xilinx_spi.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /*
  2. * xilinx_spi.c
  3. *
  4. * Xilinx SPI controller driver (master mode only)
  5. *
  6. * Author: MontaVista Software, Inc.
  7. * source@mvista.com
  8. *
  9. * 2002-2007 (c) MontaVista Software, Inc. This file is licensed under the
  10. * terms of the GNU General Public License version 2. This program is licensed
  11. * "as is" without any warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/spi/spi.h>
  17. #include <linux/spi/spi_bitbang.h>
  18. #include <linux/io.h>
  19. #include "xilinx_spi.h"
  20. #include <linux/spi/xilinx_spi.h>
  21. #define XILINX_SPI_NAME "xilinx_spi"
  22. /* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e)
  23. * Product Specification", DS464
  24. */
  25. #define XSPI_CR_OFFSET 0x60 /* 16-bit Control Register */
  26. #define XSPI_CR_ENABLE 0x02
  27. #define XSPI_CR_MASTER_MODE 0x04
  28. #define XSPI_CR_CPOL 0x08
  29. #define XSPI_CR_CPHA 0x10
  30. #define XSPI_CR_MODE_MASK (XSPI_CR_CPHA | XSPI_CR_CPOL)
  31. #define XSPI_CR_TXFIFO_RESET 0x20
  32. #define XSPI_CR_RXFIFO_RESET 0x40
  33. #define XSPI_CR_MANUAL_SSELECT 0x80
  34. #define XSPI_CR_TRANS_INHIBIT 0x100
  35. #define XSPI_SR_OFFSET 0x64 /* 8-bit Status Register */
  36. #define XSPI_SR_RX_EMPTY_MASK 0x01 /* Receive FIFO is empty */
  37. #define XSPI_SR_RX_FULL_MASK 0x02 /* Receive FIFO is full */
  38. #define XSPI_SR_TX_EMPTY_MASK 0x04 /* Transmit FIFO is empty */
  39. #define XSPI_SR_TX_FULL_MASK 0x08 /* Transmit FIFO is full */
  40. #define XSPI_SR_MODE_FAULT_MASK 0x10 /* Mode fault error */
  41. #define XSPI_TXD_OFFSET 0x68 /* 8-bit Data Transmit Register */
  42. #define XSPI_RXD_OFFSET 0x6c /* 8-bit Data Receive Register */
  43. #define XSPI_SSR_OFFSET 0x70 /* 32-bit Slave Select Register */
  44. /* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414
  45. * IPIF registers are 32 bit
  46. */
  47. #define XIPIF_V123B_DGIER_OFFSET 0x1c /* IPIF global int enable reg */
  48. #define XIPIF_V123B_GINTR_ENABLE 0x80000000
  49. #define XIPIF_V123B_IISR_OFFSET 0x20 /* IPIF interrupt status reg */
  50. #define XIPIF_V123B_IIER_OFFSET 0x28 /* IPIF interrupt enable reg */
  51. #define XSPI_INTR_MODE_FAULT 0x01 /* Mode fault error */
  52. #define XSPI_INTR_SLAVE_MODE_FAULT 0x02 /* Selected as slave while
  53. * disabled */
  54. #define XSPI_INTR_TX_EMPTY 0x04 /* TxFIFO is empty */
  55. #define XSPI_INTR_TX_UNDERRUN 0x08 /* TxFIFO was underrun */
  56. #define XSPI_INTR_RX_FULL 0x10 /* RxFIFO is full */
  57. #define XSPI_INTR_RX_OVERRUN 0x20 /* RxFIFO was overrun */
  58. #define XIPIF_V123B_RESETR_OFFSET 0x40 /* IPIF reset register */
  59. #define XIPIF_V123B_RESET_MASK 0x0a /* the value to write */
  60. struct xilinx_spi {
  61. /* bitbang has to be first */
  62. struct spi_bitbang bitbang;
  63. struct completion done;
  64. struct resource mem; /* phys mem */
  65. void __iomem *regs; /* virt. address of the control registers */
  66. u32 irq;
  67. u32 speed_hz; /* SCK has a fixed frequency of speed_hz Hz */
  68. u8 *rx_ptr; /* pointer in the Tx buffer */
  69. const u8 *tx_ptr; /* pointer in the Rx buffer */
  70. int remaining_bytes; /* the number of bytes left to transfer */
  71. unsigned int (*read_fn) (void __iomem *);
  72. void (*write_fn) (u32, void __iomem *);
  73. };
  74. static void xspi_init_hw(struct xilinx_spi *xspi)
  75. {
  76. void __iomem *regs_base = xspi->regs;
  77. /* Reset the SPI device */
  78. xspi->write_fn(XIPIF_V123B_RESET_MASK,
  79. regs_base + XIPIF_V123B_RESETR_OFFSET);
  80. /* Disable all the interrupts just in case */
  81. xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET);
  82. /* Enable the global IPIF interrupt */
  83. xspi->write_fn(XIPIF_V123B_GINTR_ENABLE,
  84. regs_base + XIPIF_V123B_DGIER_OFFSET);
  85. /* Deselect the slave on the SPI bus */
  86. xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET);
  87. /* Disable the transmitter, enable Manual Slave Select Assertion,
  88. * put SPI controller into master mode, and enable it */
  89. xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT |
  90. XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE,
  91. regs_base + XSPI_CR_OFFSET);
  92. }
  93. static void xilinx_spi_chipselect(struct spi_device *spi, int is_on)
  94. {
  95. struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
  96. if (is_on == BITBANG_CS_INACTIVE) {
  97. /* Deselect the slave on the SPI bus */
  98. xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET);
  99. } else if (is_on == BITBANG_CS_ACTIVE) {
  100. /* Set the SPI clock phase and polarity */
  101. u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET)
  102. & ~XSPI_CR_MODE_MASK;
  103. if (spi->mode & SPI_CPHA)
  104. cr |= XSPI_CR_CPHA;
  105. if (spi->mode & SPI_CPOL)
  106. cr |= XSPI_CR_CPOL;
  107. xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
  108. /* We do not check spi->max_speed_hz here as the SPI clock
  109. * frequency is not software programmable (the IP block design
  110. * parameter)
  111. */
  112. /* Activate the chip select */
  113. xspi->write_fn(~(0x0001 << spi->chip_select),
  114. xspi->regs + XSPI_SSR_OFFSET);
  115. }
  116. }
  117. /* spi_bitbang requires custom setup_transfer() to be defined if there is a
  118. * custom txrx_bufs(). We have nothing to setup here as the SPI IP block
  119. * supports just 8 bits per word, and SPI clock can't be changed in software.
  120. * Check for 8 bits per word. Chip select delay calculations could be
  121. * added here as soon as bitbang_work() can be made aware of the delay value.
  122. */
  123. static int xilinx_spi_setup_transfer(struct spi_device *spi,
  124. struct spi_transfer *t)
  125. {
  126. u8 bits_per_word;
  127. bits_per_word = (t && t->bits_per_word)
  128. ? t->bits_per_word : spi->bits_per_word;
  129. if (bits_per_word != 8) {
  130. dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n",
  131. __func__, bits_per_word);
  132. return -EINVAL;
  133. }
  134. return 0;
  135. }
  136. static int xilinx_spi_setup(struct spi_device *spi)
  137. {
  138. struct spi_bitbang *bitbang;
  139. struct xilinx_spi *xspi;
  140. int retval;
  141. xspi = spi_master_get_devdata(spi->master);
  142. bitbang = &xspi->bitbang;
  143. retval = xilinx_spi_setup_transfer(spi, NULL);
  144. if (retval < 0)
  145. return retval;
  146. return 0;
  147. }
  148. static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi)
  149. {
  150. u8 sr;
  151. /* Fill the Tx FIFO with as many bytes as possible */
  152. sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
  153. while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) {
  154. if (xspi->tx_ptr)
  155. xspi->write_fn(*xspi->tx_ptr++,
  156. xspi->regs + XSPI_TXD_OFFSET);
  157. else
  158. xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET);
  159. xspi->remaining_bytes--;
  160. sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
  161. }
  162. }
  163. static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
  164. {
  165. struct xilinx_spi *xspi = spi_master_get_devdata(spi->master);
  166. u32 ipif_ier;
  167. u16 cr;
  168. /* We get here with transmitter inhibited */
  169. xspi->tx_ptr = t->tx_buf;
  170. xspi->rx_ptr = t->rx_buf;
  171. xspi->remaining_bytes = t->len;
  172. INIT_COMPLETION(xspi->done);
  173. xilinx_spi_fill_tx_fifo(xspi);
  174. /* Enable the transmit empty interrupt, which we use to determine
  175. * progress on the transmission.
  176. */
  177. ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET);
  178. xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY,
  179. xspi->regs + XIPIF_V123B_IIER_OFFSET);
  180. /* Start the transfer by not inhibiting the transmitter any longer */
  181. cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) &
  182. ~XSPI_CR_TRANS_INHIBIT;
  183. xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
  184. wait_for_completion(&xspi->done);
  185. /* Disable the transmit empty interrupt */
  186. xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET);
  187. return t->len - xspi->remaining_bytes;
  188. }
  189. /* This driver supports single master mode only. Hence Tx FIFO Empty
  190. * is the only interrupt we care about.
  191. * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode
  192. * Fault are not to happen.
  193. */
  194. static irqreturn_t xilinx_spi_irq(int irq, void *dev_id)
  195. {
  196. struct xilinx_spi *xspi = dev_id;
  197. u32 ipif_isr;
  198. /* Get the IPIF interrupts, and clear them immediately */
  199. ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET);
  200. xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET);
  201. if (ipif_isr & XSPI_INTR_TX_EMPTY) { /* Transmission completed */
  202. u16 cr;
  203. u8 sr;
  204. /* A transmit has just completed. Process received data and
  205. * check for more data to transmit. Always inhibit the
  206. * transmitter while the Isr refills the transmit register/FIFO,
  207. * or make sure it is stopped if we're done.
  208. */
  209. cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET);
  210. xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT,
  211. xspi->regs + XSPI_CR_OFFSET);
  212. /* Read out all the data from the Rx FIFO */
  213. sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
  214. while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) {
  215. u8 data;
  216. data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET);
  217. if (xspi->rx_ptr) {
  218. *xspi->rx_ptr++ = data;
  219. }
  220. sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET);
  221. }
  222. /* See if there is more data to send */
  223. if (xspi->remaining_bytes > 0) {
  224. xilinx_spi_fill_tx_fifo(xspi);
  225. /* Start the transfer by not inhibiting the
  226. * transmitter any longer
  227. */
  228. xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET);
  229. } else {
  230. /* No more data to send.
  231. * Indicate the transfer is completed.
  232. */
  233. complete(&xspi->done);
  234. }
  235. }
  236. return IRQ_HANDLED;
  237. }
  238. struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem,
  239. u32 irq, s16 bus_num)
  240. {
  241. struct spi_master *master;
  242. struct xilinx_spi *xspi;
  243. struct xspi_platform_data *pdata = dev->platform_data;
  244. int ret;
  245. if (!pdata) {
  246. dev_err(dev, "No platform data attached\n");
  247. return NULL;
  248. }
  249. master = spi_alloc_master(dev, sizeof(struct xilinx_spi));
  250. if (!master)
  251. return NULL;
  252. /* the spi->mode bits understood by this driver: */
  253. master->mode_bits = SPI_CPOL | SPI_CPHA;
  254. xspi = spi_master_get_devdata(master);
  255. xspi->bitbang.master = spi_master_get(master);
  256. xspi->bitbang.chipselect = xilinx_spi_chipselect;
  257. xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer;
  258. xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs;
  259. xspi->bitbang.master->setup = xilinx_spi_setup;
  260. init_completion(&xspi->done);
  261. if (!request_mem_region(mem->start, resource_size(mem),
  262. XILINX_SPI_NAME))
  263. goto put_master;
  264. xspi->regs = ioremap(mem->start, resource_size(mem));
  265. if (xspi->regs == NULL) {
  266. dev_warn(dev, "ioremap failure\n");
  267. goto map_failed;
  268. }
  269. master->bus_num = bus_num;
  270. master->num_chipselect = pdata->num_chipselect;
  271. xspi->mem = *mem;
  272. xspi->irq = irq;
  273. if (pdata->little_endian) {
  274. xspi->read_fn = ioread32;
  275. xspi->write_fn = iowrite32;
  276. } else {
  277. xspi->read_fn = ioread32be;
  278. xspi->write_fn = iowrite32be;
  279. }
  280. /* SPI controller initializations */
  281. xspi_init_hw(xspi);
  282. /* Register for SPI Interrupt */
  283. ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi);
  284. if (ret)
  285. goto unmap_io;
  286. ret = spi_bitbang_start(&xspi->bitbang);
  287. if (ret) {
  288. dev_err(dev, "spi_bitbang_start FAILED\n");
  289. goto free_irq;
  290. }
  291. dev_info(dev, "at 0x%08X mapped to 0x%08X, irq=%d\n",
  292. (u32)mem->start, (u32)xspi->regs, xspi->irq);
  293. return master;
  294. free_irq:
  295. free_irq(xspi->irq, xspi);
  296. unmap_io:
  297. iounmap(xspi->regs);
  298. map_failed:
  299. release_mem_region(mem->start, resource_size(mem));
  300. put_master:
  301. spi_master_put(master);
  302. return NULL;
  303. }
  304. EXPORT_SYMBOL(xilinx_spi_init);
  305. void xilinx_spi_deinit(struct spi_master *master)
  306. {
  307. struct xilinx_spi *xspi;
  308. xspi = spi_master_get_devdata(master);
  309. spi_bitbang_stop(&xspi->bitbang);
  310. free_irq(xspi->irq, xspi);
  311. iounmap(xspi->regs);
  312. release_mem_region(xspi->mem.start, resource_size(&xspi->mem));
  313. spi_master_put(xspi->bitbang.master);
  314. }
  315. EXPORT_SYMBOL(xilinx_spi_deinit);
  316. MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>");
  317. MODULE_DESCRIPTION("Xilinx SPI driver");
  318. MODULE_LICENSE("GPL");