md.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. /*
  108. * Enables to iterate over all existing md arrays
  109. * all_mddevs_lock protects this list.
  110. */
  111. static LIST_HEAD(all_mddevs);
  112. static DEFINE_SPINLOCK(all_mddevs_lock);
  113. /*
  114. * iterates through all used mddevs in the system.
  115. * We take care to grab the all_mddevs_lock whenever navigating
  116. * the list, and to always hold a refcount when unlocked.
  117. * Any code which breaks out of this loop while own
  118. * a reference to the current mddev and must mddev_put it.
  119. */
  120. #define ITERATE_MDDEV(mddev,tmp) \
  121. \
  122. for (({ spin_lock(&all_mddevs_lock); \
  123. tmp = all_mddevs.next; \
  124. mddev = NULL;}); \
  125. ({ if (tmp != &all_mddevs) \
  126. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  127. spin_unlock(&all_mddevs_lock); \
  128. if (mddev) mddev_put(mddev); \
  129. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  130. tmp != &all_mddevs;}); \
  131. ({ spin_lock(&all_mddevs_lock); \
  132. tmp = tmp->next;}) \
  133. )
  134. static int md_fail_request (request_queue_t *q, struct bio *bio)
  135. {
  136. bio_io_error(bio, bio->bi_size);
  137. return 0;
  138. }
  139. static inline mddev_t *mddev_get(mddev_t *mddev)
  140. {
  141. atomic_inc(&mddev->active);
  142. return mddev;
  143. }
  144. static void mddev_put(mddev_t *mddev)
  145. {
  146. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  147. return;
  148. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  149. list_del(&mddev->all_mddevs);
  150. blk_put_queue(mddev->queue);
  151. kobject_unregister(&mddev->kobj);
  152. }
  153. spin_unlock(&all_mddevs_lock);
  154. }
  155. static mddev_t * mddev_find(dev_t unit)
  156. {
  157. mddev_t *mddev, *new = NULL;
  158. retry:
  159. spin_lock(&all_mddevs_lock);
  160. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  161. if (mddev->unit == unit) {
  162. mddev_get(mddev);
  163. spin_unlock(&all_mddevs_lock);
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. bio_put(bio);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. kfree(tmp1);
  375. kfree(tmp2);
  376. return ret;
  377. }
  378. static unsigned int calc_sb_csum(mdp_super_t * sb)
  379. {
  380. unsigned int disk_csum, csum;
  381. disk_csum = sb->sb_csum;
  382. sb->sb_csum = 0;
  383. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  384. sb->sb_csum = disk_csum;
  385. return csum;
  386. }
  387. /*
  388. * Handle superblock details.
  389. * We want to be able to handle multiple superblock formats
  390. * so we have a common interface to them all, and an array of
  391. * different handlers.
  392. * We rely on user-space to write the initial superblock, and support
  393. * reading and updating of superblocks.
  394. * Interface methods are:
  395. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  396. * loads and validates a superblock on dev.
  397. * if refdev != NULL, compare superblocks on both devices
  398. * Return:
  399. * 0 - dev has a superblock that is compatible with refdev
  400. * 1 - dev has a superblock that is compatible and newer than refdev
  401. * so dev should be used as the refdev in future
  402. * -EINVAL superblock incompatible or invalid
  403. * -othererror e.g. -EIO
  404. *
  405. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  406. * Verify that dev is acceptable into mddev.
  407. * The first time, mddev->raid_disks will be 0, and data from
  408. * dev should be merged in. Subsequent calls check that dev
  409. * is new enough. Return 0 or -EINVAL
  410. *
  411. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  412. * Update the superblock for rdev with data in mddev
  413. * This does not write to disc.
  414. *
  415. */
  416. struct super_type {
  417. char *name;
  418. struct module *owner;
  419. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  420. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  422. };
  423. /*
  424. * load_super for 0.90.0
  425. */
  426. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  427. {
  428. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  429. mdp_super_t *sb;
  430. int ret;
  431. sector_t sb_offset;
  432. /*
  433. * Calculate the position of the superblock,
  434. * it's at the end of the disk.
  435. *
  436. * It also happens to be a multiple of 4Kb.
  437. */
  438. sb_offset = calc_dev_sboffset(rdev->bdev);
  439. rdev->sb_offset = sb_offset;
  440. ret = read_disk_sb(rdev, MD_SB_BYTES);
  441. if (ret) return ret;
  442. ret = -EINVAL;
  443. bdevname(rdev->bdev, b);
  444. sb = (mdp_super_t*)page_address(rdev->sb_page);
  445. if (sb->md_magic != MD_SB_MAGIC) {
  446. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  447. b);
  448. goto abort;
  449. }
  450. if (sb->major_version != 0 ||
  451. sb->minor_version != 90) {
  452. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  453. sb->major_version, sb->minor_version,
  454. b);
  455. goto abort;
  456. }
  457. if (sb->raid_disks <= 0)
  458. goto abort;
  459. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  460. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  461. b);
  462. goto abort;
  463. }
  464. rdev->preferred_minor = sb->md_minor;
  465. rdev->data_offset = 0;
  466. rdev->sb_size = MD_SB_BYTES;
  467. if (sb->level == LEVEL_MULTIPATH)
  468. rdev->desc_nr = -1;
  469. else
  470. rdev->desc_nr = sb->this_disk.number;
  471. if (refdev == 0)
  472. ret = 1;
  473. else {
  474. __u64 ev1, ev2;
  475. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  476. if (!uuid_equal(refsb, sb)) {
  477. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  478. b, bdevname(refdev->bdev,b2));
  479. goto abort;
  480. }
  481. if (!sb_equal(refsb, sb)) {
  482. printk(KERN_WARNING "md: %s has same UUID"
  483. " but different superblock to %s\n",
  484. b, bdevname(refdev->bdev, b2));
  485. goto abort;
  486. }
  487. ev1 = md_event(sb);
  488. ev2 = md_event(refsb);
  489. if (ev1 > ev2)
  490. ret = 1;
  491. else
  492. ret = 0;
  493. }
  494. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  495. abort:
  496. return ret;
  497. }
  498. /*
  499. * validate_super for 0.90.0
  500. */
  501. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  502. {
  503. mdp_disk_t *desc;
  504. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  505. rdev->raid_disk = -1;
  506. rdev->in_sync = 0;
  507. if (mddev->raid_disks == 0) {
  508. mddev->major_version = 0;
  509. mddev->minor_version = sb->minor_version;
  510. mddev->patch_version = sb->patch_version;
  511. mddev->persistent = ! sb->not_persistent;
  512. mddev->chunk_size = sb->chunk_size;
  513. mddev->ctime = sb->ctime;
  514. mddev->utime = sb->utime;
  515. mddev->level = sb->level;
  516. mddev->layout = sb->layout;
  517. mddev->raid_disks = sb->raid_disks;
  518. mddev->size = sb->size;
  519. mddev->events = md_event(sb);
  520. mddev->bitmap_offset = 0;
  521. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  522. if (sb->state & (1<<MD_SB_CLEAN))
  523. mddev->recovery_cp = MaxSector;
  524. else {
  525. if (sb->events_hi == sb->cp_events_hi &&
  526. sb->events_lo == sb->cp_events_lo) {
  527. mddev->recovery_cp = sb->recovery_cp;
  528. } else
  529. mddev->recovery_cp = 0;
  530. }
  531. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  532. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  533. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  534. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  535. mddev->max_disks = MD_SB_DISKS;
  536. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  537. mddev->bitmap_file == NULL) {
  538. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  539. /* FIXME use a better test */
  540. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  541. return -EINVAL;
  542. }
  543. mddev->bitmap_offset = mddev->default_bitmap_offset;
  544. }
  545. } else if (mddev->pers == NULL) {
  546. /* Insist on good event counter while assembling */
  547. __u64 ev1 = md_event(sb);
  548. ++ev1;
  549. if (ev1 < mddev->events)
  550. return -EINVAL;
  551. } else if (mddev->bitmap) {
  552. /* if adding to array with a bitmap, then we can accept an
  553. * older device ... but not too old.
  554. */
  555. __u64 ev1 = md_event(sb);
  556. if (ev1 < mddev->bitmap->events_cleared)
  557. return 0;
  558. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  559. return 0;
  560. if (mddev->level != LEVEL_MULTIPATH) {
  561. rdev->faulty = 0;
  562. rdev->flags = 0;
  563. desc = sb->disks + rdev->desc_nr;
  564. if (desc->state & (1<<MD_DISK_FAULTY))
  565. rdev->faulty = 1;
  566. else if (desc->state & (1<<MD_DISK_SYNC) &&
  567. desc->raid_disk < mddev->raid_disks) {
  568. rdev->in_sync = 1;
  569. rdev->raid_disk = desc->raid_disk;
  570. }
  571. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  572. set_bit(WriteMostly, &rdev->flags);
  573. } else /* MULTIPATH are always insync */
  574. rdev->in_sync = 1;
  575. return 0;
  576. }
  577. /*
  578. * sync_super for 0.90.0
  579. */
  580. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  581. {
  582. mdp_super_t *sb;
  583. struct list_head *tmp;
  584. mdk_rdev_t *rdev2;
  585. int next_spare = mddev->raid_disks;
  586. /* make rdev->sb match mddev data..
  587. *
  588. * 1/ zero out disks
  589. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  590. * 3/ any empty disks < next_spare become removed
  591. *
  592. * disks[0] gets initialised to REMOVED because
  593. * we cannot be sure from other fields if it has
  594. * been initialised or not.
  595. */
  596. int i;
  597. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  598. unsigned int fixdesc=0;
  599. rdev->sb_size = MD_SB_BYTES;
  600. sb = (mdp_super_t*)page_address(rdev->sb_page);
  601. memset(sb, 0, sizeof(*sb));
  602. sb->md_magic = MD_SB_MAGIC;
  603. sb->major_version = mddev->major_version;
  604. sb->minor_version = mddev->minor_version;
  605. sb->patch_version = mddev->patch_version;
  606. sb->gvalid_words = 0; /* ignored */
  607. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  608. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  609. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  610. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  611. sb->ctime = mddev->ctime;
  612. sb->level = mddev->level;
  613. sb->size = mddev->size;
  614. sb->raid_disks = mddev->raid_disks;
  615. sb->md_minor = mddev->md_minor;
  616. sb->not_persistent = !mddev->persistent;
  617. sb->utime = mddev->utime;
  618. sb->state = 0;
  619. sb->events_hi = (mddev->events>>32);
  620. sb->events_lo = (u32)mddev->events;
  621. if (mddev->in_sync)
  622. {
  623. sb->recovery_cp = mddev->recovery_cp;
  624. sb->cp_events_hi = (mddev->events>>32);
  625. sb->cp_events_lo = (u32)mddev->events;
  626. if (mddev->recovery_cp == MaxSector)
  627. sb->state = (1<< MD_SB_CLEAN);
  628. } else
  629. sb->recovery_cp = 0;
  630. sb->layout = mddev->layout;
  631. sb->chunk_size = mddev->chunk_size;
  632. if (mddev->bitmap && mddev->bitmap_file == NULL)
  633. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  634. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  635. ITERATE_RDEV(mddev,rdev2,tmp) {
  636. mdp_disk_t *d;
  637. int desc_nr;
  638. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  639. desc_nr = rdev2->raid_disk;
  640. else
  641. desc_nr = next_spare++;
  642. if (desc_nr != rdev2->desc_nr) {
  643. fixdesc |= (1 << desc_nr);
  644. rdev2->desc_nr = desc_nr;
  645. if (rdev2->raid_disk >= 0) {
  646. char nm[20];
  647. sprintf(nm, "rd%d", rdev2->raid_disk);
  648. sysfs_remove_link(&mddev->kobj, nm);
  649. }
  650. sysfs_remove_link(&rdev2->kobj, "block");
  651. kobject_del(&rdev2->kobj);
  652. }
  653. d = &sb->disks[rdev2->desc_nr];
  654. nr_disks++;
  655. d->number = rdev2->desc_nr;
  656. d->major = MAJOR(rdev2->bdev->bd_dev);
  657. d->minor = MINOR(rdev2->bdev->bd_dev);
  658. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  659. d->raid_disk = rdev2->raid_disk;
  660. else
  661. d->raid_disk = rdev2->desc_nr; /* compatibility */
  662. if (rdev2->faulty) {
  663. d->state = (1<<MD_DISK_FAULTY);
  664. failed++;
  665. } else if (rdev2->in_sync) {
  666. d->state = (1<<MD_DISK_ACTIVE);
  667. d->state |= (1<<MD_DISK_SYNC);
  668. active++;
  669. working++;
  670. } else {
  671. d->state = 0;
  672. spare++;
  673. working++;
  674. }
  675. if (test_bit(WriteMostly, &rdev2->flags))
  676. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  677. }
  678. if (fixdesc)
  679. ITERATE_RDEV(mddev,rdev2,tmp)
  680. if (fixdesc & (1<<rdev2->desc_nr)) {
  681. snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
  682. rdev2->desc_nr);
  683. kobject_add(&rdev2->kobj);
  684. sysfs_create_link(&rdev2->kobj,
  685. &rdev2->bdev->bd_disk->kobj,
  686. "block");
  687. if (rdev2->raid_disk >= 0) {
  688. char nm[20];
  689. sprintf(nm, "rd%d", rdev2->raid_disk);
  690. sysfs_create_link(&mddev->kobj,
  691. &rdev2->kobj, nm);
  692. }
  693. }
  694. /* now set the "removed" and "faulty" bits on any missing devices */
  695. for (i=0 ; i < mddev->raid_disks ; i++) {
  696. mdp_disk_t *d = &sb->disks[i];
  697. if (d->state == 0 && d->number == 0) {
  698. d->number = i;
  699. d->raid_disk = i;
  700. d->state = (1<<MD_DISK_REMOVED);
  701. d->state |= (1<<MD_DISK_FAULTY);
  702. failed++;
  703. }
  704. }
  705. sb->nr_disks = nr_disks;
  706. sb->active_disks = active;
  707. sb->working_disks = working;
  708. sb->failed_disks = failed;
  709. sb->spare_disks = spare;
  710. sb->this_disk = sb->disks[rdev->desc_nr];
  711. sb->sb_csum = calc_sb_csum(sb);
  712. }
  713. /*
  714. * version 1 superblock
  715. */
  716. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  717. {
  718. unsigned int disk_csum, csum;
  719. unsigned long long newcsum;
  720. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  721. unsigned int *isuper = (unsigned int*)sb;
  722. int i;
  723. disk_csum = sb->sb_csum;
  724. sb->sb_csum = 0;
  725. newcsum = 0;
  726. for (i=0; size>=4; size -= 4 )
  727. newcsum += le32_to_cpu(*isuper++);
  728. if (size == 2)
  729. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  730. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  731. sb->sb_csum = disk_csum;
  732. return cpu_to_le32(csum);
  733. }
  734. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  735. {
  736. struct mdp_superblock_1 *sb;
  737. int ret;
  738. sector_t sb_offset;
  739. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  740. int bmask;
  741. /*
  742. * Calculate the position of the superblock.
  743. * It is always aligned to a 4K boundary and
  744. * depeding on minor_version, it can be:
  745. * 0: At least 8K, but less than 12K, from end of device
  746. * 1: At start of device
  747. * 2: 4K from start of device.
  748. */
  749. switch(minor_version) {
  750. case 0:
  751. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  752. sb_offset -= 8*2;
  753. sb_offset &= ~(sector_t)(4*2-1);
  754. /* convert from sectors to K */
  755. sb_offset /= 2;
  756. break;
  757. case 1:
  758. sb_offset = 0;
  759. break;
  760. case 2:
  761. sb_offset = 4;
  762. break;
  763. default:
  764. return -EINVAL;
  765. }
  766. rdev->sb_offset = sb_offset;
  767. /* superblock is rarely larger than 1K, but it can be larger,
  768. * and it is safe to read 4k, so we do that
  769. */
  770. ret = read_disk_sb(rdev, 4096);
  771. if (ret) return ret;
  772. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  773. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  774. sb->major_version != cpu_to_le32(1) ||
  775. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  776. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  777. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  778. return -EINVAL;
  779. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  780. printk("md: invalid superblock checksum on %s\n",
  781. bdevname(rdev->bdev,b));
  782. return -EINVAL;
  783. }
  784. if (le64_to_cpu(sb->data_size) < 10) {
  785. printk("md: data_size too small on %s\n",
  786. bdevname(rdev->bdev,b));
  787. return -EINVAL;
  788. }
  789. rdev->preferred_minor = 0xffff;
  790. rdev->data_offset = le64_to_cpu(sb->data_offset);
  791. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  792. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  793. if (rdev->sb_size & bmask)
  794. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  795. if (refdev == 0)
  796. return 1;
  797. else {
  798. __u64 ev1, ev2;
  799. struct mdp_superblock_1 *refsb =
  800. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  801. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  802. sb->level != refsb->level ||
  803. sb->layout != refsb->layout ||
  804. sb->chunksize != refsb->chunksize) {
  805. printk(KERN_WARNING "md: %s has strangely different"
  806. " superblock to %s\n",
  807. bdevname(rdev->bdev,b),
  808. bdevname(refdev->bdev,b2));
  809. return -EINVAL;
  810. }
  811. ev1 = le64_to_cpu(sb->events);
  812. ev2 = le64_to_cpu(refsb->events);
  813. if (ev1 > ev2)
  814. return 1;
  815. }
  816. if (minor_version)
  817. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  818. else
  819. rdev->size = rdev->sb_offset;
  820. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  821. return -EINVAL;
  822. rdev->size = le64_to_cpu(sb->data_size)/2;
  823. if (le32_to_cpu(sb->chunksize))
  824. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  825. return 0;
  826. }
  827. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  828. {
  829. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  830. rdev->raid_disk = -1;
  831. rdev->in_sync = 0;
  832. if (mddev->raid_disks == 0) {
  833. mddev->major_version = 1;
  834. mddev->patch_version = 0;
  835. mddev->persistent = 1;
  836. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  837. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  838. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  839. mddev->level = le32_to_cpu(sb->level);
  840. mddev->layout = le32_to_cpu(sb->layout);
  841. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  842. mddev->size = le64_to_cpu(sb->size)/2;
  843. mddev->events = le64_to_cpu(sb->events);
  844. mddev->bitmap_offset = 0;
  845. mddev->default_bitmap_offset = 0;
  846. mddev->default_bitmap_offset = 1024;
  847. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  848. memcpy(mddev->uuid, sb->set_uuid, 16);
  849. mddev->max_disks = (4096-256)/2;
  850. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  851. mddev->bitmap_file == NULL ) {
  852. if (mddev->level != 1) {
  853. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  854. return -EINVAL;
  855. }
  856. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  857. }
  858. } else if (mddev->pers == NULL) {
  859. /* Insist of good event counter while assembling */
  860. __u64 ev1 = le64_to_cpu(sb->events);
  861. ++ev1;
  862. if (ev1 < mddev->events)
  863. return -EINVAL;
  864. } else if (mddev->bitmap) {
  865. /* If adding to array with a bitmap, then we can accept an
  866. * older device, but not too old.
  867. */
  868. __u64 ev1 = le64_to_cpu(sb->events);
  869. if (ev1 < mddev->bitmap->events_cleared)
  870. return 0;
  871. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  872. return 0;
  873. if (mddev->level != LEVEL_MULTIPATH) {
  874. int role;
  875. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  876. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  877. switch(role) {
  878. case 0xffff: /* spare */
  879. rdev->faulty = 0;
  880. break;
  881. case 0xfffe: /* faulty */
  882. rdev->faulty = 1;
  883. break;
  884. default:
  885. rdev->in_sync = 1;
  886. rdev->faulty = 0;
  887. rdev->raid_disk = role;
  888. break;
  889. }
  890. rdev->flags = 0;
  891. if (sb->devflags & WriteMostly1)
  892. set_bit(WriteMostly, &rdev->flags);
  893. } else /* MULTIPATH are always insync */
  894. rdev->in_sync = 1;
  895. return 0;
  896. }
  897. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  898. {
  899. struct mdp_superblock_1 *sb;
  900. struct list_head *tmp;
  901. mdk_rdev_t *rdev2;
  902. int max_dev, i;
  903. /* make rdev->sb match mddev and rdev data. */
  904. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  905. sb->feature_map = 0;
  906. sb->pad0 = 0;
  907. memset(sb->pad1, 0, sizeof(sb->pad1));
  908. memset(sb->pad2, 0, sizeof(sb->pad2));
  909. memset(sb->pad3, 0, sizeof(sb->pad3));
  910. sb->utime = cpu_to_le64((__u64)mddev->utime);
  911. sb->events = cpu_to_le64(mddev->events);
  912. if (mddev->in_sync)
  913. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  914. else
  915. sb->resync_offset = cpu_to_le64(0);
  916. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  917. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  918. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  919. }
  920. max_dev = 0;
  921. ITERATE_RDEV(mddev,rdev2,tmp)
  922. if (rdev2->desc_nr+1 > max_dev)
  923. max_dev = rdev2->desc_nr+1;
  924. sb->max_dev = cpu_to_le32(max_dev);
  925. for (i=0; i<max_dev;i++)
  926. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  927. ITERATE_RDEV(mddev,rdev2,tmp) {
  928. i = rdev2->desc_nr;
  929. if (rdev2->faulty)
  930. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  931. else if (rdev2->in_sync)
  932. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  933. else
  934. sb->dev_roles[i] = cpu_to_le16(0xffff);
  935. }
  936. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  937. sb->sb_csum = calc_sb_1_csum(sb);
  938. }
  939. static struct super_type super_types[] = {
  940. [0] = {
  941. .name = "0.90.0",
  942. .owner = THIS_MODULE,
  943. .load_super = super_90_load,
  944. .validate_super = super_90_validate,
  945. .sync_super = super_90_sync,
  946. },
  947. [1] = {
  948. .name = "md-1",
  949. .owner = THIS_MODULE,
  950. .load_super = super_1_load,
  951. .validate_super = super_1_validate,
  952. .sync_super = super_1_sync,
  953. },
  954. };
  955. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  956. {
  957. struct list_head *tmp;
  958. mdk_rdev_t *rdev;
  959. ITERATE_RDEV(mddev,rdev,tmp)
  960. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  961. return rdev;
  962. return NULL;
  963. }
  964. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  965. {
  966. struct list_head *tmp;
  967. mdk_rdev_t *rdev;
  968. ITERATE_RDEV(mddev1,rdev,tmp)
  969. if (match_dev_unit(mddev2, rdev))
  970. return 1;
  971. return 0;
  972. }
  973. static LIST_HEAD(pending_raid_disks);
  974. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  975. {
  976. mdk_rdev_t *same_pdev;
  977. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  978. if (rdev->mddev) {
  979. MD_BUG();
  980. return -EINVAL;
  981. }
  982. same_pdev = match_dev_unit(mddev, rdev);
  983. if (same_pdev)
  984. printk(KERN_WARNING
  985. "%s: WARNING: %s appears to be on the same physical"
  986. " disk as %s. True\n protection against single-disk"
  987. " failure might be compromised.\n",
  988. mdname(mddev), bdevname(rdev->bdev,b),
  989. bdevname(same_pdev->bdev,b2));
  990. /* Verify rdev->desc_nr is unique.
  991. * If it is -1, assign a free number, else
  992. * check number is not in use
  993. */
  994. if (rdev->desc_nr < 0) {
  995. int choice = 0;
  996. if (mddev->pers) choice = mddev->raid_disks;
  997. while (find_rdev_nr(mddev, choice))
  998. choice++;
  999. rdev->desc_nr = choice;
  1000. } else {
  1001. if (find_rdev_nr(mddev, rdev->desc_nr))
  1002. return -EBUSY;
  1003. }
  1004. list_add(&rdev->same_set, &mddev->disks);
  1005. rdev->mddev = mddev;
  1006. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  1007. rdev->kobj.k_name = NULL;
  1008. snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
  1009. rdev->kobj.parent = kobject_get(&mddev->kobj);
  1010. kobject_add(&rdev->kobj);
  1011. sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
  1012. return 0;
  1013. }
  1014. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1015. {
  1016. char b[BDEVNAME_SIZE];
  1017. if (!rdev->mddev) {
  1018. MD_BUG();
  1019. return;
  1020. }
  1021. list_del_init(&rdev->same_set);
  1022. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1023. rdev->mddev = NULL;
  1024. sysfs_remove_link(&rdev->kobj, "block");
  1025. kobject_del(&rdev->kobj);
  1026. }
  1027. /*
  1028. * prevent the device from being mounted, repartitioned or
  1029. * otherwise reused by a RAID array (or any other kernel
  1030. * subsystem), by bd_claiming the device.
  1031. */
  1032. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1033. {
  1034. int err = 0;
  1035. struct block_device *bdev;
  1036. char b[BDEVNAME_SIZE];
  1037. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1038. if (IS_ERR(bdev)) {
  1039. printk(KERN_ERR "md: could not open %s.\n",
  1040. __bdevname(dev, b));
  1041. return PTR_ERR(bdev);
  1042. }
  1043. err = bd_claim(bdev, rdev);
  1044. if (err) {
  1045. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1046. bdevname(bdev, b));
  1047. blkdev_put(bdev);
  1048. return err;
  1049. }
  1050. rdev->bdev = bdev;
  1051. return err;
  1052. }
  1053. static void unlock_rdev(mdk_rdev_t *rdev)
  1054. {
  1055. struct block_device *bdev = rdev->bdev;
  1056. rdev->bdev = NULL;
  1057. if (!bdev)
  1058. MD_BUG();
  1059. bd_release(bdev);
  1060. blkdev_put(bdev);
  1061. }
  1062. void md_autodetect_dev(dev_t dev);
  1063. static void export_rdev(mdk_rdev_t * rdev)
  1064. {
  1065. char b[BDEVNAME_SIZE];
  1066. printk(KERN_INFO "md: export_rdev(%s)\n",
  1067. bdevname(rdev->bdev,b));
  1068. if (rdev->mddev)
  1069. MD_BUG();
  1070. free_disk_sb(rdev);
  1071. list_del_init(&rdev->same_set);
  1072. #ifndef MODULE
  1073. md_autodetect_dev(rdev->bdev->bd_dev);
  1074. #endif
  1075. unlock_rdev(rdev);
  1076. kobject_put(&rdev->kobj);
  1077. }
  1078. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1079. {
  1080. unbind_rdev_from_array(rdev);
  1081. export_rdev(rdev);
  1082. }
  1083. static void export_array(mddev_t *mddev)
  1084. {
  1085. struct list_head *tmp;
  1086. mdk_rdev_t *rdev;
  1087. ITERATE_RDEV(mddev,rdev,tmp) {
  1088. if (!rdev->mddev) {
  1089. MD_BUG();
  1090. continue;
  1091. }
  1092. kick_rdev_from_array(rdev);
  1093. }
  1094. if (!list_empty(&mddev->disks))
  1095. MD_BUG();
  1096. mddev->raid_disks = 0;
  1097. mddev->major_version = 0;
  1098. }
  1099. static void print_desc(mdp_disk_t *desc)
  1100. {
  1101. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1102. desc->major,desc->minor,desc->raid_disk,desc->state);
  1103. }
  1104. static void print_sb(mdp_super_t *sb)
  1105. {
  1106. int i;
  1107. printk(KERN_INFO
  1108. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1109. sb->major_version, sb->minor_version, sb->patch_version,
  1110. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1111. sb->ctime);
  1112. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1113. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1114. sb->md_minor, sb->layout, sb->chunk_size);
  1115. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1116. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1117. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1118. sb->failed_disks, sb->spare_disks,
  1119. sb->sb_csum, (unsigned long)sb->events_lo);
  1120. printk(KERN_INFO);
  1121. for (i = 0; i < MD_SB_DISKS; i++) {
  1122. mdp_disk_t *desc;
  1123. desc = sb->disks + i;
  1124. if (desc->number || desc->major || desc->minor ||
  1125. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1126. printk(" D %2d: ", i);
  1127. print_desc(desc);
  1128. }
  1129. }
  1130. printk(KERN_INFO "md: THIS: ");
  1131. print_desc(&sb->this_disk);
  1132. }
  1133. static void print_rdev(mdk_rdev_t *rdev)
  1134. {
  1135. char b[BDEVNAME_SIZE];
  1136. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1137. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1138. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1139. if (rdev->sb_loaded) {
  1140. printk(KERN_INFO "md: rdev superblock:\n");
  1141. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1142. } else
  1143. printk(KERN_INFO "md: no rdev superblock!\n");
  1144. }
  1145. void md_print_devices(void)
  1146. {
  1147. struct list_head *tmp, *tmp2;
  1148. mdk_rdev_t *rdev;
  1149. mddev_t *mddev;
  1150. char b[BDEVNAME_SIZE];
  1151. printk("\n");
  1152. printk("md: **********************************\n");
  1153. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1154. printk("md: **********************************\n");
  1155. ITERATE_MDDEV(mddev,tmp) {
  1156. if (mddev->bitmap)
  1157. bitmap_print_sb(mddev->bitmap);
  1158. else
  1159. printk("%s: ", mdname(mddev));
  1160. ITERATE_RDEV(mddev,rdev,tmp2)
  1161. printk("<%s>", bdevname(rdev->bdev,b));
  1162. printk("\n");
  1163. ITERATE_RDEV(mddev,rdev,tmp2)
  1164. print_rdev(rdev);
  1165. }
  1166. printk("md: **********************************\n");
  1167. printk("\n");
  1168. }
  1169. static void sync_sbs(mddev_t * mddev)
  1170. {
  1171. mdk_rdev_t *rdev;
  1172. struct list_head *tmp;
  1173. ITERATE_RDEV(mddev,rdev,tmp) {
  1174. super_types[mddev->major_version].
  1175. sync_super(mddev, rdev);
  1176. rdev->sb_loaded = 1;
  1177. }
  1178. }
  1179. static void md_update_sb(mddev_t * mddev)
  1180. {
  1181. int err;
  1182. struct list_head *tmp;
  1183. mdk_rdev_t *rdev;
  1184. int sync_req;
  1185. repeat:
  1186. spin_lock(&mddev->write_lock);
  1187. sync_req = mddev->in_sync;
  1188. mddev->utime = get_seconds();
  1189. mddev->events ++;
  1190. if (!mddev->events) {
  1191. /*
  1192. * oops, this 64-bit counter should never wrap.
  1193. * Either we are in around ~1 trillion A.C., assuming
  1194. * 1 reboot per second, or we have a bug:
  1195. */
  1196. MD_BUG();
  1197. mddev->events --;
  1198. }
  1199. mddev->sb_dirty = 2;
  1200. sync_sbs(mddev);
  1201. /*
  1202. * do not write anything to disk if using
  1203. * nonpersistent superblocks
  1204. */
  1205. if (!mddev->persistent) {
  1206. mddev->sb_dirty = 0;
  1207. spin_unlock(&mddev->write_lock);
  1208. wake_up(&mddev->sb_wait);
  1209. return;
  1210. }
  1211. spin_unlock(&mddev->write_lock);
  1212. dprintk(KERN_INFO
  1213. "md: updating %s RAID superblock on device (in sync %d)\n",
  1214. mdname(mddev),mddev->in_sync);
  1215. err = bitmap_update_sb(mddev->bitmap);
  1216. ITERATE_RDEV(mddev,rdev,tmp) {
  1217. char b[BDEVNAME_SIZE];
  1218. dprintk(KERN_INFO "md: ");
  1219. if (rdev->faulty)
  1220. dprintk("(skipping faulty ");
  1221. dprintk("%s ", bdevname(rdev->bdev,b));
  1222. if (!rdev->faulty) {
  1223. md_super_write(mddev,rdev,
  1224. rdev->sb_offset<<1, rdev->sb_size,
  1225. rdev->sb_page);
  1226. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1227. bdevname(rdev->bdev,b),
  1228. (unsigned long long)rdev->sb_offset);
  1229. } else
  1230. dprintk(")\n");
  1231. if (mddev->level == LEVEL_MULTIPATH)
  1232. /* only need to write one superblock... */
  1233. break;
  1234. }
  1235. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1236. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1237. spin_lock(&mddev->write_lock);
  1238. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1239. /* have to write it out again */
  1240. spin_unlock(&mddev->write_lock);
  1241. goto repeat;
  1242. }
  1243. mddev->sb_dirty = 0;
  1244. spin_unlock(&mddev->write_lock);
  1245. wake_up(&mddev->sb_wait);
  1246. }
  1247. struct rdev_sysfs_entry {
  1248. struct attribute attr;
  1249. ssize_t (*show)(mdk_rdev_t *, char *);
  1250. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1251. };
  1252. static ssize_t
  1253. rdev_show_state(mdk_rdev_t *rdev, char *page)
  1254. {
  1255. char *sep = "";
  1256. int len=0;
  1257. if (rdev->faulty) {
  1258. len+= sprintf(page+len, "%sfaulty",sep);
  1259. sep = ",";
  1260. }
  1261. if (rdev->in_sync) {
  1262. len += sprintf(page+len, "%sin_sync",sep);
  1263. sep = ",";
  1264. }
  1265. if (!rdev->faulty && !rdev->in_sync) {
  1266. len += sprintf(page+len, "%sspare", sep);
  1267. sep = ",";
  1268. }
  1269. return len+sprintf(page+len, "\n");
  1270. }
  1271. static struct rdev_sysfs_entry rdev_state = {
  1272. .attr = {.name = "state", .mode = S_IRUGO },
  1273. .show = rdev_show_state,
  1274. };
  1275. static ssize_t
  1276. rdev_show_super(mdk_rdev_t *rdev, char *page)
  1277. {
  1278. if (rdev->sb_loaded && rdev->sb_size) {
  1279. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1280. return rdev->sb_size;
  1281. } else
  1282. return 0;
  1283. }
  1284. static struct rdev_sysfs_entry rdev_super = {
  1285. .attr = {.name = "super", .mode = S_IRUGO },
  1286. .show = rdev_show_super,
  1287. };
  1288. static struct attribute *rdev_default_attrs[] = {
  1289. &rdev_state.attr,
  1290. &rdev_super.attr,
  1291. NULL,
  1292. };
  1293. static ssize_t
  1294. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1295. {
  1296. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1297. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1298. if (!entry->show)
  1299. return -EIO;
  1300. return entry->show(rdev, page);
  1301. }
  1302. static ssize_t
  1303. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1304. const char *page, size_t length)
  1305. {
  1306. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1307. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1308. if (!entry->store)
  1309. return -EIO;
  1310. return entry->store(rdev, page, length);
  1311. }
  1312. static void rdev_free(struct kobject *ko)
  1313. {
  1314. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1315. kfree(rdev);
  1316. }
  1317. static struct sysfs_ops rdev_sysfs_ops = {
  1318. .show = rdev_attr_show,
  1319. .store = rdev_attr_store,
  1320. };
  1321. static struct kobj_type rdev_ktype = {
  1322. .release = rdev_free,
  1323. .sysfs_ops = &rdev_sysfs_ops,
  1324. .default_attrs = rdev_default_attrs,
  1325. };
  1326. /*
  1327. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1328. *
  1329. * mark the device faulty if:
  1330. *
  1331. * - the device is nonexistent (zero size)
  1332. * - the device has no valid superblock
  1333. *
  1334. * a faulty rdev _never_ has rdev->sb set.
  1335. */
  1336. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1337. {
  1338. char b[BDEVNAME_SIZE];
  1339. int err;
  1340. mdk_rdev_t *rdev;
  1341. sector_t size;
  1342. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1343. if (!rdev) {
  1344. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1345. return ERR_PTR(-ENOMEM);
  1346. }
  1347. memset(rdev, 0, sizeof(*rdev));
  1348. if ((err = alloc_disk_sb(rdev)))
  1349. goto abort_free;
  1350. err = lock_rdev(rdev, newdev);
  1351. if (err)
  1352. goto abort_free;
  1353. rdev->kobj.parent = NULL;
  1354. rdev->kobj.ktype = &rdev_ktype;
  1355. kobject_init(&rdev->kobj);
  1356. rdev->desc_nr = -1;
  1357. rdev->faulty = 0;
  1358. rdev->in_sync = 0;
  1359. rdev->data_offset = 0;
  1360. atomic_set(&rdev->nr_pending, 0);
  1361. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1362. if (!size) {
  1363. printk(KERN_WARNING
  1364. "md: %s has zero or unknown size, marking faulty!\n",
  1365. bdevname(rdev->bdev,b));
  1366. err = -EINVAL;
  1367. goto abort_free;
  1368. }
  1369. if (super_format >= 0) {
  1370. err = super_types[super_format].
  1371. load_super(rdev, NULL, super_minor);
  1372. if (err == -EINVAL) {
  1373. printk(KERN_WARNING
  1374. "md: %s has invalid sb, not importing!\n",
  1375. bdevname(rdev->bdev,b));
  1376. goto abort_free;
  1377. }
  1378. if (err < 0) {
  1379. printk(KERN_WARNING
  1380. "md: could not read %s's sb, not importing!\n",
  1381. bdevname(rdev->bdev,b));
  1382. goto abort_free;
  1383. }
  1384. }
  1385. INIT_LIST_HEAD(&rdev->same_set);
  1386. return rdev;
  1387. abort_free:
  1388. if (rdev->sb_page) {
  1389. if (rdev->bdev)
  1390. unlock_rdev(rdev);
  1391. free_disk_sb(rdev);
  1392. }
  1393. kfree(rdev);
  1394. return ERR_PTR(err);
  1395. }
  1396. /*
  1397. * Check a full RAID array for plausibility
  1398. */
  1399. static void analyze_sbs(mddev_t * mddev)
  1400. {
  1401. int i;
  1402. struct list_head *tmp;
  1403. mdk_rdev_t *rdev, *freshest;
  1404. char b[BDEVNAME_SIZE];
  1405. freshest = NULL;
  1406. ITERATE_RDEV(mddev,rdev,tmp)
  1407. switch (super_types[mddev->major_version].
  1408. load_super(rdev, freshest, mddev->minor_version)) {
  1409. case 1:
  1410. freshest = rdev;
  1411. break;
  1412. case 0:
  1413. break;
  1414. default:
  1415. printk( KERN_ERR \
  1416. "md: fatal superblock inconsistency in %s"
  1417. " -- removing from array\n",
  1418. bdevname(rdev->bdev,b));
  1419. kick_rdev_from_array(rdev);
  1420. }
  1421. super_types[mddev->major_version].
  1422. validate_super(mddev, freshest);
  1423. i = 0;
  1424. ITERATE_RDEV(mddev,rdev,tmp) {
  1425. if (rdev != freshest)
  1426. if (super_types[mddev->major_version].
  1427. validate_super(mddev, rdev)) {
  1428. printk(KERN_WARNING "md: kicking non-fresh %s"
  1429. " from array!\n",
  1430. bdevname(rdev->bdev,b));
  1431. kick_rdev_from_array(rdev);
  1432. continue;
  1433. }
  1434. if (mddev->level == LEVEL_MULTIPATH) {
  1435. rdev->desc_nr = i++;
  1436. rdev->raid_disk = rdev->desc_nr;
  1437. rdev->in_sync = 1;
  1438. }
  1439. }
  1440. if (mddev->recovery_cp != MaxSector &&
  1441. mddev->level >= 1)
  1442. printk(KERN_ERR "md: %s: raid array is not clean"
  1443. " -- starting background reconstruction\n",
  1444. mdname(mddev));
  1445. }
  1446. struct md_sysfs_entry {
  1447. struct attribute attr;
  1448. ssize_t (*show)(mddev_t *, char *);
  1449. ssize_t (*store)(mddev_t *, const char *, size_t);
  1450. };
  1451. static ssize_t
  1452. md_show_level(mddev_t *mddev, char *page)
  1453. {
  1454. mdk_personality_t *p = mddev->pers;
  1455. if (p == NULL)
  1456. return 0;
  1457. if (mddev->level >= 0)
  1458. return sprintf(page, "RAID-%d\n", mddev->level);
  1459. else
  1460. return sprintf(page, "%s\n", p->name);
  1461. }
  1462. static struct md_sysfs_entry md_level = {
  1463. .attr = {.name = "level", .mode = S_IRUGO },
  1464. .show = md_show_level,
  1465. };
  1466. static ssize_t
  1467. md_show_rdisks(mddev_t *mddev, char *page)
  1468. {
  1469. return sprintf(page, "%d\n", mddev->raid_disks);
  1470. }
  1471. static struct md_sysfs_entry md_raid_disks = {
  1472. .attr = {.name = "raid_disks", .mode = S_IRUGO },
  1473. .show = md_show_rdisks,
  1474. };
  1475. static struct attribute *md_default_attrs[] = {
  1476. &md_level.attr,
  1477. &md_raid_disks.attr,
  1478. NULL,
  1479. };
  1480. static ssize_t
  1481. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1482. {
  1483. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1484. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1485. if (!entry->show)
  1486. return -EIO;
  1487. return entry->show(mddev, page);
  1488. }
  1489. static ssize_t
  1490. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1491. const char *page, size_t length)
  1492. {
  1493. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1494. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1495. if (!entry->store)
  1496. return -EIO;
  1497. return entry->store(mddev, page, length);
  1498. }
  1499. static void md_free(struct kobject *ko)
  1500. {
  1501. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1502. kfree(mddev);
  1503. }
  1504. static struct sysfs_ops md_sysfs_ops = {
  1505. .show = md_attr_show,
  1506. .store = md_attr_store,
  1507. };
  1508. static struct kobj_type md_ktype = {
  1509. .release = md_free,
  1510. .sysfs_ops = &md_sysfs_ops,
  1511. .default_attrs = md_default_attrs,
  1512. };
  1513. int mdp_major = 0;
  1514. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1515. {
  1516. static DECLARE_MUTEX(disks_sem);
  1517. mddev_t *mddev = mddev_find(dev);
  1518. struct gendisk *disk;
  1519. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1520. int shift = partitioned ? MdpMinorShift : 0;
  1521. int unit = MINOR(dev) >> shift;
  1522. if (!mddev)
  1523. return NULL;
  1524. down(&disks_sem);
  1525. if (mddev->gendisk) {
  1526. up(&disks_sem);
  1527. mddev_put(mddev);
  1528. return NULL;
  1529. }
  1530. disk = alloc_disk(1 << shift);
  1531. if (!disk) {
  1532. up(&disks_sem);
  1533. mddev_put(mddev);
  1534. return NULL;
  1535. }
  1536. disk->major = MAJOR(dev);
  1537. disk->first_minor = unit << shift;
  1538. if (partitioned) {
  1539. sprintf(disk->disk_name, "md_d%d", unit);
  1540. sprintf(disk->devfs_name, "md/d%d", unit);
  1541. } else {
  1542. sprintf(disk->disk_name, "md%d", unit);
  1543. sprintf(disk->devfs_name, "md/%d", unit);
  1544. }
  1545. disk->fops = &md_fops;
  1546. disk->private_data = mddev;
  1547. disk->queue = mddev->queue;
  1548. add_disk(disk);
  1549. mddev->gendisk = disk;
  1550. up(&disks_sem);
  1551. mddev->kobj.parent = kobject_get(&disk->kobj);
  1552. mddev->kobj.k_name = NULL;
  1553. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1554. mddev->kobj.ktype = &md_ktype;
  1555. kobject_register(&mddev->kobj);
  1556. return NULL;
  1557. }
  1558. void md_wakeup_thread(mdk_thread_t *thread);
  1559. static void md_safemode_timeout(unsigned long data)
  1560. {
  1561. mddev_t *mddev = (mddev_t *) data;
  1562. mddev->safemode = 1;
  1563. md_wakeup_thread(mddev->thread);
  1564. }
  1565. static int do_md_run(mddev_t * mddev)
  1566. {
  1567. int pnum, err;
  1568. int chunk_size;
  1569. struct list_head *tmp;
  1570. mdk_rdev_t *rdev;
  1571. struct gendisk *disk;
  1572. char b[BDEVNAME_SIZE];
  1573. if (list_empty(&mddev->disks))
  1574. /* cannot run an array with no devices.. */
  1575. return -EINVAL;
  1576. if (mddev->pers)
  1577. return -EBUSY;
  1578. /*
  1579. * Analyze all RAID superblock(s)
  1580. */
  1581. if (!mddev->raid_disks)
  1582. analyze_sbs(mddev);
  1583. chunk_size = mddev->chunk_size;
  1584. pnum = level_to_pers(mddev->level);
  1585. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1586. if (!chunk_size) {
  1587. /*
  1588. * 'default chunksize' in the old md code used to
  1589. * be PAGE_SIZE, baaad.
  1590. * we abort here to be on the safe side. We don't
  1591. * want to continue the bad practice.
  1592. */
  1593. printk(KERN_ERR
  1594. "no chunksize specified, see 'man raidtab'\n");
  1595. return -EINVAL;
  1596. }
  1597. if (chunk_size > MAX_CHUNK_SIZE) {
  1598. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1599. chunk_size, MAX_CHUNK_SIZE);
  1600. return -EINVAL;
  1601. }
  1602. /*
  1603. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1604. */
  1605. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1606. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1607. return -EINVAL;
  1608. }
  1609. if (chunk_size < PAGE_SIZE) {
  1610. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1611. chunk_size, PAGE_SIZE);
  1612. return -EINVAL;
  1613. }
  1614. /* devices must have minimum size of one chunk */
  1615. ITERATE_RDEV(mddev,rdev,tmp) {
  1616. if (rdev->faulty)
  1617. continue;
  1618. if (rdev->size < chunk_size / 1024) {
  1619. printk(KERN_WARNING
  1620. "md: Dev %s smaller than chunk_size:"
  1621. " %lluk < %dk\n",
  1622. bdevname(rdev->bdev,b),
  1623. (unsigned long long)rdev->size,
  1624. chunk_size / 1024);
  1625. return -EINVAL;
  1626. }
  1627. }
  1628. }
  1629. #ifdef CONFIG_KMOD
  1630. if (!pers[pnum])
  1631. {
  1632. request_module("md-personality-%d", pnum);
  1633. }
  1634. #endif
  1635. /*
  1636. * Drop all container device buffers, from now on
  1637. * the only valid external interface is through the md
  1638. * device.
  1639. * Also find largest hardsector size
  1640. */
  1641. ITERATE_RDEV(mddev,rdev,tmp) {
  1642. if (rdev->faulty)
  1643. continue;
  1644. sync_blockdev(rdev->bdev);
  1645. invalidate_bdev(rdev->bdev, 0);
  1646. }
  1647. md_probe(mddev->unit, NULL, NULL);
  1648. disk = mddev->gendisk;
  1649. if (!disk)
  1650. return -ENOMEM;
  1651. spin_lock(&pers_lock);
  1652. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1653. spin_unlock(&pers_lock);
  1654. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1655. pnum);
  1656. return -EINVAL;
  1657. }
  1658. mddev->pers = pers[pnum];
  1659. spin_unlock(&pers_lock);
  1660. mddev->recovery = 0;
  1661. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1662. /* before we start the array running, initialise the bitmap */
  1663. err = bitmap_create(mddev);
  1664. if (err)
  1665. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1666. mdname(mddev), err);
  1667. else
  1668. err = mddev->pers->run(mddev);
  1669. if (err) {
  1670. printk(KERN_ERR "md: pers->run() failed ...\n");
  1671. module_put(mddev->pers->owner);
  1672. mddev->pers = NULL;
  1673. bitmap_destroy(mddev);
  1674. return err;
  1675. }
  1676. atomic_set(&mddev->writes_pending,0);
  1677. mddev->safemode = 0;
  1678. mddev->safemode_timer.function = md_safemode_timeout;
  1679. mddev->safemode_timer.data = (unsigned long) mddev;
  1680. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1681. mddev->in_sync = 1;
  1682. ITERATE_RDEV(mddev,rdev,tmp)
  1683. if (rdev->raid_disk >= 0) {
  1684. char nm[20];
  1685. sprintf(nm, "rd%d", rdev->raid_disk);
  1686. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1687. }
  1688. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1689. md_wakeup_thread(mddev->thread);
  1690. if (mddev->sb_dirty)
  1691. md_update_sb(mddev);
  1692. set_capacity(disk, mddev->array_size<<1);
  1693. /* If we call blk_queue_make_request here, it will
  1694. * re-initialise max_sectors etc which may have been
  1695. * refined inside -> run. So just set the bits we need to set.
  1696. * Most initialisation happended when we called
  1697. * blk_queue_make_request(..., md_fail_request)
  1698. * earlier.
  1699. */
  1700. mddev->queue->queuedata = mddev;
  1701. mddev->queue->make_request_fn = mddev->pers->make_request;
  1702. mddev->changed = 1;
  1703. return 0;
  1704. }
  1705. static int restart_array(mddev_t *mddev)
  1706. {
  1707. struct gendisk *disk = mddev->gendisk;
  1708. int err;
  1709. /*
  1710. * Complain if it has no devices
  1711. */
  1712. err = -ENXIO;
  1713. if (list_empty(&mddev->disks))
  1714. goto out;
  1715. if (mddev->pers) {
  1716. err = -EBUSY;
  1717. if (!mddev->ro)
  1718. goto out;
  1719. mddev->safemode = 0;
  1720. mddev->ro = 0;
  1721. set_disk_ro(disk, 0);
  1722. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1723. mdname(mddev));
  1724. /*
  1725. * Kick recovery or resync if necessary
  1726. */
  1727. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1728. md_wakeup_thread(mddev->thread);
  1729. err = 0;
  1730. } else {
  1731. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1732. mdname(mddev));
  1733. err = -EINVAL;
  1734. }
  1735. out:
  1736. return err;
  1737. }
  1738. static int do_md_stop(mddev_t * mddev, int ro)
  1739. {
  1740. int err = 0;
  1741. struct gendisk *disk = mddev->gendisk;
  1742. if (mddev->pers) {
  1743. if (atomic_read(&mddev->active)>2) {
  1744. printk("md: %s still in use.\n",mdname(mddev));
  1745. return -EBUSY;
  1746. }
  1747. if (mddev->sync_thread) {
  1748. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1749. md_unregister_thread(mddev->sync_thread);
  1750. mddev->sync_thread = NULL;
  1751. }
  1752. del_timer_sync(&mddev->safemode_timer);
  1753. invalidate_partition(disk, 0);
  1754. if (ro) {
  1755. err = -ENXIO;
  1756. if (mddev->ro)
  1757. goto out;
  1758. mddev->ro = 1;
  1759. } else {
  1760. bitmap_flush(mddev);
  1761. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1762. if (mddev->ro)
  1763. set_disk_ro(disk, 0);
  1764. blk_queue_make_request(mddev->queue, md_fail_request);
  1765. mddev->pers->stop(mddev);
  1766. module_put(mddev->pers->owner);
  1767. mddev->pers = NULL;
  1768. if (mddev->ro)
  1769. mddev->ro = 0;
  1770. }
  1771. if (!mddev->in_sync) {
  1772. /* mark array as shutdown cleanly */
  1773. mddev->in_sync = 1;
  1774. md_update_sb(mddev);
  1775. }
  1776. if (ro)
  1777. set_disk_ro(disk, 1);
  1778. }
  1779. bitmap_destroy(mddev);
  1780. if (mddev->bitmap_file) {
  1781. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1782. fput(mddev->bitmap_file);
  1783. mddev->bitmap_file = NULL;
  1784. }
  1785. mddev->bitmap_offset = 0;
  1786. /*
  1787. * Free resources if final stop
  1788. */
  1789. if (!ro) {
  1790. mdk_rdev_t *rdev;
  1791. struct list_head *tmp;
  1792. struct gendisk *disk;
  1793. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1794. ITERATE_RDEV(mddev,rdev,tmp)
  1795. if (rdev->raid_disk >= 0) {
  1796. char nm[20];
  1797. sprintf(nm, "rd%d", rdev->raid_disk);
  1798. sysfs_remove_link(&mddev->kobj, nm);
  1799. }
  1800. export_array(mddev);
  1801. mddev->array_size = 0;
  1802. disk = mddev->gendisk;
  1803. if (disk)
  1804. set_capacity(disk, 0);
  1805. mddev->changed = 1;
  1806. } else
  1807. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1808. mdname(mddev));
  1809. err = 0;
  1810. out:
  1811. return err;
  1812. }
  1813. static void autorun_array(mddev_t *mddev)
  1814. {
  1815. mdk_rdev_t *rdev;
  1816. struct list_head *tmp;
  1817. int err;
  1818. if (list_empty(&mddev->disks))
  1819. return;
  1820. printk(KERN_INFO "md: running: ");
  1821. ITERATE_RDEV(mddev,rdev,tmp) {
  1822. char b[BDEVNAME_SIZE];
  1823. printk("<%s>", bdevname(rdev->bdev,b));
  1824. }
  1825. printk("\n");
  1826. err = do_md_run (mddev);
  1827. if (err) {
  1828. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1829. do_md_stop (mddev, 0);
  1830. }
  1831. }
  1832. /*
  1833. * lets try to run arrays based on all disks that have arrived
  1834. * until now. (those are in pending_raid_disks)
  1835. *
  1836. * the method: pick the first pending disk, collect all disks with
  1837. * the same UUID, remove all from the pending list and put them into
  1838. * the 'same_array' list. Then order this list based on superblock
  1839. * update time (freshest comes first), kick out 'old' disks and
  1840. * compare superblocks. If everything's fine then run it.
  1841. *
  1842. * If "unit" is allocated, then bump its reference count
  1843. */
  1844. static void autorun_devices(int part)
  1845. {
  1846. struct list_head candidates;
  1847. struct list_head *tmp;
  1848. mdk_rdev_t *rdev0, *rdev;
  1849. mddev_t *mddev;
  1850. char b[BDEVNAME_SIZE];
  1851. printk(KERN_INFO "md: autorun ...\n");
  1852. while (!list_empty(&pending_raid_disks)) {
  1853. dev_t dev;
  1854. rdev0 = list_entry(pending_raid_disks.next,
  1855. mdk_rdev_t, same_set);
  1856. printk(KERN_INFO "md: considering %s ...\n",
  1857. bdevname(rdev0->bdev,b));
  1858. INIT_LIST_HEAD(&candidates);
  1859. ITERATE_RDEV_PENDING(rdev,tmp)
  1860. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1861. printk(KERN_INFO "md: adding %s ...\n",
  1862. bdevname(rdev->bdev,b));
  1863. list_move(&rdev->same_set, &candidates);
  1864. }
  1865. /*
  1866. * now we have a set of devices, with all of them having
  1867. * mostly sane superblocks. It's time to allocate the
  1868. * mddev.
  1869. */
  1870. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1871. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1872. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1873. break;
  1874. }
  1875. if (part)
  1876. dev = MKDEV(mdp_major,
  1877. rdev0->preferred_minor << MdpMinorShift);
  1878. else
  1879. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1880. md_probe(dev, NULL, NULL);
  1881. mddev = mddev_find(dev);
  1882. if (!mddev) {
  1883. printk(KERN_ERR
  1884. "md: cannot allocate memory for md drive.\n");
  1885. break;
  1886. }
  1887. if (mddev_lock(mddev))
  1888. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1889. mdname(mddev));
  1890. else if (mddev->raid_disks || mddev->major_version
  1891. || !list_empty(&mddev->disks)) {
  1892. printk(KERN_WARNING
  1893. "md: %s already running, cannot run %s\n",
  1894. mdname(mddev), bdevname(rdev0->bdev,b));
  1895. mddev_unlock(mddev);
  1896. } else {
  1897. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1898. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1899. list_del_init(&rdev->same_set);
  1900. if (bind_rdev_to_array(rdev, mddev))
  1901. export_rdev(rdev);
  1902. }
  1903. autorun_array(mddev);
  1904. mddev_unlock(mddev);
  1905. }
  1906. /* on success, candidates will be empty, on error
  1907. * it won't...
  1908. */
  1909. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1910. export_rdev(rdev);
  1911. mddev_put(mddev);
  1912. }
  1913. printk(KERN_INFO "md: ... autorun DONE.\n");
  1914. }
  1915. /*
  1916. * import RAID devices based on one partition
  1917. * if possible, the array gets run as well.
  1918. */
  1919. static int autostart_array(dev_t startdev)
  1920. {
  1921. char b[BDEVNAME_SIZE];
  1922. int err = -EINVAL, i;
  1923. mdp_super_t *sb = NULL;
  1924. mdk_rdev_t *start_rdev = NULL, *rdev;
  1925. start_rdev = md_import_device(startdev, 0, 0);
  1926. if (IS_ERR(start_rdev))
  1927. return err;
  1928. /* NOTE: this can only work for 0.90.0 superblocks */
  1929. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1930. if (sb->major_version != 0 ||
  1931. sb->minor_version != 90 ) {
  1932. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1933. export_rdev(start_rdev);
  1934. return err;
  1935. }
  1936. if (start_rdev->faulty) {
  1937. printk(KERN_WARNING
  1938. "md: can not autostart based on faulty %s!\n",
  1939. bdevname(start_rdev->bdev,b));
  1940. export_rdev(start_rdev);
  1941. return err;
  1942. }
  1943. list_add(&start_rdev->same_set, &pending_raid_disks);
  1944. for (i = 0; i < MD_SB_DISKS; i++) {
  1945. mdp_disk_t *desc = sb->disks + i;
  1946. dev_t dev = MKDEV(desc->major, desc->minor);
  1947. if (!dev)
  1948. continue;
  1949. if (dev == startdev)
  1950. continue;
  1951. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1952. continue;
  1953. rdev = md_import_device(dev, 0, 0);
  1954. if (IS_ERR(rdev))
  1955. continue;
  1956. list_add(&rdev->same_set, &pending_raid_disks);
  1957. }
  1958. /*
  1959. * possibly return codes
  1960. */
  1961. autorun_devices(0);
  1962. return 0;
  1963. }
  1964. static int get_version(void __user * arg)
  1965. {
  1966. mdu_version_t ver;
  1967. ver.major = MD_MAJOR_VERSION;
  1968. ver.minor = MD_MINOR_VERSION;
  1969. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1970. if (copy_to_user(arg, &ver, sizeof(ver)))
  1971. return -EFAULT;
  1972. return 0;
  1973. }
  1974. static int get_array_info(mddev_t * mddev, void __user * arg)
  1975. {
  1976. mdu_array_info_t info;
  1977. int nr,working,active,failed,spare;
  1978. mdk_rdev_t *rdev;
  1979. struct list_head *tmp;
  1980. nr=working=active=failed=spare=0;
  1981. ITERATE_RDEV(mddev,rdev,tmp) {
  1982. nr++;
  1983. if (rdev->faulty)
  1984. failed++;
  1985. else {
  1986. working++;
  1987. if (rdev->in_sync)
  1988. active++;
  1989. else
  1990. spare++;
  1991. }
  1992. }
  1993. info.major_version = mddev->major_version;
  1994. info.minor_version = mddev->minor_version;
  1995. info.patch_version = MD_PATCHLEVEL_VERSION;
  1996. info.ctime = mddev->ctime;
  1997. info.level = mddev->level;
  1998. info.size = mddev->size;
  1999. info.nr_disks = nr;
  2000. info.raid_disks = mddev->raid_disks;
  2001. info.md_minor = mddev->md_minor;
  2002. info.not_persistent= !mddev->persistent;
  2003. info.utime = mddev->utime;
  2004. info.state = 0;
  2005. if (mddev->in_sync)
  2006. info.state = (1<<MD_SB_CLEAN);
  2007. if (mddev->bitmap && mddev->bitmap_offset)
  2008. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2009. info.active_disks = active;
  2010. info.working_disks = working;
  2011. info.failed_disks = failed;
  2012. info.spare_disks = spare;
  2013. info.layout = mddev->layout;
  2014. info.chunk_size = mddev->chunk_size;
  2015. if (copy_to_user(arg, &info, sizeof(info)))
  2016. return -EFAULT;
  2017. return 0;
  2018. }
  2019. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2020. {
  2021. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2022. char *ptr, *buf = NULL;
  2023. int err = -ENOMEM;
  2024. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2025. if (!file)
  2026. goto out;
  2027. /* bitmap disabled, zero the first byte and copy out */
  2028. if (!mddev->bitmap || !mddev->bitmap->file) {
  2029. file->pathname[0] = '\0';
  2030. goto copy_out;
  2031. }
  2032. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2033. if (!buf)
  2034. goto out;
  2035. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2036. if (!ptr)
  2037. goto out;
  2038. strcpy(file->pathname, ptr);
  2039. copy_out:
  2040. err = 0;
  2041. if (copy_to_user(arg, file, sizeof(*file)))
  2042. err = -EFAULT;
  2043. out:
  2044. kfree(buf);
  2045. kfree(file);
  2046. return err;
  2047. }
  2048. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2049. {
  2050. mdu_disk_info_t info;
  2051. unsigned int nr;
  2052. mdk_rdev_t *rdev;
  2053. if (copy_from_user(&info, arg, sizeof(info)))
  2054. return -EFAULT;
  2055. nr = info.number;
  2056. rdev = find_rdev_nr(mddev, nr);
  2057. if (rdev) {
  2058. info.major = MAJOR(rdev->bdev->bd_dev);
  2059. info.minor = MINOR(rdev->bdev->bd_dev);
  2060. info.raid_disk = rdev->raid_disk;
  2061. info.state = 0;
  2062. if (rdev->faulty)
  2063. info.state |= (1<<MD_DISK_FAULTY);
  2064. else if (rdev->in_sync) {
  2065. info.state |= (1<<MD_DISK_ACTIVE);
  2066. info.state |= (1<<MD_DISK_SYNC);
  2067. }
  2068. if (test_bit(WriteMostly, &rdev->flags))
  2069. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2070. } else {
  2071. info.major = info.minor = 0;
  2072. info.raid_disk = -1;
  2073. info.state = (1<<MD_DISK_REMOVED);
  2074. }
  2075. if (copy_to_user(arg, &info, sizeof(info)))
  2076. return -EFAULT;
  2077. return 0;
  2078. }
  2079. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2080. {
  2081. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2082. mdk_rdev_t *rdev;
  2083. dev_t dev = MKDEV(info->major,info->minor);
  2084. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2085. return -EOVERFLOW;
  2086. if (!mddev->raid_disks) {
  2087. int err;
  2088. /* expecting a device which has a superblock */
  2089. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2090. if (IS_ERR(rdev)) {
  2091. printk(KERN_WARNING
  2092. "md: md_import_device returned %ld\n",
  2093. PTR_ERR(rdev));
  2094. return PTR_ERR(rdev);
  2095. }
  2096. if (!list_empty(&mddev->disks)) {
  2097. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2098. mdk_rdev_t, same_set);
  2099. int err = super_types[mddev->major_version]
  2100. .load_super(rdev, rdev0, mddev->minor_version);
  2101. if (err < 0) {
  2102. printk(KERN_WARNING
  2103. "md: %s has different UUID to %s\n",
  2104. bdevname(rdev->bdev,b),
  2105. bdevname(rdev0->bdev,b2));
  2106. export_rdev(rdev);
  2107. return -EINVAL;
  2108. }
  2109. }
  2110. err = bind_rdev_to_array(rdev, mddev);
  2111. if (err)
  2112. export_rdev(rdev);
  2113. return err;
  2114. }
  2115. /*
  2116. * add_new_disk can be used once the array is assembled
  2117. * to add "hot spares". They must already have a superblock
  2118. * written
  2119. */
  2120. if (mddev->pers) {
  2121. int err;
  2122. if (!mddev->pers->hot_add_disk) {
  2123. printk(KERN_WARNING
  2124. "%s: personality does not support diskops!\n",
  2125. mdname(mddev));
  2126. return -EINVAL;
  2127. }
  2128. if (mddev->persistent)
  2129. rdev = md_import_device(dev, mddev->major_version,
  2130. mddev->minor_version);
  2131. else
  2132. rdev = md_import_device(dev, -1, -1);
  2133. if (IS_ERR(rdev)) {
  2134. printk(KERN_WARNING
  2135. "md: md_import_device returned %ld\n",
  2136. PTR_ERR(rdev));
  2137. return PTR_ERR(rdev);
  2138. }
  2139. /* set save_raid_disk if appropriate */
  2140. if (!mddev->persistent) {
  2141. if (info->state & (1<<MD_DISK_SYNC) &&
  2142. info->raid_disk < mddev->raid_disks)
  2143. rdev->raid_disk = info->raid_disk;
  2144. else
  2145. rdev->raid_disk = -1;
  2146. } else
  2147. super_types[mddev->major_version].
  2148. validate_super(mddev, rdev);
  2149. rdev->saved_raid_disk = rdev->raid_disk;
  2150. rdev->in_sync = 0; /* just to be sure */
  2151. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2152. set_bit(WriteMostly, &rdev->flags);
  2153. rdev->raid_disk = -1;
  2154. err = bind_rdev_to_array(rdev, mddev);
  2155. if (err)
  2156. export_rdev(rdev);
  2157. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2158. md_wakeup_thread(mddev->thread);
  2159. return err;
  2160. }
  2161. /* otherwise, add_new_disk is only allowed
  2162. * for major_version==0 superblocks
  2163. */
  2164. if (mddev->major_version != 0) {
  2165. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2166. mdname(mddev));
  2167. return -EINVAL;
  2168. }
  2169. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2170. int err;
  2171. rdev = md_import_device (dev, -1, 0);
  2172. if (IS_ERR(rdev)) {
  2173. printk(KERN_WARNING
  2174. "md: error, md_import_device() returned %ld\n",
  2175. PTR_ERR(rdev));
  2176. return PTR_ERR(rdev);
  2177. }
  2178. rdev->desc_nr = info->number;
  2179. if (info->raid_disk < mddev->raid_disks)
  2180. rdev->raid_disk = info->raid_disk;
  2181. else
  2182. rdev->raid_disk = -1;
  2183. rdev->faulty = 0;
  2184. if (rdev->raid_disk < mddev->raid_disks)
  2185. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  2186. else
  2187. rdev->in_sync = 0;
  2188. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2189. set_bit(WriteMostly, &rdev->flags);
  2190. err = bind_rdev_to_array(rdev, mddev);
  2191. if (err) {
  2192. export_rdev(rdev);
  2193. return err;
  2194. }
  2195. if (!mddev->persistent) {
  2196. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2197. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2198. } else
  2199. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2200. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2201. if (!mddev->size || (mddev->size > rdev->size))
  2202. mddev->size = rdev->size;
  2203. }
  2204. return 0;
  2205. }
  2206. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2207. {
  2208. char b[BDEVNAME_SIZE];
  2209. mdk_rdev_t *rdev;
  2210. if (!mddev->pers)
  2211. return -ENODEV;
  2212. rdev = find_rdev(mddev, dev);
  2213. if (!rdev)
  2214. return -ENXIO;
  2215. if (rdev->raid_disk >= 0)
  2216. goto busy;
  2217. kick_rdev_from_array(rdev);
  2218. md_update_sb(mddev);
  2219. return 0;
  2220. busy:
  2221. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2222. bdevname(rdev->bdev,b), mdname(mddev));
  2223. return -EBUSY;
  2224. }
  2225. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2226. {
  2227. char b[BDEVNAME_SIZE];
  2228. int err;
  2229. unsigned int size;
  2230. mdk_rdev_t *rdev;
  2231. if (!mddev->pers)
  2232. return -ENODEV;
  2233. if (mddev->major_version != 0) {
  2234. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2235. " version-0 superblocks.\n",
  2236. mdname(mddev));
  2237. return -EINVAL;
  2238. }
  2239. if (!mddev->pers->hot_add_disk) {
  2240. printk(KERN_WARNING
  2241. "%s: personality does not support diskops!\n",
  2242. mdname(mddev));
  2243. return -EINVAL;
  2244. }
  2245. rdev = md_import_device (dev, -1, 0);
  2246. if (IS_ERR(rdev)) {
  2247. printk(KERN_WARNING
  2248. "md: error, md_import_device() returned %ld\n",
  2249. PTR_ERR(rdev));
  2250. return -EINVAL;
  2251. }
  2252. if (mddev->persistent)
  2253. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2254. else
  2255. rdev->sb_offset =
  2256. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2257. size = calc_dev_size(rdev, mddev->chunk_size);
  2258. rdev->size = size;
  2259. if (size < mddev->size) {
  2260. printk(KERN_WARNING
  2261. "%s: disk size %llu blocks < array size %llu\n",
  2262. mdname(mddev), (unsigned long long)size,
  2263. (unsigned long long)mddev->size);
  2264. err = -ENOSPC;
  2265. goto abort_export;
  2266. }
  2267. if (rdev->faulty) {
  2268. printk(KERN_WARNING
  2269. "md: can not hot-add faulty %s disk to %s!\n",
  2270. bdevname(rdev->bdev,b), mdname(mddev));
  2271. err = -EINVAL;
  2272. goto abort_export;
  2273. }
  2274. rdev->in_sync = 0;
  2275. rdev->desc_nr = -1;
  2276. bind_rdev_to_array(rdev, mddev);
  2277. /*
  2278. * The rest should better be atomic, we can have disk failures
  2279. * noticed in interrupt contexts ...
  2280. */
  2281. if (rdev->desc_nr == mddev->max_disks) {
  2282. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2283. mdname(mddev));
  2284. err = -EBUSY;
  2285. goto abort_unbind_export;
  2286. }
  2287. rdev->raid_disk = -1;
  2288. md_update_sb(mddev);
  2289. /*
  2290. * Kick recovery, maybe this spare has to be added to the
  2291. * array immediately.
  2292. */
  2293. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2294. md_wakeup_thread(mddev->thread);
  2295. return 0;
  2296. abort_unbind_export:
  2297. unbind_rdev_from_array(rdev);
  2298. abort_export:
  2299. export_rdev(rdev);
  2300. return err;
  2301. }
  2302. /* similar to deny_write_access, but accounts for our holding a reference
  2303. * to the file ourselves */
  2304. static int deny_bitmap_write_access(struct file * file)
  2305. {
  2306. struct inode *inode = file->f_mapping->host;
  2307. spin_lock(&inode->i_lock);
  2308. if (atomic_read(&inode->i_writecount) > 1) {
  2309. spin_unlock(&inode->i_lock);
  2310. return -ETXTBSY;
  2311. }
  2312. atomic_set(&inode->i_writecount, -1);
  2313. spin_unlock(&inode->i_lock);
  2314. return 0;
  2315. }
  2316. static int set_bitmap_file(mddev_t *mddev, int fd)
  2317. {
  2318. int err;
  2319. if (mddev->pers) {
  2320. if (!mddev->pers->quiesce)
  2321. return -EBUSY;
  2322. if (mddev->recovery || mddev->sync_thread)
  2323. return -EBUSY;
  2324. /* we should be able to change the bitmap.. */
  2325. }
  2326. if (fd >= 0) {
  2327. if (mddev->bitmap)
  2328. return -EEXIST; /* cannot add when bitmap is present */
  2329. mddev->bitmap_file = fget(fd);
  2330. if (mddev->bitmap_file == NULL) {
  2331. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2332. mdname(mddev));
  2333. return -EBADF;
  2334. }
  2335. err = deny_bitmap_write_access(mddev->bitmap_file);
  2336. if (err) {
  2337. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2338. mdname(mddev));
  2339. fput(mddev->bitmap_file);
  2340. mddev->bitmap_file = NULL;
  2341. return err;
  2342. }
  2343. mddev->bitmap_offset = 0; /* file overrides offset */
  2344. } else if (mddev->bitmap == NULL)
  2345. return -ENOENT; /* cannot remove what isn't there */
  2346. err = 0;
  2347. if (mddev->pers) {
  2348. mddev->pers->quiesce(mddev, 1);
  2349. if (fd >= 0)
  2350. err = bitmap_create(mddev);
  2351. if (fd < 0 || err)
  2352. bitmap_destroy(mddev);
  2353. mddev->pers->quiesce(mddev, 0);
  2354. } else if (fd < 0) {
  2355. if (mddev->bitmap_file)
  2356. fput(mddev->bitmap_file);
  2357. mddev->bitmap_file = NULL;
  2358. }
  2359. return err;
  2360. }
  2361. /*
  2362. * set_array_info is used two different ways
  2363. * The original usage is when creating a new array.
  2364. * In this usage, raid_disks is > 0 and it together with
  2365. * level, size, not_persistent,layout,chunksize determine the
  2366. * shape of the array.
  2367. * This will always create an array with a type-0.90.0 superblock.
  2368. * The newer usage is when assembling an array.
  2369. * In this case raid_disks will be 0, and the major_version field is
  2370. * use to determine which style super-blocks are to be found on the devices.
  2371. * The minor and patch _version numbers are also kept incase the
  2372. * super_block handler wishes to interpret them.
  2373. */
  2374. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2375. {
  2376. if (info->raid_disks == 0) {
  2377. /* just setting version number for superblock loading */
  2378. if (info->major_version < 0 ||
  2379. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2380. super_types[info->major_version].name == NULL) {
  2381. /* maybe try to auto-load a module? */
  2382. printk(KERN_INFO
  2383. "md: superblock version %d not known\n",
  2384. info->major_version);
  2385. return -EINVAL;
  2386. }
  2387. mddev->major_version = info->major_version;
  2388. mddev->minor_version = info->minor_version;
  2389. mddev->patch_version = info->patch_version;
  2390. return 0;
  2391. }
  2392. mddev->major_version = MD_MAJOR_VERSION;
  2393. mddev->minor_version = MD_MINOR_VERSION;
  2394. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2395. mddev->ctime = get_seconds();
  2396. mddev->level = info->level;
  2397. mddev->size = info->size;
  2398. mddev->raid_disks = info->raid_disks;
  2399. /* don't set md_minor, it is determined by which /dev/md* was
  2400. * openned
  2401. */
  2402. if (info->state & (1<<MD_SB_CLEAN))
  2403. mddev->recovery_cp = MaxSector;
  2404. else
  2405. mddev->recovery_cp = 0;
  2406. mddev->persistent = ! info->not_persistent;
  2407. mddev->layout = info->layout;
  2408. mddev->chunk_size = info->chunk_size;
  2409. mddev->max_disks = MD_SB_DISKS;
  2410. mddev->sb_dirty = 1;
  2411. /*
  2412. * Generate a 128 bit UUID
  2413. */
  2414. get_random_bytes(mddev->uuid, 16);
  2415. return 0;
  2416. }
  2417. /*
  2418. * update_array_info is used to change the configuration of an
  2419. * on-line array.
  2420. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2421. * fields in the info are checked against the array.
  2422. * Any differences that cannot be handled will cause an error.
  2423. * Normally, only one change can be managed at a time.
  2424. */
  2425. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2426. {
  2427. int rv = 0;
  2428. int cnt = 0;
  2429. int state = 0;
  2430. /* calculate expected state,ignoring low bits */
  2431. if (mddev->bitmap && mddev->bitmap_offset)
  2432. state |= (1 << MD_SB_BITMAP_PRESENT);
  2433. if (mddev->major_version != info->major_version ||
  2434. mddev->minor_version != info->minor_version ||
  2435. /* mddev->patch_version != info->patch_version || */
  2436. mddev->ctime != info->ctime ||
  2437. mddev->level != info->level ||
  2438. /* mddev->layout != info->layout || */
  2439. !mddev->persistent != info->not_persistent||
  2440. mddev->chunk_size != info->chunk_size ||
  2441. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2442. ((state^info->state) & 0xfffffe00)
  2443. )
  2444. return -EINVAL;
  2445. /* Check there is only one change */
  2446. if (mddev->size != info->size) cnt++;
  2447. if (mddev->raid_disks != info->raid_disks) cnt++;
  2448. if (mddev->layout != info->layout) cnt++;
  2449. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2450. if (cnt == 0) return 0;
  2451. if (cnt > 1) return -EINVAL;
  2452. if (mddev->layout != info->layout) {
  2453. /* Change layout
  2454. * we don't need to do anything at the md level, the
  2455. * personality will take care of it all.
  2456. */
  2457. if (mddev->pers->reconfig == NULL)
  2458. return -EINVAL;
  2459. else
  2460. return mddev->pers->reconfig(mddev, info->layout, -1);
  2461. }
  2462. if (mddev->size != info->size) {
  2463. mdk_rdev_t * rdev;
  2464. struct list_head *tmp;
  2465. if (mddev->pers->resize == NULL)
  2466. return -EINVAL;
  2467. /* The "size" is the amount of each device that is used.
  2468. * This can only make sense for arrays with redundancy.
  2469. * linear and raid0 always use whatever space is available
  2470. * We can only consider changing the size if no resync
  2471. * or reconstruction is happening, and if the new size
  2472. * is acceptable. It must fit before the sb_offset or,
  2473. * if that is <data_offset, it must fit before the
  2474. * size of each device.
  2475. * If size is zero, we find the largest size that fits.
  2476. */
  2477. if (mddev->sync_thread)
  2478. return -EBUSY;
  2479. ITERATE_RDEV(mddev,rdev,tmp) {
  2480. sector_t avail;
  2481. int fit = (info->size == 0);
  2482. if (rdev->sb_offset > rdev->data_offset)
  2483. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2484. else
  2485. avail = get_capacity(rdev->bdev->bd_disk)
  2486. - rdev->data_offset;
  2487. if (fit && (info->size == 0 || info->size > avail/2))
  2488. info->size = avail/2;
  2489. if (avail < ((sector_t)info->size << 1))
  2490. return -ENOSPC;
  2491. }
  2492. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2493. if (!rv) {
  2494. struct block_device *bdev;
  2495. bdev = bdget_disk(mddev->gendisk, 0);
  2496. if (bdev) {
  2497. down(&bdev->bd_inode->i_sem);
  2498. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2499. up(&bdev->bd_inode->i_sem);
  2500. bdput(bdev);
  2501. }
  2502. }
  2503. }
  2504. if (mddev->raid_disks != info->raid_disks) {
  2505. /* change the number of raid disks */
  2506. if (mddev->pers->reshape == NULL)
  2507. return -EINVAL;
  2508. if (info->raid_disks <= 0 ||
  2509. info->raid_disks >= mddev->max_disks)
  2510. return -EINVAL;
  2511. if (mddev->sync_thread)
  2512. return -EBUSY;
  2513. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2514. if (!rv) {
  2515. struct block_device *bdev;
  2516. bdev = bdget_disk(mddev->gendisk, 0);
  2517. if (bdev) {
  2518. down(&bdev->bd_inode->i_sem);
  2519. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2520. up(&bdev->bd_inode->i_sem);
  2521. bdput(bdev);
  2522. }
  2523. }
  2524. }
  2525. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2526. if (mddev->pers->quiesce == NULL)
  2527. return -EINVAL;
  2528. if (mddev->recovery || mddev->sync_thread)
  2529. return -EBUSY;
  2530. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2531. /* add the bitmap */
  2532. if (mddev->bitmap)
  2533. return -EEXIST;
  2534. if (mddev->default_bitmap_offset == 0)
  2535. return -EINVAL;
  2536. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2537. mddev->pers->quiesce(mddev, 1);
  2538. rv = bitmap_create(mddev);
  2539. if (rv)
  2540. bitmap_destroy(mddev);
  2541. mddev->pers->quiesce(mddev, 0);
  2542. } else {
  2543. /* remove the bitmap */
  2544. if (!mddev->bitmap)
  2545. return -ENOENT;
  2546. if (mddev->bitmap->file)
  2547. return -EINVAL;
  2548. mddev->pers->quiesce(mddev, 1);
  2549. bitmap_destroy(mddev);
  2550. mddev->pers->quiesce(mddev, 0);
  2551. mddev->bitmap_offset = 0;
  2552. }
  2553. }
  2554. md_update_sb(mddev);
  2555. return rv;
  2556. }
  2557. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2558. {
  2559. mdk_rdev_t *rdev;
  2560. if (mddev->pers == NULL)
  2561. return -ENODEV;
  2562. rdev = find_rdev(mddev, dev);
  2563. if (!rdev)
  2564. return -ENODEV;
  2565. md_error(mddev, rdev);
  2566. return 0;
  2567. }
  2568. static int md_ioctl(struct inode *inode, struct file *file,
  2569. unsigned int cmd, unsigned long arg)
  2570. {
  2571. int err = 0;
  2572. void __user *argp = (void __user *)arg;
  2573. struct hd_geometry __user *loc = argp;
  2574. mddev_t *mddev = NULL;
  2575. if (!capable(CAP_SYS_ADMIN))
  2576. return -EACCES;
  2577. /*
  2578. * Commands dealing with the RAID driver but not any
  2579. * particular array:
  2580. */
  2581. switch (cmd)
  2582. {
  2583. case RAID_VERSION:
  2584. err = get_version(argp);
  2585. goto done;
  2586. case PRINT_RAID_DEBUG:
  2587. err = 0;
  2588. md_print_devices();
  2589. goto done;
  2590. #ifndef MODULE
  2591. case RAID_AUTORUN:
  2592. err = 0;
  2593. autostart_arrays(arg);
  2594. goto done;
  2595. #endif
  2596. default:;
  2597. }
  2598. /*
  2599. * Commands creating/starting a new array:
  2600. */
  2601. mddev = inode->i_bdev->bd_disk->private_data;
  2602. if (!mddev) {
  2603. BUG();
  2604. goto abort;
  2605. }
  2606. if (cmd == START_ARRAY) {
  2607. /* START_ARRAY doesn't need to lock the array as autostart_array
  2608. * does the locking, and it could even be a different array
  2609. */
  2610. static int cnt = 3;
  2611. if (cnt > 0 ) {
  2612. printk(KERN_WARNING
  2613. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2614. "This will not be supported beyond 2.6\n",
  2615. current->comm, current->pid);
  2616. cnt--;
  2617. }
  2618. err = autostart_array(new_decode_dev(arg));
  2619. if (err) {
  2620. printk(KERN_WARNING "md: autostart failed!\n");
  2621. goto abort;
  2622. }
  2623. goto done;
  2624. }
  2625. err = mddev_lock(mddev);
  2626. if (err) {
  2627. printk(KERN_INFO
  2628. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2629. err, cmd);
  2630. goto abort;
  2631. }
  2632. switch (cmd)
  2633. {
  2634. case SET_ARRAY_INFO:
  2635. {
  2636. mdu_array_info_t info;
  2637. if (!arg)
  2638. memset(&info, 0, sizeof(info));
  2639. else if (copy_from_user(&info, argp, sizeof(info))) {
  2640. err = -EFAULT;
  2641. goto abort_unlock;
  2642. }
  2643. if (mddev->pers) {
  2644. err = update_array_info(mddev, &info);
  2645. if (err) {
  2646. printk(KERN_WARNING "md: couldn't update"
  2647. " array info. %d\n", err);
  2648. goto abort_unlock;
  2649. }
  2650. goto done_unlock;
  2651. }
  2652. if (!list_empty(&mddev->disks)) {
  2653. printk(KERN_WARNING
  2654. "md: array %s already has disks!\n",
  2655. mdname(mddev));
  2656. err = -EBUSY;
  2657. goto abort_unlock;
  2658. }
  2659. if (mddev->raid_disks) {
  2660. printk(KERN_WARNING
  2661. "md: array %s already initialised!\n",
  2662. mdname(mddev));
  2663. err = -EBUSY;
  2664. goto abort_unlock;
  2665. }
  2666. err = set_array_info(mddev, &info);
  2667. if (err) {
  2668. printk(KERN_WARNING "md: couldn't set"
  2669. " array info. %d\n", err);
  2670. goto abort_unlock;
  2671. }
  2672. }
  2673. goto done_unlock;
  2674. default:;
  2675. }
  2676. /*
  2677. * Commands querying/configuring an existing array:
  2678. */
  2679. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2680. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2681. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2682. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2683. err = -ENODEV;
  2684. goto abort_unlock;
  2685. }
  2686. /*
  2687. * Commands even a read-only array can execute:
  2688. */
  2689. switch (cmd)
  2690. {
  2691. case GET_ARRAY_INFO:
  2692. err = get_array_info(mddev, argp);
  2693. goto done_unlock;
  2694. case GET_BITMAP_FILE:
  2695. err = get_bitmap_file(mddev, argp);
  2696. goto done_unlock;
  2697. case GET_DISK_INFO:
  2698. err = get_disk_info(mddev, argp);
  2699. goto done_unlock;
  2700. case RESTART_ARRAY_RW:
  2701. err = restart_array(mddev);
  2702. goto done_unlock;
  2703. case STOP_ARRAY:
  2704. err = do_md_stop (mddev, 0);
  2705. goto done_unlock;
  2706. case STOP_ARRAY_RO:
  2707. err = do_md_stop (mddev, 1);
  2708. goto done_unlock;
  2709. /*
  2710. * We have a problem here : there is no easy way to give a CHS
  2711. * virtual geometry. We currently pretend that we have a 2 heads
  2712. * 4 sectors (with a BIG number of cylinders...). This drives
  2713. * dosfs just mad... ;-)
  2714. */
  2715. case HDIO_GETGEO:
  2716. if (!loc) {
  2717. err = -EINVAL;
  2718. goto abort_unlock;
  2719. }
  2720. err = put_user (2, (char __user *) &loc->heads);
  2721. if (err)
  2722. goto abort_unlock;
  2723. err = put_user (4, (char __user *) &loc->sectors);
  2724. if (err)
  2725. goto abort_unlock;
  2726. err = put_user(get_capacity(mddev->gendisk)/8,
  2727. (short __user *) &loc->cylinders);
  2728. if (err)
  2729. goto abort_unlock;
  2730. err = put_user (get_start_sect(inode->i_bdev),
  2731. (long __user *) &loc->start);
  2732. goto done_unlock;
  2733. }
  2734. /*
  2735. * The remaining ioctls are changing the state of the
  2736. * superblock, so we do not allow read-only arrays
  2737. * here:
  2738. */
  2739. if (mddev->ro) {
  2740. err = -EROFS;
  2741. goto abort_unlock;
  2742. }
  2743. switch (cmd)
  2744. {
  2745. case ADD_NEW_DISK:
  2746. {
  2747. mdu_disk_info_t info;
  2748. if (copy_from_user(&info, argp, sizeof(info)))
  2749. err = -EFAULT;
  2750. else
  2751. err = add_new_disk(mddev, &info);
  2752. goto done_unlock;
  2753. }
  2754. case HOT_REMOVE_DISK:
  2755. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2756. goto done_unlock;
  2757. case HOT_ADD_DISK:
  2758. err = hot_add_disk(mddev, new_decode_dev(arg));
  2759. goto done_unlock;
  2760. case SET_DISK_FAULTY:
  2761. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2762. goto done_unlock;
  2763. case RUN_ARRAY:
  2764. err = do_md_run (mddev);
  2765. goto done_unlock;
  2766. case SET_BITMAP_FILE:
  2767. err = set_bitmap_file(mddev, (int)arg);
  2768. goto done_unlock;
  2769. default:
  2770. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2771. printk(KERN_WARNING "md: %s(pid %d) used"
  2772. " obsolete MD ioctl, upgrade your"
  2773. " software to use new ictls.\n",
  2774. current->comm, current->pid);
  2775. err = -EINVAL;
  2776. goto abort_unlock;
  2777. }
  2778. done_unlock:
  2779. abort_unlock:
  2780. mddev_unlock(mddev);
  2781. return err;
  2782. done:
  2783. if (err)
  2784. MD_BUG();
  2785. abort:
  2786. return err;
  2787. }
  2788. static int md_open(struct inode *inode, struct file *file)
  2789. {
  2790. /*
  2791. * Succeed if we can lock the mddev, which confirms that
  2792. * it isn't being stopped right now.
  2793. */
  2794. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2795. int err;
  2796. if ((err = mddev_lock(mddev)))
  2797. goto out;
  2798. err = 0;
  2799. mddev_get(mddev);
  2800. mddev_unlock(mddev);
  2801. check_disk_change(inode->i_bdev);
  2802. out:
  2803. return err;
  2804. }
  2805. static int md_release(struct inode *inode, struct file * file)
  2806. {
  2807. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2808. if (!mddev)
  2809. BUG();
  2810. mddev_put(mddev);
  2811. return 0;
  2812. }
  2813. static int md_media_changed(struct gendisk *disk)
  2814. {
  2815. mddev_t *mddev = disk->private_data;
  2816. return mddev->changed;
  2817. }
  2818. static int md_revalidate(struct gendisk *disk)
  2819. {
  2820. mddev_t *mddev = disk->private_data;
  2821. mddev->changed = 0;
  2822. return 0;
  2823. }
  2824. static struct block_device_operations md_fops =
  2825. {
  2826. .owner = THIS_MODULE,
  2827. .open = md_open,
  2828. .release = md_release,
  2829. .ioctl = md_ioctl,
  2830. .media_changed = md_media_changed,
  2831. .revalidate_disk= md_revalidate,
  2832. };
  2833. static int md_thread(void * arg)
  2834. {
  2835. mdk_thread_t *thread = arg;
  2836. /*
  2837. * md_thread is a 'system-thread', it's priority should be very
  2838. * high. We avoid resource deadlocks individually in each
  2839. * raid personality. (RAID5 does preallocation) We also use RR and
  2840. * the very same RT priority as kswapd, thus we will never get
  2841. * into a priority inversion deadlock.
  2842. *
  2843. * we definitely have to have equal or higher priority than
  2844. * bdflush, otherwise bdflush will deadlock if there are too
  2845. * many dirty RAID5 blocks.
  2846. */
  2847. allow_signal(SIGKILL);
  2848. complete(thread->event);
  2849. while (!kthread_should_stop()) {
  2850. void (*run)(mddev_t *);
  2851. wait_event_interruptible_timeout(thread->wqueue,
  2852. test_bit(THREAD_WAKEUP, &thread->flags)
  2853. || kthread_should_stop(),
  2854. thread->timeout);
  2855. try_to_freeze();
  2856. clear_bit(THREAD_WAKEUP, &thread->flags);
  2857. run = thread->run;
  2858. if (run)
  2859. run(thread->mddev);
  2860. }
  2861. return 0;
  2862. }
  2863. void md_wakeup_thread(mdk_thread_t *thread)
  2864. {
  2865. if (thread) {
  2866. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2867. set_bit(THREAD_WAKEUP, &thread->flags);
  2868. wake_up(&thread->wqueue);
  2869. }
  2870. }
  2871. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2872. const char *name)
  2873. {
  2874. mdk_thread_t *thread;
  2875. struct completion event;
  2876. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2877. if (!thread)
  2878. return NULL;
  2879. memset(thread, 0, sizeof(mdk_thread_t));
  2880. init_waitqueue_head(&thread->wqueue);
  2881. init_completion(&event);
  2882. thread->event = &event;
  2883. thread->run = run;
  2884. thread->mddev = mddev;
  2885. thread->name = name;
  2886. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2887. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  2888. if (IS_ERR(thread->tsk)) {
  2889. kfree(thread);
  2890. return NULL;
  2891. }
  2892. wait_for_completion(&event);
  2893. return thread;
  2894. }
  2895. void md_unregister_thread(mdk_thread_t *thread)
  2896. {
  2897. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2898. kthread_stop(thread->tsk);
  2899. kfree(thread);
  2900. }
  2901. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2902. {
  2903. if (!mddev) {
  2904. MD_BUG();
  2905. return;
  2906. }
  2907. if (!rdev || rdev->faulty)
  2908. return;
  2909. /*
  2910. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2911. mdname(mddev),
  2912. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2913. __builtin_return_address(0),__builtin_return_address(1),
  2914. __builtin_return_address(2),__builtin_return_address(3));
  2915. */
  2916. if (!mddev->pers->error_handler)
  2917. return;
  2918. mddev->pers->error_handler(mddev,rdev);
  2919. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2920. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2921. md_wakeup_thread(mddev->thread);
  2922. }
  2923. /* seq_file implementation /proc/mdstat */
  2924. static void status_unused(struct seq_file *seq)
  2925. {
  2926. int i = 0;
  2927. mdk_rdev_t *rdev;
  2928. struct list_head *tmp;
  2929. seq_printf(seq, "unused devices: ");
  2930. ITERATE_RDEV_PENDING(rdev,tmp) {
  2931. char b[BDEVNAME_SIZE];
  2932. i++;
  2933. seq_printf(seq, "%s ",
  2934. bdevname(rdev->bdev,b));
  2935. }
  2936. if (!i)
  2937. seq_printf(seq, "<none>");
  2938. seq_printf(seq, "\n");
  2939. }
  2940. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2941. {
  2942. unsigned long max_blocks, resync, res, dt, db, rt;
  2943. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2944. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2945. max_blocks = mddev->resync_max_sectors >> 1;
  2946. else
  2947. max_blocks = mddev->size;
  2948. /*
  2949. * Should not happen.
  2950. */
  2951. if (!max_blocks) {
  2952. MD_BUG();
  2953. return;
  2954. }
  2955. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2956. {
  2957. int i, x = res/50, y = 20-x;
  2958. seq_printf(seq, "[");
  2959. for (i = 0; i < x; i++)
  2960. seq_printf(seq, "=");
  2961. seq_printf(seq, ">");
  2962. for (i = 0; i < y; i++)
  2963. seq_printf(seq, ".");
  2964. seq_printf(seq, "] ");
  2965. }
  2966. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2967. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2968. "resync" : "recovery"),
  2969. res/10, res % 10, resync, max_blocks);
  2970. /*
  2971. * We do not want to overflow, so the order of operands and
  2972. * the * 100 / 100 trick are important. We do a +1 to be
  2973. * safe against division by zero. We only estimate anyway.
  2974. *
  2975. * dt: time from mark until now
  2976. * db: blocks written from mark until now
  2977. * rt: remaining time
  2978. */
  2979. dt = ((jiffies - mddev->resync_mark) / HZ);
  2980. if (!dt) dt++;
  2981. db = resync - (mddev->resync_mark_cnt/2);
  2982. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2983. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2984. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2985. }
  2986. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2987. {
  2988. struct list_head *tmp;
  2989. loff_t l = *pos;
  2990. mddev_t *mddev;
  2991. if (l >= 0x10000)
  2992. return NULL;
  2993. if (!l--)
  2994. /* header */
  2995. return (void*)1;
  2996. spin_lock(&all_mddevs_lock);
  2997. list_for_each(tmp,&all_mddevs)
  2998. if (!l--) {
  2999. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3000. mddev_get(mddev);
  3001. spin_unlock(&all_mddevs_lock);
  3002. return mddev;
  3003. }
  3004. spin_unlock(&all_mddevs_lock);
  3005. if (!l--)
  3006. return (void*)2;/* tail */
  3007. return NULL;
  3008. }
  3009. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3010. {
  3011. struct list_head *tmp;
  3012. mddev_t *next_mddev, *mddev = v;
  3013. ++*pos;
  3014. if (v == (void*)2)
  3015. return NULL;
  3016. spin_lock(&all_mddevs_lock);
  3017. if (v == (void*)1)
  3018. tmp = all_mddevs.next;
  3019. else
  3020. tmp = mddev->all_mddevs.next;
  3021. if (tmp != &all_mddevs)
  3022. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3023. else {
  3024. next_mddev = (void*)2;
  3025. *pos = 0x10000;
  3026. }
  3027. spin_unlock(&all_mddevs_lock);
  3028. if (v != (void*)1)
  3029. mddev_put(mddev);
  3030. return next_mddev;
  3031. }
  3032. static void md_seq_stop(struct seq_file *seq, void *v)
  3033. {
  3034. mddev_t *mddev = v;
  3035. if (mddev && v != (void*)1 && v != (void*)2)
  3036. mddev_put(mddev);
  3037. }
  3038. static int md_seq_show(struct seq_file *seq, void *v)
  3039. {
  3040. mddev_t *mddev = v;
  3041. sector_t size;
  3042. struct list_head *tmp2;
  3043. mdk_rdev_t *rdev;
  3044. int i;
  3045. struct bitmap *bitmap;
  3046. if (v == (void*)1) {
  3047. seq_printf(seq, "Personalities : ");
  3048. spin_lock(&pers_lock);
  3049. for (i = 0; i < MAX_PERSONALITY; i++)
  3050. if (pers[i])
  3051. seq_printf(seq, "[%s] ", pers[i]->name);
  3052. spin_unlock(&pers_lock);
  3053. seq_printf(seq, "\n");
  3054. return 0;
  3055. }
  3056. if (v == (void*)2) {
  3057. status_unused(seq);
  3058. return 0;
  3059. }
  3060. if (mddev_lock(mddev)!=0)
  3061. return -EINTR;
  3062. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3063. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3064. mddev->pers ? "" : "in");
  3065. if (mddev->pers) {
  3066. if (mddev->ro)
  3067. seq_printf(seq, " (read-only)");
  3068. seq_printf(seq, " %s", mddev->pers->name);
  3069. }
  3070. size = 0;
  3071. ITERATE_RDEV(mddev,rdev,tmp2) {
  3072. char b[BDEVNAME_SIZE];
  3073. seq_printf(seq, " %s[%d]",
  3074. bdevname(rdev->bdev,b), rdev->desc_nr);
  3075. if (test_bit(WriteMostly, &rdev->flags))
  3076. seq_printf(seq, "(W)");
  3077. if (rdev->faulty) {
  3078. seq_printf(seq, "(F)");
  3079. continue;
  3080. } else if (rdev->raid_disk < 0)
  3081. seq_printf(seq, "(S)"); /* spare */
  3082. size += rdev->size;
  3083. }
  3084. if (!list_empty(&mddev->disks)) {
  3085. if (mddev->pers)
  3086. seq_printf(seq, "\n %llu blocks",
  3087. (unsigned long long)mddev->array_size);
  3088. else
  3089. seq_printf(seq, "\n %llu blocks",
  3090. (unsigned long long)size);
  3091. }
  3092. if (mddev->persistent) {
  3093. if (mddev->major_version != 0 ||
  3094. mddev->minor_version != 90) {
  3095. seq_printf(seq," super %d.%d",
  3096. mddev->major_version,
  3097. mddev->minor_version);
  3098. }
  3099. } else
  3100. seq_printf(seq, " super non-persistent");
  3101. if (mddev->pers) {
  3102. mddev->pers->status (seq, mddev);
  3103. seq_printf(seq, "\n ");
  3104. if (mddev->curr_resync > 2) {
  3105. status_resync (seq, mddev);
  3106. seq_printf(seq, "\n ");
  3107. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3108. seq_printf(seq, " resync=DELAYED\n ");
  3109. } else
  3110. seq_printf(seq, "\n ");
  3111. if ((bitmap = mddev->bitmap)) {
  3112. unsigned long chunk_kb;
  3113. unsigned long flags;
  3114. spin_lock_irqsave(&bitmap->lock, flags);
  3115. chunk_kb = bitmap->chunksize >> 10;
  3116. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3117. "%lu%s chunk",
  3118. bitmap->pages - bitmap->missing_pages,
  3119. bitmap->pages,
  3120. (bitmap->pages - bitmap->missing_pages)
  3121. << (PAGE_SHIFT - 10),
  3122. chunk_kb ? chunk_kb : bitmap->chunksize,
  3123. chunk_kb ? "KB" : "B");
  3124. if (bitmap->file) {
  3125. seq_printf(seq, ", file: ");
  3126. seq_path(seq, bitmap->file->f_vfsmnt,
  3127. bitmap->file->f_dentry," \t\n");
  3128. }
  3129. seq_printf(seq, "\n");
  3130. spin_unlock_irqrestore(&bitmap->lock, flags);
  3131. }
  3132. seq_printf(seq, "\n");
  3133. }
  3134. mddev_unlock(mddev);
  3135. return 0;
  3136. }
  3137. static struct seq_operations md_seq_ops = {
  3138. .start = md_seq_start,
  3139. .next = md_seq_next,
  3140. .stop = md_seq_stop,
  3141. .show = md_seq_show,
  3142. };
  3143. static int md_seq_open(struct inode *inode, struct file *file)
  3144. {
  3145. int error;
  3146. error = seq_open(file, &md_seq_ops);
  3147. return error;
  3148. }
  3149. static struct file_operations md_seq_fops = {
  3150. .open = md_seq_open,
  3151. .read = seq_read,
  3152. .llseek = seq_lseek,
  3153. .release = seq_release,
  3154. };
  3155. int register_md_personality(int pnum, mdk_personality_t *p)
  3156. {
  3157. if (pnum >= MAX_PERSONALITY) {
  3158. printk(KERN_ERR
  3159. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3160. p->name, pnum, MAX_PERSONALITY-1);
  3161. return -EINVAL;
  3162. }
  3163. spin_lock(&pers_lock);
  3164. if (pers[pnum]) {
  3165. spin_unlock(&pers_lock);
  3166. return -EBUSY;
  3167. }
  3168. pers[pnum] = p;
  3169. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3170. spin_unlock(&pers_lock);
  3171. return 0;
  3172. }
  3173. int unregister_md_personality(int pnum)
  3174. {
  3175. if (pnum >= MAX_PERSONALITY)
  3176. return -EINVAL;
  3177. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3178. spin_lock(&pers_lock);
  3179. pers[pnum] = NULL;
  3180. spin_unlock(&pers_lock);
  3181. return 0;
  3182. }
  3183. static int is_mddev_idle(mddev_t *mddev)
  3184. {
  3185. mdk_rdev_t * rdev;
  3186. struct list_head *tmp;
  3187. int idle;
  3188. unsigned long curr_events;
  3189. idle = 1;
  3190. ITERATE_RDEV(mddev,rdev,tmp) {
  3191. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3192. curr_events = disk_stat_read(disk, sectors[0]) +
  3193. disk_stat_read(disk, sectors[1]) -
  3194. atomic_read(&disk->sync_io);
  3195. /* Allow some slack between valud of curr_events and last_events,
  3196. * as there are some uninteresting races.
  3197. * Note: the following is an unsigned comparison.
  3198. */
  3199. if ((curr_events - rdev->last_events + 32) > 64) {
  3200. rdev->last_events = curr_events;
  3201. idle = 0;
  3202. }
  3203. }
  3204. return idle;
  3205. }
  3206. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3207. {
  3208. /* another "blocks" (512byte) blocks have been synced */
  3209. atomic_sub(blocks, &mddev->recovery_active);
  3210. wake_up(&mddev->recovery_wait);
  3211. if (!ok) {
  3212. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3213. md_wakeup_thread(mddev->thread);
  3214. // stop recovery, signal do_sync ....
  3215. }
  3216. }
  3217. /* md_write_start(mddev, bi)
  3218. * If we need to update some array metadata (e.g. 'active' flag
  3219. * in superblock) before writing, schedule a superblock update
  3220. * and wait for it to complete.
  3221. */
  3222. void md_write_start(mddev_t *mddev, struct bio *bi)
  3223. {
  3224. if (bio_data_dir(bi) != WRITE)
  3225. return;
  3226. atomic_inc(&mddev->writes_pending);
  3227. if (mddev->in_sync) {
  3228. spin_lock(&mddev->write_lock);
  3229. if (mddev->in_sync) {
  3230. mddev->in_sync = 0;
  3231. mddev->sb_dirty = 1;
  3232. md_wakeup_thread(mddev->thread);
  3233. }
  3234. spin_unlock(&mddev->write_lock);
  3235. }
  3236. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3237. }
  3238. void md_write_end(mddev_t *mddev)
  3239. {
  3240. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3241. if (mddev->safemode == 2)
  3242. md_wakeup_thread(mddev->thread);
  3243. else
  3244. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3245. }
  3246. }
  3247. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3248. #define SYNC_MARKS 10
  3249. #define SYNC_MARK_STEP (3*HZ)
  3250. static void md_do_sync(mddev_t *mddev)
  3251. {
  3252. mddev_t *mddev2;
  3253. unsigned int currspeed = 0,
  3254. window;
  3255. sector_t max_sectors,j, io_sectors;
  3256. unsigned long mark[SYNC_MARKS];
  3257. sector_t mark_cnt[SYNC_MARKS];
  3258. int last_mark,m;
  3259. struct list_head *tmp;
  3260. sector_t last_check;
  3261. int skipped = 0;
  3262. /* just incase thread restarts... */
  3263. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3264. return;
  3265. /* we overload curr_resync somewhat here.
  3266. * 0 == not engaged in resync at all
  3267. * 2 == checking that there is no conflict with another sync
  3268. * 1 == like 2, but have yielded to allow conflicting resync to
  3269. * commense
  3270. * other == active in resync - this many blocks
  3271. *
  3272. * Before starting a resync we must have set curr_resync to
  3273. * 2, and then checked that every "conflicting" array has curr_resync
  3274. * less than ours. When we find one that is the same or higher
  3275. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3276. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3277. * This will mean we have to start checking from the beginning again.
  3278. *
  3279. */
  3280. do {
  3281. mddev->curr_resync = 2;
  3282. try_again:
  3283. if (signal_pending(current) ||
  3284. kthread_should_stop()) {
  3285. flush_signals(current);
  3286. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3287. goto skip;
  3288. }
  3289. ITERATE_MDDEV(mddev2,tmp) {
  3290. if (mddev2 == mddev)
  3291. continue;
  3292. if (mddev2->curr_resync &&
  3293. match_mddev_units(mddev,mddev2)) {
  3294. DEFINE_WAIT(wq);
  3295. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3296. /* arbitrarily yield */
  3297. mddev->curr_resync = 1;
  3298. wake_up(&resync_wait);
  3299. }
  3300. if (mddev > mddev2 && mddev->curr_resync == 1)
  3301. /* no need to wait here, we can wait the next
  3302. * time 'round when curr_resync == 2
  3303. */
  3304. continue;
  3305. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3306. if (!signal_pending(current) &&
  3307. !kthread_should_stop() &&
  3308. mddev2->curr_resync >= mddev->curr_resync) {
  3309. printk(KERN_INFO "md: delaying resync of %s"
  3310. " until %s has finished resync (they"
  3311. " share one or more physical units)\n",
  3312. mdname(mddev), mdname(mddev2));
  3313. mddev_put(mddev2);
  3314. schedule();
  3315. finish_wait(&resync_wait, &wq);
  3316. goto try_again;
  3317. }
  3318. finish_wait(&resync_wait, &wq);
  3319. }
  3320. }
  3321. } while (mddev->curr_resync < 2);
  3322. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3323. /* resync follows the size requested by the personality,
  3324. * which defaults to physical size, but can be virtual size
  3325. */
  3326. max_sectors = mddev->resync_max_sectors;
  3327. else
  3328. /* recovery follows the physical size of devices */
  3329. max_sectors = mddev->size << 1;
  3330. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3331. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3332. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3333. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3334. "(but not more than %d KB/sec) for reconstruction.\n",
  3335. sysctl_speed_limit_max);
  3336. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3337. /* we don't use the checkpoint if there's a bitmap */
  3338. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3339. j = mddev->recovery_cp;
  3340. else
  3341. j = 0;
  3342. io_sectors = 0;
  3343. for (m = 0; m < SYNC_MARKS; m++) {
  3344. mark[m] = jiffies;
  3345. mark_cnt[m] = io_sectors;
  3346. }
  3347. last_mark = 0;
  3348. mddev->resync_mark = mark[last_mark];
  3349. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3350. /*
  3351. * Tune reconstruction:
  3352. */
  3353. window = 32*(PAGE_SIZE/512);
  3354. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3355. window/2,(unsigned long long) max_sectors/2);
  3356. atomic_set(&mddev->recovery_active, 0);
  3357. init_waitqueue_head(&mddev->recovery_wait);
  3358. last_check = 0;
  3359. if (j>2) {
  3360. printk(KERN_INFO
  3361. "md: resuming recovery of %s from checkpoint.\n",
  3362. mdname(mddev));
  3363. mddev->curr_resync = j;
  3364. }
  3365. while (j < max_sectors) {
  3366. sector_t sectors;
  3367. skipped = 0;
  3368. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3369. currspeed < sysctl_speed_limit_min);
  3370. if (sectors == 0) {
  3371. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3372. goto out;
  3373. }
  3374. if (!skipped) { /* actual IO requested */
  3375. io_sectors += sectors;
  3376. atomic_add(sectors, &mddev->recovery_active);
  3377. }
  3378. j += sectors;
  3379. if (j>1) mddev->curr_resync = j;
  3380. if (last_check + window > io_sectors || j == max_sectors)
  3381. continue;
  3382. last_check = io_sectors;
  3383. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3384. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3385. break;
  3386. repeat:
  3387. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3388. /* step marks */
  3389. int next = (last_mark+1) % SYNC_MARKS;
  3390. mddev->resync_mark = mark[next];
  3391. mddev->resync_mark_cnt = mark_cnt[next];
  3392. mark[next] = jiffies;
  3393. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3394. last_mark = next;
  3395. }
  3396. if (signal_pending(current) || kthread_should_stop()) {
  3397. /*
  3398. * got a signal, exit.
  3399. */
  3400. printk(KERN_INFO
  3401. "md: md_do_sync() got signal ... exiting\n");
  3402. flush_signals(current);
  3403. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3404. goto out;
  3405. }
  3406. /*
  3407. * this loop exits only if either when we are slower than
  3408. * the 'hard' speed limit, or the system was IO-idle for
  3409. * a jiffy.
  3410. * the system might be non-idle CPU-wise, but we only care
  3411. * about not overloading the IO subsystem. (things like an
  3412. * e2fsck being done on the RAID array should execute fast)
  3413. */
  3414. mddev->queue->unplug_fn(mddev->queue);
  3415. cond_resched();
  3416. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3417. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3418. if (currspeed > sysctl_speed_limit_min) {
  3419. if ((currspeed > sysctl_speed_limit_max) ||
  3420. !is_mddev_idle(mddev)) {
  3421. msleep_interruptible(250);
  3422. goto repeat;
  3423. }
  3424. }
  3425. }
  3426. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3427. /*
  3428. * this also signals 'finished resyncing' to md_stop
  3429. */
  3430. out:
  3431. mddev->queue->unplug_fn(mddev->queue);
  3432. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3433. /* tell personality that we are finished */
  3434. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3435. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3436. mddev->curr_resync > 2 &&
  3437. mddev->curr_resync >= mddev->recovery_cp) {
  3438. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3439. printk(KERN_INFO
  3440. "md: checkpointing recovery of %s.\n",
  3441. mdname(mddev));
  3442. mddev->recovery_cp = mddev->curr_resync;
  3443. } else
  3444. mddev->recovery_cp = MaxSector;
  3445. }
  3446. skip:
  3447. mddev->curr_resync = 0;
  3448. wake_up(&resync_wait);
  3449. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3450. md_wakeup_thread(mddev->thread);
  3451. }
  3452. /*
  3453. * This routine is regularly called by all per-raid-array threads to
  3454. * deal with generic issues like resync and super-block update.
  3455. * Raid personalities that don't have a thread (linear/raid0) do not
  3456. * need this as they never do any recovery or update the superblock.
  3457. *
  3458. * It does not do any resync itself, but rather "forks" off other threads
  3459. * to do that as needed.
  3460. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3461. * "->recovery" and create a thread at ->sync_thread.
  3462. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3463. * and wakeups up this thread which will reap the thread and finish up.
  3464. * This thread also removes any faulty devices (with nr_pending == 0).
  3465. *
  3466. * The overall approach is:
  3467. * 1/ if the superblock needs updating, update it.
  3468. * 2/ If a recovery thread is running, don't do anything else.
  3469. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3470. * 4/ If there are any faulty devices, remove them.
  3471. * 5/ If array is degraded, try to add spares devices
  3472. * 6/ If array has spares or is not in-sync, start a resync thread.
  3473. */
  3474. void md_check_recovery(mddev_t *mddev)
  3475. {
  3476. mdk_rdev_t *rdev;
  3477. struct list_head *rtmp;
  3478. if (mddev->bitmap)
  3479. bitmap_daemon_work(mddev->bitmap);
  3480. if (mddev->ro)
  3481. return;
  3482. if (signal_pending(current)) {
  3483. if (mddev->pers->sync_request) {
  3484. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3485. mdname(mddev));
  3486. mddev->safemode = 2;
  3487. }
  3488. flush_signals(current);
  3489. }
  3490. if ( ! (
  3491. mddev->sb_dirty ||
  3492. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3493. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3494. (mddev->safemode == 1) ||
  3495. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3496. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3497. ))
  3498. return;
  3499. if (mddev_trylock(mddev)==0) {
  3500. int spares =0;
  3501. spin_lock(&mddev->write_lock);
  3502. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3503. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3504. mddev->in_sync = 1;
  3505. mddev->sb_dirty = 1;
  3506. }
  3507. if (mddev->safemode == 1)
  3508. mddev->safemode = 0;
  3509. spin_unlock(&mddev->write_lock);
  3510. if (mddev->sb_dirty)
  3511. md_update_sb(mddev);
  3512. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3513. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3514. /* resync/recovery still happening */
  3515. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3516. goto unlock;
  3517. }
  3518. if (mddev->sync_thread) {
  3519. /* resync has finished, collect result */
  3520. md_unregister_thread(mddev->sync_thread);
  3521. mddev->sync_thread = NULL;
  3522. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3523. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3524. /* success...*/
  3525. /* activate any spares */
  3526. mddev->pers->spare_active(mddev);
  3527. }
  3528. md_update_sb(mddev);
  3529. /* if array is no-longer degraded, then any saved_raid_disk
  3530. * information must be scrapped
  3531. */
  3532. if (!mddev->degraded)
  3533. ITERATE_RDEV(mddev,rdev,rtmp)
  3534. rdev->saved_raid_disk = -1;
  3535. mddev->recovery = 0;
  3536. /* flag recovery needed just to double check */
  3537. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3538. goto unlock;
  3539. }
  3540. if (mddev->recovery)
  3541. /* probably just the RECOVERY_NEEDED flag */
  3542. mddev->recovery = 0;
  3543. /* no recovery is running.
  3544. * remove any failed drives, then
  3545. * add spares if possible.
  3546. * Spare are also removed and re-added, to allow
  3547. * the personality to fail the re-add.
  3548. */
  3549. ITERATE_RDEV(mddev,rdev,rtmp)
  3550. if (rdev->raid_disk >= 0 &&
  3551. (rdev->faulty || ! rdev->in_sync) &&
  3552. atomic_read(&rdev->nr_pending)==0) {
  3553. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3554. char nm[20];
  3555. sprintf(nm,"rd%d", rdev->raid_disk);
  3556. sysfs_remove_link(&mddev->kobj, nm);
  3557. rdev->raid_disk = -1;
  3558. }
  3559. }
  3560. if (mddev->degraded) {
  3561. ITERATE_RDEV(mddev,rdev,rtmp)
  3562. if (rdev->raid_disk < 0
  3563. && !rdev->faulty) {
  3564. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3565. char nm[20];
  3566. sprintf(nm, "rd%d", rdev->raid_disk);
  3567. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3568. spares++;
  3569. } else
  3570. break;
  3571. }
  3572. }
  3573. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3574. /* nothing we can do ... */
  3575. goto unlock;
  3576. }
  3577. if (mddev->pers->sync_request) {
  3578. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3579. if (!spares)
  3580. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3581. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3582. /* We are adding a device or devices to an array
  3583. * which has the bitmap stored on all devices.
  3584. * So make sure all bitmap pages get written
  3585. */
  3586. bitmap_write_all(mddev->bitmap);
  3587. }
  3588. mddev->sync_thread = md_register_thread(md_do_sync,
  3589. mddev,
  3590. "%s_resync");
  3591. if (!mddev->sync_thread) {
  3592. printk(KERN_ERR "%s: could not start resync"
  3593. " thread...\n",
  3594. mdname(mddev));
  3595. /* leave the spares where they are, it shouldn't hurt */
  3596. mddev->recovery = 0;
  3597. } else {
  3598. md_wakeup_thread(mddev->sync_thread);
  3599. }
  3600. }
  3601. unlock:
  3602. mddev_unlock(mddev);
  3603. }
  3604. }
  3605. static int md_notify_reboot(struct notifier_block *this,
  3606. unsigned long code, void *x)
  3607. {
  3608. struct list_head *tmp;
  3609. mddev_t *mddev;
  3610. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3611. printk(KERN_INFO "md: stopping all md devices.\n");
  3612. ITERATE_MDDEV(mddev,tmp)
  3613. if (mddev_trylock(mddev)==0)
  3614. do_md_stop (mddev, 1);
  3615. /*
  3616. * certain more exotic SCSI devices are known to be
  3617. * volatile wrt too early system reboots. While the
  3618. * right place to handle this issue is the given
  3619. * driver, we do want to have a safe RAID driver ...
  3620. */
  3621. mdelay(1000*1);
  3622. }
  3623. return NOTIFY_DONE;
  3624. }
  3625. static struct notifier_block md_notifier = {
  3626. .notifier_call = md_notify_reboot,
  3627. .next = NULL,
  3628. .priority = INT_MAX, /* before any real devices */
  3629. };
  3630. static void md_geninit(void)
  3631. {
  3632. struct proc_dir_entry *p;
  3633. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3634. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3635. if (p)
  3636. p->proc_fops = &md_seq_fops;
  3637. }
  3638. static int __init md_init(void)
  3639. {
  3640. int minor;
  3641. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3642. " MD_SB_DISKS=%d\n",
  3643. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3644. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3645. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3646. BITMAP_MINOR);
  3647. if (register_blkdev(MAJOR_NR, "md"))
  3648. return -1;
  3649. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3650. unregister_blkdev(MAJOR_NR, "md");
  3651. return -1;
  3652. }
  3653. devfs_mk_dir("md");
  3654. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3655. md_probe, NULL, NULL);
  3656. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3657. md_probe, NULL, NULL);
  3658. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3659. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3660. S_IFBLK|S_IRUSR|S_IWUSR,
  3661. "md/%d", minor);
  3662. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3663. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3664. S_IFBLK|S_IRUSR|S_IWUSR,
  3665. "md/mdp%d", minor);
  3666. register_reboot_notifier(&md_notifier);
  3667. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3668. md_geninit();
  3669. return (0);
  3670. }
  3671. #ifndef MODULE
  3672. /*
  3673. * Searches all registered partitions for autorun RAID arrays
  3674. * at boot time.
  3675. */
  3676. static dev_t detected_devices[128];
  3677. static int dev_cnt;
  3678. void md_autodetect_dev(dev_t dev)
  3679. {
  3680. if (dev_cnt >= 0 && dev_cnt < 127)
  3681. detected_devices[dev_cnt++] = dev;
  3682. }
  3683. static void autostart_arrays(int part)
  3684. {
  3685. mdk_rdev_t *rdev;
  3686. int i;
  3687. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3688. for (i = 0; i < dev_cnt; i++) {
  3689. dev_t dev = detected_devices[i];
  3690. rdev = md_import_device(dev,0, 0);
  3691. if (IS_ERR(rdev))
  3692. continue;
  3693. if (rdev->faulty) {
  3694. MD_BUG();
  3695. continue;
  3696. }
  3697. list_add(&rdev->same_set, &pending_raid_disks);
  3698. }
  3699. dev_cnt = 0;
  3700. autorun_devices(part);
  3701. }
  3702. #endif
  3703. static __exit void md_exit(void)
  3704. {
  3705. mddev_t *mddev;
  3706. struct list_head *tmp;
  3707. int i;
  3708. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3709. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3710. for (i=0; i < MAX_MD_DEVS; i++)
  3711. devfs_remove("md/%d", i);
  3712. for (i=0; i < MAX_MD_DEVS; i++)
  3713. devfs_remove("md/d%d", i);
  3714. devfs_remove("md");
  3715. unregister_blkdev(MAJOR_NR,"md");
  3716. unregister_blkdev(mdp_major, "mdp");
  3717. unregister_reboot_notifier(&md_notifier);
  3718. unregister_sysctl_table(raid_table_header);
  3719. remove_proc_entry("mdstat", NULL);
  3720. ITERATE_MDDEV(mddev,tmp) {
  3721. struct gendisk *disk = mddev->gendisk;
  3722. if (!disk)
  3723. continue;
  3724. export_array(mddev);
  3725. del_gendisk(disk);
  3726. put_disk(disk);
  3727. mddev->gendisk = NULL;
  3728. mddev_put(mddev);
  3729. }
  3730. }
  3731. module_init(md_init)
  3732. module_exit(md_exit)
  3733. EXPORT_SYMBOL(register_md_personality);
  3734. EXPORT_SYMBOL(unregister_md_personality);
  3735. EXPORT_SYMBOL(md_error);
  3736. EXPORT_SYMBOL(md_done_sync);
  3737. EXPORT_SYMBOL(md_write_start);
  3738. EXPORT_SYMBOL(md_write_end);
  3739. EXPORT_SYMBOL(md_register_thread);
  3740. EXPORT_SYMBOL(md_unregister_thread);
  3741. EXPORT_SYMBOL(md_wakeup_thread);
  3742. EXPORT_SYMBOL(md_print_devices);
  3743. EXPORT_SYMBOL(md_check_recovery);
  3744. MODULE_LICENSE("GPL");
  3745. MODULE_ALIAS("md");
  3746. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);