spt);
  2495. ++sp->root_count;
  2496. spin_unlock(&vcpu->kvm->mmu_lock);
  2497. vcpu->arch.mmu.root_hpa = root;
  2498. return 0;
  2499. }
  2500. /*
  2501. * We shadow a 32 bit page table. This may be a legacy 2-level
  2502. * or a PAE 3-level page table. In either case we need to be aware that
  2503. * the shadow page table may be a PAE or a long mode page table.
  2504. */
  2505. pm_mask = PT_PRESENT_MASK;
  2506. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2507. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2508. for (i = 0; i < 4; ++i) {
  2509. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2510. ASSERT(!VALID_PAGE(root));
  2511. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2512. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2513. if (!is_present_gpte(pdptr)) {
  2514. vcpu->arch.mmu.pae_root[i] = 0;
  2515. continue;
  2516. }
  2517. root_gfn = pdptr >> PAGE_SHIFT;
  2518. if (mmu_check_root(vcpu, root_gfn))
  2519. return 1;
  2520. }
  2521. spin_lock(&vcpu->kvm->mmu_lock);
  2522. kvm_mmu_free_some_pages(vcpu);
  2523. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2524. PT32_ROOT_LEVEL, 0,
  2525. ACC_ALL, NULL);
  2526. root = __pa(sp->spt);
  2527. ++sp->root_count;
  2528. spin_unlock(&vcpu->kvm->mmu_lock);
  2529. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2530. }
  2531. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2532. /*
  2533. * If we shadow a 32 bit page table with a long mode page
  2534. * table we enter this path.
  2535. */
  2536. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2537. if (vcpu->arch.mmu.lm_root == NULL) {
  2538. /*
  2539. * The additional page necessary for this is only
  2540. * allocated on demand.
  2541. */
  2542. u64 *lm_root;
  2543. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2544. if (lm_root == NULL)
  2545. return 1;
  2546. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2547. vcpu->arch.mmu.lm_root = lm_root;
  2548. }
  2549. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2550. }
  2551. return 0;
  2552. }
  2553. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2554. {
  2555. if (vcpu->arch.mmu.direct_map)
  2556. return mmu_alloc_direct_roots(vcpu);
  2557. else
  2558. return mmu_alloc_shadow_roots(vcpu);
  2559. }
  2560. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2561. {
  2562. int i;
  2563. struct kvm_mmu_page *sp;
  2564. if (vcpu->arch.mmu.direct_map)
  2565. return;
  2566. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2567. return;
  2568. vcpu_clear_mmio_info(vcpu, ~0ul);
  2569. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2570. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2571. hpa_t root = vcpu->arch.mmu.root_hpa;
  2572. sp = page_header(root);
  2573. mmu_sync_children(vcpu, sp);
  2574. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2575. return;
  2576. }
  2577. for (i = 0; i < 4; ++i) {
  2578. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2579. if (root && VALID_PAGE(root)) {
  2580. root &= PT64_BASE_ADDR_MASK;
  2581. sp = page_header(root);
  2582. mmu_sync_children(vcpu, sp);
  2583. }
  2584. }
  2585. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2586. }
  2587. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2588. {
  2589. spin_lock(&vcpu->kvm->mmu_lock);
  2590. mmu_sync_roots(vcpu);
  2591. spin_unlock(&vcpu->kvm->mmu_lock);
  2592. }
  2593. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2594. u32 access, struct x86_exception *exception)
  2595. {
  2596. if (exception)
  2597. exception->error_code = 0;
  2598. return vaddr;
  2599. }
  2600. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2601. u32 access,
  2602. struct x86_exception *exception)
  2603. {
  2604. if (exception)
  2605. exception->error_code = 0;
  2606. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2607. }
  2608. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2609. {
  2610. if (direct)
  2611. return vcpu_match_mmio_gpa(vcpu, addr);
  2612. return vcpu_match_mmio_gva(vcpu, addr);
  2613. }
  2614. /*
  2615. * On direct hosts, the last spte is only allows two states
  2616. * for mmio page fault:
  2617. * - It is the mmio spte
  2618. * - It is zapped or it is being zapped.
  2619. *
  2620. * This function completely checks the spte when the last spte
  2621. * is not the mmio spte.
  2622. */
  2623. static bool check_direct_spte_mmio_pf(u64 spte)
  2624. {
  2625. return __check_direct_spte_mmio_pf(spte);
  2626. }
  2627. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2628. {
  2629. struct kvm_shadow_walk_iterator iterator;
  2630. u64 spte = 0ull;
  2631. walk_shadow_page_lockless_begin(vcpu);
  2632. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2633. if (!is_shadow_present_pte(spte))
  2634. break;
  2635. walk_shadow_page_lockless_end(vcpu);
  2636. return spte;
  2637. }
  2638. /*
  2639. * If it is a real mmio page fault, return 1 and emulat the instruction
  2640. * directly, return 0 to let CPU fault again on the address, -1 is
  2641. * returned if bug is detected.
  2642. */
  2643. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2644. {
  2645. u64 spte;
  2646. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2647. return 1;
  2648. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2649. if (is_mmio_spte(spte)) {
  2650. gfn_t gfn = get_mmio_spte_gfn(spte);
  2651. unsigned access = get_mmio_spte_access(spte);
  2652. if (direct)
  2653. addr = 0;
  2654. trace_handle_mmio_page_fault(addr, gfn, access);
  2655. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2656. return 1;
  2657. }
  2658. /*
  2659. * It's ok if the gva is remapped by other cpus on shadow guest,
  2660. * it's a BUG if the gfn is not a mmio page.
  2661. */
  2662. if (direct && !check_direct_spte_mmio_pf(spte))
  2663. return -1;
  2664. /*
  2665. * If the page table is zapped by other cpus, let CPU fault again on
  2666. * the address.
  2667. */
  2668. return 0;
  2669. }
  2670. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2671. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2672. u32 error_code, bool direct)
  2673. {
  2674. int ret;
  2675. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2676. WARN_ON(ret < 0);
  2677. return ret;
  2678. }
  2679. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2680. u32 error_code, bool prefault)
  2681. {
  2682. gfn_t gfn;
  2683. int r;
  2684. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2685. if (unlikely(error_code & PFERR_RSVD_MASK))
  2686. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2687. r = mmu_topup_memory_caches(vcpu);
  2688. if (r)
  2689. return r;
  2690. ASSERT(vcpu);
  2691. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2692. gfn = gva >> PAGE_SHIFT;
  2693. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2694. error_code, gfn, prefault);
  2695. }
  2696. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2697. {
  2698. struct kvm_arch_async_pf arch;
  2699. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2700. arch.gfn = gfn;
  2701. arch.direct_map = vcpu->arch.mmu.direct_map;
  2702. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2703. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2704. }
  2705. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2706. {
  2707. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2708. kvm_event_needs_reinjection(vcpu)))
  2709. return false;
  2710. return kvm_x86_ops->interrupt_allowed(vcpu);
  2711. }
  2712. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2713. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2714. {
  2715. bool async;
  2716. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2717. if (!async)
  2718. return false; /* *pfn has correct page already */
  2719. put_page(pfn_to_page(*pfn));
  2720. if (!prefault && can_do_async_pf(vcpu)) {
  2721. trace_kvm_try_async_get_page(gva, gfn);
  2722. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2723. trace_kvm_async_pf_doublefault(gva, gfn);
  2724. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2725. return true;
  2726. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2727. return true;
  2728. }
  2729. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2730. return false;
  2731. }
  2732. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2733. bool prefault)
  2734. {
  2735. pfn_t pfn;
  2736. int r;
  2737. int level;
  2738. int force_pt_level;
  2739. gfn_t gfn = gpa >> PAGE_SHIFT;
  2740. unsigned long mmu_seq;
  2741. int write = error_code & PFERR_WRITE_MASK;
  2742. bool map_writable;
  2743. ASSERT(vcpu);
  2744. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2745. if (unlikely(error_code & PFERR_RSVD_MASK))
  2746. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2747. r = mmu_topup_memory_caches(vcpu);
  2748. if (r)
  2749. return r;
  2750. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2751. if (likely(!force_pt_level)) {
  2752. level = mapping_level(vcpu, gfn);
  2753. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2754. } else
  2755. level = PT_PAGE_TABLE_LEVEL;
  2756. if (fast_page_fault(vcpu, gpa, level, error_code))
  2757. return 0;
  2758. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2759. smp_rmb();
  2760. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2761. return 0;
  2762. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2763. return r;
  2764. spin_lock(&vcpu->kvm->mmu_lock);
  2765. if (mmu_notifier_retry(vcpu, mmu_seq))
  2766. goto out_unlock;
  2767. kvm_mmu_free_some_pages(vcpu);
  2768. if (likely(!force_pt_level))
  2769. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2770. r = __direct_map(vcpu, gpa, write, map_writable,
  2771. level, gfn, pfn, prefault);
  2772. spin_unlock(&vcpu->kvm->mmu_lock);
  2773. return r;
  2774. out_unlock:
  2775. spin_unlock(&vcpu->kvm->mmu_lock);
  2776. kvm_release_pfn_clean(pfn);
  2777. return 0;
  2778. }
  2779. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2780. {
  2781. mmu_free_roots(vcpu);
  2782. }
  2783. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2784. struct kvm_mmu *context)
  2785. {
  2786. context->new_cr3 = nonpaging_new_cr3;
  2787. context->page_fault = nonpaging_page_fault;
  2788. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2789. context->free = nonpaging_free;
  2790. context->sync_page = nonpaging_sync_page;
  2791. context->invlpg = nonpaging_invlpg;
  2792. context->update_pte = nonpaging_update_pte;
  2793. context->root_level = 0;
  2794. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2795. context->root_hpa = INVALID_PAGE;
  2796. context->direct_map = true;
  2797. context->nx = false;
  2798. return 0;
  2799. }
  2800. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2801. {
  2802. ++vcpu->stat.tlb_flush;
  2803. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2804. }
  2805. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2806. {
  2807. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2808. mmu_free_roots(vcpu);
  2809. }
  2810. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2811. {
  2812. return kvm_read_cr3(vcpu);
  2813. }
  2814. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2815. struct x86_exception *fault)
  2816. {
  2817. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2818. }
  2819. static void paging_free(struct kvm_vcpu *vcpu)
  2820. {
  2821. nonpaging_free(vcpu);
  2822. }
  2823. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2824. {
  2825. int bit7;
  2826. bit7 = (gpte >> 7) & 1;
  2827. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2828. }
  2829. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2830. int *nr_present)
  2831. {
  2832. if (unlikely(is_mmio_spte(*sptep))) {
  2833. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2834. mmu_spte_clear_no_track(sptep);
  2835. return true;
  2836. }
  2837. (*nr_present)++;
  2838. mark_mmio_spte(sptep, gfn, access);
  2839. return true;
  2840. }
  2841. return false;
  2842. }
  2843. #define PTTYPE 64
  2844. #include "paging_tmpl.h"
  2845. #undef PTTYPE
  2846. #define PTTYPE 32
  2847. #include "paging_tmpl.h"
  2848. #undef PTTYPE
  2849. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2850. struct kvm_mmu *context)
  2851. {
  2852. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2853. u64 exb_bit_rsvd = 0;
  2854. if (!context->nx)
  2855. exb_bit_rsvd = rsvd_bits(63, 63);
  2856. switch (context->root_level) {
  2857. case PT32_ROOT_LEVEL:
  2858. /* no rsvd bits for 2 level 4K page table entries */
  2859. context->rsvd_bits_mask[0][1] = 0;
  2860. context->rsvd_bits_mask[0][0] = 0;
  2861. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2862. if (!is_pse(vcpu)) {
  2863. context->rsvd_bits_mask[1][1] = 0;
  2864. break;
  2865. }
  2866. if (is_cpuid_PSE36())
  2867. /* 36bits PSE 4MB page */
  2868. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2869. else
  2870. /* 32 bits PSE 4MB page */
  2871. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2872. break;
  2873. case PT32E_ROOT_LEVEL:
  2874. context->rsvd_bits_mask[0][2] =
  2875. rsvd_bits(maxphyaddr, 63) |
  2876. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2877. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2878. rsvd_bits(maxphyaddr, 62); /* PDE */
  2879. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2880. rsvd_bits(maxphyaddr, 62); /* PTE */
  2881. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2882. rsvd_bits(maxphyaddr, 62) |
  2883. rsvd_bits(13, 20); /* large page */
  2884. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2885. break;
  2886. case PT64_ROOT_LEVEL:
  2887. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2888. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2889. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2890. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2891. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2892. rsvd_bits(maxphyaddr, 51);
  2893. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2894. rsvd_bits(maxphyaddr, 51);
  2895. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2896. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2897. rsvd_bits(maxphyaddr, 51) |
  2898. rsvd_bits(13, 29);
  2899. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2900. rsvd_bits(maxphyaddr, 51) |
  2901. rsvd_bits(13, 20); /* large page */
  2902. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2903. break;
  2904. }
  2905. }
  2906. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2907. struct kvm_mmu *context,
  2908. int level)
  2909. {
  2910. context->nx = is_nx(vcpu);
  2911. context->root_level = level;
  2912. reset_rsvds_bits_mask(vcpu, context);
  2913. ASSERT(is_pae(vcpu));
  2914. context->new_cr3 = paging_new_cr3;
  2915. context->page_fault = paging64_page_fault;
  2916. context->gva_to_gpa = paging64_gva_to_gpa;
  2917. context->sync_page = paging64_sync_page;
  2918. context->invlpg = paging64_invlpg;
  2919. context->update_pte = paging64_update_pte;
  2920. context->free = paging_free;
  2921. context->shadow_root_level = level;
  2922. context->root_hpa = INVALID_PAGE;
  2923. context->direct_map = false;
  2924. return 0;
  2925. }
  2926. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2927. struct kvm_mmu *context)
  2928. {
  2929. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2930. }
  2931. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2932. struct kvm_mmu *context)
  2933. {
  2934. context->nx = false;
  2935. context->root_level = PT32_ROOT_LEVEL;
  2936. reset_rsvds_bits_mask(vcpu, context);
  2937. context->new_cr3 = paging_new_cr3;
  2938. context->page_fault = paging32_page_fault;
  2939. context->gva_to_gpa = paging32_gva_to_gpa;
  2940. context->free = paging_free;
  2941. context->sync_page = paging32_sync_page;
  2942. context->invlpg = paging32_invlpg;
  2943. context->update_pte = paging32_update_pte;
  2944. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2945. context->root_hpa = INVALID_PAGE;
  2946. context->direct_map = false;
  2947. return 0;
  2948. }
  2949. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2950. struct kvm_mmu *context)
  2951. {
  2952. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2953. }
  2954. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2955. {
  2956. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2957. context->base_role.word = 0;
  2958. context->new_cr3 = nonpaging_new_cr3;
  2959. context->page_fault = tdp_page_fault;
  2960. context->free = nonpaging_free;
  2961. context->sync_page = nonpaging_sync_page;
  2962. context->invlpg = nonpaging_invlpg;
  2963. context->update_pte = nonpaging_update_pte;
  2964. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2965. context->root_hpa = INVALID_PAGE;
  2966. context->direct_map = true;
  2967. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2968. context->get_cr3 = get_cr3;
  2969. context->get_pdptr = kvm_pdptr_read;
  2970. context->inject_page_fault = kvm_inject_page_fault;
  2971. if (!is_paging(vcpu)) {
  2972. context->nx = false;
  2973. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2974. context->root_level = 0;
  2975. } else if (is_long_mode(vcpu)) {
  2976. context->nx = is_nx(vcpu);
  2977. context->root_level = PT64_ROOT_LEVEL;
  2978. reset_rsvds_bits_mask(vcpu, context);
  2979. context->gva_to_gpa = paging64_gva_to_gpa;
  2980. } else if (is_pae(vcpu)) {
  2981. context->nx = is_nx(vcpu);
  2982. context->root_level = PT32E_ROOT_LEVEL;
  2983. reset_rsvds_bits_mask(vcpu, context);
  2984. context->gva_to_gpa = paging64_gva_to_gpa;
  2985. } else {
  2986. context->nx = false;
  2987. context->root_level = PT32_ROOT_LEVEL;
  2988. reset_rsvds_bits_mask(vcpu, context);
  2989. context->gva_to_gpa = paging32_gva_to_gpa;
  2990. }
  2991. return 0;
  2992. }
  2993. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2994. {
  2995. int r;
  2996. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2997. ASSERT(vcpu);
  2998. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2999. if (!is_paging(vcpu))
  3000. r = nonpaging_init_context(vcpu, context);
  3001. else if (is_long_mode(vcpu))
  3002. r = paging64_init_context(vcpu, context);
  3003. else if (is_pae(vcpu))
  3004. r = paging32E_init_context(vcpu, context);
  3005. else
  3006. r = paging32_init_context(vcpu, context);
  3007. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3008. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3009. vcpu->arch.mmu.base_role.smep_andnot_wp
  3010. = smep && !is_write_protection(vcpu);
  3011. return r;
  3012. }
  3013. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3014. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3015. {
  3016. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3017. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3018. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3019. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3020. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3021. return r;
  3022. }
  3023. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3024. {
  3025. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3026. g_context->get_cr3 = get_cr3;
  3027. g_context->get_pdptr = kvm_pdptr_read;
  3028. g_context->inject_page_fault = kvm_inject_page_fault;
  3029. /*
  3030. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3031. * translation of l2_gpa to l1_gpa addresses is done using the
  3032. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3033. * functions between mmu and nested_mmu are swapped.
  3034. */
  3035. if (!is_paging(vcpu)) {
  3036. g_context->nx = false;
  3037. g_context->root_level = 0;
  3038. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3039. } else if (is_long_mode(vcpu)) {
  3040. g_context->nx = is_nx(vcpu);
  3041. g_context->root_level = PT64_ROOT_LEVEL;
  3042. reset_rsvds_bits_mask(vcpu, g_context);
  3043. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3044. } else if (is_pae(vcpu)) {
  3045. g_context->nx = is_nx(vcpu);
  3046. g_context->root_level = PT32E_ROOT_LEVEL;
  3047. reset_rsvds_bits_mask(vcpu, g_context);
  3048. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3049. } else {
  3050. g_context->nx = false;
  3051. g_context->root_level = PT32_ROOT_LEVEL;
  3052. reset_rsvds_bits_mask(vcpu, g_context);
  3053. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3054. }
  3055. return 0;
  3056. }
  3057. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3058. {
  3059. if (mmu_is_nested(vcpu))
  3060. return init_kvm_nested_mmu(vcpu);
  3061. else if (tdp_enabled)
  3062. return init_kvm_tdp_mmu(vcpu);
  3063. else
  3064. return init_kvm_softmmu(vcpu);
  3065. }
  3066. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3067. {
  3068. ASSERT(vcpu);
  3069. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3070. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3071. vcpu->arch.mmu.free(vcpu);
  3072. }
  3073. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3074. {
  3075. destroy_kvm_mmu(vcpu);
  3076. return init_kvm_mmu(vcpu);
  3077. }
  3078. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3079. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3080. {
  3081. int r;
  3082. r = mmu_topup_memory_caches(vcpu);
  3083. if (r)
  3084. goto out;
  3085. r = mmu_alloc_roots(vcpu);
  3086. spin_lock(&vcpu->kvm->mmu_lock);
  3087. mmu_sync_roots(vcpu);
  3088. spin_unlock(&vcpu->kvm->mmu_lock);
  3089. if (r)
  3090. goto out;
  3091. /* set_cr3() should ensure TLB has been flushed */
  3092. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3093. out:
  3094. return r;
  3095. }
  3096. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3097. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3098. {
  3099. mmu_free_roots(vcpu);
  3100. }
  3101. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3102. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3103. struct kvm_mmu_page *sp, u64 *spte,
  3104. const void *new)
  3105. {
  3106. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3107. ++vcpu->kvm->stat.mmu_pde_zapped;
  3108. return;
  3109. }
  3110. ++vcpu->kvm->stat.mmu_pte_updated;
  3111. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3112. }
  3113. static bool need_remote_flush(u64 old, u64 new)
  3114. {
  3115. if (!is_shadow_present_pte(old))
  3116. return false;
  3117. if (!is_shadow_present_pte(new))
  3118. return true;
  3119. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3120. return true;
  3121. old ^= PT64_NX_MASK;
  3122. new ^= PT64_NX_MASK;
  3123. return (old & ~new & PT64_PERM_MASK) != 0;
  3124. }
  3125. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3126. bool remote_flush, bool local_flush)
  3127. {
  3128. if (zap_page)
  3129. return;
  3130. if (remote_flush)
  3131. kvm_flush_remote_tlbs(vcpu->kvm);
  3132. else if (local_flush)
  3133. kvm_mmu_flush_tlb(vcpu);
  3134. }
  3135. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3136. const u8 *new, int *bytes)
  3137. {
  3138. u64 gentry;
  3139. int r;
  3140. /*
  3141. * Assume that the pte write on a page table of the same type
  3142. * as the current vcpu paging mode since we update the sptes only
  3143. * when they have the same mode.
  3144. */
  3145. if (is_pae(vcpu) && *bytes == 4) {
  3146. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3147. *gpa &= ~(gpa_t)7;
  3148. *bytes = 8;
  3149. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
  3150. if (r)
  3151. gentry = 0;
  3152. new = (const u8 *)&gentry;
  3153. }
  3154. switch (*bytes) {
  3155. case 4:
  3156. gentry = *(const u32 *)new;
  3157. break;
  3158. case 8:
  3159. gentry = *(const u64 *)new;
  3160. break;
  3161. default:
  3162. gentry = 0;
  3163. break;
  3164. }
  3165. return gentry;
  3166. }
  3167. /*
  3168. * If we're seeing too many writes to a page, it may no longer be a page table,
  3169. * or we may be forking, in which case it is better to unmap the page.
  3170. */
  3171. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3172. {
  3173. /*
  3174. * Skip write-flooding detected for the sp whose level is 1, because
  3175. * it can become unsync, then the guest page is not write-protected.
  3176. */
  3177. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3178. return false;
  3179. return ++sp->write_flooding_count >= 3;
  3180. }
  3181. /*
  3182. * Misaligned accesses are too much trouble to fix up; also, they usually
  3183. * indicate a page is not used as a page table.
  3184. */
  3185. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3186. int bytes)
  3187. {
  3188. unsigned offset, pte_size, misaligned;
  3189. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3190. gpa, bytes, sp->role.word);
  3191. offset = offset_in_page(gpa);
  3192. pte_size = sp->role.cr4_pae ? 8 : 4;
  3193. /*
  3194. * Sometimes, the OS only writes the last one bytes to update status
  3195. * bits, for example, in linux, andb instruction is used in clear_bit().
  3196. */
  3197. if (!(offset & (pte_size - 1)) && bytes == 1)
  3198. return false;
  3199. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3200. misaligned |= bytes < 4;
  3201. return misaligned;
  3202. }
  3203. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3204. {
  3205. unsigned page_offset, quadrant;
  3206. u64 *spte;
  3207. int level;
  3208. page_offset = offset_in_page(gpa);
  3209. level = sp->role.level;
  3210. *nspte = 1;
  3211. if (!sp->role.cr4_pae) {
  3212. page_offset <<= 1; /* 32->64 */
  3213. /*
  3214. * A 32-bit pde maps 4MB while the shadow pdes map
  3215. * only 2MB. So we need to double the offset again
  3216. * and zap two pdes instead of one.
  3217. */
  3218. if (level == PT32_ROOT_LEVEL) {
  3219. page_offset &= ~7; /* kill rounding error */
  3220. page_offset <<= 1;
  3221. *nspte = 2;
  3222. }
  3223. quadrant = page_offset >> PAGE_SHIFT;
  3224. page_offset &= ~PAGE_MASK;
  3225. if (quadrant != sp->role.quadrant)
  3226. return NULL;
  3227. }
  3228. spte = &sp->spt[page_offset / sizeof(*spte)];
  3229. return spte;
  3230. }
  3231. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3232. const u8 *new, int bytes)
  3233. {
  3234. gfn_t gfn = gpa >> PAGE_SHIFT;
  3235. union kvm_mmu_page_role mask = { .word = 0 };
  3236. struct kvm_mmu_page *sp;
  3237. struct hlist_node *node;
  3238. LIST_HEAD(invalid_list);
  3239. u64 entry, gentry, *spte;
  3240. int npte;
  3241. bool remote_flush, local_flush, zap_page;
  3242. /*
  3243. * If we don't have indirect shadow pages, it means no page is
  3244. * write-protected, so we can exit simply.
  3245. */
  3246. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3247. return;
  3248. zap_page = remote_flush = local_flush = false;
  3249. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3250. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3251. /*
  3252. * No need to care whether allocation memory is successful
  3253. * or not since pte prefetch is skiped if it does not have
  3254. * enough objects in the cache.
  3255. */
  3256. mmu_topup_memory_caches(vcpu);
  3257. spin_lock(&vcpu->kvm->mmu_lock);
  3258. ++vcpu->kvm->stat.mmu_pte_write;
  3259. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3260. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3261. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  3262. if (detect_write_misaligned(sp, gpa, bytes) ||
  3263. detect_write_flooding(sp)) {
  3264. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3265. &invalid_list);
  3266. ++vcpu->kvm->stat.mmu_flooded;
  3267. continue;
  3268. }
  3269. spte = get_written_sptes(sp, gpa, &npte);
  3270. if (!spte)
  3271. continue;
  3272. local_flush = true;
  3273. while (npte--) {
  3274. entry = *spte;
  3275. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3276. if (gentry &&
  3277. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3278. & mask.word) && rmap_can_add(vcpu))
  3279. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3280. if (!remote_flush && need_remote_flush(entry, *spte))
  3281. remote_flush = true;
  3282. ++spte;
  3283. }
  3284. }
  3285. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3286. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3287. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3288. spin_unlock(&vcpu->kvm->mmu_lock);
  3289. }
  3290. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3291. {
  3292. gpa_t gpa;
  3293. int r;
  3294. if (vcpu->arch.mmu.direct_map)
  3295. return 0;
  3296. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3297. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3298. return r;
  3299. }
  3300. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3301. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3302. {
  3303. LIST_HEAD(invalid_list);
  3304. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3305. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3306. struct kvm_mmu_page *sp;
  3307. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3308. struct kvm_mmu_page, link);
  3309. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3310. ++vcpu->kvm->stat.mmu_recycled;
  3311. }
  3312. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3313. }
  3314. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3315. {
  3316. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3317. return vcpu_match_mmio_gpa(vcpu, addr);
  3318. return vcpu_match_mmio_gva(vcpu, addr);
  3319. }
  3320. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3321. void *insn, int insn_len)
  3322. {
  3323. int r, emulation_type = EMULTYPE_RETRY;
  3324. enum emulation_result er;
  3325. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3326. if (r < 0)
  3327. goto out;
  3328. if (!r) {
  3329. r = 1;
  3330. goto out;
  3331. }
  3332. if (is_mmio_page_fault(vcpu, cr2))
  3333. emulation_type = 0;
  3334. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3335. switch (er) {
  3336. case EMULATE_DONE:
  3337. return 1;
  3338. case EMULATE_DO_MMIO:
  3339. ++vcpu->stat.mmio_exits;
  3340. /* fall through */
  3341. case EMULATE_FAIL:
  3342. return 0;
  3343. default:
  3344. BUG();
  3345. }
  3346. out:
  3347. return r;
  3348. }
  3349. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3350. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3351. {
  3352. vcpu->arch.mmu.invlpg(vcpu, gva);
  3353. kvm_mmu_flush_tlb(vcpu);
  3354. ++vcpu->stat.invlpg;
  3355. }
  3356. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3357. void kvm_enable_tdp(void)
  3358. {
  3359. tdp_enabled = true;
  3360. }
  3361. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3362. void kvm_disable_tdp(void)
  3363. {
  3364. tdp_enabled = false;
  3365. }
  3366. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3367. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3368. {
  3369. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3370. if (vcpu->arch.mmu.lm_root != NULL)
  3371. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3372. }
  3373. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3374. {
  3375. struct page *page;
  3376. int i;
  3377. ASSERT(vcpu);
  3378. /*
  3379. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3380. * Therefore we need to allocate shadow page tables in the first
  3381. * 4GB of memory, which happens to fit the DMA32 zone.
  3382. */
  3383. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3384. if (!page)
  3385. return -ENOMEM;
  3386. vcpu->arch.mmu.pae_root = page_address(page);
  3387. for (i = 0; i < 4; ++i)
  3388. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3389. return 0;
  3390. }
  3391. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3392. {
  3393. ASSERT(vcpu);
  3394. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3395. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3396. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3397. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3398. return alloc_mmu_pages(vcpu);
  3399. }
  3400. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3401. {
  3402. ASSERT(vcpu);
  3403. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3404. return init_kvm_mmu(vcpu);
  3405. }
  3406. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3407. {
  3408. struct kvm_mmu_page *sp;
  3409. bool flush = false;
  3410. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  3411. int i;
  3412. u64 *pt;
  3413. if (!test_bit(slot, sp->slot_bitmap))
  3414. continue;
  3415. pt = sp->spt;
  3416. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3417. if (!is_shadow_present_pte(pt[i]) ||
  3418. !is_last_spte(pt[i], sp->role.level))
  3419. continue;
  3420. spte_write_protect(kvm, &pt[i], &flush, false);
  3421. }
  3422. }
  3423. kvm_flush_remote_tlbs(kvm);
  3424. }
  3425. void kvm_mmu_zap_all(struct kvm *kvm)
  3426. {
  3427. struct kvm_mmu_page *sp, *node;
  3428. LIST_HEAD(invalid_list);
  3429. spin_lock(&kvm->mmu_lock);
  3430. restart:
  3431. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3432. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3433. goto restart;
  3434. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3435. spin_unlock(&kvm->mmu_lock);
  3436. }
  3437. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3438. struct list_head *invalid_list)
  3439. {
  3440. struct kvm_mmu_page *page;
  3441. page = container_of(kvm->arch.active_mmu_pages.prev,
  3442. struct kvm_mmu_page, link);
  3443. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3444. }
  3445. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3446. {
  3447. struct kvm *kvm;
  3448. int nr_to_scan = sc->nr_to_scan;
  3449. if (nr_to_scan == 0)
  3450. goto out;
  3451. raw_spin_lock(&kvm_lock);
  3452. list_for_each_entry(kvm, &vm_list, vm_list) {
  3453. int idx;
  3454. LIST_HEAD(invalid_list);
  3455. /*
  3456. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3457. * here. We may skip a VM instance errorneosly, but we do not
  3458. * want to shrink a VM that only started to populate its MMU
  3459. * anyway.
  3460. */
  3461. if (kvm->arch.n_used_mmu_pages > 0) {
  3462. if (!nr_to_scan--)
  3463. break;
  3464. continue;
  3465. }
  3466. idx = srcu_read_lock(&kvm->srcu);
  3467. spin_lock(&kvm->mmu_lock);
  3468. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3469. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3470. spin_unlock(&kvm->mmu_lock);
  3471. srcu_read_unlock(&kvm->srcu, idx);
  3472. list_move_tail(&kvm->vm_list, &vm_list);
  3473. break;
  3474. }
  3475. raw_spin_unlock(&kvm_lock);
  3476. out:
  3477. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3478. }
  3479. static struct shrinker mmu_shrinker = {
  3480. .shrink = mmu_shrink,
  3481. .seeks = DEFAULT_SEEKS * 10,
  3482. };
  3483. static void mmu_destroy_caches(void)
  3484. {
  3485. if (pte_list_desc_cache)
  3486. kmem_cache_destroy(pte_list_desc_cache);
  3487. if (mmu_page_header_cache)
  3488. kmem_cache_destroy(mmu_page_header_cache);
  3489. }
  3490. int kvm_mmu_module_init(void)
  3491. {
  3492. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3493. sizeof(struct pte_list_desc),
  3494. 0, 0, NULL);
  3495. if (!pte_list_desc_cache)
  3496. goto nomem;
  3497. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3498. sizeof(struct kvm_mmu_page),
  3499. 0, 0, NULL);
  3500. if (!mmu_page_header_cache)
  3501. goto nomem;
  3502. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3503. goto nomem;
  3504. register_shrinker(&mmu_shrinker);
  3505. return 0;
  3506. nomem:
  3507. mmu_destroy_caches();
  3508. return -ENOMEM;
  3509. }
  3510. /*
  3511. * Caculate mmu pages needed for kvm.
  3512. */
  3513. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3514. {
  3515. unsigned int nr_mmu_pages;
  3516. unsigned int nr_pages = 0;
  3517. struct kvm_memslots *slots;
  3518. struct kvm_memory_slot *memslot;
  3519. slots = kvm_memslots(kvm);
  3520. kvm_for_each_memslot(memslot, slots)
  3521. nr_pages += memslot->npages;
  3522. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3523. nr_mmu_pages = max(nr_mmu_pages,
  3524. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3525. return nr_mmu_pages;
  3526. }
  3527. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3528. {
  3529. struct kvm_shadow_walk_iterator iterator;
  3530. u64 spte;
  3531. int nr_sptes = 0;
  3532. walk_shadow_page_lockless_begin(vcpu);
  3533. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3534. sptes[iterator.level-1] = spte;
  3535. nr_sptes++;
  3536. if (!is_shadow_present_pte(spte))
  3537. break;
  3538. }
  3539. walk_shadow_page_lockless_end(vcpu);
  3540. return nr_sptes;
  3541. }
  3542. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3543. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3544. {
  3545. ASSERT(vcpu);
  3546. destroy_kvm_mmu(vcpu);
  3547. free_mmu_pages(vcpu);
  3548. mmu_free_memory_caches(vcpu);
  3549. }
  3550. void kvm_mmu_module_exit(void)
  3551. {
  3552. mmu_destroy_caches();
  3553. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3554. unregister_shrinker(&mmu_shrinker);
  3555. mmu_audit_disable();
  3556. }