sh_mmcif.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. #include <linux/bitops.h>
  19. #include <linux/clk.h>
  20. #include <linux/completion.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/dmaengine.h>
  24. #include <linux/mmc/card.h>
  25. #include <linux/mmc/core.h>
  26. #include <linux/mmc/host.h>
  27. #include <linux/mmc/mmc.h>
  28. #include <linux/mmc/sdio.h>
  29. #include <linux/mmc/sh_mmcif.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/module.h>
  35. #define DRIVER_NAME "sh_mmcif"
  36. #define DRIVER_VERSION "2010-04-28"
  37. /* CE_CMD_SET */
  38. #define CMD_MASK 0x3f000000
  39. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  40. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  41. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  42. #define CMD_SET_RBSY (1 << 21) /* R1b */
  43. #define CMD_SET_CCSEN (1 << 20)
  44. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  45. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  46. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  47. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  48. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  49. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  50. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  51. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  52. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  53. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  54. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  55. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  56. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  57. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  58. #define CMD_SET_CCSH (1 << 5)
  59. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  60. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  61. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  62. /* CE_CMD_CTRL */
  63. #define CMD_CTRL_BREAK (1 << 0)
  64. /* CE_BLOCK_SET */
  65. #define BLOCK_SIZE_MASK 0x0000ffff
  66. /* CE_INT */
  67. #define INT_CCSDE (1 << 29)
  68. #define INT_CMD12DRE (1 << 26)
  69. #define INT_CMD12RBE (1 << 25)
  70. #define INT_CMD12CRE (1 << 24)
  71. #define INT_DTRANE (1 << 23)
  72. #define INT_BUFRE (1 << 22)
  73. #define INT_BUFWEN (1 << 21)
  74. #define INT_BUFREN (1 << 20)
  75. #define INT_CCSRCV (1 << 19)
  76. #define INT_RBSYE (1 << 17)
  77. #define INT_CRSPE (1 << 16)
  78. #define INT_CMDVIO (1 << 15)
  79. #define INT_BUFVIO (1 << 14)
  80. #define INT_WDATERR (1 << 11)
  81. #define INT_RDATERR (1 << 10)
  82. #define INT_RIDXERR (1 << 9)
  83. #define INT_RSPERR (1 << 8)
  84. #define INT_CCSTO (1 << 5)
  85. #define INT_CRCSTO (1 << 4)
  86. #define INT_WDATTO (1 << 3)
  87. #define INT_RDATTO (1 << 2)
  88. #define INT_RBSYTO (1 << 1)
  89. #define INT_RSPTO (1 << 0)
  90. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  91. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  92. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  93. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  94. /* CE_INT_MASK */
  95. #define MASK_ALL 0x00000000
  96. #define MASK_MCCSDE (1 << 29)
  97. #define MASK_MCMD12DRE (1 << 26)
  98. #define MASK_MCMD12RBE (1 << 25)
  99. #define MASK_MCMD12CRE (1 << 24)
  100. #define MASK_MDTRANE (1 << 23)
  101. #define MASK_MBUFRE (1 << 22)
  102. #define MASK_MBUFWEN (1 << 21)
  103. #define MASK_MBUFREN (1 << 20)
  104. #define MASK_MCCSRCV (1 << 19)
  105. #define MASK_MRBSYE (1 << 17)
  106. #define MASK_MCRSPE (1 << 16)
  107. #define MASK_MCMDVIO (1 << 15)
  108. #define MASK_MBUFVIO (1 << 14)
  109. #define MASK_MWDATERR (1 << 11)
  110. #define MASK_MRDATERR (1 << 10)
  111. #define MASK_MRIDXERR (1 << 9)
  112. #define MASK_MRSPERR (1 << 8)
  113. #define MASK_MCCSTO (1 << 5)
  114. #define MASK_MCRCSTO (1 << 4)
  115. #define MASK_MWDATTO (1 << 3)
  116. #define MASK_MRDATTO (1 << 2)
  117. #define MASK_MRBSYTO (1 << 1)
  118. #define MASK_MRSPTO (1 << 0)
  119. /* CE_HOST_STS1 */
  120. #define STS1_CMDSEQ (1 << 31)
  121. /* CE_HOST_STS2 */
  122. #define STS2_CRCSTE (1 << 31)
  123. #define STS2_CRC16E (1 << 30)
  124. #define STS2_AC12CRCE (1 << 29)
  125. #define STS2_RSPCRC7E (1 << 28)
  126. #define STS2_CRCSTEBE (1 << 27)
  127. #define STS2_RDATEBE (1 << 26)
  128. #define STS2_AC12REBE (1 << 25)
  129. #define STS2_RSPEBE (1 << 24)
  130. #define STS2_AC12IDXE (1 << 23)
  131. #define STS2_RSPIDXE (1 << 22)
  132. #define STS2_CCSTO (1 << 15)
  133. #define STS2_RDATTO (1 << 14)
  134. #define STS2_DATBSYTO (1 << 13)
  135. #define STS2_CRCSTTO (1 << 12)
  136. #define STS2_AC12BSYTO (1 << 11)
  137. #define STS2_RSPBSYTO (1 << 10)
  138. #define STS2_AC12RSPTO (1 << 9)
  139. #define STS2_RSPTO (1 << 8)
  140. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  141. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  142. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  143. STS2_DATBSYTO | STS2_CRCSTTO | \
  144. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  145. STS2_AC12RSPTO | STS2_RSPTO)
  146. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  147. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  148. #define CLKDEV_INIT 400000 /* 400 KHz */
  149. enum mmcif_state {
  150. STATE_IDLE,
  151. STATE_REQUEST,
  152. STATE_IOS,
  153. };
  154. struct sh_mmcif_host {
  155. struct mmc_host *mmc;
  156. struct mmc_data *data;
  157. struct platform_device *pd;
  158. struct sh_dmae_slave dma_slave_tx;
  159. struct sh_dmae_slave dma_slave_rx;
  160. struct clk *hclk;
  161. unsigned int clk;
  162. int bus_width;
  163. bool sd_error;
  164. long timeout;
  165. void __iomem *addr;
  166. struct completion intr_wait;
  167. enum mmcif_state state;
  168. spinlock_t lock;
  169. bool power;
  170. bool card_present;
  171. /* DMA support */
  172. struct dma_chan *chan_rx;
  173. struct dma_chan *chan_tx;
  174. struct completion dma_complete;
  175. bool dma_active;
  176. };
  177. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  178. unsigned int reg, u32 val)
  179. {
  180. writel(val | readl(host->addr + reg), host->addr + reg);
  181. }
  182. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  183. unsigned int reg, u32 val)
  184. {
  185. writel(~val & readl(host->addr + reg), host->addr + reg);
  186. }
  187. static void mmcif_dma_complete(void *arg)
  188. {
  189. struct sh_mmcif_host *host = arg;
  190. dev_dbg(&host->pd->dev, "Command completed\n");
  191. if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
  192. dev_name(&host->pd->dev)))
  193. return;
  194. if (host->data->flags & MMC_DATA_READ)
  195. dma_unmap_sg(host->chan_rx->device->dev,
  196. host->data->sg, host->data->sg_len,
  197. DMA_FROM_DEVICE);
  198. else
  199. dma_unmap_sg(host->chan_tx->device->dev,
  200. host->data->sg, host->data->sg_len,
  201. DMA_TO_DEVICE);
  202. complete(&host->dma_complete);
  203. }
  204. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  205. {
  206. struct scatterlist *sg = host->data->sg;
  207. struct dma_async_tx_descriptor *desc = NULL;
  208. struct dma_chan *chan = host->chan_rx;
  209. dma_cookie_t cookie = -EINVAL;
  210. int ret;
  211. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  212. DMA_FROM_DEVICE);
  213. if (ret > 0) {
  214. host->dma_active = true;
  215. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  216. DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  217. }
  218. if (desc) {
  219. desc->callback = mmcif_dma_complete;
  220. desc->callback_param = host;
  221. cookie = dmaengine_submit(desc);
  222. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  223. dma_async_issue_pending(chan);
  224. }
  225. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  226. __func__, host->data->sg_len, ret, cookie);
  227. if (!desc) {
  228. /* DMA failed, fall back to PIO */
  229. if (ret >= 0)
  230. ret = -EIO;
  231. host->chan_rx = NULL;
  232. host->dma_active = false;
  233. dma_release_channel(chan);
  234. /* Free the Tx channel too */
  235. chan = host->chan_tx;
  236. if (chan) {
  237. host->chan_tx = NULL;
  238. dma_release_channel(chan);
  239. }
  240. dev_warn(&host->pd->dev,
  241. "DMA failed: %d, falling back to PIO\n", ret);
  242. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  243. }
  244. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  245. desc, cookie, host->data->sg_len);
  246. }
  247. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  248. {
  249. struct scatterlist *sg = host->data->sg;
  250. struct dma_async_tx_descriptor *desc = NULL;
  251. struct dma_chan *chan = host->chan_tx;
  252. dma_cookie_t cookie = -EINVAL;
  253. int ret;
  254. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  255. DMA_TO_DEVICE);
  256. if (ret > 0) {
  257. host->dma_active = true;
  258. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  259. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  260. }
  261. if (desc) {
  262. desc->callback = mmcif_dma_complete;
  263. desc->callback_param = host;
  264. cookie = dmaengine_submit(desc);
  265. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  266. dma_async_issue_pending(chan);
  267. }
  268. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  269. __func__, host->data->sg_len, ret, cookie);
  270. if (!desc) {
  271. /* DMA failed, fall back to PIO */
  272. if (ret >= 0)
  273. ret = -EIO;
  274. host->chan_tx = NULL;
  275. host->dma_active = false;
  276. dma_release_channel(chan);
  277. /* Free the Rx channel too */
  278. chan = host->chan_rx;
  279. if (chan) {
  280. host->chan_rx = NULL;
  281. dma_release_channel(chan);
  282. }
  283. dev_warn(&host->pd->dev,
  284. "DMA failed: %d, falling back to PIO\n", ret);
  285. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  286. }
  287. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  288. desc, cookie);
  289. }
  290. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  291. {
  292. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  293. chan->private = arg;
  294. return true;
  295. }
  296. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  297. struct sh_mmcif_plat_data *pdata)
  298. {
  299. struct sh_dmae_slave *tx, *rx;
  300. host->dma_active = false;
  301. /* We can only either use DMA for both Tx and Rx or not use it at all */
  302. if (pdata->dma) {
  303. dev_warn(&host->pd->dev,
  304. "Update your platform to use embedded DMA slave IDs\n");
  305. tx = &pdata->dma->chan_priv_tx;
  306. rx = &pdata->dma->chan_priv_rx;
  307. } else {
  308. tx = &host->dma_slave_tx;
  309. tx->slave_id = pdata->slave_id_tx;
  310. rx = &host->dma_slave_rx;
  311. rx->slave_id = pdata->slave_id_rx;
  312. }
  313. if (tx->slave_id > 0 && rx->slave_id > 0) {
  314. dma_cap_mask_t mask;
  315. dma_cap_zero(mask);
  316. dma_cap_set(DMA_SLAVE, mask);
  317. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
  318. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  319. host->chan_tx);
  320. if (!host->chan_tx)
  321. return;
  322. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
  323. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  324. host->chan_rx);
  325. if (!host->chan_rx) {
  326. dma_release_channel(host->chan_tx);
  327. host->chan_tx = NULL;
  328. return;
  329. }
  330. init_completion(&host->dma_complete);
  331. }
  332. }
  333. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  334. {
  335. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  336. /* Descriptors are freed automatically */
  337. if (host->chan_tx) {
  338. struct dma_chan *chan = host->chan_tx;
  339. host->chan_tx = NULL;
  340. dma_release_channel(chan);
  341. }
  342. if (host->chan_rx) {
  343. struct dma_chan *chan = host->chan_rx;
  344. host->chan_rx = NULL;
  345. dma_release_channel(chan);
  346. }
  347. host->dma_active = false;
  348. }
  349. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  350. {
  351. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  352. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  353. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  354. if (!clk)
  355. return;
  356. if (p->sup_pclk && clk == host->clk)
  357. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  358. else
  359. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  360. ((fls(host->clk / clk) - 1) << 16));
  361. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  362. }
  363. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  364. {
  365. u32 tmp;
  366. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  367. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  368. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  369. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  370. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  371. /* byte swap on */
  372. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  373. }
  374. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  375. {
  376. u32 state1, state2;
  377. int ret, timeout = 10000000;
  378. host->sd_error = false;
  379. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  380. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  381. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  382. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  383. if (state1 & STS1_CMDSEQ) {
  384. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  385. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  386. while (1) {
  387. timeout--;
  388. if (timeout < 0) {
  389. dev_err(&host->pd->dev,
  390. "Forceed end of command sequence timeout err\n");
  391. return -EIO;
  392. }
  393. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  394. & STS1_CMDSEQ))
  395. break;
  396. mdelay(1);
  397. }
  398. sh_mmcif_sync_reset(host);
  399. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  400. return -EIO;
  401. }
  402. if (state2 & STS2_CRC_ERR) {
  403. dev_dbg(&host->pd->dev, ": Happened CRC error\n");
  404. ret = -EIO;
  405. } else if (state2 & STS2_TIMEOUT_ERR) {
  406. dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
  407. ret = -ETIMEDOUT;
  408. } else {
  409. dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
  410. ret = -EIO;
  411. }
  412. return ret;
  413. }
  414. static int sh_mmcif_single_read(struct sh_mmcif_host *host,
  415. struct mmc_request *mrq)
  416. {
  417. struct mmc_data *data = mrq->data;
  418. long time;
  419. u32 blocksize, i, *p = sg_virt(data->sg);
  420. /* buf read enable */
  421. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  422. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  423. host->timeout);
  424. if (time <= 0 || host->sd_error)
  425. return sh_mmcif_error_manage(host);
  426. blocksize = (BLOCK_SIZE_MASK &
  427. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  428. for (i = 0; i < blocksize / 4; i++)
  429. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  430. /* buffer read end */
  431. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  432. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  433. host->timeout);
  434. if (time <= 0 || host->sd_error)
  435. return sh_mmcif_error_manage(host);
  436. return 0;
  437. }
  438. static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
  439. struct mmc_request *mrq)
  440. {
  441. struct mmc_data *data = mrq->data;
  442. long time;
  443. u32 blocksize, i, j, sec, *p;
  444. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  445. MMCIF_CE_BLOCK_SET);
  446. for (j = 0; j < data->sg_len; j++) {
  447. p = sg_virt(data->sg);
  448. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  449. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  450. /* buf read enable */
  451. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  452. host->timeout);
  453. if (time <= 0 || host->sd_error)
  454. return sh_mmcif_error_manage(host);
  455. for (i = 0; i < blocksize / 4; i++)
  456. *p++ = sh_mmcif_readl(host->addr,
  457. MMCIF_CE_DATA);
  458. }
  459. if (j < data->sg_len - 1)
  460. data->sg++;
  461. }
  462. return 0;
  463. }
  464. static int sh_mmcif_single_write(struct sh_mmcif_host *host,
  465. struct mmc_request *mrq)
  466. {
  467. struct mmc_data *data = mrq->data;
  468. long time;
  469. u32 blocksize, i, *p = sg_virt(data->sg);
  470. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  471. /* buf write enable */
  472. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  473. host->timeout);
  474. if (time <= 0 || host->sd_error)
  475. return sh_mmcif_error_manage(host);
  476. blocksize = (BLOCK_SIZE_MASK &
  477. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  478. for (i = 0; i < blocksize / 4; i++)
  479. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  480. /* buffer write end */
  481. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  482. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  483. host->timeout);
  484. if (time <= 0 || host->sd_error)
  485. return sh_mmcif_error_manage(host);
  486. return 0;
  487. }
  488. static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
  489. struct mmc_request *mrq)
  490. {
  491. struct mmc_data *data = mrq->data;
  492. long time;
  493. u32 i, sec, j, blocksize, *p;
  494. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  495. MMCIF_CE_BLOCK_SET);
  496. for (j = 0; j < data->sg_len; j++) {
  497. p = sg_virt(data->sg);
  498. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  499. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  500. /* buf write enable*/
  501. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  502. host->timeout);
  503. if (time <= 0 || host->sd_error)
  504. return sh_mmcif_error_manage(host);
  505. for (i = 0; i < blocksize / 4; i++)
  506. sh_mmcif_writel(host->addr,
  507. MMCIF_CE_DATA, *p++);
  508. }
  509. if (j < data->sg_len - 1)
  510. data->sg++;
  511. }
  512. return 0;
  513. }
  514. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  515. struct mmc_command *cmd)
  516. {
  517. if (cmd->flags & MMC_RSP_136) {
  518. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  519. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  520. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  521. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  522. } else
  523. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  524. }
  525. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  526. struct mmc_command *cmd)
  527. {
  528. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  529. }
  530. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  531. struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
  532. {
  533. u32 tmp = 0;
  534. /* Response Type check */
  535. switch (mmc_resp_type(cmd)) {
  536. case MMC_RSP_NONE:
  537. tmp |= CMD_SET_RTYP_NO;
  538. break;
  539. case MMC_RSP_R1:
  540. case MMC_RSP_R1B:
  541. case MMC_RSP_R3:
  542. tmp |= CMD_SET_RTYP_6B;
  543. break;
  544. case MMC_RSP_R2:
  545. tmp |= CMD_SET_RTYP_17B;
  546. break;
  547. default:
  548. dev_err(&host->pd->dev, "Unsupported response type.\n");
  549. break;
  550. }
  551. switch (opc) {
  552. /* RBSY */
  553. case MMC_SWITCH:
  554. case MMC_STOP_TRANSMISSION:
  555. case MMC_SET_WRITE_PROT:
  556. case MMC_CLR_WRITE_PROT:
  557. case MMC_ERASE:
  558. case MMC_GEN_CMD:
  559. tmp |= CMD_SET_RBSY;
  560. break;
  561. }
  562. /* WDAT / DATW */
  563. if (host->data) {
  564. tmp |= CMD_SET_WDAT;
  565. switch (host->bus_width) {
  566. case MMC_BUS_WIDTH_1:
  567. tmp |= CMD_SET_DATW_1;
  568. break;
  569. case MMC_BUS_WIDTH_4:
  570. tmp |= CMD_SET_DATW_4;
  571. break;
  572. case MMC_BUS_WIDTH_8:
  573. tmp |= CMD_SET_DATW_8;
  574. break;
  575. default:
  576. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  577. break;
  578. }
  579. }
  580. /* DWEN */
  581. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  582. tmp |= CMD_SET_DWEN;
  583. /* CMLTE/CMD12EN */
  584. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  585. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  586. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  587. mrq->data->blocks << 16);
  588. }
  589. /* RIDXC[1:0] check bits */
  590. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  591. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  592. tmp |= CMD_SET_RIDXC_BITS;
  593. /* RCRC7C[1:0] check bits */
  594. if (opc == MMC_SEND_OP_COND)
  595. tmp |= CMD_SET_CRC7C_BITS;
  596. /* RCRC7C[1:0] internal CRC7 */
  597. if (opc == MMC_ALL_SEND_CID ||
  598. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  599. tmp |= CMD_SET_CRC7C_INTERNAL;
  600. return opc = ((opc << 24) | tmp);
  601. }
  602. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  603. struct mmc_request *mrq, u32 opc)
  604. {
  605. int ret;
  606. switch (opc) {
  607. case MMC_READ_MULTIPLE_BLOCK:
  608. ret = sh_mmcif_multi_read(host, mrq);
  609. break;
  610. case MMC_WRITE_MULTIPLE_BLOCK:
  611. ret = sh_mmcif_multi_write(host, mrq);
  612. break;
  613. case MMC_WRITE_BLOCK:
  614. ret = sh_mmcif_single_write(host, mrq);
  615. break;
  616. case MMC_READ_SINGLE_BLOCK:
  617. case MMC_SEND_EXT_CSD:
  618. ret = sh_mmcif_single_read(host, mrq);
  619. break;
  620. default:
  621. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  622. ret = -EINVAL;
  623. break;
  624. }
  625. return ret;
  626. }
  627. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  628. struct mmc_request *mrq, struct mmc_command *cmd)
  629. {
  630. long time;
  631. int ret = 0, mask = 0;
  632. u32 opc = cmd->opcode;
  633. switch (opc) {
  634. /* respons busy check */
  635. case MMC_SWITCH:
  636. case MMC_STOP_TRANSMISSION:
  637. case MMC_SET_WRITE_PROT:
  638. case MMC_CLR_WRITE_PROT:
  639. case MMC_ERASE:
  640. case MMC_GEN_CMD:
  641. mask = MASK_MRBSYE;
  642. break;
  643. default:
  644. mask = MASK_MCRSPE;
  645. break;
  646. }
  647. mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
  648. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
  649. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
  650. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
  651. if (host->data) {
  652. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  653. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  654. mrq->data->blksz);
  655. }
  656. opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
  657. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  658. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  659. /* set arg */
  660. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  661. /* set cmd */
  662. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  663. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  664. host->timeout);
  665. if (time <= 0) {
  666. cmd->error = sh_mmcif_error_manage(host);
  667. return;
  668. }
  669. if (host->sd_error) {
  670. switch (cmd->opcode) {
  671. case MMC_ALL_SEND_CID:
  672. case MMC_SELECT_CARD:
  673. case MMC_APP_CMD:
  674. cmd->error = -ETIMEDOUT;
  675. break;
  676. default:
  677. dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
  678. cmd->opcode);
  679. cmd->error = sh_mmcif_error_manage(host);
  680. break;
  681. }
  682. host->sd_error = false;
  683. return;
  684. }
  685. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  686. cmd->error = 0;
  687. return;
  688. }
  689. sh_mmcif_get_response(host, cmd);
  690. if (host->data) {
  691. if (!host->dma_active) {
  692. ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
  693. } else {
  694. long time =
  695. wait_for_completion_interruptible_timeout(&host->dma_complete,
  696. host->timeout);
  697. if (!time)
  698. ret = -ETIMEDOUT;
  699. else if (time < 0)
  700. ret = time;
  701. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  702. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  703. host->dma_active = false;
  704. }
  705. if (ret < 0)
  706. mrq->data->bytes_xfered = 0;
  707. else
  708. mrq->data->bytes_xfered =
  709. mrq->data->blocks * mrq->data->blksz;
  710. }
  711. cmd->error = ret;
  712. }
  713. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  714. struct mmc_request *mrq, struct mmc_command *cmd)
  715. {
  716. long time;
  717. if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
  718. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  719. else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
  720. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  721. else {
  722. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  723. cmd->error = sh_mmcif_error_manage(host);
  724. return;
  725. }
  726. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  727. host->timeout);
  728. if (time <= 0 || host->sd_error) {
  729. cmd->error = sh_mmcif_error_manage(host);
  730. return;
  731. }
  732. sh_mmcif_get_cmd12response(host, cmd);
  733. cmd->error = 0;
  734. }
  735. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  736. {
  737. struct sh_mmcif_host *host = mmc_priv(mmc);
  738. unsigned long flags;
  739. spin_lock_irqsave(&host->lock, flags);
  740. if (host->state != STATE_IDLE) {
  741. spin_unlock_irqrestore(&host->lock, flags);
  742. mrq->cmd->error = -EAGAIN;
  743. mmc_request_done(mmc, mrq);
  744. return;
  745. }
  746. host->state = STATE_REQUEST;
  747. spin_unlock_irqrestore(&host->lock, flags);
  748. switch (mrq->cmd->opcode) {
  749. /* MMCIF does not support SD/SDIO command */
  750. case SD_IO_SEND_OP_COND:
  751. case MMC_APP_CMD:
  752. host->state = STATE_IDLE;
  753. mrq->cmd->error = -ETIMEDOUT;
  754. mmc_request_done(mmc, mrq);
  755. return;
  756. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  757. if (!mrq->data) {
  758. /* send_if_cond cmd (not support) */
  759. host->state = STATE_IDLE;
  760. mrq->cmd->error = -ETIMEDOUT;
  761. mmc_request_done(mmc, mrq);
  762. return;
  763. }
  764. break;
  765. default:
  766. break;
  767. }
  768. host->data = mrq->data;
  769. if (mrq->data) {
  770. if (mrq->data->flags & MMC_DATA_READ) {
  771. if (host->chan_rx)
  772. sh_mmcif_start_dma_rx(host);
  773. } else {
  774. if (host->chan_tx)
  775. sh_mmcif_start_dma_tx(host);
  776. }
  777. }
  778. sh_mmcif_start_cmd(host, mrq, mrq->cmd);
  779. host->data = NULL;
  780. if (!mrq->cmd->error && mrq->stop)
  781. sh_mmcif_stop_cmd(host, mrq, mrq->stop);
  782. host->state = STATE_IDLE;
  783. mmc_request_done(mmc, mrq);
  784. }
  785. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  786. {
  787. struct sh_mmcif_host *host = mmc_priv(mmc);
  788. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  789. unsigned long flags;
  790. spin_lock_irqsave(&host->lock, flags);
  791. if (host->state != STATE_IDLE) {
  792. spin_unlock_irqrestore(&host->lock, flags);
  793. return;
  794. }
  795. host->state = STATE_IOS;
  796. spin_unlock_irqrestore(&host->lock, flags);
  797. if (ios->power_mode == MMC_POWER_UP) {
  798. if (!host->card_present) {
  799. /* See if we also get DMA */
  800. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  801. host->card_present = true;
  802. }
  803. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  804. /* clock stop */
  805. sh_mmcif_clock_control(host, 0);
  806. if (ios->power_mode == MMC_POWER_OFF) {
  807. if (host->card_present) {
  808. sh_mmcif_release_dma(host);
  809. host->card_present = false;
  810. }
  811. }
  812. if (host->power) {
  813. pm_runtime_put(&host->pd->dev);
  814. host->power = false;
  815. if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
  816. p->down_pwr(host->pd);
  817. }
  818. host->state = STATE_IDLE;
  819. return;
  820. }
  821. if (ios->clock) {
  822. if (!host->power) {
  823. if (p->set_pwr)
  824. p->set_pwr(host->pd, ios->power_mode);
  825. pm_runtime_get_sync(&host->pd->dev);
  826. host->power = true;
  827. sh_mmcif_sync_reset(host);
  828. }
  829. sh_mmcif_clock_control(host, ios->clock);
  830. }
  831. host->bus_width = ios->bus_width;
  832. host->state = STATE_IDLE;
  833. }
  834. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  835. {
  836. struct sh_mmcif_host *host = mmc_priv(mmc);
  837. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  838. if (!p->get_cd)
  839. return -ENOSYS;
  840. else
  841. return p->get_cd(host->pd);
  842. }
  843. static struct mmc_host_ops sh_mmcif_ops = {
  844. .request = sh_mmcif_request,
  845. .set_ios = sh_mmcif_set_ios,
  846. .get_cd = sh_mmcif_get_cd,
  847. };
  848. static void sh_mmcif_detect(struct mmc_host *mmc)
  849. {
  850. mmc_detect_change(mmc, 0);
  851. }
  852. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  853. {
  854. struct sh_mmcif_host *host = dev_id;
  855. u32 state;
  856. int err = 0;
  857. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  858. if (state & INT_RBSYE) {
  859. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  860. ~(INT_RBSYE | INT_CRSPE));
  861. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  862. } else if (state & INT_CRSPE) {
  863. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  864. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  865. } else if (state & INT_BUFREN) {
  866. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  867. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  868. } else if (state & INT_BUFWEN) {
  869. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  870. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  871. } else if (state & INT_CMD12DRE) {
  872. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  873. ~(INT_CMD12DRE | INT_CMD12RBE |
  874. INT_CMD12CRE | INT_BUFRE));
  875. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  876. } else if (state & INT_BUFRE) {
  877. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  878. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  879. } else if (state & INT_DTRANE) {
  880. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  881. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  882. } else if (state & INT_CMD12RBE) {
  883. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  884. ~(INT_CMD12RBE | INT_CMD12CRE));
  885. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  886. } else if (state & INT_ERR_STS) {
  887. /* err interrupts */
  888. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  889. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  890. err = 1;
  891. } else {
  892. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  893. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  894. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  895. err = 1;
  896. }
  897. if (err) {
  898. host->sd_error = true;
  899. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  900. }
  901. if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
  902. complete(&host->intr_wait);
  903. else
  904. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  905. return IRQ_HANDLED;
  906. }
  907. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  908. {
  909. int ret = 0, irq[2];
  910. struct mmc_host *mmc;
  911. struct sh_mmcif_host *host;
  912. struct sh_mmcif_plat_data *pd;
  913. struct resource *res;
  914. void __iomem *reg;
  915. char clk_name[8];
  916. irq[0] = platform_get_irq(pdev, 0);
  917. irq[1] = platform_get_irq(pdev, 1);
  918. if (irq[0] < 0 || irq[1] < 0) {
  919. dev_err(&pdev->dev, "Get irq error\n");
  920. return -ENXIO;
  921. }
  922. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  923. if (!res) {
  924. dev_err(&pdev->dev, "platform_get_resource error.\n");
  925. return -ENXIO;
  926. }
  927. reg = ioremap(res->start, resource_size(res));
  928. if (!reg) {
  929. dev_err(&pdev->dev, "ioremap error.\n");
  930. return -ENOMEM;
  931. }
  932. pd = pdev->dev.platform_data;
  933. if (!pd) {
  934. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  935. ret = -ENXIO;
  936. goto clean_up;
  937. }
  938. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  939. if (!mmc) {
  940. ret = -ENOMEM;
  941. goto clean_up;
  942. }
  943. host = mmc_priv(mmc);
  944. host->mmc = mmc;
  945. host->addr = reg;
  946. host->timeout = 1000;
  947. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  948. host->hclk = clk_get(&pdev->dev, clk_name);
  949. if (IS_ERR(host->hclk)) {
  950. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  951. ret = PTR_ERR(host->hclk);
  952. goto clean_up1;
  953. }
  954. clk_enable(host->hclk);
  955. host->clk = clk_get_rate(host->hclk);
  956. host->pd = pdev;
  957. init_completion(&host->intr_wait);
  958. spin_lock_init(&host->lock);
  959. mmc->ops = &sh_mmcif_ops;
  960. mmc->f_max = host->clk;
  961. /* close to 400KHz */
  962. if (mmc->f_max < 51200000)
  963. mmc->f_min = mmc->f_max / 128;
  964. else if (mmc->f_max < 102400000)
  965. mmc->f_min = mmc->f_max / 256;
  966. else
  967. mmc->f_min = mmc->f_max / 512;
  968. if (pd->ocr)
  969. mmc->ocr_avail = pd->ocr;
  970. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  971. if (pd->caps)
  972. mmc->caps |= pd->caps;
  973. mmc->max_segs = 32;
  974. mmc->max_blk_size = 512;
  975. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  976. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  977. mmc->max_seg_size = mmc->max_req_size;
  978. sh_mmcif_sync_reset(host);
  979. platform_set_drvdata(pdev, host);
  980. pm_runtime_enable(&pdev->dev);
  981. host->power = false;
  982. ret = pm_runtime_resume(&pdev->dev);
  983. if (ret < 0)
  984. goto clean_up2;
  985. mmc_add_host(mmc);
  986. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  987. ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
  988. if (ret) {
  989. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  990. goto clean_up3;
  991. }
  992. ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
  993. if (ret) {
  994. free_irq(irq[0], host);
  995. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  996. goto clean_up3;
  997. }
  998. sh_mmcif_detect(host->mmc);
  999. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  1000. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  1001. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  1002. return ret;
  1003. clean_up3:
  1004. mmc_remove_host(mmc);
  1005. pm_runtime_suspend(&pdev->dev);
  1006. clean_up2:
  1007. pm_runtime_disable(&pdev->dev);
  1008. clk_disable(host->hclk);
  1009. clean_up1:
  1010. mmc_free_host(mmc);
  1011. clean_up:
  1012. if (reg)
  1013. iounmap(reg);
  1014. return ret;
  1015. }
  1016. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1017. {
  1018. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1019. int irq[2];
  1020. pm_runtime_get_sync(&pdev->dev);
  1021. mmc_remove_host(host->mmc);
  1022. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1023. if (host->addr)
  1024. iounmap(host->addr);
  1025. irq[0] = platform_get_irq(pdev, 0);
  1026. irq[1] = platform_get_irq(pdev, 1);
  1027. free_irq(irq[0], host);
  1028. free_irq(irq[1], host);
  1029. platform_set_drvdata(pdev, NULL);
  1030. clk_disable(host->hclk);
  1031. mmc_free_host(host->mmc);
  1032. pm_runtime_put_sync(&pdev->dev);
  1033. pm_runtime_disable(&pdev->dev);
  1034. return 0;
  1035. }
  1036. #ifdef CONFIG_PM
  1037. static int sh_mmcif_suspend(struct device *dev)
  1038. {
  1039. struct platform_device *pdev = to_platform_device(dev);
  1040. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1041. int ret = mmc_suspend_host(host->mmc);
  1042. if (!ret) {
  1043. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1044. clk_disable(host->hclk);
  1045. }
  1046. return ret;
  1047. }
  1048. static int sh_mmcif_resume(struct device *dev)
  1049. {
  1050. struct platform_device *pdev = to_platform_device(dev);
  1051. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1052. clk_enable(host->hclk);
  1053. return mmc_resume_host(host->mmc);
  1054. }
  1055. #else
  1056. #define sh_mmcif_suspend NULL
  1057. #define sh_mmcif_resume NULL
  1058. #endif /* CONFIG_PM */
  1059. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1060. .suspend = sh_mmcif_suspend,
  1061. .resume = sh_mmcif_resume,
  1062. };
  1063. static struct platform_driver sh_mmcif_driver = {
  1064. .probe = sh_mmcif_probe,
  1065. .remove = sh_mmcif_remove,
  1066. .driver = {
  1067. .name = DRIVER_NAME,
  1068. .pm = &sh_mmcif_dev_pm_ops,
  1069. },
  1070. };
  1071. static int __init sh_mmcif_init(void)
  1072. {
  1073. return platform_driver_register(&sh_mmcif_driver);
  1074. }
  1075. static void __exit sh_mmcif_exit(void)
  1076. {
  1077. platform_driver_unregister(&sh_mmcif_driver);
  1078. }
  1079. module_init(sh_mmcif_init);
  1080. module_exit(sh_mmcif_exit);
  1081. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1082. MODULE_LICENSE("GPL");
  1083. MODULE_ALIAS("platform:" DRIVER_NAME);
  1084. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");