sched.c 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. /*
  155. * shares assigned to a task group governs how much of cpu bandwidth
  156. * is allocated to the group. The more shares a group has, the more is
  157. * the cpu bandwidth allocated to it.
  158. *
  159. * For ex, lets say that there are three task groups, A, B and C which
  160. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  161. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  162. * should be:
  163. *
  164. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  165. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  166. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  167. *
  168. * The weight assigned to a task group's schedulable entities on every
  169. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  170. * group's shares. For ex: lets say that task group A has been
  171. * assigned shares of 1000 and there are two CPUs in a system. Then,
  172. *
  173. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  174. *
  175. * Note: It's not necessary that each of a task's group schedulable
  176. * entity have the same weight on all CPUs. If the group
  177. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  178. * better distribution of weight could be:
  179. *
  180. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  181. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  182. *
  183. * rebalance_shares() is responsible for distributing the shares of a
  184. * task groups like this among the group's schedulable entities across
  185. * cpus.
  186. *
  187. */
  188. unsigned long shares;
  189. struct rcu_head rcu;
  190. };
  191. /* Default task group's sched entity on each cpu */
  192. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  193. /* Default task group's cfs_rq on each cpu */
  194. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  195. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  196. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  197. /* task_group_mutex serializes add/remove of task groups and also changes to
  198. * a task group's cpu shares.
  199. */
  200. static DEFINE_MUTEX(task_group_mutex);
  201. /* doms_cur_mutex serializes access to doms_cur[] array */
  202. static DEFINE_MUTEX(doms_cur_mutex);
  203. #ifdef CONFIG_SMP
  204. /* kernel thread that runs rebalance_shares() periodically */
  205. static struct task_struct *lb_monitor_task;
  206. static int load_balance_monitor(void *unused);
  207. #endif
  208. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  209. /* Default task group.
  210. * Every task in system belong to this group at bootup.
  211. */
  212. struct task_group init_task_group = {
  213. .se = init_sched_entity_p,
  214. .cfs_rq = init_cfs_rq_p,
  215. };
  216. #ifdef CONFIG_FAIR_USER_SCHED
  217. # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
  218. #else
  219. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  220. #endif
  221. #define MIN_GROUP_SHARES 2
  222. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  223. /* return group to which a task belongs */
  224. static inline struct task_group *task_group(struct task_struct *p)
  225. {
  226. struct task_group *tg;
  227. #ifdef CONFIG_FAIR_USER_SCHED
  228. tg = p->user->tg;
  229. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  230. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  231. struct task_group, css);
  232. #else
  233. tg = &init_task_group;
  234. #endif
  235. return tg;
  236. }
  237. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  238. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  239. {
  240. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  241. p->se.parent = task_group(p)->se[cpu];
  242. }
  243. static inline void lock_task_group_list(void)
  244. {
  245. mutex_lock(&task_group_mutex);
  246. }
  247. static inline void unlock_task_group_list(void)
  248. {
  249. mutex_unlock(&task_group_mutex);
  250. }
  251. static inline void lock_doms_cur(void)
  252. {
  253. mutex_lock(&doms_cur_mutex);
  254. }
  255. static inline void unlock_doms_cur(void)
  256. {
  257. mutex_unlock(&doms_cur_mutex);
  258. }
  259. #else
  260. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  261. static inline void lock_task_group_list(void) { }
  262. static inline void unlock_task_group_list(void) { }
  263. static inline void lock_doms_cur(void) { }
  264. static inline void unlock_doms_cur(void) { }
  265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  266. /* CFS-related fields in a runqueue */
  267. struct cfs_rq {
  268. struct load_weight load;
  269. unsigned long nr_running;
  270. u64 exec_clock;
  271. u64 min_vruntime;
  272. struct rb_root tasks_timeline;
  273. struct rb_node *rb_leftmost;
  274. struct rb_node *rb_load_balance_curr;
  275. /* 'curr' points to currently running entity on this cfs_rq.
  276. * It is set to NULL otherwise (i.e when none are currently running).
  277. */
  278. struct sched_entity *curr;
  279. unsigned long nr_spread_over;
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  282. /*
  283. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  284. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  285. * (like users, containers etc.)
  286. *
  287. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  288. * list is used during load balance.
  289. */
  290. struct list_head leaf_cfs_rq_list;
  291. struct task_group *tg; /* group that "owns" this runqueue */
  292. #endif
  293. };
  294. /* Real-Time classes' related field in a runqueue: */
  295. struct rt_rq {
  296. struct rt_prio_array active;
  297. int rt_load_balance_idx;
  298. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  299. };
  300. /*
  301. * This is the main, per-CPU runqueue data structure.
  302. *
  303. * Locking rule: those places that want to lock multiple runqueues
  304. * (such as the load balancing or the thread migration code), lock
  305. * acquire operations must be ordered by ascending &runqueue.
  306. */
  307. struct rq {
  308. /* runqueue lock: */
  309. spinlock_t lock;
  310. /*
  311. * nr_running and cpu_load should be in the same cacheline because
  312. * remote CPUs use both these fields when doing load calculation.
  313. */
  314. unsigned long nr_running;
  315. #define CPU_LOAD_IDX_MAX 5
  316. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  317. unsigned char idle_at_tick;
  318. #ifdef CONFIG_NO_HZ
  319. unsigned char in_nohz_recently;
  320. #endif
  321. /* capture load from *all* tasks on this cpu: */
  322. struct load_weight load;
  323. unsigned long nr_load_updates;
  324. u64 nr_switches;
  325. struct cfs_rq cfs;
  326. #ifdef CONFIG_FAIR_GROUP_SCHED
  327. /* list of leaf cfs_rq on this cpu: */
  328. struct list_head leaf_cfs_rq_list;
  329. #endif
  330. struct rt_rq rt;
  331. /*
  332. * This is part of a global counter where only the total sum
  333. * over all CPUs matters. A task can increase this counter on
  334. * one CPU and if it got migrated afterwards it may decrease
  335. * it on another CPU. Always updated under the runqueue lock:
  336. */
  337. unsigned long nr_uninterruptible;
  338. struct task_struct *curr, *idle;
  339. unsigned long next_balance;
  340. struct mm_struct *prev_mm;
  341. u64 clock, prev_clock_raw;
  342. s64 clock_max_delta;
  343. unsigned int clock_warps, clock_overflows;
  344. u64 idle_clock;
  345. unsigned int clock_deep_idle_events;
  346. u64 tick_timestamp;
  347. atomic_t nr_iowait;
  348. #ifdef CONFIG_SMP
  349. struct sched_domain *sd;
  350. /* For active balancing */
  351. int active_balance;
  352. int push_cpu;
  353. /* cpu of this runqueue: */
  354. int cpu;
  355. struct task_struct *migration_thread;
  356. struct list_head migration_queue;
  357. #endif
  358. #ifdef CONFIG_SCHEDSTATS
  359. /* latency stats */
  360. struct sched_info rq_sched_info;
  361. /* sys_sched_yield() stats */
  362. unsigned int yld_exp_empty;
  363. unsigned int yld_act_empty;
  364. unsigned int yld_both_empty;
  365. unsigned int yld_count;
  366. /* schedule() stats */
  367. unsigned int sched_switch;
  368. unsigned int sched_count;
  369. unsigned int sched_goidle;
  370. /* try_to_wake_up() stats */
  371. unsigned int ttwu_count;
  372. unsigned int ttwu_local;
  373. /* BKL stats */
  374. unsigned int bkl_count;
  375. #endif
  376. struct lock_class_key rq_lock_key;
  377. };
  378. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  379. static DEFINE_MUTEX(sched_hotcpu_mutex);
  380. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  381. {
  382. rq->curr->sched_class->check_preempt_curr(rq, p);
  383. }
  384. static inline int cpu_of(struct rq *rq)
  385. {
  386. #ifdef CONFIG_SMP
  387. return rq->cpu;
  388. #else
  389. return 0;
  390. #endif
  391. }
  392. /*
  393. * Update the per-runqueue clock, as finegrained as the platform can give
  394. * us, but without assuming monotonicity, etc.:
  395. */
  396. static void __update_rq_clock(struct rq *rq)
  397. {
  398. u64 prev_raw = rq->prev_clock_raw;
  399. u64 now = sched_clock();
  400. s64 delta = now - prev_raw;
  401. u64 clock = rq->clock;
  402. #ifdef CONFIG_SCHED_DEBUG
  403. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  404. #endif
  405. /*
  406. * Protect against sched_clock() occasionally going backwards:
  407. */
  408. if (unlikely(delta < 0)) {
  409. clock++;
  410. rq->clock_warps++;
  411. } else {
  412. /*
  413. * Catch too large forward jumps too:
  414. */
  415. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  416. if (clock < rq->tick_timestamp + TICK_NSEC)
  417. clock = rq->tick_timestamp + TICK_NSEC;
  418. else
  419. clock++;
  420. rq->clock_overflows++;
  421. } else {
  422. if (unlikely(delta > rq->clock_max_delta))
  423. rq->clock_max_delta = delta;
  424. clock += delta;
  425. }
  426. }
  427. rq->prev_clock_raw = now;
  428. rq->clock = clock;
  429. }
  430. static void update_rq_clock(struct rq *rq)
  431. {
  432. if (likely(smp_processor_id() == cpu_of(rq)))
  433. __update_rq_clock(rq);
  434. }
  435. /*
  436. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  437. * See detach_destroy_domains: synchronize_sched for details.
  438. *
  439. * The domain tree of any CPU may only be accessed from within
  440. * preempt-disabled sections.
  441. */
  442. #define for_each_domain(cpu, __sd) \
  443. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  444. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  445. #define this_rq() (&__get_cpu_var(runqueues))
  446. #define task_rq(p) cpu_rq(task_cpu(p))
  447. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  448. /*
  449. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  450. */
  451. #ifdef CONFIG_SCHED_DEBUG
  452. # define const_debug __read_mostly
  453. #else
  454. # define const_debug static const
  455. #endif
  456. /*
  457. * Debugging: various feature bits
  458. */
  459. enum {
  460. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  461. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  462. SCHED_FEAT_START_DEBIT = 4,
  463. SCHED_FEAT_TREE_AVG = 8,
  464. SCHED_FEAT_APPROX_AVG = 16,
  465. };
  466. const_debug unsigned int sysctl_sched_features =
  467. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  468. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  469. SCHED_FEAT_START_DEBIT * 1 |
  470. SCHED_FEAT_TREE_AVG * 0 |
  471. SCHED_FEAT_APPROX_AVG * 0;
  472. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  473. /*
  474. * Number of tasks to iterate in a single balance run.
  475. * Limited because this is done with IRQs disabled.
  476. */
  477. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  478. /*
  479. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  480. * clock constructed from sched_clock():
  481. */
  482. unsigned long long cpu_clock(int cpu)
  483. {
  484. unsigned long long now;
  485. unsigned long flags;
  486. struct rq *rq;
  487. local_irq_save(flags);
  488. rq = cpu_rq(cpu);
  489. /*
  490. * Only call sched_clock() if the scheduler has already been
  491. * initialized (some code might call cpu_clock() very early):
  492. */
  493. if (rq->idle)
  494. update_rq_clock(rq);
  495. now = rq->clock;
  496. local_irq_restore(flags);
  497. return now;
  498. }
  499. EXPORT_SYMBOL_GPL(cpu_clock);
  500. #ifndef prepare_arch_switch
  501. # define prepare_arch_switch(next) do { } while (0)
  502. #endif
  503. #ifndef finish_arch_switch
  504. # define finish_arch_switch(prev) do { } while (0)
  505. #endif
  506. static inline int task_current(struct rq *rq, struct task_struct *p)
  507. {
  508. return rq->curr == p;
  509. }
  510. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  511. static inline int task_running(struct rq *rq, struct task_struct *p)
  512. {
  513. return task_current(rq, p);
  514. }
  515. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  516. {
  517. }
  518. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  519. {
  520. #ifdef CONFIG_DEBUG_SPINLOCK
  521. /* this is a valid case when another task releases the spinlock */
  522. rq->lock.owner = current;
  523. #endif
  524. /*
  525. * If we are tracking spinlock dependencies then we have to
  526. * fix up the runqueue lock - which gets 'carried over' from
  527. * prev into current:
  528. */
  529. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  530. spin_unlock_irq(&rq->lock);
  531. }
  532. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  533. static inline int task_running(struct rq *rq, struct task_struct *p)
  534. {
  535. #ifdef CONFIG_SMP
  536. return p->oncpu;
  537. #else
  538. return task_current(rq, p);
  539. #endif
  540. }
  541. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  542. {
  543. #ifdef CONFIG_SMP
  544. /*
  545. * We can optimise this out completely for !SMP, because the
  546. * SMP rebalancing from interrupt is the only thing that cares
  547. * here.
  548. */
  549. next->oncpu = 1;
  550. #endif
  551. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  552. spin_unlock_irq(&rq->lock);
  553. #else
  554. spin_unlock(&rq->lock);
  555. #endif
  556. }
  557. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  558. {
  559. #ifdef CONFIG_SMP
  560. /*
  561. * After ->oncpu is cleared, the task can be moved to a different CPU.
  562. * We must ensure this doesn't happen until the switch is completely
  563. * finished.
  564. */
  565. smp_wmb();
  566. prev->oncpu = 0;
  567. #endif
  568. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  569. local_irq_enable();
  570. #endif
  571. }
  572. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  573. /*
  574. * __task_rq_lock - lock the runqueue a given task resides on.
  575. * Must be called interrupts disabled.
  576. */
  577. static inline struct rq *__task_rq_lock(struct task_struct *p)
  578. __acquires(rq->lock)
  579. {
  580. for (;;) {
  581. struct rq *rq = task_rq(p);
  582. spin_lock(&rq->lock);
  583. if (likely(rq == task_rq(p)))
  584. return rq;
  585. spin_unlock(&rq->lock);
  586. }
  587. }
  588. /*
  589. * task_rq_lock - lock the runqueue a given task resides on and disable
  590. * interrupts. Note the ordering: we can safely lookup the task_rq without
  591. * explicitly disabling preemption.
  592. */
  593. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  594. __acquires(rq->lock)
  595. {
  596. struct rq *rq;
  597. for (;;) {
  598. local_irq_save(*flags);
  599. rq = task_rq(p);
  600. spin_lock(&rq->lock);
  601. if (likely(rq == task_rq(p)))
  602. return rq;
  603. spin_unlock_irqrestore(&rq->lock, *flags);
  604. }
  605. }
  606. static void __task_rq_unlock(struct rq *rq)
  607. __releases(rq->lock)
  608. {
  609. spin_unlock(&rq->lock);
  610. }
  611. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  612. __releases(rq->lock)
  613. {
  614. spin_unlock_irqrestore(&rq->lock, *flags);
  615. }
  616. /*
  617. * this_rq_lock - lock this runqueue and disable interrupts.
  618. */
  619. static struct rq *this_rq_lock(void)
  620. __acquires(rq->lock)
  621. {
  622. struct rq *rq;
  623. local_irq_disable();
  624. rq = this_rq();
  625. spin_lock(&rq->lock);
  626. return rq;
  627. }
  628. /*
  629. * We are going deep-idle (irqs are disabled):
  630. */
  631. void sched_clock_idle_sleep_event(void)
  632. {
  633. struct rq *rq = cpu_rq(smp_processor_id());
  634. spin_lock(&rq->lock);
  635. __update_rq_clock(rq);
  636. spin_unlock(&rq->lock);
  637. rq->clock_deep_idle_events++;
  638. }
  639. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  640. /*
  641. * We just idled delta nanoseconds (called with irqs disabled):
  642. */
  643. void sched_clock_idle_wakeup_event(u64 delta_ns)
  644. {
  645. struct rq *rq = cpu_rq(smp_processor_id());
  646. u64 now = sched_clock();
  647. touch_softlockup_watchdog();
  648. rq->idle_clock += delta_ns;
  649. /*
  650. * Override the previous timestamp and ignore all
  651. * sched_clock() deltas that occured while we idled,
  652. * and use the PM-provided delta_ns to advance the
  653. * rq clock:
  654. */
  655. spin_lock(&rq->lock);
  656. rq->prev_clock_raw = now;
  657. rq->clock += delta_ns;
  658. spin_unlock(&rq->lock);
  659. }
  660. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  661. /*
  662. * resched_task - mark a task 'to be rescheduled now'.
  663. *
  664. * On UP this means the setting of the need_resched flag, on SMP it
  665. * might also involve a cross-CPU call to trigger the scheduler on
  666. * the target CPU.
  667. */
  668. #ifdef CONFIG_SMP
  669. #ifndef tsk_is_polling
  670. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  671. #endif
  672. static void resched_task(struct task_struct *p)
  673. {
  674. int cpu;
  675. assert_spin_locked(&task_rq(p)->lock);
  676. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  677. return;
  678. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  679. cpu = task_cpu(p);
  680. if (cpu == smp_processor_id())
  681. return;
  682. /* NEED_RESCHED must be visible before we test polling */
  683. smp_mb();
  684. if (!tsk_is_polling(p))
  685. smp_send_reschedule(cpu);
  686. }
  687. static void resched_cpu(int cpu)
  688. {
  689. struct rq *rq = cpu_rq(cpu);
  690. unsigned long flags;
  691. if (!spin_trylock_irqsave(&rq->lock, flags))
  692. return;
  693. resched_task(cpu_curr(cpu));
  694. spin_unlock_irqrestore(&rq->lock, flags);
  695. }
  696. #else
  697. static inline void resched_task(struct task_struct *p)
  698. {
  699. assert_spin_locked(&task_rq(p)->lock);
  700. set_tsk_need_resched(p);
  701. }
  702. #endif
  703. #if BITS_PER_LONG == 32
  704. # define WMULT_CONST (~0UL)
  705. #else
  706. # define WMULT_CONST (1UL << 32)
  707. #endif
  708. #define WMULT_SHIFT 32
  709. /*
  710. * Shift right and round:
  711. */
  712. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  713. static unsigned long
  714. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  715. struct load_weight *lw)
  716. {
  717. u64 tmp;
  718. if (unlikely(!lw->inv_weight))
  719. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  720. tmp = (u64)delta_exec * weight;
  721. /*
  722. * Check whether we'd overflow the 64-bit multiplication:
  723. */
  724. if (unlikely(tmp > WMULT_CONST))
  725. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  726. WMULT_SHIFT/2);
  727. else
  728. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  729. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  730. }
  731. static inline unsigned long
  732. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  733. {
  734. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  735. }
  736. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  737. {
  738. lw->weight += inc;
  739. }
  740. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  741. {
  742. lw->weight -= dec;
  743. }
  744. /*
  745. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  746. * of tasks with abnormal "nice" values across CPUs the contribution that
  747. * each task makes to its run queue's load is weighted according to its
  748. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  749. * scaled version of the new time slice allocation that they receive on time
  750. * slice expiry etc.
  751. */
  752. #define WEIGHT_IDLEPRIO 2
  753. #define WMULT_IDLEPRIO (1 << 31)
  754. /*
  755. * Nice levels are multiplicative, with a gentle 10% change for every
  756. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  757. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  758. * that remained on nice 0.
  759. *
  760. * The "10% effect" is relative and cumulative: from _any_ nice level,
  761. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  762. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  763. * If a task goes up by ~10% and another task goes down by ~10% then
  764. * the relative distance between them is ~25%.)
  765. */
  766. static const int prio_to_weight[40] = {
  767. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  768. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  769. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  770. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  771. /* 0 */ 1024, 820, 655, 526, 423,
  772. /* 5 */ 335, 272, 215, 172, 137,
  773. /* 10 */ 110, 87, 70, 56, 45,
  774. /* 15 */ 36, 29, 23, 18, 15,
  775. };
  776. /*
  777. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  778. *
  779. * In cases where the weight does not change often, we can use the
  780. * precalculated inverse to speed up arithmetics by turning divisions
  781. * into multiplications:
  782. */
  783. static const u32 prio_to_wmult[40] = {
  784. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  785. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  786. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  787. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  788. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  789. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  790. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  791. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  792. };
  793. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  794. /*
  795. * runqueue iterator, to support SMP load-balancing between different
  796. * scheduling classes, without having to expose their internal data
  797. * structures to the load-balancing proper:
  798. */
  799. struct rq_iterator {
  800. void *arg;
  801. struct task_struct *(*start)(void *);
  802. struct task_struct *(*next)(void *);
  803. };
  804. #ifdef CONFIG_SMP
  805. static unsigned long
  806. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  807. unsigned long max_load_move, struct sched_domain *sd,
  808. enum cpu_idle_type idle, int *all_pinned,
  809. int *this_best_prio, struct rq_iterator *iterator);
  810. static int
  811. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  812. struct sched_domain *sd, enum cpu_idle_type idle,
  813. struct rq_iterator *iterator);
  814. #endif
  815. #ifdef CONFIG_CGROUP_CPUACCT
  816. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  817. #else
  818. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  819. #endif
  820. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  821. {
  822. update_load_add(&rq->load, load);
  823. }
  824. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  825. {
  826. update_load_sub(&rq->load, load);
  827. }
  828. #include "sched_stats.h"
  829. #include "sched_idletask.c"
  830. #include "sched_fair.c"
  831. #include "sched_rt.c"
  832. #ifdef CONFIG_SCHED_DEBUG
  833. # include "sched_debug.c"
  834. #endif
  835. #define sched_class_highest (&rt_sched_class)
  836. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  837. {
  838. rq->nr_running++;
  839. }
  840. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  841. {
  842. rq->nr_running--;
  843. }
  844. static void set_load_weight(struct task_struct *p)
  845. {
  846. if (task_has_rt_policy(p)) {
  847. p->se.load.weight = prio_to_weight[0] * 2;
  848. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  849. return;
  850. }
  851. /*
  852. * SCHED_IDLE tasks get minimal weight:
  853. */
  854. if (p->policy == SCHED_IDLE) {
  855. p->se.load.weight = WEIGHT_IDLEPRIO;
  856. p->se.load.inv_weight = WMULT_IDLEPRIO;
  857. return;
  858. }
  859. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  860. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  861. }
  862. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  863. {
  864. sched_info_queued(p);
  865. p->sched_class->enqueue_task(rq, p, wakeup);
  866. p->se.on_rq = 1;
  867. }
  868. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  869. {
  870. p->sched_class->dequeue_task(rq, p, sleep);
  871. p->se.on_rq = 0;
  872. }
  873. /*
  874. * __normal_prio - return the priority that is based on the static prio
  875. */
  876. static inline int __normal_prio(struct task_struct *p)
  877. {
  878. return p->static_prio;
  879. }
  880. /*
  881. * Calculate the expected normal priority: i.e. priority
  882. * without taking RT-inheritance into account. Might be
  883. * boosted by interactivity modifiers. Changes upon fork,
  884. * setprio syscalls, and whenever the interactivity
  885. * estimator recalculates.
  886. */
  887. static inline int normal_prio(struct task_struct *p)
  888. {
  889. int prio;
  890. if (task_has_rt_policy(p))
  891. prio = MAX_RT_PRIO-1 - p->rt_priority;
  892. else
  893. prio = __normal_prio(p);
  894. return prio;
  895. }
  896. /*
  897. * Calculate the current priority, i.e. the priority
  898. * taken into account by the scheduler. This value might
  899. * be boosted by RT tasks, or might be boosted by
  900. * interactivity modifiers. Will be RT if the task got
  901. * RT-boosted. If not then it returns p->normal_prio.
  902. */
  903. static int effective_prio(struct task_struct *p)
  904. {
  905. p->normal_prio = normal_prio(p);
  906. /*
  907. * If we are RT tasks or we were boosted to RT priority,
  908. * keep the priority unchanged. Otherwise, update priority
  909. * to the normal priority:
  910. */
  911. if (!rt_prio(p->prio))
  912. return p->normal_prio;
  913. return p->prio;
  914. }
  915. /*
  916. * activate_task - move a task to the runqueue.
  917. */
  918. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  919. {
  920. if (p->state == TASK_UNINTERRUPTIBLE)
  921. rq->nr_uninterruptible--;
  922. enqueue_task(rq, p, wakeup);
  923. inc_nr_running(p, rq);
  924. }
  925. /*
  926. * deactivate_task - remove a task from the runqueue.
  927. */
  928. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  929. {
  930. if (p->state == TASK_UNINTERRUPTIBLE)
  931. rq->nr_uninterruptible++;
  932. dequeue_task(rq, p, sleep);
  933. dec_nr_running(p, rq);
  934. }
  935. /**
  936. * task_curr - is this task currently executing on a CPU?
  937. * @p: the task in question.
  938. */
  939. inline int task_curr(const struct task_struct *p)
  940. {
  941. return cpu_curr(task_cpu(p)) == p;
  942. }
  943. /* Used instead of source_load when we know the type == 0 */
  944. unsigned long weighted_cpuload(const int cpu)
  945. {
  946. return cpu_rq(cpu)->load.weight;
  947. }
  948. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  949. {
  950. set_task_cfs_rq(p, cpu);
  951. #ifdef CONFIG_SMP
  952. /*
  953. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  954. * successfuly executed on another CPU. We must ensure that updates of
  955. * per-task data have been completed by this moment.
  956. */
  957. smp_wmb();
  958. task_thread_info(p)->cpu = cpu;
  959. #endif
  960. }
  961. #ifdef CONFIG_SMP
  962. /*
  963. * Is this task likely cache-hot:
  964. */
  965. static inline int
  966. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  967. {
  968. s64 delta;
  969. if (p->sched_class != &fair_sched_class)
  970. return 0;
  971. if (sysctl_sched_migration_cost == -1)
  972. return 1;
  973. if (sysctl_sched_migration_cost == 0)
  974. return 0;
  975. delta = now - p->se.exec_start;
  976. return delta < (s64)sysctl_sched_migration_cost;
  977. }
  978. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  979. {
  980. int old_cpu = task_cpu(p);
  981. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  982. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  983. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  984. u64 clock_offset;
  985. clock_offset = old_rq->clock - new_rq->clock;
  986. #ifdef CONFIG_SCHEDSTATS
  987. if (p->se.wait_start)
  988. p->se.wait_start -= clock_offset;
  989. if (p->se.sleep_start)
  990. p->se.sleep_start -= clock_offset;
  991. if (p->se.block_start)
  992. p->se.block_start -= clock_offset;
  993. if (old_cpu != new_cpu) {
  994. schedstat_inc(p, se.nr_migrations);
  995. if (task_hot(p, old_rq->clock, NULL))
  996. schedstat_inc(p, se.nr_forced2_migrations);
  997. }
  998. #endif
  999. p->se.vruntime -= old_cfsrq->min_vruntime -
  1000. new_cfsrq->min_vruntime;
  1001. __set_task_cpu(p, new_cpu);
  1002. }
  1003. struct migration_req {
  1004. struct list_head list;
  1005. struct task_struct *task;
  1006. int dest_cpu;
  1007. struct completion done;
  1008. };
  1009. /*
  1010. * The task's runqueue lock must be held.
  1011. * Returns true if you have to wait for migration thread.
  1012. */
  1013. static int
  1014. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1015. {
  1016. struct rq *rq = task_rq(p);
  1017. /*
  1018. * If the task is not on a runqueue (and not running), then
  1019. * it is sufficient to simply update the task's cpu field.
  1020. */
  1021. if (!p->se.on_rq && !task_running(rq, p)) {
  1022. set_task_cpu(p, dest_cpu);
  1023. return 0;
  1024. }
  1025. init_completion(&req->done);
  1026. req->task = p;
  1027. req->dest_cpu = dest_cpu;
  1028. list_add(&req->list, &rq->migration_queue);
  1029. return 1;
  1030. }
  1031. /*
  1032. * wait_task_inactive - wait for a thread to unschedule.
  1033. *
  1034. * The caller must ensure that the task *will* unschedule sometime soon,
  1035. * else this function might spin for a *long* time. This function can't
  1036. * be called with interrupts off, or it may introduce deadlock with
  1037. * smp_call_function() if an IPI is sent by the same process we are
  1038. * waiting to become inactive.
  1039. */
  1040. void wait_task_inactive(struct task_struct *p)
  1041. {
  1042. unsigned long flags;
  1043. int running, on_rq;
  1044. struct rq *rq;
  1045. for (;;) {
  1046. /*
  1047. * We do the initial early heuristics without holding
  1048. * any task-queue locks at all. We'll only try to get
  1049. * the runqueue lock when things look like they will
  1050. * work out!
  1051. */
  1052. rq = task_rq(p);
  1053. /*
  1054. * If the task is actively running on another CPU
  1055. * still, just relax and busy-wait without holding
  1056. * any locks.
  1057. *
  1058. * NOTE! Since we don't hold any locks, it's not
  1059. * even sure that "rq" stays as the right runqueue!
  1060. * But we don't care, since "task_running()" will
  1061. * return false if the runqueue has changed and p
  1062. * is actually now running somewhere else!
  1063. */
  1064. while (task_running(rq, p))
  1065. cpu_relax();
  1066. /*
  1067. * Ok, time to look more closely! We need the rq
  1068. * lock now, to be *sure*. If we're wrong, we'll
  1069. * just go back and repeat.
  1070. */
  1071. rq = task_rq_lock(p, &flags);
  1072. running = task_running(rq, p);
  1073. on_rq = p->se.on_rq;
  1074. task_rq_unlock(rq, &flags);
  1075. /*
  1076. * Was it really running after all now that we
  1077. * checked with the proper locks actually held?
  1078. *
  1079. * Oops. Go back and try again..
  1080. */
  1081. if (unlikely(running)) {
  1082. cpu_relax();
  1083. continue;
  1084. }
  1085. /*
  1086. * It's not enough that it's not actively running,
  1087. * it must be off the runqueue _entirely_, and not
  1088. * preempted!
  1089. *
  1090. * So if it wa still runnable (but just not actively
  1091. * running right now), it's preempted, and we should
  1092. * yield - it could be a while.
  1093. */
  1094. if (unlikely(on_rq)) {
  1095. schedule_timeout_uninterruptible(1);
  1096. continue;
  1097. }
  1098. /*
  1099. * Ahh, all good. It wasn't running, and it wasn't
  1100. * runnable, which means that it will never become
  1101. * running in the future either. We're all done!
  1102. */
  1103. break;
  1104. }
  1105. }
  1106. /***
  1107. * kick_process - kick a running thread to enter/exit the kernel
  1108. * @p: the to-be-kicked thread
  1109. *
  1110. * Cause a process which is running on another CPU to enter
  1111. * kernel-mode, without any delay. (to get signals handled.)
  1112. *
  1113. * NOTE: this function doesnt have to take the runqueue lock,
  1114. * because all it wants to ensure is that the remote task enters
  1115. * the kernel. If the IPI races and the task has been migrated
  1116. * to another CPU then no harm is done and the purpose has been
  1117. * achieved as well.
  1118. */
  1119. void kick_process(struct task_struct *p)
  1120. {
  1121. int cpu;
  1122. preempt_disable();
  1123. cpu = task_cpu(p);
  1124. if ((cpu != smp_processor_id()) && task_curr(p))
  1125. smp_send_reschedule(cpu);
  1126. preempt_enable();
  1127. }
  1128. /*
  1129. * Return a low guess at the load of a migration-source cpu weighted
  1130. * according to the scheduling class and "nice" value.
  1131. *
  1132. * We want to under-estimate the load of migration sources, to
  1133. * balance conservatively.
  1134. */
  1135. static unsigned long source_load(int cpu, int type)
  1136. {
  1137. struct rq *rq = cpu_rq(cpu);
  1138. unsigned long total = weighted_cpuload(cpu);
  1139. if (type == 0)
  1140. return total;
  1141. return min(rq->cpu_load[type-1], total);
  1142. }
  1143. /*
  1144. * Return a high guess at the load of a migration-target cpu weighted
  1145. * according to the scheduling class and "nice" value.
  1146. */
  1147. static unsigned long target_load(int cpu, int type)
  1148. {
  1149. struct rq *rq = cpu_rq(cpu);
  1150. unsigned long total = weighted_cpuload(cpu);
  1151. if (type == 0)
  1152. return total;
  1153. return max(rq->cpu_load[type-1], total);
  1154. }
  1155. /*
  1156. * Return the average load per task on the cpu's run queue
  1157. */
  1158. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1159. {
  1160. struct rq *rq = cpu_rq(cpu);
  1161. unsigned long total = weighted_cpuload(cpu);
  1162. unsigned long n = rq->nr_running;
  1163. return n ? total / n : SCHED_LOAD_SCALE;
  1164. }
  1165. /*
  1166. * find_idlest_group finds and returns the least busy CPU group within the
  1167. * domain.
  1168. */
  1169. static struct sched_group *
  1170. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1171. {
  1172. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1173. unsigned long min_load = ULONG_MAX, this_load = 0;
  1174. int load_idx = sd->forkexec_idx;
  1175. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1176. do {
  1177. unsigned long load, avg_load;
  1178. int local_group;
  1179. int i;
  1180. /* Skip over this group if it has no CPUs allowed */
  1181. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1182. continue;
  1183. local_group = cpu_isset(this_cpu, group->cpumask);
  1184. /* Tally up the load of all CPUs in the group */
  1185. avg_load = 0;
  1186. for_each_cpu_mask(i, group->cpumask) {
  1187. /* Bias balancing toward cpus of our domain */
  1188. if (local_group)
  1189. load = source_load(i, load_idx);
  1190. else
  1191. load = target_load(i, load_idx);
  1192. avg_load += load;
  1193. }
  1194. /* Adjust by relative CPU power of the group */
  1195. avg_load = sg_div_cpu_power(group,
  1196. avg_load * SCHED_LOAD_SCALE);
  1197. if (local_group) {
  1198. this_load = avg_load;
  1199. this = group;
  1200. } else if (avg_load < min_load) {
  1201. min_load = avg_load;
  1202. idlest = group;
  1203. }
  1204. } while (group = group->next, group != sd->groups);
  1205. if (!idlest || 100*this_load < imbalance*min_load)
  1206. return NULL;
  1207. return idlest;
  1208. }
  1209. /*
  1210. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1211. */
  1212. static int
  1213. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1214. {
  1215. cpumask_t tmp;
  1216. unsigned long load, min_load = ULONG_MAX;
  1217. int idlest = -1;
  1218. int i;
  1219. /* Traverse only the allowed CPUs */
  1220. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1221. for_each_cpu_mask(i, tmp) {
  1222. load = weighted_cpuload(i);
  1223. if (load < min_load || (load == min_load && i == this_cpu)) {
  1224. min_load = load;
  1225. idlest = i;
  1226. }
  1227. }
  1228. return idlest;
  1229. }
  1230. /*
  1231. * sched_balance_self: balance the current task (running on cpu) in domains
  1232. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1233. * SD_BALANCE_EXEC.
  1234. *
  1235. * Balance, ie. select the least loaded group.
  1236. *
  1237. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1238. *
  1239. * preempt must be disabled.
  1240. */
  1241. static int sched_balance_self(int cpu, int flag)
  1242. {
  1243. struct task_struct *t = current;
  1244. struct sched_domain *tmp, *sd = NULL;
  1245. for_each_domain(cpu, tmp) {
  1246. /*
  1247. * If power savings logic is enabled for a domain, stop there.
  1248. */
  1249. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1250. break;
  1251. if (tmp->flags & flag)
  1252. sd = tmp;
  1253. }
  1254. while (sd) {
  1255. cpumask_t span;
  1256. struct sched_group *group;
  1257. int new_cpu, weight;
  1258. if (!(sd->flags & flag)) {
  1259. sd = sd->child;
  1260. continue;
  1261. }
  1262. span = sd->span;
  1263. group = find_idlest_group(sd, t, cpu);
  1264. if (!group) {
  1265. sd = sd->child;
  1266. continue;
  1267. }
  1268. new_cpu = find_idlest_cpu(group, t, cpu);
  1269. if (new_cpu == -1 || new_cpu == cpu) {
  1270. /* Now try balancing at a lower domain level of cpu */
  1271. sd = sd->child;
  1272. continue;
  1273. }
  1274. /* Now try balancing at a lower domain level of new_cpu */
  1275. cpu = new_cpu;
  1276. sd = NULL;
  1277. weight = cpus_weight(span);
  1278. for_each_domain(cpu, tmp) {
  1279. if (weight <= cpus_weight(tmp->span))
  1280. break;
  1281. if (tmp->flags & flag)
  1282. sd = tmp;
  1283. }
  1284. /* while loop will break here if sd == NULL */
  1285. }
  1286. return cpu;
  1287. }
  1288. #endif /* CONFIG_SMP */
  1289. /*
  1290. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1291. * not idle and an idle cpu is available. The span of cpus to
  1292. * search starts with cpus closest then further out as needed,
  1293. * so we always favor a closer, idle cpu.
  1294. *
  1295. * Returns the CPU we should wake onto.
  1296. */
  1297. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1298. static int wake_idle(int cpu, struct task_struct *p)
  1299. {
  1300. cpumask_t tmp;
  1301. struct sched_domain *sd;
  1302. int i;
  1303. /*
  1304. * If it is idle, then it is the best cpu to run this task.
  1305. *
  1306. * This cpu is also the best, if it has more than one task already.
  1307. * Siblings must be also busy(in most cases) as they didn't already
  1308. * pickup the extra load from this cpu and hence we need not check
  1309. * sibling runqueue info. This will avoid the checks and cache miss
  1310. * penalities associated with that.
  1311. */
  1312. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1313. return cpu;
  1314. for_each_domain(cpu, sd) {
  1315. if (sd->flags & SD_WAKE_IDLE) {
  1316. cpus_and(tmp, sd->span, p->cpus_allowed);
  1317. for_each_cpu_mask(i, tmp) {
  1318. if (idle_cpu(i)) {
  1319. if (i != task_cpu(p)) {
  1320. schedstat_inc(p,
  1321. se.nr_wakeups_idle);
  1322. }
  1323. return i;
  1324. }
  1325. }
  1326. } else {
  1327. break;
  1328. }
  1329. }
  1330. return cpu;
  1331. }
  1332. #else
  1333. static inline int wake_idle(int cpu, struct task_struct *p)
  1334. {
  1335. return cpu;
  1336. }
  1337. #endif
  1338. /***
  1339. * try_to_wake_up - wake up a thread
  1340. * @p: the to-be-woken-up thread
  1341. * @state: the mask of task states that can be woken
  1342. * @sync: do a synchronous wakeup?
  1343. *
  1344. * Put it on the run-queue if it's not already there. The "current"
  1345. * thread is always on the run-queue (except when the actual
  1346. * re-schedule is in progress), and as such you're allowed to do
  1347. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1348. * runnable without the overhead of this.
  1349. *
  1350. * returns failure only if the task is already active.
  1351. */
  1352. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1353. {
  1354. int cpu, orig_cpu, this_cpu, success = 0;
  1355. unsigned long flags;
  1356. long old_state;
  1357. struct rq *rq;
  1358. #ifdef CONFIG_SMP
  1359. struct sched_domain *sd, *this_sd = NULL;
  1360. unsigned long load, this_load;
  1361. int new_cpu;
  1362. #endif
  1363. rq = task_rq_lock(p, &flags);
  1364. old_state = p->state;
  1365. if (!(old_state & state))
  1366. goto out;
  1367. if (p->se.on_rq)
  1368. goto out_running;
  1369. cpu = task_cpu(p);
  1370. orig_cpu = cpu;
  1371. this_cpu = smp_processor_id();
  1372. #ifdef CONFIG_SMP
  1373. if (unlikely(task_running(rq, p)))
  1374. goto out_activate;
  1375. new_cpu = cpu;
  1376. schedstat_inc(rq, ttwu_count);
  1377. if (cpu == this_cpu) {
  1378. schedstat_inc(rq, ttwu_local);
  1379. goto out_set_cpu;
  1380. }
  1381. for_each_domain(this_cpu, sd) {
  1382. if (cpu_isset(cpu, sd->span)) {
  1383. schedstat_inc(sd, ttwu_wake_remote);
  1384. this_sd = sd;
  1385. break;
  1386. }
  1387. }
  1388. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1389. goto out_set_cpu;
  1390. /*
  1391. * Check for affine wakeup and passive balancing possibilities.
  1392. */
  1393. if (this_sd) {
  1394. int idx = this_sd->wake_idx;
  1395. unsigned int imbalance;
  1396. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1397. load = source_load(cpu, idx);
  1398. this_load = target_load(this_cpu, idx);
  1399. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1400. if (this_sd->flags & SD_WAKE_AFFINE) {
  1401. unsigned long tl = this_load;
  1402. unsigned long tl_per_task;
  1403. /*
  1404. * Attract cache-cold tasks on sync wakeups:
  1405. */
  1406. if (sync && !task_hot(p, rq->clock, this_sd))
  1407. goto out_set_cpu;
  1408. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1409. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1410. /*
  1411. * If sync wakeup then subtract the (maximum possible)
  1412. * effect of the currently running task from the load
  1413. * of the current CPU:
  1414. */
  1415. if (sync)
  1416. tl -= current->se.load.weight;
  1417. if ((tl <= load &&
  1418. tl + target_load(cpu, idx) <= tl_per_task) ||
  1419. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1420. /*
  1421. * This domain has SD_WAKE_AFFINE and
  1422. * p is cache cold in this domain, and
  1423. * there is no bad imbalance.
  1424. */
  1425. schedstat_inc(this_sd, ttwu_move_affine);
  1426. schedstat_inc(p, se.nr_wakeups_affine);
  1427. goto out_set_cpu;
  1428. }
  1429. }
  1430. /*
  1431. * Start passive balancing when half the imbalance_pct
  1432. * limit is reached.
  1433. */
  1434. if (this_sd->flags & SD_WAKE_BALANCE) {
  1435. if (imbalance*this_load <= 100*load) {
  1436. schedstat_inc(this_sd, ttwu_move_balance);
  1437. schedstat_inc(p, se.nr_wakeups_passive);
  1438. goto out_set_cpu;
  1439. }
  1440. }
  1441. }
  1442. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1443. out_set_cpu:
  1444. new_cpu = wake_idle(new_cpu, p);
  1445. if (new_cpu != cpu) {
  1446. set_task_cpu(p, new_cpu);
  1447. task_rq_unlock(rq, &flags);
  1448. /* might preempt at this point */
  1449. rq = task_rq_lock(p, &flags);
  1450. old_state = p->state;
  1451. if (!(old_state & state))
  1452. goto out;
  1453. if (p->se.on_rq)
  1454. goto out_running;
  1455. this_cpu = smp_processor_id();
  1456. cpu = task_cpu(p);
  1457. }
  1458. out_activate:
  1459. #endif /* CONFIG_SMP */
  1460. schedstat_inc(p, se.nr_wakeups);
  1461. if (sync)
  1462. schedstat_inc(p, se.nr_wakeups_sync);
  1463. if (orig_cpu != cpu)
  1464. schedstat_inc(p, se.nr_wakeups_migrate);
  1465. if (cpu == this_cpu)
  1466. schedstat_inc(p, se.nr_wakeups_local);
  1467. else
  1468. schedstat_inc(p, se.nr_wakeups_remote);
  1469. update_rq_clock(rq);
  1470. activate_task(rq, p, 1);
  1471. check_preempt_curr(rq, p);
  1472. success = 1;
  1473. out_running:
  1474. p->state = TASK_RUNNING;
  1475. out:
  1476. task_rq_unlock(rq, &flags);
  1477. return success;
  1478. }
  1479. int fastcall wake_up_process(struct task_struct *p)
  1480. {
  1481. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1482. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1483. }
  1484. EXPORT_SYMBOL(wake_up_process);
  1485. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1486. {
  1487. return try_to_wake_up(p, state, 0);
  1488. }
  1489. /*
  1490. * Perform scheduler related setup for a newly forked process p.
  1491. * p is forked by current.
  1492. *
  1493. * __sched_fork() is basic setup used by init_idle() too:
  1494. */
  1495. static void __sched_fork(struct task_struct *p)
  1496. {
  1497. p->se.exec_start = 0;
  1498. p->se.sum_exec_runtime = 0;
  1499. p->se.prev_sum_exec_runtime = 0;
  1500. #ifdef CONFIG_SCHEDSTATS
  1501. p->se.wait_start = 0;
  1502. p->se.sum_sleep_runtime = 0;
  1503. p->se.sleep_start = 0;
  1504. p->se.block_start = 0;
  1505. p->se.sleep_max = 0;
  1506. p->se.block_max = 0;
  1507. p->se.exec_max = 0;
  1508. p->se.slice_max = 0;
  1509. p->se.wait_max = 0;
  1510. #endif
  1511. INIT_LIST_HEAD(&p->run_list);
  1512. p->se.on_rq = 0;
  1513. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1514. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1515. #endif
  1516. /*
  1517. * We mark the process as running here, but have not actually
  1518. * inserted it onto the runqueue yet. This guarantees that
  1519. * nobody will actually run it, and a signal or other external
  1520. * event cannot wake it up and insert it on the runqueue either.
  1521. */
  1522. p->state = TASK_RUNNING;
  1523. }
  1524. /*
  1525. * fork()/clone()-time setup:
  1526. */
  1527. void sched_fork(struct task_struct *p, int clone_flags)
  1528. {
  1529. int cpu = get_cpu();
  1530. __sched_fork(p);
  1531. #ifdef CONFIG_SMP
  1532. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1533. #endif
  1534. set_task_cpu(p, cpu);
  1535. /*
  1536. * Make sure we do not leak PI boosting priority to the child:
  1537. */
  1538. p->prio = current->normal_prio;
  1539. if (!rt_prio(p->prio))
  1540. p->sched_class = &fair_sched_class;
  1541. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1542. if (likely(sched_info_on()))
  1543. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1544. #endif
  1545. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1546. p->oncpu = 0;
  1547. #endif
  1548. #ifdef CONFIG_PREEMPT
  1549. /* Want to start with kernel preemption disabled. */
  1550. task_thread_info(p)->preempt_count = 1;
  1551. #endif
  1552. put_cpu();
  1553. }
  1554. /*
  1555. * wake_up_new_task - wake up a newly created task for the first time.
  1556. *
  1557. * This function will do some initial scheduler statistics housekeeping
  1558. * that must be done for every newly created context, then puts the task
  1559. * on the runqueue and wakes it.
  1560. */
  1561. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1562. {
  1563. unsigned long flags;
  1564. struct rq *rq;
  1565. rq = task_rq_lock(p, &flags);
  1566. BUG_ON(p->state != TASK_RUNNING);
  1567. update_rq_clock(rq);
  1568. p->prio = effective_prio(p);
  1569. if (!p->sched_class->task_new || !current->se.on_rq) {
  1570. activate_task(rq, p, 0);
  1571. } else {
  1572. /*
  1573. * Let the scheduling class do new task startup
  1574. * management (if any):
  1575. */
  1576. p->sched_class->task_new(rq, p);
  1577. inc_nr_running(p, rq);
  1578. }
  1579. check_preempt_curr(rq, p);
  1580. task_rq_unlock(rq, &flags);
  1581. }
  1582. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1583. /**
  1584. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1585. * @notifier: notifier struct to register
  1586. */
  1587. void preempt_notifier_register(struct preempt_notifier *notifier)
  1588. {
  1589. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1590. }
  1591. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1592. /**
  1593. * preempt_notifier_unregister - no longer interested in preemption notifications
  1594. * @notifier: notifier struct to unregister
  1595. *
  1596. * This is safe to call from within a preemption notifier.
  1597. */
  1598. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1599. {
  1600. hlist_del(&notifier->link);
  1601. }
  1602. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1603. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1604. {
  1605. struct preempt_notifier *notifier;
  1606. struct hlist_node *node;
  1607. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1608. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1609. }
  1610. static void
  1611. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1612. struct task_struct *next)
  1613. {
  1614. struct preempt_notifier *notifier;
  1615. struct hlist_node *node;
  1616. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1617. notifier->ops->sched_out(notifier, next);
  1618. }
  1619. #else
  1620. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1621. {
  1622. }
  1623. static void
  1624. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1625. struct task_struct *next)
  1626. {
  1627. }
  1628. #endif
  1629. /**
  1630. * prepare_task_switch - prepare to switch tasks
  1631. * @rq: the runqueue preparing to switch
  1632. * @prev: the current task that is being switched out
  1633. * @next: the task we are going to switch to.
  1634. *
  1635. * This is called with the rq lock held and interrupts off. It must
  1636. * be paired with a subsequent finish_task_switch after the context
  1637. * switch.
  1638. *
  1639. * prepare_task_switch sets up locking and calls architecture specific
  1640. * hooks.
  1641. */
  1642. static inline void
  1643. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1644. struct task_struct *next)
  1645. {
  1646. fire_sched_out_preempt_notifiers(prev, next);
  1647. prepare_lock_switch(rq, next);
  1648. prepare_arch_switch(next);
  1649. }
  1650. /**
  1651. * finish_task_switch - clean up after a task-switch
  1652. * @rq: runqueue associated with task-switch
  1653. * @prev: the thread we just switched away from.
  1654. *
  1655. * finish_task_switch must be called after the context switch, paired
  1656. * with a prepare_task_switch call before the context switch.
  1657. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1658. * and do any other architecture-specific cleanup actions.
  1659. *
  1660. * Note that we may have delayed dropping an mm in context_switch(). If
  1661. * so, we finish that here outside of the runqueue lock. (Doing it
  1662. * with the lock held can cause deadlocks; see schedule() for
  1663. * details.)
  1664. */
  1665. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1666. __releases(rq->lock)
  1667. {
  1668. struct mm_struct *mm = rq->prev_mm;
  1669. long prev_state;
  1670. rq->prev_mm = NULL;
  1671. /*
  1672. * A task struct has one reference for the use as "current".
  1673. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1674. * schedule one last time. The schedule call will never return, and
  1675. * the scheduled task must drop that reference.
  1676. * The test for TASK_DEAD must occur while the runqueue locks are
  1677. * still held, otherwise prev could be scheduled on another cpu, die
  1678. * there before we look at prev->state, and then the reference would
  1679. * be dropped twice.
  1680. * Manfred Spraul <manfred@colorfullife.com>
  1681. */
  1682. prev_state = prev->state;
  1683. finish_arch_switch(prev);
  1684. finish_lock_switch(rq, prev);
  1685. fire_sched_in_preempt_notifiers(current);
  1686. if (mm)
  1687. mmdrop(mm);
  1688. if (unlikely(prev_state == TASK_DEAD)) {
  1689. /*
  1690. * Remove function-return probe instances associated with this
  1691. * task and put them back on the free list.
  1692. */
  1693. kprobe_flush_task(prev);
  1694. put_task_struct(prev);
  1695. }
  1696. }
  1697. /**
  1698. * schedule_tail - first thing a freshly forked thread must call.
  1699. * @prev: the thread we just switched away from.
  1700. */
  1701. asmlinkage void schedule_tail(struct task_struct *prev)
  1702. __releases(rq->lock)
  1703. {
  1704. struct rq *rq = this_rq();
  1705. finish_task_switch(rq, prev);
  1706. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1707. /* In this case, finish_task_switch does not reenable preemption */
  1708. preempt_enable();
  1709. #endif
  1710. if (current->set_child_tid)
  1711. put_user(task_pid_vnr(current), current->set_child_tid);
  1712. }
  1713. /*
  1714. * context_switch - switch to the new MM and the new
  1715. * thread's register state.
  1716. */
  1717. static inline void
  1718. context_switch(struct rq *rq, struct task_struct *prev,
  1719. struct task_struct *next)
  1720. {
  1721. struct mm_struct *mm, *oldmm;
  1722. prepare_task_switch(rq, prev, next);
  1723. mm = next->mm;
  1724. oldmm = prev->active_mm;
  1725. /*
  1726. * For paravirt, this is coupled with an exit in switch_to to
  1727. * combine the page table reload and the switch backend into
  1728. * one hypercall.
  1729. */
  1730. arch_enter_lazy_cpu_mode();
  1731. if (unlikely(!mm)) {
  1732. next->active_mm = oldmm;
  1733. atomic_inc(&oldmm->mm_count);
  1734. enter_lazy_tlb(oldmm, next);
  1735. } else
  1736. switch_mm(oldmm, mm, next);
  1737. if (unlikely(!prev->mm)) {
  1738. prev->active_mm = NULL;
  1739. rq->prev_mm = oldmm;
  1740. }
  1741. /*
  1742. * Since the runqueue lock will be released by the next
  1743. * task (which is an invalid locking op but in the case
  1744. * of the scheduler it's an obvious special-case), so we
  1745. * do an early lockdep release here:
  1746. */
  1747. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1748. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1749. #endif
  1750. /* Here we just switch the register state and the stack. */
  1751. switch_to(prev, next, prev);
  1752. barrier();
  1753. /*
  1754. * this_rq must be evaluated again because prev may have moved
  1755. * CPUs since it called schedule(), thus the 'rq' on its stack
  1756. * frame will be invalid.
  1757. */
  1758. finish_task_switch(this_rq(), prev);
  1759. }
  1760. /*
  1761. * nr_running, nr_uninterruptible and nr_context_switches:
  1762. *
  1763. * externally visible scheduler statistics: current number of runnable
  1764. * threads, current number of uninterruptible-sleeping threads, total
  1765. * number of context switches performed since bootup.
  1766. */
  1767. unsigned long nr_running(void)
  1768. {
  1769. unsigned long i, sum = 0;
  1770. for_each_online_cpu(i)
  1771. sum += cpu_rq(i)->nr_running;
  1772. return sum;
  1773. }
  1774. unsigned long nr_uninterruptible(void)
  1775. {
  1776. unsigned long i, sum = 0;
  1777. for_each_possible_cpu(i)
  1778. sum += cpu_rq(i)->nr_uninterruptible;
  1779. /*
  1780. * Since we read the counters lockless, it might be slightly
  1781. * inaccurate. Do not allow it to go below zero though:
  1782. */
  1783. if (unlikely((long)sum < 0))
  1784. sum = 0;
  1785. return sum;
  1786. }
  1787. unsigned long long nr_context_switches(void)
  1788. {
  1789. int i;
  1790. unsigned long long sum = 0;
  1791. for_each_possible_cpu(i)
  1792. sum += cpu_rq(i)->nr_switches;
  1793. return sum;
  1794. }
  1795. unsigned long nr_iowait(void)
  1796. {
  1797. unsigned long i, sum = 0;
  1798. for_each_possible_cpu(i)
  1799. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1800. return sum;
  1801. }
  1802. unsigned long nr_active(void)
  1803. {
  1804. unsigned long i, running = 0, uninterruptible = 0;
  1805. for_each_online_cpu(i) {
  1806. running += cpu_rq(i)->nr_running;
  1807. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1808. }
  1809. if (unlikely((long)uninterruptible < 0))
  1810. uninterruptible = 0;
  1811. return running + uninterruptible;
  1812. }
  1813. /*
  1814. * Update rq->cpu_load[] statistics. This function is usually called every
  1815. * scheduler tick (TICK_NSEC).
  1816. */
  1817. static void update_cpu_load(struct rq *this_rq)
  1818. {
  1819. unsigned long this_load = this_rq->load.weight;
  1820. int i, scale;
  1821. this_rq->nr_load_updates++;
  1822. /* Update our load: */
  1823. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1824. unsigned long old_load, new_load;
  1825. /* scale is effectively 1 << i now, and >> i divides by scale */
  1826. old_load = this_rq->cpu_load[i];
  1827. new_load = this_load;
  1828. /*
  1829. * Round up the averaging division if load is increasing. This
  1830. * prevents us from getting stuck on 9 if the load is 10, for
  1831. * example.
  1832. */
  1833. if (new_load > old_load)
  1834. new_load += scale-1;
  1835. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1836. }
  1837. }
  1838. #ifdef CONFIG_SMP
  1839. /*
  1840. * double_rq_lock - safely lock two runqueues
  1841. *
  1842. * Note this does not disable interrupts like task_rq_lock,
  1843. * you need to do so manually before calling.
  1844. */
  1845. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1846. __acquires(rq1->lock)
  1847. __acquires(rq2->lock)
  1848. {
  1849. BUG_ON(!irqs_disabled());
  1850. if (rq1 == rq2) {
  1851. spin_lock(&rq1->lock);
  1852. __acquire(rq2->lock); /* Fake it out ;) */
  1853. } else {
  1854. if (rq1 < rq2) {
  1855. spin_lock(&rq1->lock);
  1856. spin_lock(&rq2->lock);
  1857. } else {
  1858. spin_lock(&rq2->lock);
  1859. spin_lock(&rq1->lock);
  1860. }
  1861. }
  1862. update_rq_clock(rq1);
  1863. update_rq_clock(rq2);
  1864. }
  1865. /*
  1866. * double_rq_unlock - safely unlock two runqueues
  1867. *
  1868. * Note this does not restore interrupts like task_rq_unlock,
  1869. * you need to do so manually after calling.
  1870. */
  1871. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1872. __releases(rq1->lock)
  1873. __releases(rq2->lock)
  1874. {
  1875. spin_unlock(&rq1->lock);
  1876. if (rq1 != rq2)
  1877. spin_unlock(&rq2->lock);
  1878. else
  1879. __release(rq2->lock);
  1880. }
  1881. /*
  1882. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1883. */
  1884. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1885. __releases(this_rq->lock)
  1886. __acquires(busiest->lock)
  1887. __acquires(this_rq->lock)
  1888. {
  1889. if (unlikely(!irqs_disabled())) {
  1890. /* printk() doesn't work good under rq->lock */
  1891. spin_unlock(&this_rq->lock);
  1892. BUG_ON(1);
  1893. }
  1894. if (unlikely(!spin_trylock(&busiest->lock))) {
  1895. if (busiest < this_rq) {
  1896. spin_unlock(&this_rq->lock);
  1897. spin_lock(&busiest->lock);
  1898. spin_lock(&this_rq->lock);
  1899. } else
  1900. spin_lock(&busiest->lock);
  1901. }
  1902. }
  1903. /*
  1904. * If dest_cpu is allowed for this process, migrate the task to it.
  1905. * This is accomplished by forcing the cpu_allowed mask to only
  1906. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1907. * the cpu_allowed mask is restored.
  1908. */
  1909. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1910. {
  1911. struct migration_req req;
  1912. unsigned long flags;
  1913. struct rq *rq;
  1914. rq = task_rq_lock(p, &flags);
  1915. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1916. || unlikely(cpu_is_offline(dest_cpu)))
  1917. goto out;
  1918. /* force the process onto the specified CPU */
  1919. if (migrate_task(p, dest_cpu, &req)) {
  1920. /* Need to wait for migration thread (might exit: take ref). */
  1921. struct task_struct *mt = rq->migration_thread;
  1922. get_task_struct(mt);
  1923. task_rq_unlock(rq, &flags);
  1924. wake_up_process(mt);
  1925. put_task_struct(mt);
  1926. wait_for_completion(&req.done);
  1927. return;
  1928. }
  1929. out:
  1930. task_rq_unlock(rq, &flags);
  1931. }
  1932. /*
  1933. * sched_exec - execve() is a valuable balancing opportunity, because at
  1934. * this point the task has the smallest effective memory and cache footprint.
  1935. */
  1936. void sched_exec(void)
  1937. {
  1938. int new_cpu, this_cpu = get_cpu();
  1939. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1940. put_cpu();
  1941. if (new_cpu != this_cpu)
  1942. sched_migrate_task(current, new_cpu);
  1943. }
  1944. /*
  1945. * pull_task - move a task from a remote runqueue to the local runqueue.
  1946. * Both runqueues must be locked.
  1947. */
  1948. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1949. struct rq *this_rq, int this_cpu)
  1950. {
  1951. deactivate_task(src_rq, p, 0);
  1952. set_task_cpu(p, this_cpu);
  1953. activate_task(this_rq, p, 0);
  1954. /*
  1955. * Note that idle threads have a prio of MAX_PRIO, for this test
  1956. * to be always true for them.
  1957. */
  1958. check_preempt_curr(this_rq, p);
  1959. }
  1960. /*
  1961. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1962. */
  1963. static
  1964. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1965. struct sched_domain *sd, enum cpu_idle_type idle,
  1966. int *all_pinned)
  1967. {
  1968. /*
  1969. * We do not migrate tasks that are:
  1970. * 1) running (obviously), or
  1971. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1972. * 3) are cache-hot on their current CPU.
  1973. */
  1974. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1975. schedstat_inc(p, se.nr_failed_migrations_affine);
  1976. return 0;
  1977. }
  1978. *all_pinned = 0;
  1979. if (task_running(rq, p)) {
  1980. schedstat_inc(p, se.nr_failed_migrations_running);
  1981. return 0;
  1982. }
  1983. /*
  1984. * Aggressive migration if:
  1985. * 1) task is cache cold, or
  1986. * 2) too many balance attempts have failed.
  1987. */
  1988. if (!task_hot(p, rq->clock, sd) ||
  1989. sd->nr_balance_failed > sd->cache_nice_tries) {
  1990. #ifdef CONFIG_SCHEDSTATS
  1991. if (task_hot(p, rq->clock, sd)) {
  1992. schedstat_inc(sd, lb_hot_gained[idle]);
  1993. schedstat_inc(p, se.nr_forced_migrations);
  1994. }
  1995. #endif
  1996. return 1;
  1997. }
  1998. if (task_hot(p, rq->clock, sd)) {
  1999. schedstat_inc(p, se.nr_failed_migrations_hot);
  2000. return 0;
  2001. }
  2002. return 1;
  2003. }
  2004. static unsigned long
  2005. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2006. unsigned long max_load_move, struct sched_domain *sd,
  2007. enum cpu_idle_type idle, int *all_pinned,
  2008. int *this_best_prio, struct rq_iterator *iterator)
  2009. {
  2010. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2011. struct task_struct *p;
  2012. long rem_load_move = max_load_move;
  2013. if (max_load_move == 0)
  2014. goto out;
  2015. pinned = 1;
  2016. /*
  2017. * Start the load-balancing iterator:
  2018. */
  2019. p = iterator->start(iterator->arg);
  2020. next:
  2021. if (!p || loops++ > sysctl_sched_nr_migrate)
  2022. goto out;
  2023. /*
  2024. * To help distribute high priority tasks across CPUs we don't
  2025. * skip a task if it will be the highest priority task (i.e. smallest
  2026. * prio value) on its new queue regardless of its load weight
  2027. */
  2028. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2029. SCHED_LOAD_SCALE_FUZZ;
  2030. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2031. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2032. p = iterator->next(iterator->arg);
  2033. goto next;
  2034. }
  2035. pull_task(busiest, p, this_rq, this_cpu);
  2036. pulled++;
  2037. rem_load_move -= p->se.load.weight;
  2038. /*
  2039. * We only want to steal up to the prescribed amount of weighted load.
  2040. */
  2041. if (rem_load_move > 0) {
  2042. if (p->prio < *this_best_prio)
  2043. *this_best_prio = p->prio;
  2044. p = iterator->next(iterator->arg);
  2045. goto next;
  2046. }
  2047. out:
  2048. /*
  2049. * Right now, this is one of only two places pull_task() is called,
  2050. * so we can safely collect pull_task() stats here rather than
  2051. * inside pull_task().
  2052. */
  2053. schedstat_add(sd, lb_gained[idle], pulled);
  2054. if (all_pinned)
  2055. *all_pinned = pinned;
  2056. return max_load_move - rem_load_move;
  2057. }
  2058. /*
  2059. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2060. * this_rq, as part of a balancing operation within domain "sd".
  2061. * Returns 1 if successful and 0 otherwise.
  2062. *
  2063. * Called with both runqueues locked.
  2064. */
  2065. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2066. unsigned long max_load_move,
  2067. struct sched_domain *sd, enum cpu_idle_type idle,
  2068. int *all_pinned)
  2069. {
  2070. const struct sched_class *class = sched_class_highest;
  2071. unsigned long total_load_moved = 0;
  2072. int this_best_prio = this_rq->curr->prio;
  2073. do {
  2074. total_load_moved +=
  2075. class->load_balance(this_rq, this_cpu, busiest,
  2076. max_load_move - total_load_moved,
  2077. sd, idle, all_pinned, &this_best_prio);
  2078. class = class->next;
  2079. } while (class && max_load_move > total_load_moved);
  2080. return total_load_moved > 0;
  2081. }
  2082. static int
  2083. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2084. struct sched_domain *sd, enum cpu_idle_type idle,
  2085. struct rq_iterator *iterator)
  2086. {
  2087. struct task_struct *p = iterator->start(iterator->arg);
  2088. int pinned = 0;
  2089. while (p) {
  2090. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2091. pull_task(busiest, p, this_rq, this_cpu);
  2092. /*
  2093. * Right now, this is only the second place pull_task()
  2094. * is called, so we can safely collect pull_task()
  2095. * stats here rather than inside pull_task().
  2096. */
  2097. schedstat_inc(sd, lb_gained[idle]);
  2098. return 1;
  2099. }
  2100. p = iterator->next(iterator->arg);
  2101. }
  2102. return 0;
  2103. }
  2104. /*
  2105. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2106. * part of active balancing operations within "domain".
  2107. * Returns 1 if successful and 0 otherwise.
  2108. *
  2109. * Called with both runqueues locked.
  2110. */
  2111. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2112. struct sched_domain *sd, enum cpu_idle_type idle)
  2113. {
  2114. const struct sched_class *class;
  2115. for (class = sched_class_highest; class; class = class->next)
  2116. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2117. return 1;
  2118. return 0;
  2119. }
  2120. /*
  2121. * find_busiest_group finds and returns the busiest CPU group within the
  2122. * domain. It calculates and returns the amount of weighted load which
  2123. * should be moved to restore balance via the imbalance parameter.
  2124. */
  2125. static struct sched_group *
  2126. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2127. unsigned long *imbalance, enum cpu_idle_type idle,
  2128. int *sd_idle, cpumask_t *cpus, int *balance)
  2129. {
  2130. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2131. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2132. unsigned long max_pull;
  2133. unsigned long busiest_load_per_task, busiest_nr_running;
  2134. unsigned long this_load_per_task, this_nr_running;
  2135. int load_idx, group_imb = 0;
  2136. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2137. int power_savings_balance = 1;
  2138. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2139. unsigned long min_nr_running = ULONG_MAX;
  2140. struct sched_group *group_min = NULL, *group_leader = NULL;
  2141. #endif
  2142. max_load = this_load = total_load = total_pwr = 0;
  2143. busiest_load_per_task = busiest_nr_running = 0;
  2144. this_load_per_task = this_nr_running = 0;
  2145. if (idle == CPU_NOT_IDLE)
  2146. load_idx = sd->busy_idx;
  2147. else if (idle == CPU_NEWLY_IDLE)
  2148. load_idx = sd->newidle_idx;
  2149. else
  2150. load_idx = sd->idle_idx;
  2151. do {
  2152. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2153. int local_group;
  2154. int i;
  2155. int __group_imb = 0;
  2156. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2157. unsigned long sum_nr_running, sum_weighted_load;
  2158. local_group = cpu_isset(this_cpu, group->cpumask);
  2159. if (local_group)
  2160. balance_cpu = first_cpu(group->cpumask);
  2161. /* Tally up the load of all CPUs in the group */
  2162. sum_weighted_load = sum_nr_running = avg_load = 0;
  2163. max_cpu_load = 0;
  2164. min_cpu_load = ~0UL;
  2165. for_each_cpu_mask(i, group->cpumask) {
  2166. struct rq *rq;
  2167. if (!cpu_isset(i, *cpus))
  2168. continue;
  2169. rq = cpu_rq(i);
  2170. if (*sd_idle && rq->nr_running)
  2171. *sd_idle = 0;
  2172. /* Bias balancing toward cpus of our domain */
  2173. if (local_group) {
  2174. if (idle_cpu(i) && !first_idle_cpu) {
  2175. first_idle_cpu = 1;
  2176. balance_cpu = i;
  2177. }
  2178. load = target_load(i, load_idx);
  2179. } else {
  2180. load = source_load(i, load_idx);
  2181. if (load > max_cpu_load)
  2182. max_cpu_load = load;
  2183. if (min_cpu_load > load)
  2184. min_cpu_load = load;
  2185. }
  2186. avg_load += load;
  2187. sum_nr_running += rq->nr_running;
  2188. sum_weighted_load += weighted_cpuload(i);
  2189. }
  2190. /*
  2191. * First idle cpu or the first cpu(busiest) in this sched group
  2192. * is eligible for doing load balancing at this and above
  2193. * domains. In the newly idle case, we will allow all the cpu's
  2194. * to do the newly idle load balance.
  2195. */
  2196. if (idle != CPU_NEWLY_IDLE && local_group &&
  2197. balance_cpu != this_cpu && balance) {
  2198. *balance = 0;
  2199. goto ret;
  2200. }
  2201. total_load += avg_load;
  2202. total_pwr += group->__cpu_power;
  2203. /* Adjust by relative CPU power of the group */
  2204. avg_load = sg_div_cpu_power(group,
  2205. avg_load * SCHED_LOAD_SCALE);
  2206. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2207. __group_imb = 1;
  2208. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2209. if (local_group) {
  2210. this_load = avg_load;
  2211. this = group;
  2212. this_nr_running = sum_nr_running;
  2213. this_load_per_task = sum_weighted_load;
  2214. } else if (avg_load > max_load &&
  2215. (sum_nr_running > group_capacity || __group_imb)) {
  2216. max_load = avg_load;
  2217. busiest = group;
  2218. busiest_nr_running = sum_nr_running;
  2219. busiest_load_per_task = sum_weighted_load;
  2220. group_imb = __group_imb;
  2221. }
  2222. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2223. /*
  2224. * Busy processors will not participate in power savings
  2225. * balance.
  2226. */
  2227. if (idle == CPU_NOT_IDLE ||
  2228. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2229. goto group_next;
  2230. /*
  2231. * If the local group is idle or completely loaded
  2232. * no need to do power savings balance at this domain
  2233. */
  2234. if (local_group && (this_nr_running >= group_capacity ||
  2235. !this_nr_running))
  2236. power_savings_balance = 0;
  2237. /*
  2238. * If a group is already running at full capacity or idle,
  2239. * don't include that group in power savings calculations
  2240. */
  2241. if (!power_savings_balance || sum_nr_running >= group_capacity
  2242. || !sum_nr_running)
  2243. goto group_next;
  2244. /*
  2245. * Calculate the group which has the least non-idle load.
  2246. * This is the group from where we need to pick up the load
  2247. * for saving power
  2248. */
  2249. if ((sum_nr_running < min_nr_running) ||
  2250. (sum_nr_running == min_nr_running &&
  2251. first_cpu(group->cpumask) <
  2252. first_cpu(group_min->cpumask))) {
  2253. group_min = group;
  2254. min_nr_running = sum_nr_running;
  2255. min_load_per_task = sum_weighted_load /
  2256. sum_nr_running;
  2257. }
  2258. /*
  2259. * Calculate the group which is almost near its
  2260. * capacity but still has some space to pick up some load
  2261. * from other group and save more power
  2262. */
  2263. if (sum_nr_running <= group_capacity - 1) {
  2264. if (sum_nr_running > leader_nr_running ||
  2265. (sum_nr_running == leader_nr_running &&
  2266. first_cpu(group->cpumask) >
  2267. first_cpu(group_leader->cpumask))) {
  2268. group_leader = group;
  2269. leader_nr_running = sum_nr_running;
  2270. }
  2271. }
  2272. group_next:
  2273. #endif
  2274. group = group->next;
  2275. } while (group != sd->groups);
  2276. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2277. goto out_balanced;
  2278. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2279. if (this_load >= avg_load ||
  2280. 100*max_load <= sd->imbalance_pct*this_load)
  2281. goto out_balanced;
  2282. busiest_load_per_task /= busiest_nr_running;
  2283. if (group_imb)
  2284. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2285. /*
  2286. * We're trying to get all the cpus to the average_load, so we don't
  2287. * want to push ourselves above the average load, nor do we wish to
  2288. * reduce the max loaded cpu below the average load, as either of these
  2289. * actions would just result in more rebalancing later, and ping-pong
  2290. * tasks around. Thus we look for the minimum possible imbalance.
  2291. * Negative imbalances (*we* are more loaded than anyone else) will
  2292. * be counted as no imbalance for these purposes -- we can't fix that
  2293. * by pulling tasks to us. Be careful of negative numbers as they'll
  2294. * appear as very large values with unsigned longs.
  2295. */
  2296. if (max_load <= busiest_load_per_task)
  2297. goto out_balanced;
  2298. /*
  2299. * In the presence of smp nice balancing, certain scenarios can have
  2300. * max load less than avg load(as we skip the groups at or below
  2301. * its cpu_power, while calculating max_load..)
  2302. */
  2303. if (max_load < avg_load) {
  2304. *imbalance = 0;
  2305. goto small_imbalance;
  2306. }
  2307. /* Don't want to pull so many tasks that a group would go idle */
  2308. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2309. /* How much load to actually move to equalise the imbalance */
  2310. *imbalance = min(max_pull * busiest->__cpu_power,
  2311. (avg_load - this_load) * this->__cpu_power)
  2312. / SCHED_LOAD_SCALE;
  2313. /*
  2314. * if *imbalance is less than the average load per runnable task
  2315. * there is no gaurantee that any tasks will be moved so we'll have
  2316. * a think about bumping its value to force at least one task to be
  2317. * moved
  2318. */
  2319. if (*imbalance < busiest_load_per_task) {
  2320. unsigned long tmp, pwr_now, pwr_move;
  2321. unsigned int imbn;
  2322. small_imbalance:
  2323. pwr_move = pwr_now = 0;
  2324. imbn = 2;
  2325. if (this_nr_running) {
  2326. this_load_per_task /= this_nr_running;
  2327. if (busiest_load_per_task > this_load_per_task)
  2328. imbn = 1;
  2329. } else
  2330. this_load_per_task = SCHED_LOAD_SCALE;
  2331. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2332. busiest_load_per_task * imbn) {
  2333. *imbalance = busiest_load_per_task;
  2334. return busiest;
  2335. }
  2336. /*
  2337. * OK, we don't have enough imbalance to justify moving tasks,
  2338. * however we may be able to increase total CPU power used by
  2339. * moving them.
  2340. */
  2341. pwr_now += busiest->__cpu_power *
  2342. min(busiest_load_per_task, max_load);
  2343. pwr_now += this->__cpu_power *
  2344. min(this_load_per_task, this_load);
  2345. pwr_now /= SCHED_LOAD_SCALE;
  2346. /* Amount of load we'd subtract */
  2347. tmp = sg_div_cpu_power(busiest,
  2348. busiest_load_per_task * SCHED_LOAD_SCALE);
  2349. if (max_load > tmp)
  2350. pwr_move += busiest->__cpu_power *
  2351. min(busiest_load_per_task, max_load - tmp);
  2352. /* Amount of load we'd add */
  2353. if (max_load * busiest->__cpu_power <
  2354. busiest_load_per_task * SCHED_LOAD_SCALE)
  2355. tmp = sg_div_cpu_power(this,
  2356. max_load * busiest->__cpu_power);
  2357. else
  2358. tmp = sg_div_cpu_power(this,
  2359. busiest_load_per_task * SCHED_LOAD_SCALE);
  2360. pwr_move += this->__cpu_power *
  2361. min(this_load_per_task, this_load + tmp);
  2362. pwr_move /= SCHED_LOAD_SCALE;
  2363. /* Move if we gain throughput */
  2364. if (pwr_move > pwr_now)
  2365. *imbalance = busiest_load_per_task;
  2366. }
  2367. return busiest;
  2368. out_balanced:
  2369. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2370. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2371. goto ret;
  2372. if (this == group_leader && group_leader != group_min) {
  2373. *imbalance = min_load_per_task;
  2374. return group_min;
  2375. }
  2376. #endif
  2377. ret:
  2378. *imbalance = 0;
  2379. return NULL;
  2380. }
  2381. /*
  2382. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2383. */
  2384. static struct rq *
  2385. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2386. unsigned long imbalance, cpumask_t *cpus)
  2387. {
  2388. struct rq *busiest = NULL, *rq;
  2389. unsigned long max_load = 0;
  2390. int i;
  2391. for_each_cpu_mask(i, group->cpumask) {
  2392. unsigned long wl;
  2393. if (!cpu_isset(i, *cpus))
  2394. continue;
  2395. rq = cpu_rq(i);
  2396. wl = weighted_cpuload(i);
  2397. if (rq->nr_running == 1 && wl > imbalance)
  2398. continue;
  2399. if (wl > max_load) {
  2400. max_load = wl;
  2401. busiest = rq;
  2402. }
  2403. }
  2404. return busiest;
  2405. }
  2406. /*
  2407. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2408. * so long as it is large enough.
  2409. */
  2410. #define MAX_PINNED_INTERVAL 512
  2411. /*
  2412. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2413. * tasks if there is an imbalance.
  2414. */
  2415. static int load_balance(int this_cpu, struct rq *this_rq,
  2416. struct sched_domain *sd, enum cpu_idle_type idle,
  2417. int *balance)
  2418. {
  2419. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2420. struct sched_group *group;
  2421. unsigned long imbalance;
  2422. struct rq *busiest;
  2423. cpumask_t cpus = CPU_MASK_ALL;
  2424. unsigned long flags;
  2425. /*
  2426. * When power savings policy is enabled for the parent domain, idle
  2427. * sibling can pick up load irrespective of busy siblings. In this case,
  2428. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2429. * portraying it as CPU_NOT_IDLE.
  2430. */
  2431. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2432. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2433. sd_idle = 1;
  2434. schedstat_inc(sd, lb_count[idle]);
  2435. redo:
  2436. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2437. &cpus, balance);
  2438. if (*balance == 0)
  2439. goto out_balanced;
  2440. if (!group) {
  2441. schedstat_inc(sd, lb_nobusyg[idle]);
  2442. goto out_balanced;
  2443. }
  2444. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2445. if (!busiest) {
  2446. schedstat_inc(sd, lb_nobusyq[idle]);
  2447. goto out_balanced;
  2448. }
  2449. BUG_ON(busiest == this_rq);
  2450. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2451. ld_moved = 0;
  2452. if (busiest->nr_running > 1) {
  2453. /*
  2454. * Attempt to move tasks. If find_busiest_group has found
  2455. * an imbalance but busiest->nr_running <= 1, the group is
  2456. * still unbalanced. ld_moved simply stays zero, so it is
  2457. * correctly treated as an imbalance.
  2458. */
  2459. local_irq_save(flags);
  2460. double_rq_lock(this_rq, busiest);
  2461. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2462. imbalance, sd, idle, &all_pinned);
  2463. double_rq_unlock(this_rq, busiest);
  2464. local_irq_restore(flags);
  2465. /*
  2466. * some other cpu did the load balance for us.
  2467. */
  2468. if (ld_moved && this_cpu != smp_processor_id())
  2469. resched_cpu(this_cpu);
  2470. /* All tasks on this runqueue were pinned by CPU affinity */
  2471. if (unlikely(all_pinned)) {
  2472. cpu_clear(cpu_of(busiest), cpus);
  2473. if (!cpus_empty(cpus))
  2474. goto redo;
  2475. goto out_balanced;
  2476. }
  2477. }
  2478. if (!ld_moved) {
  2479. schedstat_inc(sd, lb_failed[idle]);
  2480. sd->nr_balance_failed++;
  2481. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2482. spin_lock_irqsave(&busiest->lock, flags);
  2483. /* don't kick the migration_thread, if the curr
  2484. * task on busiest cpu can't be moved to this_cpu
  2485. */
  2486. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2487. spin_unlock_irqrestore(&busiest->lock, flags);
  2488. all_pinned = 1;
  2489. goto out_one_pinned;
  2490. }
  2491. if (!busiest->active_balance) {
  2492. busiest->active_balance = 1;
  2493. busiest->push_cpu = this_cpu;
  2494. active_balance = 1;
  2495. }
  2496. spin_unlock_irqrestore(&busiest->lock, flags);
  2497. if (active_balance)
  2498. wake_up_process(busiest->migration_thread);
  2499. /*
  2500. * We've kicked active balancing, reset the failure
  2501. * counter.
  2502. */
  2503. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2504. }
  2505. } else
  2506. sd->nr_balance_failed = 0;
  2507. if (likely(!active_balance)) {
  2508. /* We were unbalanced, so reset the balancing interval */
  2509. sd->balance_interval = sd->min_interval;
  2510. } else {
  2511. /*
  2512. * If we've begun active balancing, start to back off. This
  2513. * case may not be covered by the all_pinned logic if there
  2514. * is only 1 task on the busy runqueue (because we don't call
  2515. * move_tasks).
  2516. */
  2517. if (sd->balance_interval < sd->max_interval)
  2518. sd->balance_interval *= 2;
  2519. }
  2520. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2521. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2522. return -1;
  2523. return ld_moved;
  2524. out_balanced:
  2525. schedstat_inc(sd, lb_balanced[idle]);
  2526. sd->nr_balance_failed = 0;
  2527. out_one_pinned:
  2528. /* tune up the balancing interval */
  2529. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2530. (sd->balance_interval < sd->max_interval))
  2531. sd->balance_interval *= 2;
  2532. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2533. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2534. return -1;
  2535. return 0;
  2536. }
  2537. /*
  2538. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2539. * tasks if there is an imbalance.
  2540. *
  2541. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2542. * this_rq is locked.
  2543. */
  2544. static int
  2545. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2546. {
  2547. struct sched_group *group;
  2548. struct rq *busiest = NULL;
  2549. unsigned long imbalance;
  2550. int ld_moved = 0;
  2551. int sd_idle = 0;
  2552. int all_pinned = 0;
  2553. cpumask_t cpus = CPU_MASK_ALL;
  2554. /*
  2555. * When power savings policy is enabled for the parent domain, idle
  2556. * sibling can pick up load irrespective of busy siblings. In this case,
  2557. * let the state of idle sibling percolate up as IDLE, instead of
  2558. * portraying it as CPU_NOT_IDLE.
  2559. */
  2560. if (sd->flags & SD_SHARE_CPUPOWER &&
  2561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2562. sd_idle = 1;
  2563. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2564. redo:
  2565. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2566. &sd_idle, &cpus, NULL);
  2567. if (!group) {
  2568. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2569. goto out_balanced;
  2570. }
  2571. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2572. &cpus);
  2573. if (!busiest) {
  2574. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2575. goto out_balanced;
  2576. }
  2577. BUG_ON(busiest == this_rq);
  2578. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2579. ld_moved = 0;
  2580. if (busiest->nr_running > 1) {
  2581. /* Attempt to move tasks */
  2582. double_lock_balance(this_rq, busiest);
  2583. /* this_rq->clock is already updated */
  2584. update_rq_clock(busiest);
  2585. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2586. imbalance, sd, CPU_NEWLY_IDLE,
  2587. &all_pinned);
  2588. spin_unlock(&busiest->lock);
  2589. if (unlikely(all_pinned)) {
  2590. cpu_clear(cpu_of(busiest), cpus);
  2591. if (!cpus_empty(cpus))
  2592. goto redo;
  2593. }
  2594. }
  2595. if (!ld_moved) {
  2596. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2597. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2598. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2599. return -1;
  2600. } else
  2601. sd->nr_balance_failed = 0;
  2602. return ld_moved;
  2603. out_balanced:
  2604. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2605. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2606. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2607. return -1;
  2608. sd->nr_balance_failed = 0;
  2609. return 0;
  2610. }
  2611. /*
  2612. * idle_balance is called by schedule() if this_cpu is about to become
  2613. * idle. Attempts to pull tasks from other CPUs.
  2614. */
  2615. static void idle_balance(int this_cpu, struct rq *this_rq)
  2616. {
  2617. struct sched_domain *sd;
  2618. int pulled_task = -1;
  2619. unsigned long next_balance = jiffies + HZ;
  2620. for_each_domain(this_cpu, sd) {
  2621. unsigned long interval;
  2622. if (!(sd->flags & SD_LOAD_BALANCE))
  2623. continue;
  2624. if (sd->flags & SD_BALANCE_NEWIDLE)
  2625. /* If we've pulled tasks over stop searching: */
  2626. pulled_task = load_balance_newidle(this_cpu,
  2627. this_rq, sd);
  2628. interval = msecs_to_jiffies(sd->balance_interval);
  2629. if (time_after(next_balance, sd->last_balance + interval))
  2630. next_balance = sd->last_balance + interval;
  2631. if (pulled_task)
  2632. break;
  2633. }
  2634. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2635. /*
  2636. * We are going idle. next_balance may be set based on
  2637. * a busy processor. So reset next_balance.
  2638. */
  2639. this_rq->next_balance = next_balance;
  2640. }
  2641. }
  2642. /*
  2643. * active_load_balance is run by migration threads. It pushes running tasks
  2644. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2645. * running on each physical CPU where possible, and avoids physical /
  2646. * logical imbalances.
  2647. *
  2648. * Called with busiest_rq locked.
  2649. */
  2650. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2651. {
  2652. int target_cpu = busiest_rq->push_cpu;
  2653. struct sched_domain *sd;
  2654. struct rq *target_rq;
  2655. /* Is there any task to move? */
  2656. if (busiest_rq->nr_running <= 1)
  2657. return;
  2658. target_rq = cpu_rq(target_cpu);
  2659. /*
  2660. * This condition is "impossible", if it occurs
  2661. * we need to fix it. Originally reported by
  2662. * Bjorn Helgaas on a 128-cpu setup.
  2663. */
  2664. BUG_ON(busiest_rq == target_rq);
  2665. /* move a task from busiest_rq to target_rq */
  2666. double_lock_balance(busiest_rq, target_rq);
  2667. update_rq_clock(busiest_rq);
  2668. update_rq_clock(target_rq);
  2669. /* Search for an sd spanning us and the target CPU. */
  2670. for_each_domain(target_cpu, sd) {
  2671. if ((sd->flags & SD_LOAD_BALANCE) &&
  2672. cpu_isset(busiest_cpu, sd->span))
  2673. break;
  2674. }
  2675. if (likely(sd)) {
  2676. schedstat_inc(sd, alb_count);
  2677. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2678. sd, CPU_IDLE))
  2679. schedstat_inc(sd, alb_pushed);
  2680. else
  2681. schedstat_inc(sd, alb_failed);
  2682. }
  2683. spin_unlock(&target_rq->lock);
  2684. }
  2685. #ifdef CONFIG_NO_HZ
  2686. static struct {
  2687. atomic_t load_balancer;
  2688. cpumask_t cpu_mask;
  2689. } nohz ____cacheline_aligned = {
  2690. .load_balancer = ATOMIC_INIT(-1),
  2691. .cpu_mask = CPU_MASK_NONE,
  2692. };
  2693. /*
  2694. * This routine will try to nominate the ilb (idle load balancing)
  2695. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2696. * load balancing on behalf of all those cpus. If all the cpus in the system
  2697. * go into this tickless mode, then there will be no ilb owner (as there is
  2698. * no need for one) and all the cpus will sleep till the next wakeup event
  2699. * arrives...
  2700. *
  2701. * For the ilb owner, tick is not stopped. And this tick will be used
  2702. * for idle load balancing. ilb owner will still be part of
  2703. * nohz.cpu_mask..
  2704. *
  2705. * While stopping the tick, this cpu will become the ilb owner if there
  2706. * is no other owner. And will be the owner till that cpu becomes busy
  2707. * or if all cpus in the system stop their ticks at which point
  2708. * there is no need for ilb owner.
  2709. *
  2710. * When the ilb owner becomes busy, it nominates another owner, during the
  2711. * next busy scheduler_tick()
  2712. */
  2713. int select_nohz_load_balancer(int stop_tick)
  2714. {
  2715. int cpu = smp_processor_id();
  2716. if (stop_tick) {
  2717. cpu_set(cpu, nohz.cpu_mask);
  2718. cpu_rq(cpu)->in_nohz_recently = 1;
  2719. /*
  2720. * If we are going offline and still the leader, give up!
  2721. */
  2722. if (cpu_is_offline(cpu) &&
  2723. atomic_read(&nohz.load_balancer) == cpu) {
  2724. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2725. BUG();
  2726. return 0;
  2727. }
  2728. /* time for ilb owner also to sleep */
  2729. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2730. if (atomic_read(&nohz.load_balancer) == cpu)
  2731. atomic_set(&nohz.load_balancer, -1);
  2732. return 0;
  2733. }
  2734. if (atomic_read(&nohz.load_balancer) == -1) {
  2735. /* make me the ilb owner */
  2736. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2737. return 1;
  2738. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2739. return 1;
  2740. } else {
  2741. if (!cpu_isset(cpu, nohz.cpu_mask))
  2742. return 0;
  2743. cpu_clear(cpu, nohz.cpu_mask);
  2744. if (atomic_read(&nohz.load_balancer) == cpu)
  2745. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2746. BUG();
  2747. }
  2748. return 0;
  2749. }
  2750. #endif
  2751. static DEFINE_SPINLOCK(balancing);
  2752. /*
  2753. * It checks each scheduling domain to see if it is due to be balanced,
  2754. * and initiates a balancing operation if so.
  2755. *
  2756. * Balancing parameters are set up in arch_init_sched_domains.
  2757. */
  2758. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2759. {
  2760. int balance = 1;
  2761. struct rq *rq = cpu_rq(cpu);
  2762. unsigned long interval;
  2763. struct sched_domain *sd;
  2764. /* Earliest time when we have to do rebalance again */
  2765. unsigned long next_balance = jiffies + 60*HZ;
  2766. int update_next_balance = 0;
  2767. for_each_domain(cpu, sd) {
  2768. if (!(sd->flags & SD_LOAD_BALANCE))
  2769. continue;
  2770. interval = sd->balance_interval;
  2771. if (idle != CPU_IDLE)
  2772. interval *= sd->busy_factor;
  2773. /* scale ms to jiffies */
  2774. interval = msecs_to_jiffies(interval);
  2775. if (unlikely(!interval))
  2776. interval = 1;
  2777. if (interval > HZ*NR_CPUS/10)
  2778. interval = HZ*NR_CPUS/10;
  2779. if (sd->flags & SD_SERIALIZE) {
  2780. if (!spin_trylock(&balancing))
  2781. goto out;
  2782. }
  2783. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2784. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2785. /*
  2786. * We've pulled tasks over so either we're no
  2787. * longer idle, or one of our SMT siblings is
  2788. * not idle.
  2789. */
  2790. idle = CPU_NOT_IDLE;
  2791. }
  2792. sd->last_balance = jiffies;
  2793. }
  2794. if (sd->flags & SD_SERIALIZE)
  2795. spin_unlock(&balancing);
  2796. out:
  2797. if (time_after(next_balance, sd->last_balance + interval)) {
  2798. next_balance = sd->last_balance + interval;
  2799. update_next_balance = 1;
  2800. }
  2801. /*
  2802. * Stop the load balance at this level. There is another
  2803. * CPU in our sched group which is doing load balancing more
  2804. * actively.
  2805. */
  2806. if (!balance)
  2807. break;
  2808. }
  2809. /*
  2810. * next_balance will be updated only when there is a need.
  2811. * When the cpu is attached to null domain for ex, it will not be
  2812. * updated.
  2813. */
  2814. if (likely(update_next_balance))
  2815. rq->next_balance = next_balance;
  2816. }
  2817. /*
  2818. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2819. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2820. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2821. */
  2822. static void run_rebalance_domains(struct softirq_action *h)
  2823. {
  2824. int this_cpu = smp_processor_id();
  2825. struct rq *this_rq = cpu_rq(this_cpu);
  2826. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2827. CPU_IDLE : CPU_NOT_IDLE;
  2828. rebalance_domains(this_cpu, idle);
  2829. #ifdef CONFIG_NO_HZ
  2830. /*
  2831. * If this cpu is the owner for idle load balancing, then do the
  2832. * balancing on behalf of the other idle cpus whose ticks are
  2833. * stopped.
  2834. */
  2835. if (this_rq->idle_at_tick &&
  2836. atomic_read(&nohz.load_balancer) == this_cpu) {
  2837. cpumask_t cpus = nohz.cpu_mask;
  2838. struct rq *rq;
  2839. int balance_cpu;
  2840. cpu_clear(this_cpu, cpus);
  2841. for_each_cpu_mask(balance_cpu, cpus) {
  2842. /*
  2843. * If this cpu gets work to do, stop the load balancing
  2844. * work being done for other cpus. Next load
  2845. * balancing owner will pick it up.
  2846. */
  2847. if (need_resched())
  2848. break;
  2849. rebalance_domains(balance_cpu, CPU_IDLE);
  2850. rq = cpu_rq(balance_cpu);
  2851. if (time_after(this_rq->next_balance, rq->next_balance))
  2852. this_rq->next_balance = rq->next_balance;
  2853. }
  2854. }
  2855. #endif
  2856. }
  2857. /*
  2858. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2859. *
  2860. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2861. * idle load balancing owner or decide to stop the periodic load balancing,
  2862. * if the whole system is idle.
  2863. */
  2864. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2865. {
  2866. #ifdef CONFIG_NO_HZ
  2867. /*
  2868. * If we were in the nohz mode recently and busy at the current
  2869. * scheduler tick, then check if we need to nominate new idle
  2870. * load balancer.
  2871. */
  2872. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2873. rq->in_nohz_recently = 0;
  2874. if (atomic_read(&nohz.load_balancer) == cpu) {
  2875. cpu_clear(cpu, nohz.cpu_mask);
  2876. atomic_set(&nohz.load_balancer, -1);
  2877. }
  2878. if (atomic_read(&nohz.load_balancer) == -1) {
  2879. /*
  2880. * simple selection for now: Nominate the
  2881. * first cpu in the nohz list to be the next
  2882. * ilb owner.
  2883. *
  2884. * TBD: Traverse the sched domains and nominate
  2885. * the nearest cpu in the nohz.cpu_mask.
  2886. */
  2887. int ilb = first_cpu(nohz.cpu_mask);
  2888. if (ilb != NR_CPUS)
  2889. resched_cpu(ilb);
  2890. }
  2891. }
  2892. /*
  2893. * If this cpu is idle and doing idle load balancing for all the
  2894. * cpus with ticks stopped, is it time for that to stop?
  2895. */
  2896. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2897. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2898. resched_cpu(cpu);
  2899. return;
  2900. }
  2901. /*
  2902. * If this cpu is idle and the idle load balancing is done by
  2903. * someone else, then no need raise the SCHED_SOFTIRQ
  2904. */
  2905. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2906. cpu_isset(cpu, nohz.cpu_mask))
  2907. return;
  2908. #endif
  2909. if (time_after_eq(jiffies, rq->next_balance))
  2910. raise_softirq(SCHED_SOFTIRQ);
  2911. }
  2912. #else /* CONFIG_SMP */
  2913. /*
  2914. * on UP we do not need to balance between CPUs:
  2915. */
  2916. static inline void idle_balance(int cpu, struct rq *rq)
  2917. {
  2918. }
  2919. #endif
  2920. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2921. EXPORT_PER_CPU_SYMBOL(kstat);
  2922. /*
  2923. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2924. * that have not yet been banked in case the task is currently running.
  2925. */
  2926. unsigned long long task_sched_runtime(struct task_struct *p)
  2927. {
  2928. unsigned long flags;
  2929. u64 ns, delta_exec;
  2930. struct rq *rq;
  2931. rq = task_rq_lock(p, &flags);
  2932. ns = p->se.sum_exec_runtime;
  2933. if (task_current(rq, p)) {
  2934. update_rq_clock(rq);
  2935. delta_exec = rq->clock - p->se.exec_start;
  2936. if ((s64)delta_exec > 0)
  2937. ns += delta_exec;
  2938. }
  2939. task_rq_unlock(rq, &flags);
  2940. return ns;
  2941. }
  2942. /*
  2943. * Account user cpu time to a process.
  2944. * @p: the process that the cpu time gets accounted to
  2945. * @cputime: the cpu time spent in user space since the last update
  2946. */
  2947. void account_user_time(struct task_struct *p, cputime_t cputime)
  2948. {
  2949. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2950. cputime64_t tmp;
  2951. p->utime = cputime_add(p->utime, cputime);
  2952. /* Add user time to cpustat. */
  2953. tmp = cputime_to_cputime64(cputime);
  2954. if (TASK_NICE(p) > 0)
  2955. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2956. else
  2957. cpustat->user = cputime64_add(cpustat->user, tmp);
  2958. }
  2959. /*
  2960. * Account guest cpu time to a process.
  2961. * @p: the process that the cpu time gets accounted to
  2962. * @cputime: the cpu time spent in virtual machine since the last update
  2963. */
  2964. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2965. {
  2966. cputime64_t tmp;
  2967. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2968. tmp = cputime_to_cputime64(cputime);
  2969. p->utime = cputime_add(p->utime, cputime);
  2970. p->gtime = cputime_add(p->gtime, cputime);
  2971. cpustat->user = cputime64_add(cpustat->user, tmp);
  2972. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2973. }
  2974. /*
  2975. * Account scaled user cpu time to a process.
  2976. * @p: the process that the cpu time gets accounted to
  2977. * @cputime: the cpu time spent in user space since the last update
  2978. */
  2979. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2980. {
  2981. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2982. }
  2983. /*
  2984. * Account system cpu time to a process.
  2985. * @p: the process that the cpu time gets accounted to
  2986. * @hardirq_offset: the offset to subtract from hardirq_count()
  2987. * @cputime: the cpu time spent in kernel space since the last update
  2988. */
  2989. void account_system_time(struct task_struct *p, int hardirq_offset,
  2990. cputime_t cputime)
  2991. {
  2992. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2993. struct rq *rq = this_rq();
  2994. cputime64_t tmp;
  2995. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2996. return account_guest_time(p, cputime);
  2997. p->stime = cputime_add(p->stime, cputime);
  2998. /* Add system time to cpustat. */
  2999. tmp = cputime_to_cputime64(cputime);
  3000. if (hardirq_count() - hardirq_offset)
  3001. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3002. else if (softirq_count())
  3003. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3004. else if (p != rq->idle)
  3005. cpustat->system = cputime64_add(cpustat->system, tmp);
  3006. else if (atomic_read(&rq->nr_iowait) > 0)
  3007. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3008. else
  3009. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3010. /* Account for system time used */
  3011. acct_update_integrals(p);
  3012. }
  3013. /*
  3014. * Account scaled system cpu time to a process.
  3015. * @p: the process that the cpu time gets accounted to
  3016. * @hardirq_offset: the offset to subtract from hardirq_count()
  3017. * @cputime: the cpu time spent in kernel space since the last update
  3018. */
  3019. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3020. {
  3021. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3022. }
  3023. /*
  3024. * Account for involuntary wait time.
  3025. * @p: the process from which the cpu time has been stolen
  3026. * @steal: the cpu time spent in involuntary wait
  3027. */
  3028. void account_steal_time(struct task_struct *p, cputime_t steal)
  3029. {
  3030. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3031. cputime64_t tmp = cputime_to_cputime64(steal);
  3032. struct rq *rq = this_rq();
  3033. if (p == rq->idle) {
  3034. p->stime = cputime_add(p->stime, steal);
  3035. if (atomic_read(&rq->nr_iowait) > 0)
  3036. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3037. else
  3038. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3039. } else
  3040. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3041. }
  3042. /*
  3043. * This function gets called by the timer code, with HZ frequency.
  3044. * We call it with interrupts disabled.
  3045. *
  3046. * It also gets called by the fork code, when changing the parent's
  3047. * timeslices.
  3048. */
  3049. void scheduler_tick(void)
  3050. {
  3051. int cpu = smp_processor_id();
  3052. struct rq *rq = cpu_rq(cpu);
  3053. struct task_struct *curr = rq->curr;
  3054. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3055. spin_lock(&rq->lock);
  3056. __update_rq_clock(rq);
  3057. /*
  3058. * Let rq->clock advance by at least TICK_NSEC:
  3059. */
  3060. if (unlikely(rq->clock < next_tick))
  3061. rq->clock = next_tick;
  3062. rq->tick_timestamp = rq->clock;
  3063. update_cpu_load(rq);
  3064. if (curr != rq->idle) /* FIXME: needed? */
  3065. curr->sched_class->task_tick(rq, curr);
  3066. spin_unlock(&rq->lock);
  3067. #ifdef CONFIG_SMP
  3068. rq->idle_at_tick = idle_cpu(cpu);
  3069. trigger_load_balance(rq, cpu);
  3070. #endif
  3071. }
  3072. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3073. void fastcall add_preempt_count(int val)
  3074. {
  3075. /*
  3076. * Underflow?
  3077. */
  3078. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3079. return;
  3080. preempt_count() += val;
  3081. /*
  3082. * Spinlock count overflowing soon?
  3083. */
  3084. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3085. PREEMPT_MASK - 10);
  3086. }
  3087. EXPORT_SYMBOL(add_preempt_count);
  3088. void fastcall sub_preempt_count(int val)
  3089. {
  3090. /*
  3091. * Underflow?
  3092. */
  3093. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3094. return;
  3095. /*
  3096. * Is the spinlock portion underflowing?
  3097. */
  3098. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3099. !(preempt_count() & PREEMPT_MASK)))
  3100. return;
  3101. preempt_count() -= val;
  3102. }
  3103. EXPORT_SYMBOL(sub_preempt_count);
  3104. #endif
  3105. /*
  3106. * Print scheduling while atomic bug:
  3107. */
  3108. static noinline void __schedule_bug(struct task_struct *prev)
  3109. {
  3110. struct pt_regs *regs = get_irq_regs();
  3111. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3112. prev->comm, prev->pid, preempt_count());
  3113. debug_show_held_locks(prev);
  3114. if (irqs_disabled())
  3115. print_irqtrace_events(prev);
  3116. if (regs)
  3117. show_regs(regs);
  3118. else
  3119. dump_stack();
  3120. }
  3121. /*
  3122. * Various schedule()-time debugging checks and statistics:
  3123. */
  3124. static inline void schedule_debug(struct task_struct *prev)
  3125. {
  3126. /*
  3127. * Test if we are atomic. Since do_exit() needs to call into
  3128. * schedule() atomically, we ignore that path for now.
  3129. * Otherwise, whine if we are scheduling when we should not be.
  3130. */
  3131. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3132. __schedule_bug(prev);
  3133. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3134. schedstat_inc(this_rq(), sched_count);
  3135. #ifdef CONFIG_SCHEDSTATS
  3136. if (unlikely(prev->lock_depth >= 0)) {
  3137. schedstat_inc(this_rq(), bkl_count);
  3138. schedstat_inc(prev, sched_info.bkl_count);
  3139. }
  3140. #endif
  3141. }
  3142. /*
  3143. * Pick up the highest-prio task:
  3144. */
  3145. static inline struct task_struct *
  3146. pick_next_task(struct rq *rq, struct task_struct *prev)
  3147. {
  3148. const struct sched_class *class;
  3149. struct task_struct *p;
  3150. /*
  3151. * Optimization: we know that if all tasks are in
  3152. * the fair class we can call that function directly:
  3153. */
  3154. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3155. p = fair_sched_class.pick_next_task(rq);
  3156. if (likely(p))
  3157. return p;
  3158. }
  3159. class = sched_class_highest;
  3160. for ( ; ; ) {
  3161. p = class->pick_next_task(rq);
  3162. if (p)
  3163. return p;
  3164. /*
  3165. * Will never be NULL as the idle class always
  3166. * returns a non-NULL p:
  3167. */
  3168. class = class->next;
  3169. }
  3170. }
  3171. /*
  3172. * schedule() is the main scheduler function.
  3173. */
  3174. asmlinkage void __sched schedule(void)
  3175. {
  3176. struct task_struct *prev, *next;
  3177. long *switch_count;
  3178. struct rq *rq;
  3179. int cpu;
  3180. need_resched:
  3181. preempt_disable();
  3182. cpu = smp_processor_id();
  3183. rq = cpu_rq(cpu);
  3184. rcu_qsctr_inc(cpu);
  3185. prev = rq->curr;
  3186. switch_count = &prev->nivcsw;
  3187. release_kernel_lock(prev);
  3188. need_resched_nonpreemptible:
  3189. schedule_debug(prev);
  3190. /*
  3191. * Do the rq-clock update outside the rq lock:
  3192. */
  3193. local_irq_disable();
  3194. __update_rq_clock(rq);
  3195. spin_lock(&rq->lock);
  3196. clear_tsk_need_resched(prev);
  3197. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3198. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3199. unlikely(signal_pending(prev)))) {
  3200. prev->state = TASK_RUNNING;
  3201. } else {
  3202. deactivate_task(rq, prev, 1);
  3203. }
  3204. switch_count = &prev->nvcsw;
  3205. }
  3206. if (unlikely(!rq->nr_running))
  3207. idle_balance(cpu, rq);
  3208. prev->sched_class->put_prev_task(rq, prev);
  3209. next = pick_next_task(rq, prev);
  3210. sched_info_switch(prev, next);
  3211. if (likely(prev != next)) {
  3212. rq->nr_switches++;
  3213. rq->curr = next;
  3214. ++*switch_count;
  3215. context_switch(rq, prev, next); /* unlocks the rq */
  3216. } else
  3217. spin_unlock_irq(&rq->lock);
  3218. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3219. cpu = smp_processor_id();
  3220. rq = cpu_rq(cpu);
  3221. goto need_resched_nonpreemptible;
  3222. }
  3223. preempt_enable_no_resched();
  3224. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3225. goto need_resched;
  3226. }
  3227. EXPORT_SYMBOL(schedule);
  3228. #ifdef CONFIG_PREEMPT
  3229. /*
  3230. * this is the entry point to schedule() from in-kernel preemption
  3231. * off of preempt_enable. Kernel preemptions off return from interrupt
  3232. * occur there and call schedule directly.
  3233. */
  3234. asmlinkage void __sched preempt_schedule(void)
  3235. {
  3236. struct thread_info *ti = current_thread_info();
  3237. #ifdef CONFIG_PREEMPT_BKL
  3238. struct task_struct *task = current;
  3239. int saved_lock_depth;
  3240. #endif
  3241. /*
  3242. * If there is a non-zero preempt_count or interrupts are disabled,
  3243. * we do not want to preempt the current task. Just return..
  3244. */
  3245. if (likely(ti->preempt_count || irqs_disabled()))
  3246. return;
  3247. do {
  3248. add_preempt_count(PREEMPT_ACTIVE);
  3249. /*
  3250. * We keep the big kernel semaphore locked, but we
  3251. * clear ->lock_depth so that schedule() doesnt
  3252. * auto-release the semaphore:
  3253. */
  3254. #ifdef CONFIG_PREEMPT_BKL
  3255. saved_lock_depth = task->lock_depth;
  3256. task->lock_depth = -1;
  3257. #endif
  3258. schedule();
  3259. #ifdef CONFIG_PREEMPT_BKL
  3260. task->lock_depth = saved_lock_depth;
  3261. #endif
  3262. sub_preempt_count(PREEMPT_ACTIVE);
  3263. /*
  3264. * Check again in case we missed a preemption opportunity
  3265. * between schedule and now.
  3266. */
  3267. barrier();
  3268. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3269. }
  3270. EXPORT_SYMBOL(preempt_schedule);
  3271. /*
  3272. * this is the entry point to schedule() from kernel preemption
  3273. * off of irq context.
  3274. * Note, that this is called and return with irqs disabled. This will
  3275. * protect us against recursive calling from irq.
  3276. */
  3277. asmlinkage void __sched preempt_schedule_irq(void)
  3278. {
  3279. struct thread_info *ti = current_thread_info();
  3280. #ifdef CONFIG_PREEMPT_BKL
  3281. struct task_struct *task = current;
  3282. int saved_lock_depth;
  3283. #endif
  3284. /* Catch callers which need to be fixed */
  3285. BUG_ON(ti->preempt_count || !irqs_disabled());
  3286. do {
  3287. add_preempt_count(PREEMPT_ACTIVE);
  3288. /*
  3289. * We keep the big kernel semaphore locked, but we
  3290. * clear ->lock_depth so that schedule() doesnt
  3291. * auto-release the semaphore:
  3292. */
  3293. #ifdef CONFIG_PREEMPT_BKL
  3294. saved_lock_depth = task->lock_depth;
  3295. task->lock_depth = -1;
  3296. #endif
  3297. local_irq_enable();
  3298. schedule();
  3299. local_irq_disable();
  3300. #ifdef CONFIG_PREEMPT_BKL
  3301. task->lock_depth = saved_lock_depth;
  3302. #endif
  3303. sub_preempt_count(PREEMPT_ACTIVE);
  3304. /*
  3305. * Check again in case we missed a preemption opportunity
  3306. * between schedule and now.
  3307. */
  3308. barrier();
  3309. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3310. }
  3311. #endif /* CONFIG_PREEMPT */
  3312. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3313. void *key)
  3314. {
  3315. return try_to_wake_up(curr->private, mode, sync);
  3316. }
  3317. EXPORT_SYMBOL(default_wake_function);
  3318. /*
  3319. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3320. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3321. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3322. *
  3323. * There are circumstances in which we can try to wake a task which has already
  3324. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3325. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3326. */
  3327. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3328. int nr_exclusive, int sync, void *key)
  3329. {
  3330. wait_queue_t *curr, *next;
  3331. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3332. unsigned flags = curr->flags;
  3333. if (curr->func(curr, mode, sync, key) &&
  3334. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3335. break;
  3336. }
  3337. }
  3338. /**
  3339. * __wake_up - wake up threads blocked on a waitqueue.
  3340. * @q: the waitqueue
  3341. * @mode: which threads
  3342. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3343. * @key: is directly passed to the wakeup function
  3344. */
  3345. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3346. int nr_exclusive, void *key)
  3347. {
  3348. unsigned long flags;
  3349. spin_lock_irqsave(&q->lock, flags);
  3350. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3351. spin_unlock_irqrestore(&q->lock, flags);
  3352. }
  3353. EXPORT_SYMBOL(__wake_up);
  3354. /*
  3355. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3356. */
  3357. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3358. {
  3359. __wake_up_common(q, mode, 1, 0, NULL);
  3360. }
  3361. /**
  3362. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3363. * @q: the waitqueue
  3364. * @mode: which threads
  3365. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3366. *
  3367. * The sync wakeup differs that the waker knows that it will schedule
  3368. * away soon, so while the target thread will be woken up, it will not
  3369. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3370. * with each other. This can prevent needless bouncing between CPUs.
  3371. *
  3372. * On UP it can prevent extra preemption.
  3373. */
  3374. void fastcall
  3375. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3376. {
  3377. unsigned long flags;
  3378. int sync = 1;
  3379. if (unlikely(!q))
  3380. return;
  3381. if (unlikely(!nr_exclusive))
  3382. sync = 0;
  3383. spin_lock_irqsave(&q->lock, flags);
  3384. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3385. spin_unlock_irqrestore(&q->lock, flags);
  3386. }
  3387. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3388. void complete(struct completion *x)
  3389. {
  3390. unsigned long flags;
  3391. spin_lock_irqsave(&x->wait.lock, flags);
  3392. x->done++;
  3393. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3394. 1, 0, NULL);
  3395. spin_unlock_irqrestore(&x->wait.lock, flags);
  3396. }
  3397. EXPORT_SYMBOL(complete);
  3398. void complete_all(struct completion *x)
  3399. {
  3400. unsigned long flags;
  3401. spin_lock_irqsave(&x->wait.lock, flags);
  3402. x->done += UINT_MAX/2;
  3403. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3404. 0, 0, NULL);
  3405. spin_unlock_irqrestore(&x->wait.lock, flags);
  3406. }
  3407. EXPORT_SYMBOL(complete_all);
  3408. static inline long __sched
  3409. do_wait_for_common(struct completion *x, long timeout, int state)
  3410. {
  3411. if (!x->done) {
  3412. DECLARE_WAITQUEUE(wait, current);
  3413. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3414. __add_wait_queue_tail(&x->wait, &wait);
  3415. do {
  3416. if (state == TASK_INTERRUPTIBLE &&
  3417. signal_pending(current)) {
  3418. __remove_wait_queue(&x->wait, &wait);
  3419. return -ERESTARTSYS;
  3420. }
  3421. __set_current_state(state);
  3422. spin_unlock_irq(&x->wait.lock);
  3423. timeout = schedule_timeout(timeout);
  3424. spin_lock_irq(&x->wait.lock);
  3425. if (!timeout) {
  3426. __remove_wait_queue(&x->wait, &wait);
  3427. return timeout;
  3428. }
  3429. } while (!x->done);
  3430. __remove_wait_queue(&x->wait, &wait);
  3431. }
  3432. x->done--;
  3433. return timeout;
  3434. }
  3435. static long __sched
  3436. wait_for_common(struct completion *x, long timeout, int state)
  3437. {
  3438. might_sleep();
  3439. spin_lock_irq(&x->wait.lock);
  3440. timeout = do_wait_for_common(x, timeout, state);
  3441. spin_unlock_irq(&x->wait.lock);
  3442. return timeout;
  3443. }
  3444. void __sched wait_for_completion(struct completion *x)
  3445. {
  3446. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3447. }
  3448. EXPORT_SYMBOL(wait_for_completion);
  3449. unsigned long __sched
  3450. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3451. {
  3452. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3453. }
  3454. EXPORT_SYMBOL(wait_for_completion_timeout);
  3455. int __sched wait_for_completion_interruptible(struct completion *x)
  3456. {
  3457. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3458. if (t == -ERESTARTSYS)
  3459. return t;
  3460. return 0;
  3461. }
  3462. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3463. unsigned long __sched
  3464. wait_for_completion_interruptible_timeout(struct completion *x,
  3465. unsigned long timeout)
  3466. {
  3467. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3468. }
  3469. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3470. static long __sched
  3471. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3472. {
  3473. unsigned long flags;
  3474. wait_queue_t wait;
  3475. init_waitqueue_entry(&wait, current);
  3476. __set_current_state(state);
  3477. spin_lock_irqsave(&q->lock, flags);
  3478. __add_wait_queue(q, &wait);
  3479. spin_unlock(&q->lock);
  3480. timeout = schedule_timeout(timeout);
  3481. spin_lock_irq(&q->lock);
  3482. __remove_wait_queue(q, &wait);
  3483. spin_unlock_irqrestore(&q->lock, flags);
  3484. return timeout;
  3485. }
  3486. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3487. {
  3488. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3489. }
  3490. EXPORT_SYMBOL(interruptible_sleep_on);
  3491. long __sched
  3492. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3493. {
  3494. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3495. }
  3496. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3497. void __sched sleep_on(wait_queue_head_t *q)
  3498. {
  3499. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3500. }
  3501. EXPORT_SYMBOL(sleep_on);
  3502. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3503. {
  3504. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3505. }
  3506. EXPORT_SYMBOL(sleep_on_timeout);
  3507. #ifdef CONFIG_RT_MUTEXES
  3508. /*
  3509. * rt_mutex_setprio - set the current priority of a task
  3510. * @p: task
  3511. * @prio: prio value (kernel-internal form)
  3512. *
  3513. * This function changes the 'effective' priority of a task. It does
  3514. * not touch ->normal_prio like __setscheduler().
  3515. *
  3516. * Used by the rt_mutex code to implement priority inheritance logic.
  3517. */
  3518. void rt_mutex_setprio(struct task_struct *p, int prio)
  3519. {
  3520. unsigned long flags;
  3521. int oldprio, on_rq, running;
  3522. struct rq *rq;
  3523. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3524. rq = task_rq_lock(p, &flags);
  3525. update_rq_clock(rq);
  3526. oldprio = p->prio;
  3527. on_rq = p->se.on_rq;
  3528. running = task_current(rq, p);
  3529. if (on_rq) {
  3530. dequeue_task(rq, p, 0);
  3531. if (running)
  3532. p->sched_class->put_prev_task(rq, p);
  3533. }
  3534. if (rt_prio(prio))
  3535. p->sched_class = &rt_sched_class;
  3536. else
  3537. p->sched_class = &fair_sched_class;
  3538. p->prio = prio;
  3539. if (on_rq) {
  3540. if (running)
  3541. p->sched_class->set_curr_task(rq);
  3542. enqueue_task(rq, p, 0);
  3543. /*
  3544. * Reschedule if we are currently running on this runqueue and
  3545. * our priority decreased, or if we are not currently running on
  3546. * this runqueue and our priority is higher than the current's
  3547. */
  3548. if (running) {
  3549. if (p->prio > oldprio)
  3550. resched_task(rq->curr);
  3551. } else {
  3552. check_preempt_curr(rq, p);
  3553. }
  3554. }
  3555. task_rq_unlock(rq, &flags);
  3556. }
  3557. #endif
  3558. void set_user_nice(struct task_struct *p, long nice)
  3559. {
  3560. int old_prio, delta, on_rq;
  3561. unsigned long flags;
  3562. struct rq *rq;
  3563. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3564. return;
  3565. /*
  3566. * We have to be careful, if called from sys_setpriority(),
  3567. * the task might be in the middle of scheduling on another CPU.
  3568. */
  3569. rq = task_rq_lock(p, &flags);
  3570. update_rq_clock(rq);
  3571. /*
  3572. * The RT priorities are set via sched_setscheduler(), but we still
  3573. * allow the 'normal' nice value to be set - but as expected
  3574. * it wont have any effect on scheduling until the task is
  3575. * SCHED_FIFO/SCHED_RR:
  3576. */
  3577. if (task_has_rt_policy(p)) {
  3578. p->static_prio = NICE_TO_PRIO(nice);
  3579. goto out_unlock;
  3580. }
  3581. on_rq = p->se.on_rq;
  3582. if (on_rq)
  3583. dequeue_task(rq, p, 0);
  3584. p->static_prio = NICE_TO_PRIO(nice);
  3585. set_load_weight(p);
  3586. old_prio = p->prio;
  3587. p->prio = effective_prio(p);
  3588. delta = p->prio - old_prio;
  3589. if (on_rq) {
  3590. enqueue_task(rq, p, 0);
  3591. /*
  3592. * If the task increased its priority or is running and
  3593. * lowered its priority, then reschedule its CPU:
  3594. */
  3595. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3596. resched_task(rq->curr);
  3597. }
  3598. out_unlock:
  3599. task_rq_unlock(rq, &flags);
  3600. }
  3601. EXPORT_SYMBOL(set_user_nice);
  3602. /*
  3603. * can_nice - check if a task can reduce its nice value
  3604. * @p: task
  3605. * @nice: nice value
  3606. */
  3607. int can_nice(const struct task_struct *p, const int nice)
  3608. {
  3609. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3610. int nice_rlim = 20 - nice;
  3611. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3612. capable(CAP_SYS_NICE));
  3613. }
  3614. #ifdef __ARCH_WANT_SYS_NICE
  3615. /*
  3616. * sys_nice - change the priority of the current process.
  3617. * @increment: priority increment
  3618. *
  3619. * sys_setpriority is a more generic, but much slower function that
  3620. * does similar things.
  3621. */
  3622. asmlinkage long sys_nice(int increment)
  3623. {
  3624. long nice, retval;
  3625. /*
  3626. * Setpriority might change our priority at the same moment.
  3627. * We don't have to worry. Conceptually one call occurs first
  3628. * and we have a single winner.
  3629. */
  3630. if (increment < -40)
  3631. increment = -40;
  3632. if (increment > 40)
  3633. increment = 40;
  3634. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3635. if (nice < -20)
  3636. nice = -20;
  3637. if (nice > 19)
  3638. nice = 19;
  3639. if (increment < 0 && !can_nice(current, nice))
  3640. return -EPERM;
  3641. retval = security_task_setnice(current, nice);
  3642. if (retval)
  3643. return retval;
  3644. set_user_nice(current, nice);
  3645. return 0;
  3646. }
  3647. #endif
  3648. /**
  3649. * task_prio - return the priority value of a given task.
  3650. * @p: the task in question.
  3651. *
  3652. * This is the priority value as seen by users in /proc.
  3653. * RT tasks are offset by -200. Normal tasks are centered
  3654. * around 0, value goes from -16 to +15.
  3655. */
  3656. int task_prio(const struct task_struct *p)
  3657. {
  3658. return p->prio - MAX_RT_PRIO;
  3659. }
  3660. /**
  3661. * task_nice - return the nice value of a given task.
  3662. * @p: the task in question.
  3663. */
  3664. int task_nice(const struct task_struct *p)
  3665. {
  3666. return TASK_NICE(p);
  3667. }
  3668. EXPORT_SYMBOL_GPL(task_nice);
  3669. /**
  3670. * idle_cpu - is a given cpu idle currently?
  3671. * @cpu: the processor in question.
  3672. */
  3673. int idle_cpu(int cpu)
  3674. {
  3675. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3676. }
  3677. /**
  3678. * idle_task - return the idle task for a given cpu.
  3679. * @cpu: the processor in question.
  3680. */
  3681. struct task_struct *idle_task(int cpu)
  3682. {
  3683. return cpu_rq(cpu)->idle;
  3684. }
  3685. /**
  3686. * find_process_by_pid - find a process with a matching PID value.
  3687. * @pid: the pid in question.
  3688. */
  3689. static struct task_struct *find_process_by_pid(pid_t pid)
  3690. {
  3691. return pid ? find_task_by_vpid(pid) : current;
  3692. }
  3693. /* Actually do priority change: must hold rq lock. */
  3694. static void
  3695. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3696. {
  3697. BUG_ON(p->se.on_rq);
  3698. p->policy = policy;
  3699. switch (p->policy) {
  3700. case SCHED_NORMAL:
  3701. case SCHED_BATCH:
  3702. case SCHED_IDLE:
  3703. p->sched_class = &fair_sched_class;
  3704. break;
  3705. case SCHED_FIFO:
  3706. case SCHED_RR:
  3707. p->sched_class = &rt_sched_class;
  3708. break;
  3709. }
  3710. p->rt_priority = prio;
  3711. p->normal_prio = normal_prio(p);
  3712. /* we are holding p->pi_lock already */
  3713. p->prio = rt_mutex_getprio(p);
  3714. set_load_weight(p);
  3715. }
  3716. /**
  3717. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3718. * @p: the task in question.
  3719. * @policy: new policy.
  3720. * @param: structure containing the new RT priority.
  3721. *
  3722. * NOTE that the task may be already dead.
  3723. */
  3724. int sched_setscheduler(struct task_struct *p, int policy,
  3725. struct sched_param *param)
  3726. {
  3727. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3728. unsigned long flags;
  3729. struct rq *rq;
  3730. /* may grab non-irq protected spin_locks */
  3731. BUG_ON(in_interrupt());
  3732. recheck:
  3733. /* double check policy once rq lock held */
  3734. if (policy < 0)
  3735. policy = oldpolicy = p->policy;
  3736. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3737. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3738. policy != SCHED_IDLE)
  3739. return -EINVAL;
  3740. /*
  3741. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3742. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3743. * SCHED_BATCH and SCHED_IDLE is 0.
  3744. */
  3745. if (param->sched_priority < 0 ||
  3746. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3747. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3748. return -EINVAL;
  3749. if (rt_policy(policy) != (param->sched_priority != 0))
  3750. return -EINVAL;
  3751. /*
  3752. * Allow unprivileged RT tasks to decrease priority:
  3753. */
  3754. if (!capable(CAP_SYS_NICE)) {
  3755. if (rt_policy(policy)) {
  3756. unsigned long rlim_rtprio;
  3757. if (!lock_task_sighand(p, &flags))
  3758. return -ESRCH;
  3759. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3760. unlock_task_sighand(p, &flags);
  3761. /* can't set/change the rt policy */
  3762. if (policy != p->policy && !rlim_rtprio)
  3763. return -EPERM;
  3764. /* can't increase priority */
  3765. if (param->sched_priority > p->rt_priority &&
  3766. param->sched_priority > rlim_rtprio)
  3767. return -EPERM;
  3768. }
  3769. /*
  3770. * Like positive nice levels, dont allow tasks to
  3771. * move out of SCHED_IDLE either:
  3772. */
  3773. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3774. return -EPERM;
  3775. /* can't change other user's priorities */
  3776. if ((current->euid != p->euid) &&
  3777. (current->euid != p->uid))
  3778. return -EPERM;
  3779. }
  3780. retval = security_task_setscheduler(p, policy, param);
  3781. if (retval)
  3782. return retval;
  3783. /*
  3784. * make sure no PI-waiters arrive (or leave) while we are
  3785. * changing the priority of the task:
  3786. */
  3787. spin_lock_irqsave(&p->pi_lock, flags);
  3788. /*
  3789. * To be able to change p->policy safely, the apropriate
  3790. * runqueue lock must be held.
  3791. */
  3792. rq = __task_rq_lock(p);
  3793. /* recheck policy now with rq lock held */
  3794. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3795. policy = oldpolicy = -1;
  3796. __task_rq_unlock(rq);
  3797. spin_unlock_irqrestore(&p->pi_lock, flags);
  3798. goto recheck;
  3799. }
  3800. update_rq_clock(rq);
  3801. on_rq = p->se.on_rq;
  3802. running = task_current(rq, p);
  3803. if (on_rq) {
  3804. deactivate_task(rq, p, 0);
  3805. if (running)
  3806. p->sched_class->put_prev_task(rq, p);
  3807. }
  3808. oldprio = p->prio;
  3809. __setscheduler(rq, p, policy, param->sched_priority);
  3810. if (on_rq) {
  3811. if (running)
  3812. p->sched_class->set_curr_task(rq);
  3813. activate_task(rq, p, 0);
  3814. /*
  3815. * Reschedule if we are currently running on this runqueue and
  3816. * our priority decreased, or if we are not currently running on
  3817. * this runqueue and our priority is higher than the current's
  3818. */
  3819. if (running) {
  3820. if (p->prio > oldprio)
  3821. resched_task(rq->curr);
  3822. } else {
  3823. check_preempt_curr(rq, p);
  3824. }
  3825. }
  3826. __task_rq_unlock(rq);
  3827. spin_unlock_irqrestore(&p->pi_lock, flags);
  3828. rt_mutex_adjust_pi(p);
  3829. return 0;
  3830. }
  3831. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3832. static int
  3833. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3834. {
  3835. struct sched_param lparam;
  3836. struct task_struct *p;
  3837. int retval;
  3838. if (!param || pid < 0)
  3839. return -EINVAL;
  3840. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3841. return -EFAULT;
  3842. rcu_read_lock();
  3843. retval = -ESRCH;
  3844. p = find_process_by_pid(pid);
  3845. if (p != NULL)
  3846. retval = sched_setscheduler(p, policy, &lparam);
  3847. rcu_read_unlock();
  3848. return retval;
  3849. }
  3850. /**
  3851. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3852. * @pid: the pid in question.
  3853. * @policy: new policy.
  3854. * @param: structure containing the new RT priority.
  3855. */
  3856. asmlinkage long
  3857. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3858. {
  3859. /* negative values for policy are not valid */
  3860. if (policy < 0)
  3861. return -EINVAL;
  3862. return do_sched_setscheduler(pid, policy, param);
  3863. }
  3864. /**
  3865. * sys_sched_setparam - set/change the RT priority of a thread
  3866. * @pid: the pid in question.
  3867. * @param: structure containing the new RT priority.
  3868. */
  3869. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3870. {
  3871. return do_sched_setscheduler(pid, -1, param);
  3872. }
  3873. /**
  3874. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3875. * @pid: the pid in question.
  3876. */
  3877. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3878. {
  3879. struct task_struct *p;
  3880. int retval;
  3881. if (pid < 0)
  3882. return -EINVAL;
  3883. retval = -ESRCH;
  3884. read_lock(&tasklist_lock);
  3885. p = find_process_by_pid(pid);
  3886. if (p) {
  3887. retval = security_task_getscheduler(p);
  3888. if (!retval)
  3889. retval = p->policy;
  3890. }
  3891. read_unlock(&tasklist_lock);
  3892. return retval;
  3893. }
  3894. /**
  3895. * sys_sched_getscheduler - get the RT priority of a thread
  3896. * @pid: the pid in question.
  3897. * @param: structure containing the RT priority.
  3898. */
  3899. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3900. {
  3901. struct sched_param lp;
  3902. struct task_struct *p;
  3903. int retval;
  3904. if (!param || pid < 0)
  3905. return -EINVAL;
  3906. read_lock(&tasklist_lock);
  3907. p = find_process_by_pid(pid);
  3908. retval = -ESRCH;
  3909. if (!p)
  3910. goto out_unlock;
  3911. retval = security_task_getscheduler(p);
  3912. if (retval)
  3913. goto out_unlock;
  3914. lp.sched_priority = p->rt_priority;
  3915. read_unlock(&tasklist_lock);
  3916. /*
  3917. * This one might sleep, we cannot do it with a spinlock held ...
  3918. */
  3919. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3920. return retval;
  3921. out_unlock:
  3922. read_unlock(&tasklist_lock);
  3923. return retval;
  3924. }
  3925. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3926. {
  3927. cpumask_t cpus_allowed;
  3928. struct task_struct *p;
  3929. int retval;
  3930. mutex_lock(&sched_hotcpu_mutex);
  3931. read_lock(&tasklist_lock);
  3932. p = find_process_by_pid(pid);
  3933. if (!p) {
  3934. read_unlock(&tasklist_lock);
  3935. mutex_unlock(&sched_hotcpu_mutex);
  3936. return -ESRCH;
  3937. }
  3938. /*
  3939. * It is not safe to call set_cpus_allowed with the
  3940. * tasklist_lock held. We will bump the task_struct's
  3941. * usage count and then drop tasklist_lock.
  3942. */
  3943. get_task_struct(p);
  3944. read_unlock(&tasklist_lock);
  3945. retval = -EPERM;
  3946. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3947. !capable(CAP_SYS_NICE))
  3948. goto out_unlock;
  3949. retval = security_task_setscheduler(p, 0, NULL);
  3950. if (retval)
  3951. goto out_unlock;
  3952. cpus_allowed = cpuset_cpus_allowed(p);
  3953. cpus_and(new_mask, new_mask, cpus_allowed);
  3954. again:
  3955. retval = set_cpus_allowed(p, new_mask);
  3956. if (!retval) {
  3957. cpus_allowed = cpuset_cpus_allowed(p);
  3958. if (!cpus_subset(new_mask, cpus_allowed)) {
  3959. /*
  3960. * We must have raced with a concurrent cpuset
  3961. * update. Just reset the cpus_allowed to the
  3962. * cpuset's cpus_allowed
  3963. */
  3964. new_mask = cpus_allowed;
  3965. goto again;
  3966. }
  3967. }
  3968. out_unlock:
  3969. put_task_struct(p);
  3970. mutex_unlock(&sched_hotcpu_mutex);
  3971. return retval;
  3972. }
  3973. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3974. cpumask_t *new_mask)
  3975. {
  3976. if (len < sizeof(cpumask_t)) {
  3977. memset(new_mask, 0, sizeof(cpumask_t));
  3978. } else if (len > sizeof(cpumask_t)) {
  3979. len = sizeof(cpumask_t);
  3980. }
  3981. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3982. }
  3983. /**
  3984. * sys_sched_setaffinity - set the cpu affinity of a process
  3985. * @pid: pid of the process
  3986. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3987. * @user_mask_ptr: user-space pointer to the new cpu mask
  3988. */
  3989. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3990. unsigned long __user *user_mask_ptr)
  3991. {
  3992. cpumask_t new_mask;
  3993. int retval;
  3994. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3995. if (retval)
  3996. return retval;
  3997. return sched_setaffinity(pid, new_mask);
  3998. }
  3999. /*
  4000. * Represents all cpu's present in the system
  4001. * In systems capable of hotplug, this map could dynamically grow
  4002. * as new cpu's are detected in the system via any platform specific
  4003. * method, such as ACPI for e.g.
  4004. */
  4005. cpumask_t cpu_present_map __read_mostly;
  4006. EXPORT_SYMBOL(cpu_present_map);
  4007. #ifndef CONFIG_SMP
  4008. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4009. EXPORT_SYMBOL(cpu_online_map);
  4010. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4011. EXPORT_SYMBOL(cpu_possible_map);
  4012. #endif
  4013. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4014. {
  4015. struct task_struct *p;
  4016. int retval;
  4017. mutex_lock(&sched_hotcpu_mutex);
  4018. read_lock(&tasklist_lock);
  4019. retval = -ESRCH;
  4020. p = find_process_by_pid(pid);
  4021. if (!p)
  4022. goto out_unlock;
  4023. retval = security_task_getscheduler(p);
  4024. if (retval)
  4025. goto out_unlock;
  4026. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4027. out_unlock:
  4028. read_unlock(&tasklist_lock);
  4029. mutex_unlock(&sched_hotcpu_mutex);
  4030. return retval;
  4031. }
  4032. /**
  4033. * sys_sched_getaffinity - get the cpu affinity of a process
  4034. * @pid: pid of the process
  4035. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4036. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4037. */
  4038. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4039. unsigned long __user *user_mask_ptr)
  4040. {
  4041. int ret;
  4042. cpumask_t mask;
  4043. if (len < sizeof(cpumask_t))
  4044. return -EINVAL;
  4045. ret = sched_getaffinity(pid, &mask);
  4046. if (ret < 0)
  4047. return ret;
  4048. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4049. return -EFAULT;
  4050. return sizeof(cpumask_t);
  4051. }
  4052. /**
  4053. * sys_sched_yield - yield the current processor to other threads.
  4054. *
  4055. * This function yields the current CPU to other tasks. If there are no
  4056. * other threads running on this CPU then this function will return.
  4057. */
  4058. asmlinkage long sys_sched_yield(void)
  4059. {
  4060. struct rq *rq = this_rq_lock();
  4061. schedstat_inc(rq, yld_count);
  4062. current->sched_class->yield_task(rq);
  4063. /*
  4064. * Since we are going to call schedule() anyway, there's
  4065. * no need to preempt or enable interrupts:
  4066. */
  4067. __release(rq->lock);
  4068. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4069. _raw_spin_unlock(&rq->lock);
  4070. preempt_enable_no_resched();
  4071. schedule();
  4072. return 0;
  4073. }
  4074. static void __cond_resched(void)
  4075. {
  4076. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4077. __might_sleep(__FILE__, __LINE__);
  4078. #endif
  4079. /*
  4080. * The BKS might be reacquired before we have dropped
  4081. * PREEMPT_ACTIVE, which could trigger a second
  4082. * cond_resched() call.
  4083. */
  4084. do {
  4085. add_preempt_count(PREEMPT_ACTIVE);
  4086. schedule();
  4087. sub_preempt_count(PREEMPT_ACTIVE);
  4088. } while (need_resched());
  4089. }
  4090. int __sched cond_resched(void)
  4091. {
  4092. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4093. system_state == SYSTEM_RUNNING) {
  4094. __cond_resched();
  4095. return 1;
  4096. }
  4097. return 0;
  4098. }
  4099. EXPORT_SYMBOL(cond_resched);
  4100. /*
  4101. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4102. * call schedule, and on return reacquire the lock.
  4103. *
  4104. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4105. * operations here to prevent schedule() from being called twice (once via
  4106. * spin_unlock(), once by hand).
  4107. */
  4108. int cond_resched_lock(spinlock_t *lock)
  4109. {
  4110. int ret = 0;
  4111. if (need_lockbreak(lock)) {
  4112. spin_unlock(lock);
  4113. cpu_relax();
  4114. ret = 1;
  4115. spin_lock(lock);
  4116. }
  4117. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4118. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4119. _raw_spin_unlock(lock);
  4120. preempt_enable_no_resched();
  4121. __cond_resched();
  4122. ret = 1;
  4123. spin_lock(lock);
  4124. }
  4125. return ret;
  4126. }
  4127. EXPORT_SYMBOL(cond_resched_lock);
  4128. int __sched cond_resched_softirq(void)
  4129. {
  4130. BUG_ON(!in_softirq());
  4131. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4132. local_bh_enable();
  4133. __cond_resched();
  4134. local_bh_disable();
  4135. return 1;
  4136. }
  4137. return 0;
  4138. }
  4139. EXPORT_SYMBOL(cond_resched_softirq);
  4140. /**
  4141. * yield - yield the current processor to other threads.
  4142. *
  4143. * This is a shortcut for kernel-space yielding - it marks the
  4144. * thread runnable and calls sys_sched_yield().
  4145. */
  4146. void __sched yield(void)
  4147. {
  4148. set_current_state(TASK_RUNNING);
  4149. sys_sched_yield();
  4150. }
  4151. EXPORT_SYMBOL(yield);
  4152. /*
  4153. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4154. * that process accounting knows that this is a task in IO wait state.
  4155. *
  4156. * But don't do that if it is a deliberate, throttling IO wait (this task
  4157. * has set its backing_dev_info: the queue against which it should throttle)
  4158. */
  4159. void __sched io_schedule(void)
  4160. {
  4161. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4162. delayacct_blkio_start();
  4163. atomic_inc(&rq->nr_iowait);
  4164. schedule();
  4165. atomic_dec(&rq->nr_iowait);
  4166. delayacct_blkio_end();
  4167. }
  4168. EXPORT_SYMBOL(io_schedule);
  4169. long __sched io_schedule_timeout(long timeout)
  4170. {
  4171. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4172. long ret;
  4173. delayacct_blkio_start();
  4174. atomic_inc(&rq->nr_iowait);
  4175. ret = schedule_timeout(timeout);
  4176. atomic_dec(&rq->nr_iowait);
  4177. delayacct_blkio_end();
  4178. return ret;
  4179. }
  4180. /**
  4181. * sys_sched_get_priority_max - return maximum RT priority.
  4182. * @policy: scheduling class.
  4183. *
  4184. * this syscall returns the maximum rt_priority that can be used
  4185. * by a given scheduling class.
  4186. */
  4187. asmlinkage long sys_sched_get_priority_max(int policy)
  4188. {
  4189. int ret = -EINVAL;
  4190. switch (policy) {
  4191. case SCHED_FIFO:
  4192. case SCHED_RR:
  4193. ret = MAX_USER_RT_PRIO-1;
  4194. break;
  4195. case SCHED_NORMAL:
  4196. case SCHED_BATCH:
  4197. case SCHED_IDLE:
  4198. ret = 0;
  4199. break;
  4200. }
  4201. return ret;
  4202. }
  4203. /**
  4204. * sys_sched_get_priority_min - return minimum RT priority.
  4205. * @policy: scheduling class.
  4206. *
  4207. * this syscall returns the minimum rt_priority that can be used
  4208. * by a given scheduling class.
  4209. */
  4210. asmlinkage long sys_sched_get_priority_min(int policy)
  4211. {
  4212. int ret = -EINVAL;
  4213. switch (policy) {
  4214. case SCHED_FIFO:
  4215. case SCHED_RR:
  4216. ret = 1;
  4217. break;
  4218. case SCHED_NORMAL:
  4219. case SCHED_BATCH:
  4220. case SCHED_IDLE:
  4221. ret = 0;
  4222. }
  4223. return ret;
  4224. }
  4225. /**
  4226. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4227. * @pid: pid of the process.
  4228. * @interval: userspace pointer to the timeslice value.
  4229. *
  4230. * this syscall writes the default timeslice value of a given process
  4231. * into the user-space timespec buffer. A value of '0' means infinity.
  4232. */
  4233. asmlinkage
  4234. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4235. {
  4236. struct task_struct *p;
  4237. unsigned int time_slice;
  4238. int retval;
  4239. struct timespec t;
  4240. if (pid < 0)
  4241. return -EINVAL;
  4242. retval = -ESRCH;
  4243. read_lock(&tasklist_lock);
  4244. p = find_process_by_pid(pid);
  4245. if (!p)
  4246. goto out_unlock;
  4247. retval = security_task_getscheduler(p);
  4248. if (retval)
  4249. goto out_unlock;
  4250. /*
  4251. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4252. * tasks that are on an otherwise idle runqueue:
  4253. */
  4254. time_slice = 0;
  4255. if (p->policy == SCHED_RR) {
  4256. time_slice = DEF_TIMESLICE;
  4257. } else {
  4258. struct sched_entity *se = &p->se;
  4259. unsigned long flags;
  4260. struct rq *rq;
  4261. rq = task_rq_lock(p, &flags);
  4262. if (rq->cfs.load.weight)
  4263. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4264. task_rq_unlock(rq, &flags);
  4265. }
  4266. read_unlock(&tasklist_lock);
  4267. jiffies_to_timespec(time_slice, &t);
  4268. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4269. return retval;
  4270. out_unlock:
  4271. read_unlock(&tasklist_lock);
  4272. return retval;
  4273. }
  4274. static const char stat_nam[] = "RSDTtZX";
  4275. static void show_task(struct task_struct *p)
  4276. {
  4277. unsigned long free = 0;
  4278. unsigned state;
  4279. state = p->state ? __ffs(p->state) + 1 : 0;
  4280. printk(KERN_INFO "%-13.13s %c", p->comm,
  4281. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4282. #if BITS_PER_LONG == 32
  4283. if (state == TASK_RUNNING)
  4284. printk(KERN_CONT " running ");
  4285. else
  4286. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4287. #else
  4288. if (state == TASK_RUNNING)
  4289. printk(KERN_CONT " running task ");
  4290. else
  4291. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4292. #endif
  4293. #ifdef CONFIG_DEBUG_STACK_USAGE
  4294. {
  4295. unsigned long *n = end_of_stack(p);
  4296. while (!*n)
  4297. n++;
  4298. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4299. }
  4300. #endif
  4301. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4302. task_pid_nr(p), task_pid_nr(p->real_parent));
  4303. if (state != TASK_RUNNING)
  4304. show_stack(p, NULL);
  4305. }
  4306. void show_state_filter(unsigned long state_filter)
  4307. {
  4308. struct task_struct *g, *p;
  4309. #if BITS_PER_LONG == 32
  4310. printk(KERN_INFO
  4311. " task PC stack pid father\n");
  4312. #else
  4313. printk(KERN_INFO
  4314. " task PC stack pid father\n");
  4315. #endif
  4316. read_lock(&tasklist_lock);
  4317. do_each_thread(g, p) {
  4318. /*
  4319. * reset the NMI-timeout, listing all files on a slow
  4320. * console might take alot of time:
  4321. */
  4322. touch_nmi_watchdog();
  4323. if (!state_filter || (p->state & state_filter))
  4324. show_task(p);
  4325. } while_each_thread(g, p);
  4326. touch_all_softlockup_watchdogs();
  4327. #ifdef CONFIG_SCHED_DEBUG
  4328. sysrq_sched_debug_show();
  4329. #endif
  4330. read_unlock(&tasklist_lock);
  4331. /*
  4332. * Only show locks if all tasks are dumped:
  4333. */
  4334. if (state_filter == -1)
  4335. debug_show_all_locks();
  4336. }
  4337. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4338. {
  4339. idle->sched_class = &idle_sched_class;
  4340. }
  4341. /**
  4342. * init_idle - set up an idle thread for a given CPU
  4343. * @idle: task in question
  4344. * @cpu: cpu the idle task belongs to
  4345. *
  4346. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4347. * flag, to make booting more robust.
  4348. */
  4349. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4350. {
  4351. struct rq *rq = cpu_rq(cpu);
  4352. unsigned long flags;
  4353. __sched_fork(idle);
  4354. idle->se.exec_start = sched_clock();
  4355. idle->prio = idle->normal_prio = MAX_PRIO;
  4356. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4357. __set_task_cpu(idle, cpu);
  4358. spin_lock_irqsave(&rq->lock, flags);
  4359. rq->curr = rq->idle = idle;
  4360. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4361. idle->oncpu = 1;
  4362. #endif
  4363. spin_unlock_irqrestore(&rq->lock, flags);
  4364. /* Set the preempt count _outside_ the spinlocks! */
  4365. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4366. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4367. #else
  4368. task_thread_info(idle)->preempt_count = 0;
  4369. #endif
  4370. /*
  4371. * The idle tasks have their own, simple scheduling class:
  4372. */
  4373. idle->sched_class = &idle_sched_class;
  4374. }
  4375. /*
  4376. * In a system that switches off the HZ timer nohz_cpu_mask
  4377. * indicates which cpus entered this state. This is used
  4378. * in the rcu update to wait only for active cpus. For system
  4379. * which do not switch off the HZ timer nohz_cpu_mask should
  4380. * always be CPU_MASK_NONE.
  4381. */
  4382. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4383. /*
  4384. * Increase the granularity value when there are more CPUs,
  4385. * because with more CPUs the 'effective latency' as visible
  4386. * to users decreases. But the relationship is not linear,
  4387. * so pick a second-best guess by going with the log2 of the
  4388. * number of CPUs.
  4389. *
  4390. * This idea comes from the SD scheduler of Con Kolivas:
  4391. */
  4392. static inline void sched_init_granularity(void)
  4393. {
  4394. unsigned int factor = 1 + ilog2(num_online_cpus());
  4395. const unsigned long limit = 200000000;
  4396. sysctl_sched_min_granularity *= factor;
  4397. if (sysctl_sched_min_granularity > limit)
  4398. sysctl_sched_min_granularity = limit;
  4399. sysctl_sched_latency *= factor;
  4400. if (sysctl_sched_latency > limit)
  4401. sysctl_sched_latency = limit;
  4402. sysctl_sched_wakeup_granularity *= factor;
  4403. sysctl_sched_batch_wakeup_granularity *= factor;
  4404. }
  4405. #ifdef CONFIG_SMP
  4406. /*
  4407. * This is how migration works:
  4408. *
  4409. * 1) we queue a struct migration_req structure in the source CPU's
  4410. * runqueue and wake up that CPU's migration thread.
  4411. * 2) we down() the locked semaphore => thread blocks.
  4412. * 3) migration thread wakes up (implicitly it forces the migrated
  4413. * thread off the CPU)
  4414. * 4) it gets the migration request and checks whether the migrated
  4415. * task is still in the wrong runqueue.
  4416. * 5) if it's in the wrong runqueue then the migration thread removes
  4417. * it and puts it into the right queue.
  4418. * 6) migration thread up()s the semaphore.
  4419. * 7) we wake up and the migration is done.
  4420. */
  4421. /*
  4422. * Change a given task's CPU affinity. Migrate the thread to a
  4423. * proper CPU and schedule it away if the CPU it's executing on
  4424. * is removed from the allowed bitmask.
  4425. *
  4426. * NOTE: the caller must have a valid reference to the task, the
  4427. * task must not exit() & deallocate itself prematurely. The
  4428. * call is not atomic; no spinlocks may be held.
  4429. */
  4430. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4431. {
  4432. struct migration_req req;
  4433. unsigned long flags;
  4434. struct rq *rq;
  4435. int ret = 0;
  4436. rq = task_rq_lock(p, &flags);
  4437. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4438. ret = -EINVAL;
  4439. goto out;
  4440. }
  4441. p->cpus_allowed = new_mask;
  4442. /* Can the task run on the task's current CPU? If so, we're done */
  4443. if (cpu_isset(task_cpu(p), new_mask))
  4444. goto out;
  4445. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4446. /* Need help from migration thread: drop lock and wait. */
  4447. task_rq_unlock(rq, &flags);
  4448. wake_up_process(rq->migration_thread);
  4449. wait_for_completion(&req.done);
  4450. tlb_migrate_finish(p->mm);
  4451. return 0;
  4452. }
  4453. out:
  4454. task_rq_unlock(rq, &flags);
  4455. return ret;
  4456. }
  4457. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4458. /*
  4459. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4460. * this because either it can't run here any more (set_cpus_allowed()
  4461. * away from this CPU, or CPU going down), or because we're
  4462. * attempting to rebalance this task on exec (sched_exec).
  4463. *
  4464. * So we race with normal scheduler movements, but that's OK, as long
  4465. * as the task is no longer on this CPU.
  4466. *
  4467. * Returns non-zero if task was successfully migrated.
  4468. */
  4469. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4470. {
  4471. struct rq *rq_dest, *rq_src;
  4472. int ret = 0, on_rq;
  4473. if (unlikely(cpu_is_offline(dest_cpu)))
  4474. return ret;
  4475. rq_src = cpu_rq(src_cpu);
  4476. rq_dest = cpu_rq(dest_cpu);
  4477. double_rq_lock(rq_src, rq_dest);
  4478. /* Already moved. */
  4479. if (task_cpu(p) != src_cpu)
  4480. goto out;
  4481. /* Affinity changed (again). */
  4482. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4483. goto out;
  4484. on_rq = p->se.on_rq;
  4485. if (on_rq)
  4486. deactivate_task(rq_src, p, 0);
  4487. set_task_cpu(p, dest_cpu);
  4488. if (on_rq) {
  4489. activate_task(rq_dest, p, 0);
  4490. check_preempt_curr(rq_dest, p);
  4491. }
  4492. ret = 1;
  4493. out:
  4494. double_rq_unlock(rq_src, rq_dest);
  4495. return ret;
  4496. }
  4497. /*
  4498. * migration_thread - this is a highprio system thread that performs
  4499. * thread migration by bumping thread off CPU then 'pushing' onto
  4500. * another runqueue.
  4501. */
  4502. static int migration_thread(void *data)
  4503. {
  4504. int cpu = (long)data;
  4505. struct rq *rq;
  4506. rq = cpu_rq(cpu);
  4507. BUG_ON(rq->migration_thread != current);
  4508. set_current_state(TASK_INTERRUPTIBLE);
  4509. while (!kthread_should_stop()) {
  4510. struct migration_req *req;
  4511. struct list_head *head;
  4512. spin_lock_irq(&rq->lock);
  4513. if (cpu_is_offline(cpu)) {
  4514. spin_unlock_irq(&rq->lock);
  4515. goto wait_to_die;
  4516. }
  4517. if (rq->active_balance) {
  4518. active_load_balance(rq, cpu);
  4519. rq->active_balance = 0;
  4520. }
  4521. head = &rq->migration_queue;
  4522. if (list_empty(head)) {
  4523. spin_unlock_irq(&rq->lock);
  4524. schedule();
  4525. set_current_state(TASK_INTERRUPTIBLE);
  4526. continue;
  4527. }
  4528. req = list_entry(head->next, struct migration_req, list);
  4529. list_del_init(head->next);
  4530. spin_unlock(&rq->lock);
  4531. __migrate_task(req->task, cpu, req->dest_cpu);
  4532. local_irq_enable();
  4533. complete(&req->done);
  4534. }
  4535. __set_current_state(TASK_RUNNING);
  4536. return 0;
  4537. wait_to_die:
  4538. /* Wait for kthread_stop */
  4539. set_current_state(TASK_INTERRUPTIBLE);
  4540. while (!kthread_should_stop()) {
  4541. schedule();
  4542. set_current_state(TASK_INTERRUPTIBLE);
  4543. }
  4544. __set_current_state(TASK_RUNNING);
  4545. return 0;
  4546. }
  4547. #ifdef CONFIG_HOTPLUG_CPU
  4548. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4549. {
  4550. int ret;
  4551. local_irq_disable();
  4552. ret = __migrate_task(p, src_cpu, dest_cpu);
  4553. local_irq_enable();
  4554. return ret;
  4555. }
  4556. /*
  4557. * Figure out where task on dead CPU should go, use force if necessary.
  4558. * NOTE: interrupts should be disabled by the caller
  4559. */
  4560. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4561. {
  4562. unsigned long flags;
  4563. cpumask_t mask;
  4564. struct rq *rq;
  4565. int dest_cpu;
  4566. do {
  4567. /* On same node? */
  4568. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4569. cpus_and(mask, mask, p->cpus_allowed);
  4570. dest_cpu = any_online_cpu(mask);
  4571. /* On any allowed CPU? */
  4572. if (dest_cpu == NR_CPUS)
  4573. dest_cpu = any_online_cpu(p->cpus_allowed);
  4574. /* No more Mr. Nice Guy. */
  4575. if (dest_cpu == NR_CPUS) {
  4576. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4577. /*
  4578. * Try to stay on the same cpuset, where the
  4579. * current cpuset may be a subset of all cpus.
  4580. * The cpuset_cpus_allowed_locked() variant of
  4581. * cpuset_cpus_allowed() will not block. It must be
  4582. * called within calls to cpuset_lock/cpuset_unlock.
  4583. */
  4584. rq = task_rq_lock(p, &flags);
  4585. p->cpus_allowed = cpus_allowed;
  4586. dest_cpu = any_online_cpu(p->cpus_allowed);
  4587. task_rq_unlock(rq, &flags);
  4588. /*
  4589. * Don't tell them about moving exiting tasks or
  4590. * kernel threads (both mm NULL), since they never
  4591. * leave kernel.
  4592. */
  4593. if (p->mm && printk_ratelimit()) {
  4594. printk(KERN_INFO "process %d (%s) no "
  4595. "longer affine to cpu%d\n",
  4596. task_pid_nr(p), p->comm, dead_cpu);
  4597. }
  4598. }
  4599. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4600. }
  4601. /*
  4602. * While a dead CPU has no uninterruptible tasks queued at this point,
  4603. * it might still have a nonzero ->nr_uninterruptible counter, because
  4604. * for performance reasons the counter is not stricly tracking tasks to
  4605. * their home CPUs. So we just add the counter to another CPU's counter,
  4606. * to keep the global sum constant after CPU-down:
  4607. */
  4608. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4609. {
  4610. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4611. unsigned long flags;
  4612. local_irq_save(flags);
  4613. double_rq_lock(rq_src, rq_dest);
  4614. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4615. rq_src->nr_uninterruptible = 0;
  4616. double_rq_unlock(rq_src, rq_dest);
  4617. local_irq_restore(flags);
  4618. }
  4619. /* Run through task list and migrate tasks from the dead cpu. */
  4620. static void migrate_live_tasks(int src_cpu)
  4621. {
  4622. struct task_struct *p, *t;
  4623. read_lock(&tasklist_lock);
  4624. do_each_thread(t, p) {
  4625. if (p == current)
  4626. continue;
  4627. if (task_cpu(p) == src_cpu)
  4628. move_task_off_dead_cpu(src_cpu, p);
  4629. } while_each_thread(t, p);
  4630. read_unlock(&tasklist_lock);
  4631. }
  4632. /*
  4633. * Schedules idle task to be the next runnable task on current CPU.
  4634. * It does so by boosting its priority to highest possible.
  4635. * Used by CPU offline code.
  4636. */
  4637. void sched_idle_next(void)
  4638. {
  4639. int this_cpu = smp_processor_id();
  4640. struct rq *rq = cpu_rq(this_cpu);
  4641. struct task_struct *p = rq->idle;
  4642. unsigned long flags;
  4643. /* cpu has to be offline */
  4644. BUG_ON(cpu_online(this_cpu));
  4645. /*
  4646. * Strictly not necessary since rest of the CPUs are stopped by now
  4647. * and interrupts disabled on the current cpu.
  4648. */
  4649. spin_lock_irqsave(&rq->lock, flags);
  4650. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4651. update_rq_clock(rq);
  4652. activate_task(rq, p, 0);
  4653. spin_unlock_irqrestore(&rq->lock, flags);
  4654. }
  4655. /*
  4656. * Ensures that the idle task is using init_mm right before its cpu goes
  4657. * offline.
  4658. */
  4659. void idle_task_exit(void)
  4660. {
  4661. struct mm_struct *mm = current->active_mm;
  4662. BUG_ON(cpu_online(smp_processor_id()));
  4663. if (mm != &init_mm)
  4664. switch_mm(mm, &init_mm, current);
  4665. mmdrop(mm);
  4666. }
  4667. /* called under rq->lock with disabled interrupts */
  4668. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4669. {
  4670. struct rq *rq = cpu_rq(dead_cpu);
  4671. /* Must be exiting, otherwise would be on tasklist. */
  4672. BUG_ON(!p->exit_state);
  4673. /* Cannot have done final schedule yet: would have vanished. */
  4674. BUG_ON(p->state == TASK_DEAD);
  4675. get_task_struct(p);
  4676. /*
  4677. * Drop lock around migration; if someone else moves it,
  4678. * that's OK. No task can be added to this CPU, so iteration is
  4679. * fine.
  4680. */
  4681. spin_unlock_irq(&rq->lock);
  4682. move_task_off_dead_cpu(dead_cpu, p);
  4683. spin_lock_irq(&rq->lock);
  4684. put_task_struct(p);
  4685. }
  4686. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4687. static void migrate_dead_tasks(unsigned int dead_cpu)
  4688. {
  4689. struct rq *rq = cpu_rq(dead_cpu);
  4690. struct task_struct *next;
  4691. for ( ; ; ) {
  4692. if (!rq->nr_running)
  4693. break;
  4694. update_rq_clock(rq);
  4695. next = pick_next_task(rq, rq->curr);
  4696. if (!next)
  4697. break;
  4698. migrate_dead(dead_cpu, next);
  4699. }
  4700. }
  4701. #endif /* CONFIG_HOTPLUG_CPU */
  4702. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4703. static struct ctl_table sd_ctl_dir[] = {
  4704. {
  4705. .procname = "sched_domain",
  4706. .mode = 0555,
  4707. },
  4708. {0, },
  4709. };
  4710. static struct ctl_table sd_ctl_root[] = {
  4711. {
  4712. .ctl_name = CTL_KERN,
  4713. .procname = "kernel",
  4714. .mode = 0555,
  4715. .child = sd_ctl_dir,
  4716. },
  4717. {0, },
  4718. };
  4719. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4720. {
  4721. struct ctl_table *entry =
  4722. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4723. return entry;
  4724. }
  4725. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4726. {
  4727. struct ctl_table *entry;
  4728. /*
  4729. * In the intermediate directories, both the child directory and
  4730. * procname are dynamically allocated and could fail but the mode
  4731. * will always be set. In the lowest directory the names are
  4732. * static strings and all have proc handlers.
  4733. */
  4734. for (entry = *tablep; entry->mode; entry++) {
  4735. if (entry->child)
  4736. sd_free_ctl_entry(&entry->child);
  4737. if (entry->proc_handler == NULL)
  4738. kfree(entry->procname);
  4739. }
  4740. kfree(*tablep);
  4741. *tablep = NULL;
  4742. }
  4743. static void
  4744. set_table_entry(struct ctl_table *entry,
  4745. const char *procname, void *data, int maxlen,
  4746. mode_t mode, proc_handler *proc_handler)
  4747. {
  4748. entry->procname = procname;
  4749. entry->data = data;
  4750. entry->maxlen = maxlen;
  4751. entry->mode = mode;
  4752. entry->proc_handler = proc_handler;
  4753. }
  4754. static struct ctl_table *
  4755. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4756. {
  4757. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4758. if (table == NULL)
  4759. return NULL;
  4760. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4761. sizeof(long), 0644, proc_doulongvec_minmax);
  4762. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4763. sizeof(long), 0644, proc_doulongvec_minmax);
  4764. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4765. sizeof(int), 0644, proc_dointvec_minmax);
  4766. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4767. sizeof(int), 0644, proc_dointvec_minmax);
  4768. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4769. sizeof(int), 0644, proc_dointvec_minmax);
  4770. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4771. sizeof(int), 0644, proc_dointvec_minmax);
  4772. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4773. sizeof(int), 0644, proc_dointvec_minmax);
  4774. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4775. sizeof(int), 0644, proc_dointvec_minmax);
  4776. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4777. sizeof(int), 0644, proc_dointvec_minmax);
  4778. set_table_entry(&table[9], "cache_nice_tries",
  4779. &sd->cache_nice_tries,
  4780. sizeof(int), 0644, proc_dointvec_minmax);
  4781. set_table_entry(&table[10], "flags", &sd->flags,
  4782. sizeof(int), 0644, proc_dointvec_minmax);
  4783. /* &table[11] is terminator */
  4784. return table;
  4785. }
  4786. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4787. {
  4788. struct ctl_table *entry, *table;
  4789. struct sched_domain *sd;
  4790. int domain_num = 0, i;
  4791. char buf[32];
  4792. for_each_domain(cpu, sd)
  4793. domain_num++;
  4794. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4795. if (table == NULL)
  4796. return NULL;
  4797. i = 0;
  4798. for_each_domain(cpu, sd) {
  4799. snprintf(buf, 32, "domain%d", i);
  4800. entry->procname = kstrdup(buf, GFP_KERNEL);
  4801. entry->mode = 0555;
  4802. entry->child = sd_alloc_ctl_domain_table(sd);
  4803. entry++;
  4804. i++;
  4805. }
  4806. return table;
  4807. }
  4808. static struct ctl_table_header *sd_sysctl_header;
  4809. static void register_sched_domain_sysctl(void)
  4810. {
  4811. int i, cpu_num = num_online_cpus();
  4812. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4813. char buf[32];
  4814. WARN_ON(sd_ctl_dir[0].child);
  4815. sd_ctl_dir[0].child = entry;
  4816. if (entry == NULL)
  4817. return;
  4818. for_each_online_cpu(i) {
  4819. snprintf(buf, 32, "cpu%d", i);
  4820. entry->procname = kstrdup(buf, GFP_KERNEL);
  4821. entry->mode = 0555;
  4822. entry->child = sd_alloc_ctl_cpu_table(i);
  4823. entry++;
  4824. }
  4825. WARN_ON(sd_sysctl_header);
  4826. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4827. }
  4828. /* may be called multiple times per register */
  4829. static void unregister_sched_domain_sysctl(void)
  4830. {
  4831. if (sd_sysctl_header)
  4832. unregister_sysctl_table(sd_sysctl_header);
  4833. sd_sysctl_header = NULL;
  4834. if (sd_ctl_dir[0].child)
  4835. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4836. }
  4837. #else
  4838. static void register_sched_domain_sysctl(void)
  4839. {
  4840. }
  4841. static void unregister_sched_domain_sysctl(void)
  4842. {
  4843. }
  4844. #endif
  4845. /*
  4846. * migration_call - callback that gets triggered when a CPU is added.
  4847. * Here we can start up the necessary migration thread for the new CPU.
  4848. */
  4849. static int __cpuinit
  4850. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4851. {
  4852. struct task_struct *p;
  4853. int cpu = (long)hcpu;
  4854. unsigned long flags;
  4855. struct rq *rq;
  4856. switch (action) {
  4857. case CPU_LOCK_ACQUIRE:
  4858. mutex_lock(&sched_hotcpu_mutex);
  4859. break;
  4860. case CPU_UP_PREPARE:
  4861. case CPU_UP_PREPARE_FROZEN:
  4862. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4863. if (IS_ERR(p))
  4864. return NOTIFY_BAD;
  4865. kthread_bind(p, cpu);
  4866. /* Must be high prio: stop_machine expects to yield to it. */
  4867. rq = task_rq_lock(p, &flags);
  4868. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4869. task_rq_unlock(rq, &flags);
  4870. cpu_rq(cpu)->migration_thread = p;
  4871. break;
  4872. case CPU_ONLINE:
  4873. case CPU_ONLINE_FROZEN:
  4874. /* Strictly unnecessary, as first user will wake it. */
  4875. wake_up_process(cpu_rq(cpu)->migration_thread);
  4876. break;
  4877. #ifdef CONFIG_HOTPLUG_CPU
  4878. case CPU_UP_CANCELED:
  4879. case CPU_UP_CANCELED_FROZEN:
  4880. if (!cpu_rq(cpu)->migration_thread)
  4881. break;
  4882. /* Unbind it from offline cpu so it can run. Fall thru. */
  4883. kthread_bind(cpu_rq(cpu)->migration_thread,
  4884. any_online_cpu(cpu_online_map));
  4885. kthread_stop(cpu_rq(cpu)->migration_thread);
  4886. cpu_rq(cpu)->migration_thread = NULL;
  4887. break;
  4888. case CPU_DEAD:
  4889. case CPU_DEAD_FROZEN:
  4890. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4891. migrate_live_tasks(cpu);
  4892. rq = cpu_rq(cpu);
  4893. kthread_stop(rq->migration_thread);
  4894. rq->migration_thread = NULL;
  4895. /* Idle task back to normal (off runqueue, low prio) */
  4896. spin_lock_irq(&rq->lock);
  4897. update_rq_clock(rq);
  4898. deactivate_task(rq, rq->idle, 0);
  4899. rq->idle->static_prio = MAX_PRIO;
  4900. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4901. rq->idle->sched_class = &idle_sched_class;
  4902. migrate_dead_tasks(cpu);
  4903. spin_unlock_irq(&rq->lock);
  4904. cpuset_unlock();
  4905. migrate_nr_uninterruptible(rq);
  4906. BUG_ON(rq->nr_running != 0);
  4907. /*
  4908. * No need to migrate the tasks: it was best-effort if
  4909. * they didn't take sched_hotcpu_mutex. Just wake up
  4910. * the requestors.
  4911. */
  4912. spin_lock_irq(&rq->lock);
  4913. while (!list_empty(&rq->migration_queue)) {
  4914. struct migration_req *req;
  4915. req = list_entry(rq->migration_queue.next,
  4916. struct migration_req, list);
  4917. list_del_init(&req->list);
  4918. complete(&req->done);
  4919. }
  4920. spin_unlock_irq(&rq->lock);
  4921. break;
  4922. #endif
  4923. case CPU_LOCK_RELEASE:
  4924. mutex_unlock(&sched_hotcpu_mutex);
  4925. break;
  4926. }
  4927. return NOTIFY_OK;
  4928. }
  4929. /* Register at highest priority so that task migration (migrate_all_tasks)
  4930. * happens before everything else.
  4931. */
  4932. static struct notifier_block __cpuinitdata migration_notifier = {
  4933. .notifier_call = migration_call,
  4934. .priority = 10
  4935. };
  4936. void __init migration_init(void)
  4937. {
  4938. void *cpu = (void *)(long)smp_processor_id();
  4939. int err;
  4940. /* Start one for the boot CPU: */
  4941. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4942. BUG_ON(err == NOTIFY_BAD);
  4943. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4944. register_cpu_notifier(&migration_notifier);
  4945. }
  4946. #endif
  4947. #ifdef CONFIG_SMP
  4948. /* Number of possible processor ids */
  4949. int nr_cpu_ids __read_mostly = NR_CPUS;
  4950. EXPORT_SYMBOL(nr_cpu_ids);
  4951. #ifdef CONFIG_SCHED_DEBUG
  4952. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4953. {
  4954. struct sched_group *group = sd->groups;
  4955. cpumask_t groupmask;
  4956. char str[NR_CPUS];
  4957. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4958. cpus_clear(groupmask);
  4959. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4960. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4961. printk("does not load-balance\n");
  4962. if (sd->parent)
  4963. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4964. " has parent");
  4965. return -1;
  4966. }
  4967. printk(KERN_CONT "span %s\n", str);
  4968. if (!cpu_isset(cpu, sd->span)) {
  4969. printk(KERN_ERR "ERROR: domain->span does not contain "
  4970. "CPU%d\n", cpu);
  4971. }
  4972. if (!cpu_isset(cpu, group->cpumask)) {
  4973. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4974. " CPU%d\n", cpu);
  4975. }
  4976. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4977. do {
  4978. if (!group) {
  4979. printk("\n");
  4980. printk(KERN_ERR "ERROR: group is NULL\n");
  4981. break;
  4982. }
  4983. if (!group->__cpu_power) {
  4984. printk(KERN_CONT "\n");
  4985. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4986. "set\n");
  4987. break;
  4988. }
  4989. if (!cpus_weight(group->cpumask)) {
  4990. printk(KERN_CONT "\n");
  4991. printk(KERN_ERR "ERROR: empty group\n");
  4992. break;
  4993. }
  4994. if (cpus_intersects(groupmask, group->cpumask)) {
  4995. printk(KERN_CONT "\n");
  4996. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4997. break;
  4998. }
  4999. cpus_or(groupmask, groupmask, group->cpumask);
  5000. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5001. printk(KERN_CONT " %s", str);
  5002. group = group->next;
  5003. } while (group != sd->groups);
  5004. printk(KERN_CONT "\n");
  5005. if (!cpus_equal(sd->span, groupmask))
  5006. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5007. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5008. printk(KERN_ERR "ERROR: parent span is not a superset "
  5009. "of domain->span\n");
  5010. return 0;
  5011. }
  5012. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5013. {
  5014. int level = 0;
  5015. if (!sd) {
  5016. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5017. return;
  5018. }
  5019. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5020. for (;;) {
  5021. if (sched_domain_debug_one(sd, cpu, level))
  5022. break;
  5023. level++;
  5024. sd = sd->parent;
  5025. if (!sd)
  5026. break;
  5027. }
  5028. }
  5029. #else
  5030. # define sched_domain_debug(sd, cpu) do { } while (0)
  5031. #endif
  5032. static int sd_degenerate(struct sched_domain *sd)
  5033. {
  5034. if (cpus_weight(sd->span) == 1)
  5035. return 1;
  5036. /* Following flags need at least 2 groups */
  5037. if (sd->flags & (SD_LOAD_BALANCE |
  5038. SD_BALANCE_NEWIDLE |
  5039. SD_BALANCE_FORK |
  5040. SD_BALANCE_EXEC |
  5041. SD_SHARE_CPUPOWER |
  5042. SD_SHARE_PKG_RESOURCES)) {
  5043. if (sd->groups != sd->groups->next)
  5044. return 0;
  5045. }
  5046. /* Following flags don't use groups */
  5047. if (sd->flags & (SD_WAKE_IDLE |
  5048. SD_WAKE_AFFINE |
  5049. SD_WAKE_BALANCE))
  5050. return 0;
  5051. return 1;
  5052. }
  5053. static int
  5054. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5055. {
  5056. unsigned long cflags = sd->flags, pflags = parent->flags;
  5057. if (sd_degenerate(parent))
  5058. return 1;
  5059. if (!cpus_equal(sd->span, parent->span))
  5060. return 0;
  5061. /* Does parent contain flags not in child? */
  5062. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5063. if (cflags & SD_WAKE_AFFINE)
  5064. pflags &= ~SD_WAKE_BALANCE;
  5065. /* Flags needing groups don't count if only 1 group in parent */
  5066. if (parent->groups == parent->groups->next) {
  5067. pflags &= ~(SD_LOAD_BALANCE |
  5068. SD_BALANCE_NEWIDLE |
  5069. SD_BALANCE_FORK |
  5070. SD_BALANCE_EXEC |
  5071. SD_SHARE_CPUPOWER |
  5072. SD_SHARE_PKG_RESOURCES);
  5073. }
  5074. if (~cflags & pflags)
  5075. return 0;
  5076. return 1;
  5077. }
  5078. /*
  5079. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5080. * hold the hotplug lock.
  5081. */
  5082. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5083. {
  5084. struct rq *rq = cpu_rq(cpu);
  5085. struct sched_domain *tmp;
  5086. /* Remove the sched domains which do not contribute to scheduling. */
  5087. for (tmp = sd; tmp; tmp = tmp->parent) {
  5088. struct sched_domain *parent = tmp->parent;
  5089. if (!parent)
  5090. break;
  5091. if (sd_parent_degenerate(tmp, parent)) {
  5092. tmp->parent = parent->parent;
  5093. if (parent->parent)
  5094. parent->parent->child = tmp;
  5095. }
  5096. }
  5097. if (sd && sd_degenerate(sd)) {
  5098. sd = sd->parent;
  5099. if (sd)
  5100. sd->child = NULL;
  5101. }
  5102. sched_domain_debug(sd, cpu);
  5103. rcu_assign_pointer(rq->sd, sd);
  5104. }
  5105. /* cpus with isolated domains */
  5106. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5107. /* Setup the mask of cpus configured for isolated domains */
  5108. static int __init isolated_cpu_setup(char *str)
  5109. {
  5110. int ints[NR_CPUS], i;
  5111. str = get_options(str, ARRAY_SIZE(ints), ints);
  5112. cpus_clear(cpu_isolated_map);
  5113. for (i = 1; i <= ints[0]; i++)
  5114. if (ints[i] < NR_CPUS)
  5115. cpu_set(ints[i], cpu_isolated_map);
  5116. return 1;
  5117. }
  5118. __setup("isolcpus=", isolated_cpu_setup);
  5119. /*
  5120. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5121. * to a function which identifies what group(along with sched group) a CPU
  5122. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5123. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5124. *
  5125. * init_sched_build_groups will build a circular linked list of the groups
  5126. * covered by the given span, and will set each group's ->cpumask correctly,
  5127. * and ->cpu_power to 0.
  5128. */
  5129. static void
  5130. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5131. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5132. struct sched_group **sg))
  5133. {
  5134. struct sched_group *first = NULL, *last = NULL;
  5135. cpumask_t covered = CPU_MASK_NONE;
  5136. int i;
  5137. for_each_cpu_mask(i, span) {
  5138. struct sched_group *sg;
  5139. int group = group_fn(i, cpu_map, &sg);
  5140. int j;
  5141. if (cpu_isset(i, covered))
  5142. continue;
  5143. sg->cpumask = CPU_MASK_NONE;
  5144. sg->__cpu_power = 0;
  5145. for_each_cpu_mask(j, span) {
  5146. if (group_fn(j, cpu_map, NULL) != group)
  5147. continue;
  5148. cpu_set(j, covered);
  5149. cpu_set(j, sg->cpumask);
  5150. }
  5151. if (!first)
  5152. first = sg;
  5153. if (last)
  5154. last->next = sg;
  5155. last = sg;
  5156. }
  5157. last->next = first;
  5158. }
  5159. #define SD_NODES_PER_DOMAIN 16
  5160. #ifdef CONFIG_NUMA
  5161. /**
  5162. * find_next_best_node - find the next node to include in a sched_domain
  5163. * @node: node whose sched_domain we're building
  5164. * @used_nodes: nodes already in the sched_domain
  5165. *
  5166. * Find the next node to include in a given scheduling domain. Simply
  5167. * finds the closest node not already in the @used_nodes map.
  5168. *
  5169. * Should use nodemask_t.
  5170. */
  5171. static int find_next_best_node(int node, unsigned long *used_nodes)
  5172. {
  5173. int i, n, val, min_val, best_node = 0;
  5174. min_val = INT_MAX;
  5175. for (i = 0; i < MAX_NUMNODES; i++) {
  5176. /* Start at @node */
  5177. n = (node + i) % MAX_NUMNODES;
  5178. if (!nr_cpus_node(n))
  5179. continue;
  5180. /* Skip already used nodes */
  5181. if (test_bit(n, used_nodes))
  5182. continue;
  5183. /* Simple min distance search */
  5184. val = node_distance(node, n);
  5185. if (val < min_val) {
  5186. min_val = val;
  5187. best_node = n;
  5188. }
  5189. }
  5190. set_bit(best_node, used_nodes);
  5191. return best_node;
  5192. }
  5193. /**
  5194. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5195. * @node: node whose cpumask we're constructing
  5196. * @size: number of nodes to include in this span
  5197. *
  5198. * Given a node, construct a good cpumask for its sched_domain to span. It
  5199. * should be one that prevents unnecessary balancing, but also spreads tasks
  5200. * out optimally.
  5201. */
  5202. static cpumask_t sched_domain_node_span(int node)
  5203. {
  5204. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5205. cpumask_t span, nodemask;
  5206. int i;
  5207. cpus_clear(span);
  5208. bitmap_zero(used_nodes, MAX_NUMNODES);
  5209. nodemask = node_to_cpumask(node);
  5210. cpus_or(span, span, nodemask);
  5211. set_bit(node, used_nodes);
  5212. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5213. int next_node = find_next_best_node(node, used_nodes);
  5214. nodemask = node_to_cpumask(next_node);
  5215. cpus_or(span, span, nodemask);
  5216. }
  5217. return span;
  5218. }
  5219. #endif
  5220. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5221. /*
  5222. * SMT sched-domains:
  5223. */
  5224. #ifdef CONFIG_SCHED_SMT
  5225. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5226. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5227. static int
  5228. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5229. {
  5230. if (sg)
  5231. *sg = &per_cpu(sched_group_cpus, cpu);
  5232. return cpu;
  5233. }
  5234. #endif
  5235. /*
  5236. * multi-core sched-domains:
  5237. */
  5238. #ifdef CONFIG_SCHED_MC
  5239. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5240. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5241. #endif
  5242. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5243. static int
  5244. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5245. {
  5246. int group;
  5247. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5248. cpus_and(mask, mask, *cpu_map);
  5249. group = first_cpu(mask);
  5250. if (sg)
  5251. *sg = &per_cpu(sched_group_core, group);
  5252. return group;
  5253. }
  5254. #elif defined(CONFIG_SCHED_MC)
  5255. static int
  5256. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5257. {
  5258. if (sg)
  5259. *sg = &per_cpu(sched_group_core, cpu);
  5260. return cpu;
  5261. }
  5262. #endif
  5263. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5264. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5265. static int
  5266. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5267. {
  5268. int group;
  5269. #ifdef CONFIG_SCHED_MC
  5270. cpumask_t mask = cpu_coregroup_map(cpu);
  5271. cpus_and(mask, mask, *cpu_map);
  5272. group = first_cpu(mask);
  5273. #elif defined(CONFIG_SCHED_SMT)
  5274. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5275. cpus_and(mask, mask, *cpu_map);
  5276. group = first_cpu(mask);
  5277. #else
  5278. group = cpu;
  5279. #endif
  5280. if (sg)
  5281. *sg = &per_cpu(sched_group_phys, group);
  5282. return group;
  5283. }
  5284. #ifdef CONFIG_NUMA
  5285. /*
  5286. * The init_sched_build_groups can't handle what we want to do with node
  5287. * groups, so roll our own. Now each node has its own list of groups which
  5288. * gets dynamically allocated.
  5289. */
  5290. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5291. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5292. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5293. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5294. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5295. struct sched_group **sg)
  5296. {
  5297. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5298. int group;
  5299. cpus_and(nodemask, nodemask, *cpu_map);
  5300. group = first_cpu(nodemask);
  5301. if (sg)
  5302. *sg = &per_cpu(sched_group_allnodes, group);
  5303. return group;
  5304. }
  5305. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5306. {
  5307. struct sched_group *sg = group_head;
  5308. int j;
  5309. if (!sg)
  5310. return;
  5311. do {
  5312. for_each_cpu_mask(j, sg->cpumask) {
  5313. struct sched_domain *sd;
  5314. sd = &per_cpu(phys_domains, j);
  5315. if (j != first_cpu(sd->groups->cpumask)) {
  5316. /*
  5317. * Only add "power" once for each
  5318. * physical package.
  5319. */
  5320. continue;
  5321. }
  5322. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5323. }
  5324. sg = sg->next;
  5325. } while (sg != group_head);
  5326. }
  5327. #endif
  5328. #ifdef CONFIG_NUMA
  5329. /* Free memory allocated for various sched_group structures */
  5330. static void free_sched_groups(const cpumask_t *cpu_map)
  5331. {
  5332. int cpu, i;
  5333. for_each_cpu_mask(cpu, *cpu_map) {
  5334. struct sched_group **sched_group_nodes
  5335. = sched_group_nodes_bycpu[cpu];
  5336. if (!sched_group_nodes)
  5337. continue;
  5338. for (i = 0; i < MAX_NUMNODES; i++) {
  5339. cpumask_t nodemask = node_to_cpumask(i);
  5340. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5341. cpus_and(nodemask, nodemask, *cpu_map);
  5342. if (cpus_empty(nodemask))
  5343. continue;
  5344. if (sg == NULL)
  5345. continue;
  5346. sg = sg->next;
  5347. next_sg:
  5348. oldsg = sg;
  5349. sg = sg->next;
  5350. kfree(oldsg);
  5351. if (oldsg != sched_group_nodes[i])
  5352. goto next_sg;
  5353. }
  5354. kfree(sched_group_nodes);
  5355. sched_group_nodes_bycpu[cpu] = NULL;
  5356. }
  5357. }
  5358. #else
  5359. static void free_sched_groups(const cpumask_t *cpu_map)
  5360. {
  5361. }
  5362. #endif
  5363. /*
  5364. * Initialize sched groups cpu_power.
  5365. *
  5366. * cpu_power indicates the capacity of sched group, which is used while
  5367. * distributing the load between different sched groups in a sched domain.
  5368. * Typically cpu_power for all the groups in a sched domain will be same unless
  5369. * there are asymmetries in the topology. If there are asymmetries, group
  5370. * having more cpu_power will pickup more load compared to the group having
  5371. * less cpu_power.
  5372. *
  5373. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5374. * the maximum number of tasks a group can handle in the presence of other idle
  5375. * or lightly loaded groups in the same sched domain.
  5376. */
  5377. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5378. {
  5379. struct sched_domain *child;
  5380. struct sched_group *group;
  5381. WARN_ON(!sd || !sd->groups);
  5382. if (cpu != first_cpu(sd->groups->cpumask))
  5383. return;
  5384. child = sd->child;
  5385. sd->groups->__cpu_power = 0;
  5386. /*
  5387. * For perf policy, if the groups in child domain share resources
  5388. * (for example cores sharing some portions of the cache hierarchy
  5389. * or SMT), then set this domain groups cpu_power such that each group
  5390. * can handle only one task, when there are other idle groups in the
  5391. * same sched domain.
  5392. */
  5393. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5394. (child->flags &
  5395. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5396. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5397. return;
  5398. }
  5399. /*
  5400. * add cpu_power of each child group to this groups cpu_power
  5401. */
  5402. group = child->groups;
  5403. do {
  5404. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5405. group = group->next;
  5406. } while (group != child->groups);
  5407. }
  5408. /*
  5409. * Build sched domains for a given set of cpus and attach the sched domains
  5410. * to the individual cpus
  5411. */
  5412. static int build_sched_domains(const cpumask_t *cpu_map)
  5413. {
  5414. int i;
  5415. #ifdef CONFIG_NUMA
  5416. struct sched_group **sched_group_nodes = NULL;
  5417. int sd_allnodes = 0;
  5418. /*
  5419. * Allocate the per-node list of sched groups
  5420. */
  5421. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5422. GFP_KERNEL);
  5423. if (!sched_group_nodes) {
  5424. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5425. return -ENOMEM;
  5426. }
  5427. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5428. #endif
  5429. /*
  5430. * Set up domains for cpus specified by the cpu_map.
  5431. */
  5432. for_each_cpu_mask(i, *cpu_map) {
  5433. struct sched_domain *sd = NULL, *p;
  5434. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5435. cpus_and(nodemask, nodemask, *cpu_map);
  5436. #ifdef CONFIG_NUMA
  5437. if (cpus_weight(*cpu_map) >
  5438. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5439. sd = &per_cpu(allnodes_domains, i);
  5440. *sd = SD_ALLNODES_INIT;
  5441. sd->span = *cpu_map;
  5442. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5443. p = sd;
  5444. sd_allnodes = 1;
  5445. } else
  5446. p = NULL;
  5447. sd = &per_cpu(node_domains, i);
  5448. *sd = SD_NODE_INIT;
  5449. sd->span = sched_domain_node_span(cpu_to_node(i));
  5450. sd->parent = p;
  5451. if (p)
  5452. p->child = sd;
  5453. cpus_and(sd->span, sd->span, *cpu_map);
  5454. #endif
  5455. p = sd;
  5456. sd = &per_cpu(phys_domains, i);
  5457. *sd = SD_CPU_INIT;
  5458. sd->span = nodemask;
  5459. sd->parent = p;
  5460. if (p)
  5461. p->child = sd;
  5462. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5463. #ifdef CONFIG_SCHED_MC
  5464. p = sd;
  5465. sd = &per_cpu(core_domains, i);
  5466. *sd = SD_MC_INIT;
  5467. sd->span = cpu_coregroup_map(i);
  5468. cpus_and(sd->span, sd->span, *cpu_map);
  5469. sd->parent = p;
  5470. p->child = sd;
  5471. cpu_to_core_group(i, cpu_map, &sd->groups);
  5472. #endif
  5473. #ifdef CONFIG_SCHED_SMT
  5474. p = sd;
  5475. sd = &per_cpu(cpu_domains, i);
  5476. *sd = SD_SIBLING_INIT;
  5477. sd->span = per_cpu(cpu_sibling_map, i);
  5478. cpus_and(sd->span, sd->span, *cpu_map);
  5479. sd->parent = p;
  5480. p->child = sd;
  5481. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5482. #endif
  5483. }
  5484. #ifdef CONFIG_SCHED_SMT
  5485. /* Set up CPU (sibling) groups */
  5486. for_each_cpu_mask(i, *cpu_map) {
  5487. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5488. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5489. if (i != first_cpu(this_sibling_map))
  5490. continue;
  5491. init_sched_build_groups(this_sibling_map, cpu_map,
  5492. &cpu_to_cpu_group);
  5493. }
  5494. #endif
  5495. #ifdef CONFIG_SCHED_MC
  5496. /* Set up multi-core groups */
  5497. for_each_cpu_mask(i, *cpu_map) {
  5498. cpumask_t this_core_map = cpu_coregroup_map(i);
  5499. cpus_and(this_core_map, this_core_map, *cpu_map);
  5500. if (i != first_cpu(this_core_map))
  5501. continue;
  5502. init_sched_build_groups(this_core_map, cpu_map,
  5503. &cpu_to_core_group);
  5504. }
  5505. #endif
  5506. /* Set up physical groups */
  5507. for (i = 0; i < MAX_NUMNODES; i++) {
  5508. cpumask_t nodemask = node_to_cpumask(i);
  5509. cpus_and(nodemask, nodemask, *cpu_map);
  5510. if (cpus_empty(nodemask))
  5511. continue;
  5512. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5513. }
  5514. #ifdef CONFIG_NUMA
  5515. /* Set up node groups */
  5516. if (sd_allnodes)
  5517. init_sched_build_groups(*cpu_map, cpu_map,
  5518. &cpu_to_allnodes_group);
  5519. for (i = 0; i < MAX_NUMNODES; i++) {
  5520. /* Set up node groups */
  5521. struct sched_group *sg, *prev;
  5522. cpumask_t nodemask = node_to_cpumask(i);
  5523. cpumask_t domainspan;
  5524. cpumask_t covered = CPU_MASK_NONE;
  5525. int j;
  5526. cpus_and(nodemask, nodemask, *cpu_map);
  5527. if (cpus_empty(nodemask)) {
  5528. sched_group_nodes[i] = NULL;
  5529. continue;
  5530. }
  5531. domainspan = sched_domain_node_span(i);
  5532. cpus_and(domainspan, domainspan, *cpu_map);
  5533. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5534. if (!sg) {
  5535. printk(KERN_WARNING "Can not alloc domain group for "
  5536. "node %d\n", i);
  5537. goto error;
  5538. }
  5539. sched_group_nodes[i] = sg;
  5540. for_each_cpu_mask(j, nodemask) {
  5541. struct sched_domain *sd;
  5542. sd = &per_cpu(node_domains, j);
  5543. sd->groups = sg;
  5544. }
  5545. sg->__cpu_power = 0;
  5546. sg->cpumask = nodemask;
  5547. sg->next = sg;
  5548. cpus_or(covered, covered, nodemask);
  5549. prev = sg;
  5550. for (j = 0; j < MAX_NUMNODES; j++) {
  5551. cpumask_t tmp, notcovered;
  5552. int n = (i + j) % MAX_NUMNODES;
  5553. cpus_complement(notcovered, covered);
  5554. cpus_and(tmp, notcovered, *cpu_map);
  5555. cpus_and(tmp, tmp, domainspan);
  5556. if (cpus_empty(tmp))
  5557. break;
  5558. nodemask = node_to_cpumask(n);
  5559. cpus_and(tmp, tmp, nodemask);
  5560. if (cpus_empty(tmp))
  5561. continue;
  5562. sg = kmalloc_node(sizeof(struct sched_group),
  5563. GFP_KERNEL, i);
  5564. if (!sg) {
  5565. printk(KERN_WARNING
  5566. "Can not alloc domain group for node %d\n", j);
  5567. goto error;
  5568. }
  5569. sg->__cpu_power = 0;
  5570. sg->cpumask = tmp;
  5571. sg->next = prev->next;
  5572. cpus_or(covered, covered, tmp);
  5573. prev->next = sg;
  5574. prev = sg;
  5575. }
  5576. }
  5577. #endif
  5578. /* Calculate CPU power for physical packages and nodes */
  5579. #ifdef CONFIG_SCHED_SMT
  5580. for_each_cpu_mask(i, *cpu_map) {
  5581. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5582. init_sched_groups_power(i, sd);
  5583. }
  5584. #endif
  5585. #ifdef CONFIG_SCHED_MC
  5586. for_each_cpu_mask(i, *cpu_map) {
  5587. struct sched_domain *sd = &per_cpu(core_domains, i);
  5588. init_sched_groups_power(i, sd);
  5589. }
  5590. #endif
  5591. for_each_cpu_mask(i, *cpu_map) {
  5592. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5593. init_sched_groups_power(i, sd);
  5594. }
  5595. #ifdef CONFIG_NUMA
  5596. for (i = 0; i < MAX_NUMNODES; i++)
  5597. init_numa_sched_groups_power(sched_group_nodes[i]);
  5598. if (sd_allnodes) {
  5599. struct sched_group *sg;
  5600. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5601. init_numa_sched_groups_power(sg);
  5602. }
  5603. #endif
  5604. /* Attach the domains */
  5605. for_each_cpu_mask(i, *cpu_map) {
  5606. struct sched_domain *sd;
  5607. #ifdef CONFIG_SCHED_SMT
  5608. sd = &per_cpu(cpu_domains, i);
  5609. #elif defined(CONFIG_SCHED_MC)
  5610. sd = &per_cpu(core_domains, i);
  5611. #else
  5612. sd = &per_cpu(phys_domains, i);
  5613. #endif
  5614. cpu_attach_domain(sd, i);
  5615. }
  5616. return 0;
  5617. #ifdef CONFIG_NUMA
  5618. error:
  5619. free_sched_groups(cpu_map);
  5620. return -ENOMEM;
  5621. #endif
  5622. }
  5623. static cpumask_t *doms_cur; /* current sched domains */
  5624. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5625. /*
  5626. * Special case: If a kmalloc of a doms_cur partition (array of
  5627. * cpumask_t) fails, then fallback to a single sched domain,
  5628. * as determined by the single cpumask_t fallback_doms.
  5629. */
  5630. static cpumask_t fallback_doms;
  5631. /*
  5632. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5633. * For now this just excludes isolated cpus, but could be used to
  5634. * exclude other special cases in the future.
  5635. */
  5636. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5637. {
  5638. int err;
  5639. ndoms_cur = 1;
  5640. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5641. if (!doms_cur)
  5642. doms_cur = &fallback_doms;
  5643. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5644. err = build_sched_domains(doms_cur);
  5645. register_sched_domain_sysctl();
  5646. return err;
  5647. }
  5648. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5649. {
  5650. free_sched_groups(cpu_map);
  5651. }
  5652. /*
  5653. * Detach sched domains from a group of cpus specified in cpu_map
  5654. * These cpus will now be attached to the NULL domain
  5655. */
  5656. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5657. {
  5658. int i;
  5659. unregister_sched_domain_sysctl();
  5660. for_each_cpu_mask(i, *cpu_map)
  5661. cpu_attach_domain(NULL, i);
  5662. synchronize_sched();
  5663. arch_destroy_sched_domains(cpu_map);
  5664. }
  5665. /*
  5666. * Partition sched domains as specified by the 'ndoms_new'
  5667. * cpumasks in the array doms_new[] of cpumasks. This compares
  5668. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5669. * It destroys each deleted domain and builds each new domain.
  5670. *
  5671. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5672. * The masks don't intersect (don't overlap.) We should setup one
  5673. * sched domain for each mask. CPUs not in any of the cpumasks will
  5674. * not be load balanced. If the same cpumask appears both in the
  5675. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5676. * it as it is.
  5677. *
  5678. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5679. * ownership of it and will kfree it when done with it. If the caller
  5680. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5681. * and partition_sched_domains() will fallback to the single partition
  5682. * 'fallback_doms'.
  5683. *
  5684. * Call with hotplug lock held
  5685. */
  5686. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5687. {
  5688. int i, j;
  5689. lock_doms_cur();
  5690. /* always unregister in case we don't destroy any domains */
  5691. unregister_sched_domain_sysctl();
  5692. if (doms_new == NULL) {
  5693. ndoms_new = 1;
  5694. doms_new = &fallback_doms;
  5695. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5696. }
  5697. /* Destroy deleted domains */
  5698. for (i = 0; i < ndoms_cur; i++) {
  5699. for (j = 0; j < ndoms_new; j++) {
  5700. if (cpus_equal(doms_cur[i], doms_new[j]))
  5701. goto match1;
  5702. }
  5703. /* no match - a current sched domain not in new doms_new[] */
  5704. detach_destroy_domains(doms_cur + i);
  5705. match1:
  5706. ;
  5707. }
  5708. /* Build new domains */
  5709. for (i = 0; i < ndoms_new; i++) {
  5710. for (j = 0; j < ndoms_cur; j++) {
  5711. if (cpus_equal(doms_new[i], doms_cur[j]))
  5712. goto match2;
  5713. }
  5714. /* no match - add a new doms_new */
  5715. build_sched_domains(doms_new + i);
  5716. match2:
  5717. ;
  5718. }
  5719. /* Remember the new sched domains */
  5720. if (doms_cur != &fallback_doms)
  5721. kfree(doms_cur);
  5722. doms_cur = doms_new;
  5723. ndoms_cur = ndoms_new;
  5724. register_sched_domain_sysctl();
  5725. unlock_doms_cur();
  5726. }
  5727. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5728. static int arch_reinit_sched_domains(void)
  5729. {
  5730. int err;
  5731. mutex_lock(&sched_hotcpu_mutex);
  5732. detach_destroy_domains(&cpu_online_map);
  5733. err = arch_init_sched_domains(&cpu_online_map);
  5734. mutex_unlock(&sched_hotcpu_mutex);
  5735. return err;
  5736. }
  5737. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5738. {
  5739. int ret;
  5740. if (buf[0] != '0' && buf[0] != '1')
  5741. return -EINVAL;
  5742. if (smt)
  5743. sched_smt_power_savings = (buf[0] == '1');
  5744. else
  5745. sched_mc_power_savings = (buf[0] == '1');
  5746. ret = arch_reinit_sched_domains();
  5747. return ret ? ret : count;
  5748. }
  5749. #ifdef CONFIG_SCHED_MC
  5750. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5751. {
  5752. return sprintf(page, "%u\n", sched_mc_power_savings);
  5753. }
  5754. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5755. const char *buf, size_t count)
  5756. {
  5757. return sched_power_savings_store(buf, count, 0);
  5758. }
  5759. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5760. sched_mc_power_savings_store);
  5761. #endif
  5762. #ifdef CONFIG_SCHED_SMT
  5763. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5764. {
  5765. return sprintf(page, "%u\n", sched_smt_power_savings);
  5766. }
  5767. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5768. const char *buf, size_t count)
  5769. {
  5770. return sched_power_savings_store(buf, count, 1);
  5771. }
  5772. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5773. sched_smt_power_savings_store);
  5774. #endif
  5775. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5776. {
  5777. int err = 0;
  5778. #ifdef CONFIG_SCHED_SMT
  5779. if (smt_capable())
  5780. err = sysfs_create_file(&cls->kset.kobj,
  5781. &attr_sched_smt_power_savings.attr);
  5782. #endif
  5783. #ifdef CONFIG_SCHED_MC
  5784. if (!err && mc_capable())
  5785. err = sysfs_create_file(&cls->kset.kobj,
  5786. &attr_sched_mc_power_savings.attr);
  5787. #endif
  5788. return err;
  5789. }
  5790. #endif
  5791. /*
  5792. * Force a reinitialization of the sched domains hierarchy. The domains
  5793. * and groups cannot be updated in place without racing with the balancing
  5794. * code, so we temporarily attach all running cpus to the NULL domain
  5795. * which will prevent rebalancing while the sched domains are recalculated.
  5796. */
  5797. static int update_sched_domains(struct notifier_block *nfb,
  5798. unsigned long action, void *hcpu)
  5799. {
  5800. switch (action) {
  5801. case CPU_UP_PREPARE:
  5802. case CPU_UP_PREPARE_FROZEN:
  5803. case CPU_DOWN_PREPARE:
  5804. case CPU_DOWN_PREPARE_FROZEN:
  5805. detach_destroy_domains(&cpu_online_map);
  5806. return NOTIFY_OK;
  5807. case CPU_UP_CANCELED:
  5808. case CPU_UP_CANCELED_FROZEN:
  5809. case CPU_DOWN_FAILED:
  5810. case CPU_DOWN_FAILED_FROZEN:
  5811. case CPU_ONLINE:
  5812. case CPU_ONLINE_FROZEN:
  5813. case CPU_DEAD:
  5814. case CPU_DEAD_FROZEN:
  5815. /*
  5816. * Fall through and re-initialise the domains.
  5817. */
  5818. break;
  5819. default:
  5820. return NOTIFY_DONE;
  5821. }
  5822. /* The hotplug lock is already held by cpu_up/cpu_down */
  5823. arch_init_sched_domains(&cpu_online_map);
  5824. return NOTIFY_OK;
  5825. }
  5826. void __init sched_init_smp(void)
  5827. {
  5828. cpumask_t non_isolated_cpus;
  5829. mutex_lock(&sched_hotcpu_mutex);
  5830. arch_init_sched_domains(&cpu_online_map);
  5831. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5832. if (cpus_empty(non_isolated_cpus))
  5833. cpu_set(smp_processor_id(), non_isolated_cpus);
  5834. mutex_unlock(&sched_hotcpu_mutex);
  5835. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5836. hotcpu_notifier(update_sched_domains, 0);
  5837. /* Move init over to a non-isolated CPU */
  5838. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5839. BUG();
  5840. sched_init_granularity();
  5841. #ifdef CONFIG_FAIR_GROUP_SCHED
  5842. if (nr_cpu_ids == 1)
  5843. return;
  5844. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5845. "group_balance");
  5846. if (!IS_ERR(lb_monitor_task)) {
  5847. lb_monitor_task->flags |= PF_NOFREEZE;
  5848. wake_up_process(lb_monitor_task);
  5849. } else {
  5850. printk(KERN_ERR "Could not create load balance monitor thread"
  5851. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5852. }
  5853. #endif
  5854. }
  5855. #else
  5856. void __init sched_init_smp(void)
  5857. {
  5858. sched_init_granularity();
  5859. }
  5860. #endif /* CONFIG_SMP */
  5861. int in_sched_functions(unsigned long addr)
  5862. {
  5863. return in_lock_functions(addr) ||
  5864. (addr >= (unsigned long)__sched_text_start
  5865. && addr < (unsigned long)__sched_text_end);
  5866. }
  5867. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5868. {
  5869. cfs_rq->tasks_timeline = RB_ROOT;
  5870. #ifdef CONFIG_FAIR_GROUP_SCHED
  5871. cfs_rq->rq = rq;
  5872. #endif
  5873. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5874. }
  5875. void __init sched_init(void)
  5876. {
  5877. int highest_cpu = 0;
  5878. int i, j;
  5879. for_each_possible_cpu(i) {
  5880. struct rt_prio_array *array;
  5881. struct rq *rq;
  5882. rq = cpu_rq(i);
  5883. spin_lock_init(&rq->lock);
  5884. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5885. rq->nr_running = 0;
  5886. rq->clock = 1;
  5887. init_cfs_rq(&rq->cfs, rq);
  5888. #ifdef CONFIG_FAIR_GROUP_SCHED
  5889. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5890. {
  5891. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5892. struct sched_entity *se =
  5893. &per_cpu(init_sched_entity, i);
  5894. init_cfs_rq_p[i] = cfs_rq;
  5895. init_cfs_rq(cfs_rq, rq);
  5896. cfs_rq->tg = &init_task_group;
  5897. list_add(&cfs_rq->leaf_cfs_rq_list,
  5898. &rq->leaf_cfs_rq_list);
  5899. init_sched_entity_p[i] = se;
  5900. se->cfs_rq = &rq->cfs;
  5901. se->my_q = cfs_rq;
  5902. se->load.weight = init_task_group_load;
  5903. se->load.inv_weight =
  5904. div64_64(1ULL<<32, init_task_group_load);
  5905. se->parent = NULL;
  5906. }
  5907. init_task_group.shares = init_task_group_load;
  5908. #endif
  5909. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5910. rq->cpu_load[j] = 0;
  5911. #ifdef CONFIG_SMP
  5912. rq->sd = NULL;
  5913. rq->active_balance = 0;
  5914. rq->next_balance = jiffies;
  5915. rq->push_cpu = 0;
  5916. rq->cpu = i;
  5917. rq->migration_thread = NULL;
  5918. INIT_LIST_HEAD(&rq->migration_queue);
  5919. #endif
  5920. atomic_set(&rq->nr_iowait, 0);
  5921. array = &rq->rt.active;
  5922. for (j = 0; j < MAX_RT_PRIO; j++) {
  5923. INIT_LIST_HEAD(array->queue + j);
  5924. __clear_bit(j, array->bitmap);
  5925. }
  5926. highest_cpu = i;
  5927. /* delimiter for bitsearch: */
  5928. __set_bit(MAX_RT_PRIO, array->bitmap);
  5929. }
  5930. set_load_weight(&init_task);
  5931. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5932. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5933. #endif
  5934. #ifdef CONFIG_SMP
  5935. nr_cpu_ids = highest_cpu + 1;
  5936. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5937. #endif
  5938. #ifdef CONFIG_RT_MUTEXES
  5939. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5940. #endif
  5941. /*
  5942. * The boot idle thread does lazy MMU switching as well:
  5943. */
  5944. atomic_inc(&init_mm.mm_count);
  5945. enter_lazy_tlb(&init_mm, current);
  5946. /*
  5947. * Make us the idle thread. Technically, schedule() should not be
  5948. * called from this thread, however somewhere below it might be,
  5949. * but because we are the idle thread, we just pick up running again
  5950. * when this runqueue becomes "idle".
  5951. */
  5952. init_idle(current, smp_processor_id());
  5953. /*
  5954. * During early bootup we pretend to be a normal task:
  5955. */
  5956. current->sched_class = &fair_sched_class;
  5957. }
  5958. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5959. void __might_sleep(char *file, int line)
  5960. {
  5961. #ifdef in_atomic
  5962. static unsigned long prev_jiffy; /* ratelimiting */
  5963. if ((in_atomic() || irqs_disabled()) &&
  5964. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5965. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5966. return;
  5967. prev_jiffy = jiffies;
  5968. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5969. " context at %s:%d\n", file, line);
  5970. printk("in_atomic():%d, irqs_disabled():%d\n",
  5971. in_atomic(), irqs_disabled());
  5972. debug_show_held_locks(current);
  5973. if (irqs_disabled())
  5974. print_irqtrace_events(current);
  5975. dump_stack();
  5976. }
  5977. #endif
  5978. }
  5979. EXPORT_SYMBOL(__might_sleep);
  5980. #endif
  5981. #ifdef CONFIG_MAGIC_SYSRQ
  5982. static void normalize_task(struct rq *rq, struct task_struct *p)
  5983. {
  5984. int on_rq;
  5985. update_rq_clock(rq);
  5986. on_rq = p->se.on_rq;
  5987. if (on_rq)
  5988. deactivate_task(rq, p, 0);
  5989. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5990. if (on_rq) {
  5991. activate_task(rq, p, 0);
  5992. resched_task(rq->curr);
  5993. }
  5994. }
  5995. void normalize_rt_tasks(void)
  5996. {
  5997. struct task_struct *g, *p;
  5998. unsigned long flags;
  5999. struct rq *rq;
  6000. read_lock_irq(&tasklist_lock);
  6001. do_each_thread(g, p) {
  6002. /*
  6003. * Only normalize user tasks:
  6004. */
  6005. if (!p->mm)
  6006. continue;
  6007. p->se.exec_start = 0;
  6008. #ifdef CONFIG_SCHEDSTATS
  6009. p->se.wait_start = 0;
  6010. p->se.sleep_start = 0;
  6011. p->se.block_start = 0;
  6012. #endif
  6013. task_rq(p)->clock = 0;
  6014. if (!rt_task(p)) {
  6015. /*
  6016. * Renice negative nice level userspace
  6017. * tasks back to 0:
  6018. */
  6019. if (TASK_NICE(p) < 0 && p->mm)
  6020. set_user_nice(p, 0);
  6021. continue;
  6022. }
  6023. spin_lock_irqsave(&p->pi_lock, flags);
  6024. rq = __task_rq_lock(p);
  6025. normalize_task(rq, p);
  6026. __task_rq_unlock(rq);
  6027. spin_unlock_irqrestore(&p->pi_lock, flags);
  6028. } while_each_thread(g, p);
  6029. read_unlock_irq(&tasklist_lock);
  6030. }
  6031. #endif /* CONFIG_MAGIC_SYSRQ */
  6032. #ifdef CONFIG_IA64
  6033. /*
  6034. * These functions are only useful for the IA64 MCA handling.
  6035. *
  6036. * They can only be called when the whole system has been
  6037. * stopped - every CPU needs to be quiescent, and no scheduling
  6038. * activity can take place. Using them for anything else would
  6039. * be a serious bug, and as a result, they aren't even visible
  6040. * under any other configuration.
  6041. */
  6042. /**
  6043. * curr_task - return the current task for a given cpu.
  6044. * @cpu: the processor in question.
  6045. *
  6046. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6047. */
  6048. struct task_struct *curr_task(int cpu)
  6049. {
  6050. return cpu_curr(cpu);
  6051. }
  6052. /**
  6053. * set_curr_task - set the current task for a given cpu.
  6054. * @cpu: the processor in question.
  6055. * @p: the task pointer to set.
  6056. *
  6057. * Description: This function must only be used when non-maskable interrupts
  6058. * are serviced on a separate stack. It allows the architecture to switch the
  6059. * notion of the current task on a cpu in a non-blocking manner. This function
  6060. * must be called with all CPU's synchronized, and interrupts disabled, the
  6061. * and caller must save the original value of the current task (see
  6062. * curr_task() above) and restore that value before reenabling interrupts and
  6063. * re-starting the system.
  6064. *
  6065. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6066. */
  6067. void set_curr_task(int cpu, struct task_struct *p)
  6068. {
  6069. cpu_curr(cpu) = p;
  6070. }
  6071. #endif
  6072. #ifdef CONFIG_FAIR_GROUP_SCHED
  6073. #ifdef CONFIG_SMP
  6074. /*
  6075. * distribute shares of all task groups among their schedulable entities,
  6076. * to reflect load distrbution across cpus.
  6077. */
  6078. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6079. {
  6080. struct cfs_rq *cfs_rq;
  6081. struct rq *rq = cpu_rq(this_cpu);
  6082. cpumask_t sdspan = sd->span;
  6083. int balanced = 1;
  6084. /* Walk thr' all the task groups that we have */
  6085. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6086. int i;
  6087. unsigned long total_load = 0, total_shares;
  6088. struct task_group *tg = cfs_rq->tg;
  6089. /* Gather total task load of this group across cpus */
  6090. for_each_cpu_mask(i, sdspan)
  6091. total_load += tg->cfs_rq[i]->load.weight;
  6092. /* Nothing to do if this group has no load */
  6093. if (!total_load)
  6094. continue;
  6095. /*
  6096. * tg->shares represents the number of cpu shares the task group
  6097. * is eligible to hold on a single cpu. On N cpus, it is
  6098. * eligible to hold (N * tg->shares) number of cpu shares.
  6099. */
  6100. total_shares = tg->shares * cpus_weight(sdspan);
  6101. /*
  6102. * redistribute total_shares across cpus as per the task load
  6103. * distribution.
  6104. */
  6105. for_each_cpu_mask(i, sdspan) {
  6106. unsigned long local_load, local_shares;
  6107. local_load = tg->cfs_rq[i]->load.weight;
  6108. local_shares = (local_load * total_shares) / total_load;
  6109. if (!local_shares)
  6110. local_shares = MIN_GROUP_SHARES;
  6111. if (local_shares == tg->se[i]->load.weight)
  6112. continue;
  6113. spin_lock_irq(&cpu_rq(i)->lock);
  6114. set_se_shares(tg->se[i], local_shares);
  6115. spin_unlock_irq(&cpu_rq(i)->lock);
  6116. balanced = 0;
  6117. }
  6118. }
  6119. return balanced;
  6120. }
  6121. /*
  6122. * How frequently should we rebalance_shares() across cpus?
  6123. *
  6124. * The more frequently we rebalance shares, the more accurate is the fairness
  6125. * of cpu bandwidth distribution between task groups. However higher frequency
  6126. * also implies increased scheduling overhead.
  6127. *
  6128. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6129. * consecutive calls to rebalance_shares() in the same sched domain.
  6130. *
  6131. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6132. * consecutive calls to rebalance_shares() in the same sched domain.
  6133. *
  6134. * These settings allows for the appropriate tradeoff between accuracy of
  6135. * fairness and the associated overhead.
  6136. *
  6137. */
  6138. /* default: 8ms, units: milliseconds */
  6139. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6140. /* default: 128ms, units: milliseconds */
  6141. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6142. /* kernel thread that runs rebalance_shares() periodically */
  6143. static int load_balance_monitor(void *unused)
  6144. {
  6145. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6146. struct sched_param schedparm;
  6147. int ret;
  6148. /*
  6149. * We don't want this thread's execution to be limited by the shares
  6150. * assigned to default group (init_task_group). Hence make it run
  6151. * as a SCHED_RR RT task at the lowest priority.
  6152. */
  6153. schedparm.sched_priority = 1;
  6154. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6155. if (ret)
  6156. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6157. " monitor thread (error = %d) \n", ret);
  6158. while (!kthread_should_stop()) {
  6159. int i, cpu, balanced = 1;
  6160. /* Prevent cpus going down or coming up */
  6161. get_online_cpus();
  6162. /* lockout changes to doms_cur[] array */
  6163. lock_doms_cur();
  6164. /*
  6165. * Enter a rcu read-side critical section to safely walk rq->sd
  6166. * chain on various cpus and to walk task group list
  6167. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6168. */
  6169. rcu_read_lock();
  6170. for (i = 0; i < ndoms_cur; i++) {
  6171. cpumask_t cpumap = doms_cur[i];
  6172. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6173. cpu = first_cpu(cpumap);
  6174. /* Find the highest domain at which to balance shares */
  6175. for_each_domain(cpu, sd) {
  6176. if (!(sd->flags & SD_LOAD_BALANCE))
  6177. continue;
  6178. sd_prev = sd;
  6179. }
  6180. sd = sd_prev;
  6181. /* sd == NULL? No load balance reqd in this domain */
  6182. if (!sd)
  6183. continue;
  6184. balanced &= rebalance_shares(sd, cpu);
  6185. }
  6186. rcu_read_unlock();
  6187. unlock_doms_cur();
  6188. put_online_cpus();
  6189. if (!balanced)
  6190. timeout = sysctl_sched_min_bal_int_shares;
  6191. else if (timeout < sysctl_sched_max_bal_int_shares)
  6192. timeout *= 2;
  6193. msleep_interruptible(timeout);
  6194. }
  6195. return 0;
  6196. }
  6197. #endif /* CONFIG_SMP */
  6198. /* allocate runqueue etc for a new task group */
  6199. struct task_group *sched_create_group(void)
  6200. {
  6201. struct task_group *tg;
  6202. struct cfs_rq *cfs_rq;
  6203. struct sched_entity *se;
  6204. struct rq *rq;
  6205. int i;
  6206. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6207. if (!tg)
  6208. return ERR_PTR(-ENOMEM);
  6209. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6210. if (!tg->cfs_rq)
  6211. goto err;
  6212. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6213. if (!tg->se)
  6214. goto err;
  6215. for_each_possible_cpu(i) {
  6216. rq = cpu_rq(i);
  6217. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6218. cpu_to_node(i));
  6219. if (!cfs_rq)
  6220. goto err;
  6221. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6222. cpu_to_node(i));
  6223. if (!se)
  6224. goto err;
  6225. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6226. memset(se, 0, sizeof(struct sched_entity));
  6227. tg->cfs_rq[i] = cfs_rq;
  6228. init_cfs_rq(cfs_rq, rq);
  6229. cfs_rq->tg = tg;
  6230. tg->se[i] = se;
  6231. se->cfs_rq = &rq->cfs;
  6232. se->my_q = cfs_rq;
  6233. se->load.weight = NICE_0_LOAD;
  6234. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6235. se->parent = NULL;
  6236. }
  6237. tg->shares = NICE_0_LOAD;
  6238. lock_task_group_list();
  6239. for_each_possible_cpu(i) {
  6240. rq = cpu_rq(i);
  6241. cfs_rq = tg->cfs_rq[i];
  6242. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6243. }
  6244. unlock_task_group_list();
  6245. return tg;
  6246. err:
  6247. for_each_possible_cpu(i) {
  6248. if (tg->cfs_rq)
  6249. kfree(tg->cfs_rq[i]);
  6250. if (tg->se)
  6251. kfree(tg->se[i]);
  6252. }
  6253. kfree(tg->cfs_rq);
  6254. kfree(tg->se);
  6255. kfree(tg);
  6256. return ERR_PTR(-ENOMEM);
  6257. }
  6258. /* rcu callback to free various structures associated with a task group */
  6259. static void free_sched_group(struct rcu_head *rhp)
  6260. {
  6261. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6262. struct cfs_rq *cfs_rq;
  6263. struct sched_entity *se;
  6264. int i;
  6265. /* now it should be safe to free those cfs_rqs */
  6266. for_each_possible_cpu(i) {
  6267. cfs_rq = tg->cfs_rq[i];
  6268. kfree(cfs_rq);
  6269. se = tg->se[i];
  6270. kfree(se);
  6271. }
  6272. kfree(tg->cfs_rq);
  6273. kfree(tg->se);
  6274. kfree(tg);
  6275. }
  6276. /* Destroy runqueue etc associated with a task group */
  6277. void sched_destroy_group(struct task_group *tg)
  6278. {
  6279. struct cfs_rq *cfs_rq = NULL;
  6280. int i;
  6281. lock_task_group_list();
  6282. for_each_possible_cpu(i) {
  6283. cfs_rq = tg->cfs_rq[i];
  6284. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6285. }
  6286. unlock_task_group_list();
  6287. BUG_ON(!cfs_rq);
  6288. /* wait for possible concurrent references to cfs_rqs complete */
  6289. call_rcu(&tg->rcu, free_sched_group);
  6290. }
  6291. /* change task's runqueue when it moves between groups.
  6292. * The caller of this function should have put the task in its new group
  6293. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6294. * reflect its new group.
  6295. */
  6296. void sched_move_task(struct task_struct *tsk)
  6297. {
  6298. int on_rq, running;
  6299. unsigned long flags;
  6300. struct rq *rq;
  6301. rq = task_rq_lock(tsk, &flags);
  6302. if (tsk->sched_class != &fair_sched_class) {
  6303. set_task_cfs_rq(tsk, task_cpu(tsk));
  6304. goto done;
  6305. }
  6306. update_rq_clock(rq);
  6307. running = task_current(rq, tsk);
  6308. on_rq = tsk->se.on_rq;
  6309. if (on_rq) {
  6310. dequeue_task(rq, tsk, 0);
  6311. if (unlikely(running))
  6312. tsk->sched_class->put_prev_task(rq, tsk);
  6313. }
  6314. set_task_cfs_rq(tsk, task_cpu(tsk));
  6315. if (on_rq) {
  6316. if (unlikely(running))
  6317. tsk->sched_class->set_curr_task(rq);
  6318. enqueue_task(rq, tsk, 0);
  6319. }
  6320. done:
  6321. task_rq_unlock(rq, &flags);
  6322. }
  6323. /* rq->lock to be locked by caller */
  6324. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6325. {
  6326. struct cfs_rq *cfs_rq = se->cfs_rq;
  6327. struct rq *rq = cfs_rq->rq;
  6328. int on_rq;
  6329. if (!shares)
  6330. shares = MIN_GROUP_SHARES;
  6331. on_rq = se->on_rq;
  6332. if (on_rq) {
  6333. dequeue_entity(cfs_rq, se, 0);
  6334. dec_cpu_load(rq, se->load.weight);
  6335. }
  6336. se->load.weight = shares;
  6337. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6338. if (on_rq) {
  6339. enqueue_entity(cfs_rq, se, 0);
  6340. inc_cpu_load(rq, se->load.weight);
  6341. }
  6342. }
  6343. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6344. {
  6345. int i;
  6346. struct cfs_rq *cfs_rq;
  6347. struct rq *rq;
  6348. lock_task_group_list();
  6349. if (tg->shares == shares)
  6350. goto done;
  6351. if (shares < MIN_GROUP_SHARES)
  6352. shares = MIN_GROUP_SHARES;
  6353. /*
  6354. * Prevent any load balance activity (rebalance_shares,
  6355. * load_balance_fair) from referring to this group first,
  6356. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6357. */
  6358. for_each_possible_cpu(i) {
  6359. cfs_rq = tg->cfs_rq[i];
  6360. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6361. }
  6362. /* wait for any ongoing reference to this group to finish */
  6363. synchronize_sched();
  6364. /*
  6365. * Now we are free to modify the group's share on each cpu
  6366. * w/o tripping rebalance_share or load_balance_fair.
  6367. */
  6368. tg->shares = shares;
  6369. for_each_possible_cpu(i) {
  6370. spin_lock_irq(&cpu_rq(i)->lock);
  6371. set_se_shares(tg->se[i], shares);
  6372. spin_unlock_irq(&cpu_rq(i)->lock);
  6373. }
  6374. /*
  6375. * Enable load balance activity on this group, by inserting it back on
  6376. * each cpu's rq->leaf_cfs_rq_list.
  6377. */
  6378. for_each_possible_cpu(i) {
  6379. rq = cpu_rq(i);
  6380. cfs_rq = tg->cfs_rq[i];
  6381. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6382. }
  6383. done:
  6384. unlock_task_group_list();
  6385. return 0;
  6386. }
  6387. unsigned long sched_group_shares(struct task_group *tg)
  6388. {
  6389. return tg->shares;
  6390. }
  6391. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6392. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6393. /* return corresponding task_group object of a cgroup */
  6394. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6395. {
  6396. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6397. struct task_group, css);
  6398. }
  6399. static struct cgroup_subsys_state *
  6400. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6401. {
  6402. struct task_group *tg;
  6403. if (!cgrp->parent) {
  6404. /* This is early initialization for the top cgroup */
  6405. init_task_group.css.cgroup = cgrp;
  6406. return &init_task_group.css;
  6407. }
  6408. /* we support only 1-level deep hierarchical scheduler atm */
  6409. if (cgrp->parent->parent)
  6410. return ERR_PTR(-EINVAL);
  6411. tg = sched_create_group();
  6412. if (IS_ERR(tg))
  6413. return ERR_PTR(-ENOMEM);
  6414. /* Bind the cgroup to task_group object we just created */
  6415. tg->css.cgroup = cgrp;
  6416. return &tg->css;
  6417. }
  6418. static void
  6419. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6420. {
  6421. struct task_group *tg = cgroup_tg(cgrp);
  6422. sched_destroy_group(tg);
  6423. }
  6424. static int
  6425. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6426. struct task_struct *tsk)
  6427. {
  6428. /* We don't support RT-tasks being in separate groups */
  6429. if (tsk->sched_class != &fair_sched_class)
  6430. return -EINVAL;
  6431. return 0;
  6432. }
  6433. static void
  6434. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6435. struct cgroup *old_cont, struct task_struct *tsk)
  6436. {
  6437. sched_move_task(tsk);
  6438. }
  6439. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6440. u64 shareval)
  6441. {
  6442. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6443. }
  6444. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6445. {
  6446. struct task_group *tg = cgroup_tg(cgrp);
  6447. return (u64) tg->shares;
  6448. }
  6449. static struct cftype cpu_files[] = {
  6450. {
  6451. .name = "shares",
  6452. .read_uint = cpu_shares_read_uint,
  6453. .write_uint = cpu_shares_write_uint,
  6454. },
  6455. };
  6456. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6457. {
  6458. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6459. }
  6460. struct cgroup_subsys cpu_cgroup_subsys = {
  6461. .name = "cpu",
  6462. .create = cpu_cgroup_create,
  6463. .destroy = cpu_cgroup_destroy,
  6464. .can_attach = cpu_cgroup_can_attach,
  6465. .attach = cpu_cgroup_attach,
  6466. .populate = cpu_cgroup_populate,
  6467. .subsys_id = cpu_cgroup_subsys_id,
  6468. .early_init = 1,
  6469. };
  6470. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6471. #ifdef CONFIG_CGROUP_CPUACCT
  6472. /*
  6473. * CPU accounting code for task groups.
  6474. *
  6475. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6476. * (balbir@in.ibm.com).
  6477. */
  6478. /* track cpu usage of a group of tasks */
  6479. struct cpuacct {
  6480. struct cgroup_subsys_state css;
  6481. /* cpuusage holds pointer to a u64-type object on every cpu */
  6482. u64 *cpuusage;
  6483. };
  6484. struct cgroup_subsys cpuacct_subsys;
  6485. /* return cpu accounting group corresponding to this container */
  6486. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6487. {
  6488. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6489. struct cpuacct, css);
  6490. }
  6491. /* return cpu accounting group to which this task belongs */
  6492. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6493. {
  6494. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6495. struct cpuacct, css);
  6496. }
  6497. /* create a new cpu accounting group */
  6498. static struct cgroup_subsys_state *cpuacct_create(
  6499. struct cgroup_subsys *ss, struct cgroup *cont)
  6500. {
  6501. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6502. if (!ca)
  6503. return ERR_PTR(-ENOMEM);
  6504. ca->cpuusage = alloc_percpu(u64);
  6505. if (!ca->cpuusage) {
  6506. kfree(ca);
  6507. return ERR_PTR(-ENOMEM);
  6508. }
  6509. return &ca->css;
  6510. }
  6511. /* destroy an existing cpu accounting group */
  6512. static void
  6513. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6514. {
  6515. struct cpuacct *ca = cgroup_ca(cont);
  6516. free_percpu(ca->cpuusage);
  6517. kfree(ca);
  6518. }
  6519. /* return total cpu usage (in nanoseconds) of a group */
  6520. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6521. {
  6522. struct cpuacct *ca = cgroup_ca(cont);
  6523. u64 totalcpuusage = 0;
  6524. int i;
  6525. for_each_possible_cpu(i) {
  6526. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6527. /*
  6528. * Take rq->lock to make 64-bit addition safe on 32-bit
  6529. * platforms.
  6530. */
  6531. spin_lock_irq(&cpu_rq(i)->lock);
  6532. totalcpuusage += *cpuusage;
  6533. spin_unlock_irq(&cpu_rq(i)->lock);
  6534. }
  6535. return totalcpuusage;
  6536. }
  6537. static struct cftype files[] = {
  6538. {
  6539. .name = "usage",
  6540. .read_uint = cpuusage_read,
  6541. },
  6542. };
  6543. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6544. {
  6545. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6546. }
  6547. /*
  6548. * charge this task's execution time to its accounting group.
  6549. *
  6550. * called with rq->lock held.
  6551. */
  6552. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6553. {
  6554. struct cpuacct *ca;
  6555. if (!cpuacct_subsys.active)
  6556. return;
  6557. ca = task_ca(tsk);
  6558. if (ca) {
  6559. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6560. *cpuusage += cputime;
  6561. }
  6562. }
  6563. struct cgroup_subsys cpuacct_subsys = {
  6564. .name = "cpuacct",
  6565. .create = cpuacct_create,
  6566. .destroy = cpuacct_destroy,
  6567. .populate = cpuacct_populate,
  6568. .subsys_id = cpuacct_subsys_id,
  6569. };
  6570. #endif /* CONFIG_CGROUP_CPUACCT */