xmit.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. if (!tid->an->sta)
  118. return;
  119. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  120. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  121. }
  122. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  123. struct ath_buf *bf)
  124. {
  125. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  126. ARRAY_SIZE(bf->rates));
  127. }
  128. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  129. struct sk_buff *skb)
  130. {
  131. int q;
  132. q = skb_get_queue_mapping(skb);
  133. if (txq == sc->tx.uapsdq)
  134. txq = sc->tx.txq_map[q];
  135. if (txq != sc->tx.txq_map[q])
  136. return;
  137. if (WARN_ON(--txq->pending_frames < 0))
  138. txq->pending_frames = 0;
  139. if (txq->stopped &&
  140. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  141. ieee80211_wake_queue(sc->hw, q);
  142. txq->stopped = false;
  143. }
  144. }
  145. static struct ath_atx_tid *
  146. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  147. {
  148. struct ieee80211_hdr *hdr;
  149. u8 tidno = 0;
  150. hdr = (struct ieee80211_hdr *) skb->data;
  151. if (ieee80211_is_data_qos(hdr->frame_control))
  152. tidno = ieee80211_get_qos_ctl(hdr)[0];
  153. tidno &= IEEE80211_QOS_CTL_TID_MASK;
  154. return ATH_AN_2_TID(an, tidno);
  155. }
  156. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  157. {
  158. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  159. }
  160. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  161. {
  162. struct sk_buff *skb;
  163. skb = __skb_dequeue(&tid->retry_q);
  164. if (!skb)
  165. skb = __skb_dequeue(&tid->buf_q);
  166. return skb;
  167. }
  168. /*
  169. * ath_tx_tid_change_state:
  170. * - clears a-mpdu flag of previous session
  171. * - force sequence number allocation to fix next BlockAck Window
  172. */
  173. static void
  174. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  175. {
  176. struct ath_txq *txq = tid->ac->txq;
  177. struct ieee80211_tx_info *tx_info;
  178. struct sk_buff *skb, *tskb;
  179. struct ath_buf *bf;
  180. struct ath_frame_info *fi;
  181. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  182. fi = get_frame_info(skb);
  183. bf = fi->bf;
  184. tx_info = IEEE80211_SKB_CB(skb);
  185. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  186. if (bf)
  187. continue;
  188. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  189. if (!bf) {
  190. __skb_unlink(skb, &tid->buf_q);
  191. ath_txq_skb_done(sc, txq, skb);
  192. ieee80211_free_txskb(sc->hw, skb);
  193. continue;
  194. }
  195. }
  196. }
  197. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  198. {
  199. struct ath_txq *txq = tid->ac->txq;
  200. struct sk_buff *skb;
  201. struct ath_buf *bf;
  202. struct list_head bf_head;
  203. struct ath_tx_status ts;
  204. struct ath_frame_info *fi;
  205. bool sendbar = false;
  206. INIT_LIST_HEAD(&bf_head);
  207. memset(&ts, 0, sizeof(ts));
  208. while ((skb = __skb_dequeue(&tid->retry_q))) {
  209. fi = get_frame_info(skb);
  210. bf = fi->bf;
  211. if (!bf) {
  212. ath_txq_skb_done(sc, txq, skb);
  213. ieee80211_free_txskb(sc->hw, skb);
  214. continue;
  215. }
  216. if (fi->baw_tracked) {
  217. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  218. sendbar = true;
  219. }
  220. list_add_tail(&bf->list, &bf_head);
  221. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  222. }
  223. if (sendbar) {
  224. ath_txq_unlock(sc, txq);
  225. ath_send_bar(tid, tid->seq_start);
  226. ath_txq_lock(sc, txq);
  227. }
  228. }
  229. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  230. int seqno)
  231. {
  232. int index, cindex;
  233. index = ATH_BA_INDEX(tid->seq_start, seqno);
  234. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  235. __clear_bit(cindex, tid->tx_buf);
  236. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  237. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  238. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  239. if (tid->bar_index >= 0)
  240. tid->bar_index--;
  241. }
  242. }
  243. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  244. struct ath_buf *bf)
  245. {
  246. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  247. u16 seqno = bf->bf_state.seqno;
  248. int index, cindex;
  249. index = ATH_BA_INDEX(tid->seq_start, seqno);
  250. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  251. __set_bit(cindex, tid->tx_buf);
  252. fi->baw_tracked = 1;
  253. if (index >= ((tid->baw_tail - tid->baw_head) &
  254. (ATH_TID_MAX_BUFS - 1))) {
  255. tid->baw_tail = cindex;
  256. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  257. }
  258. }
  259. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  260. struct ath_atx_tid *tid)
  261. {
  262. struct sk_buff *skb;
  263. struct ath_buf *bf;
  264. struct list_head bf_head;
  265. struct ath_tx_status ts;
  266. struct ath_frame_info *fi;
  267. memset(&ts, 0, sizeof(ts));
  268. INIT_LIST_HEAD(&bf_head);
  269. while ((skb = ath_tid_dequeue(tid))) {
  270. fi = get_frame_info(skb);
  271. bf = fi->bf;
  272. if (!bf) {
  273. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  274. continue;
  275. }
  276. list_add_tail(&bf->list, &bf_head);
  277. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  278. }
  279. }
  280. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  281. struct sk_buff *skb, int count)
  282. {
  283. struct ath_frame_info *fi = get_frame_info(skb);
  284. struct ath_buf *bf = fi->bf;
  285. struct ieee80211_hdr *hdr;
  286. int prev = fi->retries;
  287. TX_STAT_INC(txq->axq_qnum, a_retries);
  288. fi->retries += count;
  289. if (prev > 0)
  290. return;
  291. hdr = (struct ieee80211_hdr *)skb->data;
  292. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  293. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  294. sizeof(*hdr), DMA_TO_DEVICE);
  295. }
  296. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  297. {
  298. struct ath_buf *bf = NULL;
  299. spin_lock_bh(&sc->tx.txbuflock);
  300. if (unlikely(list_empty(&sc->tx.txbuf))) {
  301. spin_unlock_bh(&sc->tx.txbuflock);
  302. return NULL;
  303. }
  304. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  305. list_del(&bf->list);
  306. spin_unlock_bh(&sc->tx.txbuflock);
  307. return bf;
  308. }
  309. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  310. {
  311. spin_lock_bh(&sc->tx.txbuflock);
  312. list_add_tail(&bf->list, &sc->tx.txbuf);
  313. spin_unlock_bh(&sc->tx.txbuflock);
  314. }
  315. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  316. {
  317. struct ath_buf *tbf;
  318. tbf = ath_tx_get_buffer(sc);
  319. if (WARN_ON(!tbf))
  320. return NULL;
  321. ATH_TXBUF_RESET(tbf);
  322. tbf->bf_mpdu = bf->bf_mpdu;
  323. tbf->bf_buf_addr = bf->bf_buf_addr;
  324. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  325. tbf->bf_state = bf->bf_state;
  326. tbf->bf_state.stale = false;
  327. return tbf;
  328. }
  329. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  330. struct ath_tx_status *ts, int txok,
  331. int *nframes, int *nbad)
  332. {
  333. struct ath_frame_info *fi;
  334. u16 seq_st = 0;
  335. u32 ba[WME_BA_BMP_SIZE >> 5];
  336. int ba_index;
  337. int isaggr = 0;
  338. *nbad = 0;
  339. *nframes = 0;
  340. isaggr = bf_isaggr(bf);
  341. if (isaggr) {
  342. seq_st = ts->ts_seqnum;
  343. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  344. }
  345. while (bf) {
  346. fi = get_frame_info(bf->bf_mpdu);
  347. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  348. (*nframes)++;
  349. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  350. (*nbad)++;
  351. bf = bf->bf_next;
  352. }
  353. }
  354. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  355. struct ath_buf *bf, struct list_head *bf_q,
  356. struct ath_tx_status *ts, int txok)
  357. {
  358. struct ath_node *an = NULL;
  359. struct sk_buff *skb;
  360. struct ieee80211_sta *sta;
  361. struct ieee80211_hw *hw = sc->hw;
  362. struct ieee80211_hdr *hdr;
  363. struct ieee80211_tx_info *tx_info;
  364. struct ath_atx_tid *tid = NULL;
  365. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  366. struct list_head bf_head;
  367. struct sk_buff_head bf_pending;
  368. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  369. u32 ba[WME_BA_BMP_SIZE >> 5];
  370. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  371. bool rc_update = true, isba;
  372. struct ieee80211_tx_rate rates[4];
  373. struct ath_frame_info *fi;
  374. int nframes;
  375. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  376. int i, retries;
  377. int bar_index = -1;
  378. skb = bf->bf_mpdu;
  379. hdr = (struct ieee80211_hdr *)skb->data;
  380. tx_info = IEEE80211_SKB_CB(skb);
  381. memcpy(rates, bf->rates, sizeof(rates));
  382. retries = ts->ts_longretry + 1;
  383. for (i = 0; i < ts->ts_rateindex; i++)
  384. retries += rates[i].count;
  385. rcu_read_lock();
  386. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  387. if (!sta) {
  388. rcu_read_unlock();
  389. INIT_LIST_HEAD(&bf_head);
  390. while (bf) {
  391. bf_next = bf->bf_next;
  392. if (!bf->bf_state.stale || bf_next != NULL)
  393. list_move_tail(&bf->list, &bf_head);
  394. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  395. bf = bf_next;
  396. }
  397. return;
  398. }
  399. an = (struct ath_node *)sta->drv_priv;
  400. tid = ath_get_skb_tid(sc, an, skb);
  401. seq_first = tid->seq_start;
  402. isba = ts->ts_flags & ATH9K_TX_BA;
  403. /*
  404. * The hardware occasionally sends a tx status for the wrong TID.
  405. * In this case, the BA status cannot be considered valid and all
  406. * subframes need to be retransmitted
  407. *
  408. * Only BlockAcks have a TID and therefore normal Acks cannot be
  409. * checked
  410. */
  411. if (isba && tid->tidno != ts->tid)
  412. txok = false;
  413. isaggr = bf_isaggr(bf);
  414. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  415. if (isaggr && txok) {
  416. if (ts->ts_flags & ATH9K_TX_BA) {
  417. seq_st = ts->ts_seqnum;
  418. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  419. } else {
  420. /*
  421. * AR5416 can become deaf/mute when BA
  422. * issue happens. Chip needs to be reset.
  423. * But AP code may have sychronization issues
  424. * when perform internal reset in this routine.
  425. * Only enable reset in STA mode for now.
  426. */
  427. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  428. needreset = 1;
  429. }
  430. }
  431. __skb_queue_head_init(&bf_pending);
  432. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  433. while (bf) {
  434. u16 seqno = bf->bf_state.seqno;
  435. txfail = txpending = sendbar = 0;
  436. bf_next = bf->bf_next;
  437. skb = bf->bf_mpdu;
  438. tx_info = IEEE80211_SKB_CB(skb);
  439. fi = get_frame_info(skb);
  440. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  441. !tid->active) {
  442. /*
  443. * Outside of the current BlockAck window,
  444. * maybe part of a previous session
  445. */
  446. txfail = 1;
  447. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  448. /* transmit completion, subframe is
  449. * acked by block ack */
  450. acked_cnt++;
  451. } else if (!isaggr && txok) {
  452. /* transmit completion */
  453. acked_cnt++;
  454. } else if (flush) {
  455. txpending = 1;
  456. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  457. if (txok || !an->sleeping)
  458. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  459. retries);
  460. txpending = 1;
  461. } else {
  462. txfail = 1;
  463. txfail_cnt++;
  464. bar_index = max_t(int, bar_index,
  465. ATH_BA_INDEX(seq_first, seqno));
  466. }
  467. /*
  468. * Make sure the last desc is reclaimed if it
  469. * not a holding desc.
  470. */
  471. INIT_LIST_HEAD(&bf_head);
  472. if (bf_next != NULL || !bf_last->bf_state.stale)
  473. list_move_tail(&bf->list, &bf_head);
  474. if (!txpending) {
  475. /*
  476. * complete the acked-ones/xretried ones; update
  477. * block-ack window
  478. */
  479. ath_tx_update_baw(sc, tid, seqno);
  480. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  481. memcpy(tx_info->control.rates, rates, sizeof(rates));
  482. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  483. rc_update = false;
  484. }
  485. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  486. !txfail);
  487. } else {
  488. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  489. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  490. ieee80211_sta_eosp(sta);
  491. }
  492. /* retry the un-acked ones */
  493. if (bf->bf_next == NULL && bf_last->bf_state.stale) {
  494. struct ath_buf *tbf;
  495. tbf = ath_clone_txbuf(sc, bf_last);
  496. /*
  497. * Update tx baw and complete the
  498. * frame with failed status if we
  499. * run out of tx buf.
  500. */
  501. if (!tbf) {
  502. ath_tx_update_baw(sc, tid, seqno);
  503. ath_tx_complete_buf(sc, bf, txq,
  504. &bf_head, ts, 0);
  505. bar_index = max_t(int, bar_index,
  506. ATH_BA_INDEX(seq_first, seqno));
  507. break;
  508. }
  509. fi->bf = tbf;
  510. }
  511. /*
  512. * Put this buffer to the temporary pending
  513. * queue to retain ordering
  514. */
  515. __skb_queue_tail(&bf_pending, skb);
  516. }
  517. bf = bf_next;
  518. }
  519. /* prepend un-acked frames to the beginning of the pending frame queue */
  520. if (!skb_queue_empty(&bf_pending)) {
  521. if (an->sleeping)
  522. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  523. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  524. if (!an->sleeping) {
  525. ath_tx_queue_tid(txq, tid);
  526. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  527. tid->ac->clear_ps_filter = true;
  528. }
  529. }
  530. if (bar_index >= 0) {
  531. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  532. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  533. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  534. ath_txq_unlock(sc, txq);
  535. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  536. ath_txq_lock(sc, txq);
  537. }
  538. rcu_read_unlock();
  539. if (needreset)
  540. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  541. }
  542. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  543. {
  544. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  545. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  546. }
  547. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  548. struct ath_tx_status *ts, struct ath_buf *bf,
  549. struct list_head *bf_head)
  550. {
  551. struct ieee80211_tx_info *info;
  552. bool txok, flush;
  553. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  554. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  555. txq->axq_tx_inprogress = false;
  556. txq->axq_depth--;
  557. if (bf_is_ampdu_not_probing(bf))
  558. txq->axq_ampdu_depth--;
  559. if (!bf_isampdu(bf)) {
  560. if (!flush) {
  561. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  562. memcpy(info->control.rates, bf->rates,
  563. sizeof(info->control.rates));
  564. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  565. }
  566. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  567. } else
  568. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  569. if (!flush)
  570. ath_txq_schedule(sc, txq);
  571. }
  572. static bool ath_lookup_legacy(struct ath_buf *bf)
  573. {
  574. struct sk_buff *skb;
  575. struct ieee80211_tx_info *tx_info;
  576. struct ieee80211_tx_rate *rates;
  577. int i;
  578. skb = bf->bf_mpdu;
  579. tx_info = IEEE80211_SKB_CB(skb);
  580. rates = tx_info->control.rates;
  581. for (i = 0; i < 4; i++) {
  582. if (!rates[i].count || rates[i].idx < 0)
  583. break;
  584. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  585. return true;
  586. }
  587. return false;
  588. }
  589. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  590. struct ath_atx_tid *tid)
  591. {
  592. struct sk_buff *skb;
  593. struct ieee80211_tx_info *tx_info;
  594. struct ieee80211_tx_rate *rates;
  595. u32 max_4ms_framelen, frmlen;
  596. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  597. int q = tid->ac->txq->mac80211_qnum;
  598. int i;
  599. skb = bf->bf_mpdu;
  600. tx_info = IEEE80211_SKB_CB(skb);
  601. rates = bf->rates;
  602. /*
  603. * Find the lowest frame length among the rate series that will have a
  604. * 4ms (or TXOP limited) transmit duration.
  605. */
  606. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  607. for (i = 0; i < 4; i++) {
  608. int modeidx;
  609. if (!rates[i].count)
  610. continue;
  611. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  612. legacy = 1;
  613. break;
  614. }
  615. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  616. modeidx = MCS_HT40;
  617. else
  618. modeidx = MCS_HT20;
  619. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  620. modeidx++;
  621. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  622. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  623. }
  624. /*
  625. * limit aggregate size by the minimum rate if rate selected is
  626. * not a probe rate, if rate selected is a probe rate then
  627. * avoid aggregation of this packet.
  628. */
  629. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  630. return 0;
  631. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  632. /*
  633. * Override the default aggregation limit for BTCOEX.
  634. */
  635. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  636. if (bt_aggr_limit)
  637. aggr_limit = bt_aggr_limit;
  638. /*
  639. * h/w can accept aggregates up to 16 bit lengths (65535).
  640. * The IE, however can hold up to 65536, which shows up here
  641. * as zero. Ignore 65536 since we are constrained by hw.
  642. */
  643. if (tid->an->maxampdu)
  644. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  645. return aggr_limit;
  646. }
  647. /*
  648. * Returns the number of delimiters to be added to
  649. * meet the minimum required mpdudensity.
  650. */
  651. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  652. struct ath_buf *bf, u16 frmlen,
  653. bool first_subfrm)
  654. {
  655. #define FIRST_DESC_NDELIMS 60
  656. u32 nsymbits, nsymbols;
  657. u16 minlen;
  658. u8 flags, rix;
  659. int width, streams, half_gi, ndelim, mindelim;
  660. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  661. /* Select standard number of delimiters based on frame length alone */
  662. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  663. /*
  664. * If encryption enabled, hardware requires some more padding between
  665. * subframes.
  666. * TODO - this could be improved to be dependent on the rate.
  667. * The hardware can keep up at lower rates, but not higher rates
  668. */
  669. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  670. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  671. ndelim += ATH_AGGR_ENCRYPTDELIM;
  672. /*
  673. * Add delimiter when using RTS/CTS with aggregation
  674. * and non enterprise AR9003 card
  675. */
  676. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  677. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  678. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  679. /*
  680. * Convert desired mpdu density from microeconds to bytes based
  681. * on highest rate in rate series (i.e. first rate) to determine
  682. * required minimum length for subframe. Take into account
  683. * whether high rate is 20 or 40Mhz and half or full GI.
  684. *
  685. * If there is no mpdu density restriction, no further calculation
  686. * is needed.
  687. */
  688. if (tid->an->mpdudensity == 0)
  689. return ndelim;
  690. rix = bf->rates[0].idx;
  691. flags = bf->rates[0].flags;
  692. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  693. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  694. if (half_gi)
  695. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  696. else
  697. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  698. if (nsymbols == 0)
  699. nsymbols = 1;
  700. streams = HT_RC_2_STREAMS(rix);
  701. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  702. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  703. if (frmlen < minlen) {
  704. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  705. ndelim = max(mindelim, ndelim);
  706. }
  707. return ndelim;
  708. }
  709. static struct ath_buf *
  710. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  711. struct ath_atx_tid *tid, struct sk_buff_head **q)
  712. {
  713. struct ieee80211_tx_info *tx_info;
  714. struct ath_frame_info *fi;
  715. struct sk_buff *skb;
  716. struct ath_buf *bf;
  717. u16 seqno;
  718. while (1) {
  719. *q = &tid->retry_q;
  720. if (skb_queue_empty(*q))
  721. *q = &tid->buf_q;
  722. skb = skb_peek(*q);
  723. if (!skb)
  724. break;
  725. fi = get_frame_info(skb);
  726. bf = fi->bf;
  727. if (!fi->bf)
  728. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  729. else
  730. bf->bf_state.stale = false;
  731. if (!bf) {
  732. __skb_unlink(skb, *q);
  733. ath_txq_skb_done(sc, txq, skb);
  734. ieee80211_free_txskb(sc->hw, skb);
  735. continue;
  736. }
  737. bf->bf_next = NULL;
  738. bf->bf_lastbf = bf;
  739. tx_info = IEEE80211_SKB_CB(skb);
  740. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  741. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  742. bf->bf_state.bf_type = 0;
  743. return bf;
  744. }
  745. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  746. seqno = bf->bf_state.seqno;
  747. /* do not step over block-ack window */
  748. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  749. break;
  750. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  751. struct ath_tx_status ts = {};
  752. struct list_head bf_head;
  753. INIT_LIST_HEAD(&bf_head);
  754. list_add(&bf->list, &bf_head);
  755. __skb_unlink(skb, *q);
  756. ath_tx_update_baw(sc, tid, seqno);
  757. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  758. continue;
  759. }
  760. return bf;
  761. }
  762. return NULL;
  763. }
  764. static bool
  765. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  766. struct ath_atx_tid *tid, struct list_head *bf_q,
  767. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  768. int *aggr_len)
  769. {
  770. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  771. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  772. int nframes = 0, ndelim;
  773. u16 aggr_limit = 0, al = 0, bpad = 0,
  774. al_delta, h_baw = tid->baw_size / 2;
  775. struct ieee80211_tx_info *tx_info;
  776. struct ath_frame_info *fi;
  777. struct sk_buff *skb;
  778. bool closed = false;
  779. bf = bf_first;
  780. aggr_limit = ath_lookup_rate(sc, bf, tid);
  781. do {
  782. skb = bf->bf_mpdu;
  783. fi = get_frame_info(skb);
  784. /* do not exceed aggregation limit */
  785. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  786. if (nframes) {
  787. if (aggr_limit < al + bpad + al_delta ||
  788. ath_lookup_legacy(bf) || nframes >= h_baw)
  789. break;
  790. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  791. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  792. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  793. break;
  794. }
  795. /* add padding for previous frame to aggregation length */
  796. al += bpad + al_delta;
  797. /*
  798. * Get the delimiters needed to meet the MPDU
  799. * density for this node.
  800. */
  801. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  802. !nframes);
  803. bpad = PADBYTES(al_delta) + (ndelim << 2);
  804. nframes++;
  805. bf->bf_next = NULL;
  806. /* link buffers of this frame to the aggregate */
  807. if (!fi->baw_tracked)
  808. ath_tx_addto_baw(sc, tid, bf);
  809. bf->bf_state.ndelim = ndelim;
  810. __skb_unlink(skb, tid_q);
  811. list_add_tail(&bf->list, bf_q);
  812. if (bf_prev)
  813. bf_prev->bf_next = bf;
  814. bf_prev = bf;
  815. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  816. if (!bf) {
  817. closed = true;
  818. break;
  819. }
  820. } while (ath_tid_has_buffered(tid));
  821. bf = bf_first;
  822. bf->bf_lastbf = bf_prev;
  823. if (bf == bf_prev) {
  824. al = get_frame_info(bf->bf_mpdu)->framelen;
  825. bf->bf_state.bf_type = BUF_AMPDU;
  826. } else {
  827. TX_STAT_INC(txq->axq_qnum, a_aggr);
  828. }
  829. *aggr_len = al;
  830. return closed;
  831. #undef PADBYTES
  832. }
  833. /*
  834. * rix - rate index
  835. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  836. * width - 0 for 20 MHz, 1 for 40 MHz
  837. * half_gi - to use 4us v/s 3.6 us for symbol time
  838. */
  839. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  840. int width, int half_gi, bool shortPreamble)
  841. {
  842. u32 nbits, nsymbits, duration, nsymbols;
  843. int streams;
  844. /* find number of symbols: PLCP + data */
  845. streams = HT_RC_2_STREAMS(rix);
  846. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  847. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  848. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  849. if (!half_gi)
  850. duration = SYMBOL_TIME(nsymbols);
  851. else
  852. duration = SYMBOL_TIME_HALFGI(nsymbols);
  853. /* addup duration for legacy/ht training and signal fields */
  854. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  855. return duration;
  856. }
  857. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  858. {
  859. int streams = HT_RC_2_STREAMS(mcs);
  860. int symbols, bits;
  861. int bytes = 0;
  862. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  863. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  864. bits -= OFDM_PLCP_BITS;
  865. bytes = bits / 8;
  866. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  867. if (bytes > 65532)
  868. bytes = 65532;
  869. return bytes;
  870. }
  871. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  872. {
  873. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  874. int mcs;
  875. /* 4ms is the default (and maximum) duration */
  876. if (!txop || txop > 4096)
  877. txop = 4096;
  878. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  879. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  880. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  881. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  882. for (mcs = 0; mcs < 32; mcs++) {
  883. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  884. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  885. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  886. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  887. }
  888. }
  889. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  890. struct ath_tx_info *info, int len, bool rts)
  891. {
  892. struct ath_hw *ah = sc->sc_ah;
  893. struct sk_buff *skb;
  894. struct ieee80211_tx_info *tx_info;
  895. struct ieee80211_tx_rate *rates;
  896. const struct ieee80211_rate *rate;
  897. struct ieee80211_hdr *hdr;
  898. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  899. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  900. int i;
  901. u8 rix = 0;
  902. skb = bf->bf_mpdu;
  903. tx_info = IEEE80211_SKB_CB(skb);
  904. rates = bf->rates;
  905. hdr = (struct ieee80211_hdr *)skb->data;
  906. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  907. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  908. info->rtscts_rate = fi->rtscts_rate;
  909. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  910. bool is_40, is_sgi, is_sp;
  911. int phy;
  912. if (!rates[i].count || (rates[i].idx < 0))
  913. continue;
  914. rix = rates[i].idx;
  915. info->rates[i].Tries = rates[i].count;
  916. /*
  917. * Handle RTS threshold for unaggregated HT frames.
  918. */
  919. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  920. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  921. unlikely(rts_thresh != (u32) -1)) {
  922. if (!rts_thresh || (len > rts_thresh))
  923. rts = true;
  924. }
  925. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  926. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  927. info->flags |= ATH9K_TXDESC_RTSENA;
  928. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  929. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  930. info->flags |= ATH9K_TXDESC_CTSENA;
  931. }
  932. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  933. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  934. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  935. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  936. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  937. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  938. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  939. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  940. /* MCS rates */
  941. info->rates[i].Rate = rix | 0x80;
  942. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  943. ah->txchainmask, info->rates[i].Rate);
  944. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  945. is_40, is_sgi, is_sp);
  946. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  947. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  948. continue;
  949. }
  950. /* legacy rates */
  951. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  952. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  953. !(rate->flags & IEEE80211_RATE_ERP_G))
  954. phy = WLAN_RC_PHY_CCK;
  955. else
  956. phy = WLAN_RC_PHY_OFDM;
  957. info->rates[i].Rate = rate->hw_value;
  958. if (rate->hw_value_short) {
  959. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  960. info->rates[i].Rate |= rate->hw_value_short;
  961. } else {
  962. is_sp = false;
  963. }
  964. if (bf->bf_state.bfs_paprd)
  965. info->rates[i].ChSel = ah->txchainmask;
  966. else
  967. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  968. ah->txchainmask, info->rates[i].Rate);
  969. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  970. phy, rate->bitrate * 100, len, rix, is_sp);
  971. }
  972. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  973. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  974. info->flags &= ~ATH9K_TXDESC_RTSENA;
  975. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  976. if (info->flags & ATH9K_TXDESC_RTSENA)
  977. info->flags &= ~ATH9K_TXDESC_CTSENA;
  978. }
  979. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  980. {
  981. struct ieee80211_hdr *hdr;
  982. enum ath9k_pkt_type htype;
  983. __le16 fc;
  984. hdr = (struct ieee80211_hdr *)skb->data;
  985. fc = hdr->frame_control;
  986. if (ieee80211_is_beacon(fc))
  987. htype = ATH9K_PKT_TYPE_BEACON;
  988. else if (ieee80211_is_probe_resp(fc))
  989. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  990. else if (ieee80211_is_atim(fc))
  991. htype = ATH9K_PKT_TYPE_ATIM;
  992. else if (ieee80211_is_pspoll(fc))
  993. htype = ATH9K_PKT_TYPE_PSPOLL;
  994. else
  995. htype = ATH9K_PKT_TYPE_NORMAL;
  996. return htype;
  997. }
  998. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  999. struct ath_txq *txq, int len)
  1000. {
  1001. struct ath_hw *ah = sc->sc_ah;
  1002. struct ath_buf *bf_first = NULL;
  1003. struct ath_tx_info info;
  1004. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1005. bool rts = false;
  1006. memset(&info, 0, sizeof(info));
  1007. info.is_first = true;
  1008. info.is_last = true;
  1009. info.txpower = MAX_RATE_POWER;
  1010. info.qcu = txq->axq_qnum;
  1011. while (bf) {
  1012. struct sk_buff *skb = bf->bf_mpdu;
  1013. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1014. struct ath_frame_info *fi = get_frame_info(skb);
  1015. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1016. info.type = get_hw_packet_type(skb);
  1017. if (bf->bf_next)
  1018. info.link = bf->bf_next->bf_daddr;
  1019. else
  1020. info.link = 0;
  1021. if (!bf_first) {
  1022. bf_first = bf;
  1023. info.flags = ATH9K_TXDESC_INTREQ;
  1024. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1025. txq == sc->tx.uapsdq)
  1026. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1027. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1028. info.flags |= ATH9K_TXDESC_NOACK;
  1029. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1030. info.flags |= ATH9K_TXDESC_LDPC;
  1031. if (bf->bf_state.bfs_paprd)
  1032. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1033. ATH9K_TXDESC_PAPRD_S;
  1034. /*
  1035. * mac80211 doesn't handle RTS threshold for HT because
  1036. * the decision has to be taken based on AMPDU length
  1037. * and aggregation is done entirely inside ath9k.
  1038. * Set the RTS/CTS flag for the first subframe based
  1039. * on the threshold.
  1040. */
  1041. if (aggr && (bf == bf_first) &&
  1042. unlikely(rts_thresh != (u32) -1)) {
  1043. /*
  1044. * "len" is the size of the entire AMPDU.
  1045. */
  1046. if (!rts_thresh || (len > rts_thresh))
  1047. rts = true;
  1048. }
  1049. ath_buf_set_rate(sc, bf, &info, len, rts);
  1050. }
  1051. info.buf_addr[0] = bf->bf_buf_addr;
  1052. info.buf_len[0] = skb->len;
  1053. info.pkt_len = fi->framelen;
  1054. info.keyix = fi->keyix;
  1055. info.keytype = fi->keytype;
  1056. if (aggr) {
  1057. if (bf == bf_first)
  1058. info.aggr = AGGR_BUF_FIRST;
  1059. else if (bf == bf_first->bf_lastbf)
  1060. info.aggr = AGGR_BUF_LAST;
  1061. else
  1062. info.aggr = AGGR_BUF_MIDDLE;
  1063. info.ndelim = bf->bf_state.ndelim;
  1064. info.aggr_len = len;
  1065. }
  1066. if (bf == bf_first->bf_lastbf)
  1067. bf_first = NULL;
  1068. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1069. bf = bf->bf_next;
  1070. }
  1071. }
  1072. static void
  1073. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1074. struct ath_atx_tid *tid, struct list_head *bf_q,
  1075. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1076. {
  1077. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1078. struct sk_buff *skb;
  1079. int nframes = 0;
  1080. do {
  1081. struct ieee80211_tx_info *tx_info;
  1082. skb = bf->bf_mpdu;
  1083. nframes++;
  1084. __skb_unlink(skb, tid_q);
  1085. list_add_tail(&bf->list, bf_q);
  1086. if (bf_prev)
  1087. bf_prev->bf_next = bf;
  1088. bf_prev = bf;
  1089. if (nframes >= 2)
  1090. break;
  1091. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1092. if (!bf)
  1093. break;
  1094. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1095. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1096. break;
  1097. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1098. } while (1);
  1099. }
  1100. static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1101. struct ath_atx_tid *tid, bool *stop)
  1102. {
  1103. struct ath_buf *bf;
  1104. struct ieee80211_tx_info *tx_info;
  1105. struct sk_buff_head *tid_q;
  1106. struct list_head bf_q;
  1107. int aggr_len = 0;
  1108. bool aggr, last = true;
  1109. if (!ath_tid_has_buffered(tid))
  1110. return false;
  1111. INIT_LIST_HEAD(&bf_q);
  1112. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1113. if (!bf)
  1114. return false;
  1115. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1116. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1117. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1118. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
  1119. *stop = true;
  1120. return false;
  1121. }
  1122. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1123. if (aggr)
  1124. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1125. tid_q, &aggr_len);
  1126. else
  1127. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1128. if (list_empty(&bf_q))
  1129. return false;
  1130. if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
  1131. tid->ac->clear_ps_filter = false;
  1132. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1133. }
  1134. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1135. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1136. return true;
  1137. }
  1138. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1139. u16 tid, u16 *ssn)
  1140. {
  1141. struct ath_atx_tid *txtid;
  1142. struct ath_node *an;
  1143. u8 density;
  1144. an = (struct ath_node *)sta->drv_priv;
  1145. txtid = ATH_AN_2_TID(an, tid);
  1146. /* update ampdu factor/density, they may have changed. This may happen
  1147. * in HT IBSS when a beacon with HT-info is received after the station
  1148. * has already been added.
  1149. */
  1150. if (sta->ht_cap.ht_supported) {
  1151. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1152. sta->ht_cap.ampdu_factor);
  1153. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1154. an->mpdudensity = density;
  1155. }
  1156. /* force sequence number allocation for pending frames */
  1157. ath_tx_tid_change_state(sc, txtid);
  1158. txtid->active = true;
  1159. txtid->paused = true;
  1160. *ssn = txtid->seq_start = txtid->seq_next;
  1161. txtid->bar_index = -1;
  1162. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1163. txtid->baw_head = txtid->baw_tail = 0;
  1164. return 0;
  1165. }
  1166. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1167. {
  1168. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1169. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1170. struct ath_txq *txq = txtid->ac->txq;
  1171. ath_txq_lock(sc, txq);
  1172. txtid->active = false;
  1173. txtid->paused = false;
  1174. ath_tx_flush_tid(sc, txtid);
  1175. ath_tx_tid_change_state(sc, txtid);
  1176. ath_txq_unlock_complete(sc, txq);
  1177. }
  1178. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1179. struct ath_node *an)
  1180. {
  1181. struct ath_atx_tid *tid;
  1182. struct ath_atx_ac *ac;
  1183. struct ath_txq *txq;
  1184. bool buffered;
  1185. int tidno;
  1186. for (tidno = 0, tid = &an->tid[tidno];
  1187. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1188. if (!tid->sched)
  1189. continue;
  1190. ac = tid->ac;
  1191. txq = ac->txq;
  1192. ath_txq_lock(sc, txq);
  1193. buffered = ath_tid_has_buffered(tid);
  1194. tid->sched = false;
  1195. list_del(&tid->list);
  1196. if (ac->sched) {
  1197. ac->sched = false;
  1198. list_del(&ac->list);
  1199. }
  1200. ath_txq_unlock(sc, txq);
  1201. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1202. }
  1203. }
  1204. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1205. {
  1206. struct ath_atx_tid *tid;
  1207. struct ath_atx_ac *ac;
  1208. struct ath_txq *txq;
  1209. int tidno;
  1210. for (tidno = 0, tid = &an->tid[tidno];
  1211. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1212. ac = tid->ac;
  1213. txq = ac->txq;
  1214. ath_txq_lock(sc, txq);
  1215. ac->clear_ps_filter = true;
  1216. if (!tid->paused && ath_tid_has_buffered(tid)) {
  1217. ath_tx_queue_tid(txq, tid);
  1218. ath_txq_schedule(sc, txq);
  1219. }
  1220. ath_txq_unlock_complete(sc, txq);
  1221. }
  1222. }
  1223. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1224. u16 tidno)
  1225. {
  1226. struct ath_atx_tid *tid;
  1227. struct ath_node *an;
  1228. struct ath_txq *txq;
  1229. an = (struct ath_node *)sta->drv_priv;
  1230. tid = ATH_AN_2_TID(an, tidno);
  1231. txq = tid->ac->txq;
  1232. ath_txq_lock(sc, txq);
  1233. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1234. tid->paused = false;
  1235. if (ath_tid_has_buffered(tid)) {
  1236. ath_tx_queue_tid(txq, tid);
  1237. ath_txq_schedule(sc, txq);
  1238. }
  1239. ath_txq_unlock_complete(sc, txq);
  1240. }
  1241. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1242. struct ieee80211_sta *sta,
  1243. u16 tids, int nframes,
  1244. enum ieee80211_frame_release_type reason,
  1245. bool more_data)
  1246. {
  1247. struct ath_softc *sc = hw->priv;
  1248. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1249. struct ath_txq *txq = sc->tx.uapsdq;
  1250. struct ieee80211_tx_info *info;
  1251. struct list_head bf_q;
  1252. struct ath_buf *bf_tail = NULL, *bf;
  1253. struct sk_buff_head *tid_q;
  1254. int sent = 0;
  1255. int i;
  1256. INIT_LIST_HEAD(&bf_q);
  1257. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1258. struct ath_atx_tid *tid;
  1259. if (!(tids & 1))
  1260. continue;
  1261. tid = ATH_AN_2_TID(an, i);
  1262. if (tid->paused)
  1263. continue;
  1264. ath_txq_lock(sc, tid->ac->txq);
  1265. while (nframes > 0) {
  1266. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1267. if (!bf)
  1268. break;
  1269. __skb_unlink(bf->bf_mpdu, tid_q);
  1270. list_add_tail(&bf->list, &bf_q);
  1271. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1272. ath_tx_addto_baw(sc, tid, bf);
  1273. bf->bf_state.bf_type &= ~BUF_AGGR;
  1274. if (bf_tail)
  1275. bf_tail->bf_next = bf;
  1276. bf_tail = bf;
  1277. nframes--;
  1278. sent++;
  1279. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1280. if (an->sta && !ath_tid_has_buffered(tid))
  1281. ieee80211_sta_set_buffered(an->sta, i, false);
  1282. }
  1283. ath_txq_unlock_complete(sc, tid->ac->txq);
  1284. }
  1285. if (list_empty(&bf_q))
  1286. return;
  1287. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1288. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1289. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1290. ath_txq_lock(sc, txq);
  1291. ath_tx_fill_desc(sc, bf, txq, 0);
  1292. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1293. ath_txq_unlock(sc, txq);
  1294. }
  1295. /********************/
  1296. /* Queue Management */
  1297. /********************/
  1298. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1299. {
  1300. struct ath_hw *ah = sc->sc_ah;
  1301. struct ath9k_tx_queue_info qi;
  1302. static const int subtype_txq_to_hwq[] = {
  1303. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1304. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1305. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1306. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1307. };
  1308. int axq_qnum, i;
  1309. memset(&qi, 0, sizeof(qi));
  1310. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1311. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1312. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1313. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1314. qi.tqi_physCompBuf = 0;
  1315. /*
  1316. * Enable interrupts only for EOL and DESC conditions.
  1317. * We mark tx descriptors to receive a DESC interrupt
  1318. * when a tx queue gets deep; otherwise waiting for the
  1319. * EOL to reap descriptors. Note that this is done to
  1320. * reduce interrupt load and this only defers reaping
  1321. * descriptors, never transmitting frames. Aside from
  1322. * reducing interrupts this also permits more concurrency.
  1323. * The only potential downside is if the tx queue backs
  1324. * up in which case the top half of the kernel may backup
  1325. * due to a lack of tx descriptors.
  1326. *
  1327. * The UAPSD queue is an exception, since we take a desc-
  1328. * based intr on the EOSP frames.
  1329. */
  1330. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1331. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1332. } else {
  1333. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1334. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1335. else
  1336. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1337. TXQ_FLAG_TXDESCINT_ENABLE;
  1338. }
  1339. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1340. if (axq_qnum == -1) {
  1341. /*
  1342. * NB: don't print a message, this happens
  1343. * normally on parts with too few tx queues
  1344. */
  1345. return NULL;
  1346. }
  1347. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1348. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1349. txq->axq_qnum = axq_qnum;
  1350. txq->mac80211_qnum = -1;
  1351. txq->axq_link = NULL;
  1352. __skb_queue_head_init(&txq->complete_q);
  1353. INIT_LIST_HEAD(&txq->axq_q);
  1354. INIT_LIST_HEAD(&txq->axq_acq);
  1355. spin_lock_init(&txq->axq_lock);
  1356. txq->axq_depth = 0;
  1357. txq->axq_ampdu_depth = 0;
  1358. txq->axq_tx_inprogress = false;
  1359. sc->tx.txqsetup |= 1<<axq_qnum;
  1360. txq->txq_headidx = txq->txq_tailidx = 0;
  1361. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1362. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1363. }
  1364. return &sc->tx.txq[axq_qnum];
  1365. }
  1366. int ath_txq_update(struct ath_softc *sc, int qnum,
  1367. struct ath9k_tx_queue_info *qinfo)
  1368. {
  1369. struct ath_hw *ah = sc->sc_ah;
  1370. int error = 0;
  1371. struct ath9k_tx_queue_info qi;
  1372. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1373. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1374. qi.tqi_aifs = qinfo->tqi_aifs;
  1375. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1376. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1377. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1378. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1379. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1380. ath_err(ath9k_hw_common(sc->sc_ah),
  1381. "Unable to update hardware queue %u!\n", qnum);
  1382. error = -EIO;
  1383. } else {
  1384. ath9k_hw_resettxqueue(ah, qnum);
  1385. }
  1386. return error;
  1387. }
  1388. int ath_cabq_update(struct ath_softc *sc)
  1389. {
  1390. struct ath9k_tx_queue_info qi;
  1391. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1392. int qnum = sc->beacon.cabq->axq_qnum;
  1393. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1394. /*
  1395. * Ensure the readytime % is within the bounds.
  1396. */
  1397. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1398. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1399. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1400. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1401. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1402. sc->config.cabqReadytime) / 100;
  1403. ath_txq_update(sc, qnum, &qi);
  1404. return 0;
  1405. }
  1406. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1407. struct list_head *list)
  1408. {
  1409. struct ath_buf *bf, *lastbf;
  1410. struct list_head bf_head;
  1411. struct ath_tx_status ts;
  1412. memset(&ts, 0, sizeof(ts));
  1413. ts.ts_status = ATH9K_TX_FLUSH;
  1414. INIT_LIST_HEAD(&bf_head);
  1415. while (!list_empty(list)) {
  1416. bf = list_first_entry(list, struct ath_buf, list);
  1417. if (bf->bf_state.stale) {
  1418. list_del(&bf->list);
  1419. ath_tx_return_buffer(sc, bf);
  1420. continue;
  1421. }
  1422. lastbf = bf->bf_lastbf;
  1423. list_cut_position(&bf_head, list, &lastbf->list);
  1424. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1425. }
  1426. }
  1427. /*
  1428. * Drain a given TX queue (could be Beacon or Data)
  1429. *
  1430. * This assumes output has been stopped and
  1431. * we do not need to block ath_tx_tasklet.
  1432. */
  1433. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1434. {
  1435. ath_txq_lock(sc, txq);
  1436. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1437. int idx = txq->txq_tailidx;
  1438. while (!list_empty(&txq->txq_fifo[idx])) {
  1439. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1440. INCR(idx, ATH_TXFIFO_DEPTH);
  1441. }
  1442. txq->txq_tailidx = idx;
  1443. }
  1444. txq->axq_link = NULL;
  1445. txq->axq_tx_inprogress = false;
  1446. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1447. ath_txq_unlock_complete(sc, txq);
  1448. }
  1449. bool ath_drain_all_txq(struct ath_softc *sc)
  1450. {
  1451. struct ath_hw *ah = sc->sc_ah;
  1452. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1453. struct ath_txq *txq;
  1454. int i;
  1455. u32 npend = 0;
  1456. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1457. return true;
  1458. ath9k_hw_abort_tx_dma(ah);
  1459. /* Check if any queue remains active */
  1460. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1461. if (!ATH_TXQ_SETUP(sc, i))
  1462. continue;
  1463. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1464. npend |= BIT(i);
  1465. }
  1466. if (npend)
  1467. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1468. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1469. if (!ATH_TXQ_SETUP(sc, i))
  1470. continue;
  1471. /*
  1472. * The caller will resume queues with ieee80211_wake_queues.
  1473. * Mark the queue as not stopped to prevent ath_tx_complete
  1474. * from waking the queue too early.
  1475. */
  1476. txq = &sc->tx.txq[i];
  1477. txq->stopped = false;
  1478. ath_draintxq(sc, txq);
  1479. }
  1480. return !npend;
  1481. }
  1482. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1483. {
  1484. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1485. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1486. }
  1487. /* For each axq_acq entry, for each tid, try to schedule packets
  1488. * for transmit until ampdu_depth has reached min Q depth.
  1489. */
  1490. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1491. {
  1492. struct ath_atx_ac *ac, *last_ac;
  1493. struct ath_atx_tid *tid, *last_tid;
  1494. bool sent = false;
  1495. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1496. list_empty(&txq->axq_acq))
  1497. return;
  1498. rcu_read_lock();
  1499. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1500. while (!list_empty(&txq->axq_acq)) {
  1501. bool stop = false;
  1502. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1503. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1504. list_del(&ac->list);
  1505. ac->sched = false;
  1506. while (!list_empty(&ac->tid_q)) {
  1507. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1508. list);
  1509. list_del(&tid->list);
  1510. tid->sched = false;
  1511. if (tid->paused)
  1512. continue;
  1513. if (ath_tx_sched_aggr(sc, txq, tid, &stop))
  1514. sent = true;
  1515. /*
  1516. * add tid to round-robin queue if more frames
  1517. * are pending for the tid
  1518. */
  1519. if (ath_tid_has_buffered(tid))
  1520. ath_tx_queue_tid(txq, tid);
  1521. if (stop || tid == last_tid)
  1522. break;
  1523. }
  1524. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1525. ac->sched = true;
  1526. list_add_tail(&ac->list, &txq->axq_acq);
  1527. }
  1528. if (stop)
  1529. break;
  1530. if (ac == last_ac) {
  1531. if (!sent)
  1532. break;
  1533. sent = false;
  1534. last_ac = list_entry(txq->axq_acq.prev,
  1535. struct ath_atx_ac, list);
  1536. }
  1537. }
  1538. rcu_read_unlock();
  1539. }
  1540. /***********/
  1541. /* TX, DMA */
  1542. /***********/
  1543. /*
  1544. * Insert a chain of ath_buf (descriptors) on a txq and
  1545. * assume the descriptors are already chained together by caller.
  1546. */
  1547. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1548. struct list_head *head, bool internal)
  1549. {
  1550. struct ath_hw *ah = sc->sc_ah;
  1551. struct ath_common *common = ath9k_hw_common(ah);
  1552. struct ath_buf *bf, *bf_last;
  1553. bool puttxbuf = false;
  1554. bool edma;
  1555. /*
  1556. * Insert the frame on the outbound list and
  1557. * pass it on to the hardware.
  1558. */
  1559. if (list_empty(head))
  1560. return;
  1561. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1562. bf = list_first_entry(head, struct ath_buf, list);
  1563. bf_last = list_entry(head->prev, struct ath_buf, list);
  1564. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1565. txq->axq_qnum, txq->axq_depth);
  1566. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1567. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1568. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1569. puttxbuf = true;
  1570. } else {
  1571. list_splice_tail_init(head, &txq->axq_q);
  1572. if (txq->axq_link) {
  1573. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1574. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1575. txq->axq_qnum, txq->axq_link,
  1576. ito64(bf->bf_daddr), bf->bf_desc);
  1577. } else if (!edma)
  1578. puttxbuf = true;
  1579. txq->axq_link = bf_last->bf_desc;
  1580. }
  1581. if (puttxbuf) {
  1582. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1583. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1584. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1585. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1586. }
  1587. if (!edma) {
  1588. TX_STAT_INC(txq->axq_qnum, txstart);
  1589. ath9k_hw_txstart(ah, txq->axq_qnum);
  1590. }
  1591. if (!internal) {
  1592. while (bf) {
  1593. txq->axq_depth++;
  1594. if (bf_is_ampdu_not_probing(bf))
  1595. txq->axq_ampdu_depth++;
  1596. bf = bf->bf_lastbf->bf_next;
  1597. }
  1598. }
  1599. }
  1600. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1601. struct ath_atx_tid *tid, struct sk_buff *skb)
  1602. {
  1603. struct ath_frame_info *fi = get_frame_info(skb);
  1604. struct list_head bf_head;
  1605. struct ath_buf *bf;
  1606. bf = fi->bf;
  1607. INIT_LIST_HEAD(&bf_head);
  1608. list_add_tail(&bf->list, &bf_head);
  1609. bf->bf_state.bf_type = 0;
  1610. bf->bf_next = NULL;
  1611. bf->bf_lastbf = bf;
  1612. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1613. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1614. TX_STAT_INC(txq->axq_qnum, queued);
  1615. }
  1616. static void setup_frame_info(struct ieee80211_hw *hw,
  1617. struct ieee80211_sta *sta,
  1618. struct sk_buff *skb,
  1619. int framelen)
  1620. {
  1621. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1622. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1623. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1624. const struct ieee80211_rate *rate;
  1625. struct ath_frame_info *fi = get_frame_info(skb);
  1626. struct ath_node *an = NULL;
  1627. enum ath9k_key_type keytype;
  1628. bool short_preamble = false;
  1629. /*
  1630. * We check if Short Preamble is needed for the CTS rate by
  1631. * checking the BSS's global flag.
  1632. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1633. */
  1634. if (tx_info->control.vif &&
  1635. tx_info->control.vif->bss_conf.use_short_preamble)
  1636. short_preamble = true;
  1637. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1638. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1639. if (sta)
  1640. an = (struct ath_node *) sta->drv_priv;
  1641. memset(fi, 0, sizeof(*fi));
  1642. if (hw_key)
  1643. fi->keyix = hw_key->hw_key_idx;
  1644. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1645. fi->keyix = an->ps_key;
  1646. else
  1647. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1648. fi->keytype = keytype;
  1649. fi->framelen = framelen;
  1650. fi->rtscts_rate = rate->hw_value;
  1651. if (short_preamble)
  1652. fi->rtscts_rate |= rate->hw_value_short;
  1653. }
  1654. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1655. {
  1656. struct ath_hw *ah = sc->sc_ah;
  1657. struct ath9k_channel *curchan = ah->curchan;
  1658. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1659. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1660. (chainmask == 0x7) && (rate < 0x90))
  1661. return 0x3;
  1662. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1663. IS_CCK_RATE(rate))
  1664. return 0x2;
  1665. else
  1666. return chainmask;
  1667. }
  1668. /*
  1669. * Assign a descriptor (and sequence number if necessary,
  1670. * and map buffer for DMA. Frees skb on error
  1671. */
  1672. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1673. struct ath_txq *txq,
  1674. struct ath_atx_tid *tid,
  1675. struct sk_buff *skb)
  1676. {
  1677. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1678. struct ath_frame_info *fi = get_frame_info(skb);
  1679. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1680. struct ath_buf *bf;
  1681. int fragno;
  1682. u16 seqno;
  1683. bf = ath_tx_get_buffer(sc);
  1684. if (!bf) {
  1685. ath_dbg(common, XMIT, "TX buffers are full\n");
  1686. return NULL;
  1687. }
  1688. ATH_TXBUF_RESET(bf);
  1689. if (tid) {
  1690. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1691. seqno = tid->seq_next;
  1692. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1693. if (fragno)
  1694. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1695. if (!ieee80211_has_morefrags(hdr->frame_control))
  1696. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1697. bf->bf_state.seqno = seqno;
  1698. }
  1699. bf->bf_mpdu = skb;
  1700. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1701. skb->len, DMA_TO_DEVICE);
  1702. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1703. bf->bf_mpdu = NULL;
  1704. bf->bf_buf_addr = 0;
  1705. ath_err(ath9k_hw_common(sc->sc_ah),
  1706. "dma_mapping_error() on TX\n");
  1707. ath_tx_return_buffer(sc, bf);
  1708. return NULL;
  1709. }
  1710. fi->bf = bf;
  1711. return bf;
  1712. }
  1713. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1714. struct ath_tx_control *txctl)
  1715. {
  1716. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1717. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1718. struct ieee80211_sta *sta = txctl->sta;
  1719. struct ieee80211_vif *vif = info->control.vif;
  1720. struct ath_vif *avp;
  1721. struct ath_softc *sc = hw->priv;
  1722. int frmlen = skb->len + FCS_LEN;
  1723. int padpos, padsize;
  1724. /* NOTE: sta can be NULL according to net/mac80211.h */
  1725. if (sta)
  1726. txctl->an = (struct ath_node *)sta->drv_priv;
  1727. else if (vif && ieee80211_is_data(hdr->frame_control)) {
  1728. avp = (void *)vif->drv_priv;
  1729. txctl->an = &avp->mcast_node;
  1730. }
  1731. if (info->control.hw_key)
  1732. frmlen += info->control.hw_key->icv_len;
  1733. /*
  1734. * As a temporary workaround, assign seq# here; this will likely need
  1735. * to be cleaned up to work better with Beacon transmission and virtual
  1736. * BSSes.
  1737. */
  1738. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1739. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1740. sc->tx.seq_no += 0x10;
  1741. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1742. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1743. }
  1744. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1745. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1746. !ieee80211_is_data(hdr->frame_control))
  1747. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1748. /* Add the padding after the header if this is not already done */
  1749. padpos = ieee80211_hdrlen(hdr->frame_control);
  1750. padsize = padpos & 3;
  1751. if (padsize && skb->len > padpos) {
  1752. if (skb_headroom(skb) < padsize)
  1753. return -ENOMEM;
  1754. skb_push(skb, padsize);
  1755. memmove(skb->data, skb->data + padsize, padpos);
  1756. }
  1757. setup_frame_info(hw, sta, skb, frmlen);
  1758. return 0;
  1759. }
  1760. /* Upon failure caller should free skb */
  1761. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1762. struct ath_tx_control *txctl)
  1763. {
  1764. struct ieee80211_hdr *hdr;
  1765. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1766. struct ieee80211_sta *sta = txctl->sta;
  1767. struct ieee80211_vif *vif = info->control.vif;
  1768. struct ath_softc *sc = hw->priv;
  1769. struct ath_txq *txq = txctl->txq;
  1770. struct ath_atx_tid *tid = NULL;
  1771. struct ath_buf *bf;
  1772. int q;
  1773. int ret;
  1774. ret = ath_tx_prepare(hw, skb, txctl);
  1775. if (ret)
  1776. return ret;
  1777. hdr = (struct ieee80211_hdr *) skb->data;
  1778. /*
  1779. * At this point, the vif, hw_key and sta pointers in the tx control
  1780. * info are no longer valid (overwritten by the ath_frame_info data.
  1781. */
  1782. q = skb_get_queue_mapping(skb);
  1783. ath_txq_lock(sc, txq);
  1784. if (txq == sc->tx.txq_map[q] &&
  1785. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1786. !txq->stopped) {
  1787. ieee80211_stop_queue(sc->hw, q);
  1788. txq->stopped = true;
  1789. }
  1790. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1791. ath_txq_unlock(sc, txq);
  1792. txq = sc->tx.uapsdq;
  1793. ath_txq_lock(sc, txq);
  1794. } else if (txctl->an &&
  1795. ieee80211_is_data_present(hdr->frame_control)) {
  1796. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1797. WARN_ON(tid->ac->txq != txctl->txq);
  1798. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1799. tid->ac->clear_ps_filter = true;
  1800. /*
  1801. * Add this frame to software queue for scheduling later
  1802. * for aggregation.
  1803. */
  1804. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1805. __skb_queue_tail(&tid->buf_q, skb);
  1806. if (!txctl->an->sleeping)
  1807. ath_tx_queue_tid(txq, tid);
  1808. ath_txq_schedule(sc, txq);
  1809. goto out;
  1810. }
  1811. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1812. if (!bf) {
  1813. ath_txq_skb_done(sc, txq, skb);
  1814. if (txctl->paprd)
  1815. dev_kfree_skb_any(skb);
  1816. else
  1817. ieee80211_free_txskb(sc->hw, skb);
  1818. goto out;
  1819. }
  1820. bf->bf_state.bfs_paprd = txctl->paprd;
  1821. if (txctl->paprd)
  1822. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1823. ath_set_rates(vif, sta, bf);
  1824. ath_tx_send_normal(sc, txq, tid, skb);
  1825. out:
  1826. ath_txq_unlock(sc, txq);
  1827. return 0;
  1828. }
  1829. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1830. struct sk_buff *skb)
  1831. {
  1832. struct ath_softc *sc = hw->priv;
  1833. struct ath_tx_control txctl = {
  1834. .txq = sc->beacon.cabq
  1835. };
  1836. struct ath_tx_info info = {};
  1837. struct ieee80211_hdr *hdr;
  1838. struct ath_buf *bf_tail = NULL;
  1839. struct ath_buf *bf;
  1840. LIST_HEAD(bf_q);
  1841. int duration = 0;
  1842. int max_duration;
  1843. max_duration =
  1844. sc->cur_beacon_conf.beacon_interval * 1000 *
  1845. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1846. do {
  1847. struct ath_frame_info *fi = get_frame_info(skb);
  1848. if (ath_tx_prepare(hw, skb, &txctl))
  1849. break;
  1850. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1851. if (!bf)
  1852. break;
  1853. bf->bf_lastbf = bf;
  1854. ath_set_rates(vif, NULL, bf);
  1855. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1856. duration += info.rates[0].PktDuration;
  1857. if (bf_tail)
  1858. bf_tail->bf_next = bf;
  1859. list_add_tail(&bf->list, &bf_q);
  1860. bf_tail = bf;
  1861. skb = NULL;
  1862. if (duration > max_duration)
  1863. break;
  1864. skb = ieee80211_get_buffered_bc(hw, vif);
  1865. } while(skb);
  1866. if (skb)
  1867. ieee80211_free_txskb(hw, skb);
  1868. if (list_empty(&bf_q))
  1869. return;
  1870. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1871. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1872. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1873. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1874. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1875. sizeof(*hdr), DMA_TO_DEVICE);
  1876. }
  1877. ath_txq_lock(sc, txctl.txq);
  1878. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1879. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1880. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1881. ath_txq_unlock(sc, txctl.txq);
  1882. }
  1883. /*****************/
  1884. /* TX Completion */
  1885. /*****************/
  1886. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1887. int tx_flags, struct ath_txq *txq)
  1888. {
  1889. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1890. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1891. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1892. int padpos, padsize;
  1893. unsigned long flags;
  1894. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1895. if (sc->sc_ah->caldata)
  1896. sc->sc_ah->caldata->paprd_packet_sent = true;
  1897. if (!(tx_flags & ATH_TX_ERROR))
  1898. /* Frame was ACKed */
  1899. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1900. padpos = ieee80211_hdrlen(hdr->frame_control);
  1901. padsize = padpos & 3;
  1902. if (padsize && skb->len>padpos+padsize) {
  1903. /*
  1904. * Remove MAC header padding before giving the frame back to
  1905. * mac80211.
  1906. */
  1907. memmove(skb->data + padsize, skb->data, padpos);
  1908. skb_pull(skb, padsize);
  1909. }
  1910. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1911. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1912. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1913. ath_dbg(common, PS,
  1914. "Going back to sleep after having received TX status (0x%lx)\n",
  1915. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1916. PS_WAIT_FOR_CAB |
  1917. PS_WAIT_FOR_PSPOLL_DATA |
  1918. PS_WAIT_FOR_TX_ACK));
  1919. }
  1920. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1921. __skb_queue_tail(&txq->complete_q, skb);
  1922. ath_txq_skb_done(sc, txq, skb);
  1923. }
  1924. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1925. struct ath_txq *txq, struct list_head *bf_q,
  1926. struct ath_tx_status *ts, int txok)
  1927. {
  1928. struct sk_buff *skb = bf->bf_mpdu;
  1929. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1930. unsigned long flags;
  1931. int tx_flags = 0;
  1932. if (!txok)
  1933. tx_flags |= ATH_TX_ERROR;
  1934. if (ts->ts_status & ATH9K_TXERR_FILT)
  1935. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1936. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1937. bf->bf_buf_addr = 0;
  1938. if (bf->bf_state.bfs_paprd) {
  1939. if (time_after(jiffies,
  1940. bf->bf_state.bfs_paprd_timestamp +
  1941. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1942. dev_kfree_skb_any(skb);
  1943. else
  1944. complete(&sc->paprd_complete);
  1945. } else {
  1946. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1947. ath_tx_complete(sc, skb, tx_flags, txq);
  1948. }
  1949. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1950. * accidentally reference it later.
  1951. */
  1952. bf->bf_mpdu = NULL;
  1953. /*
  1954. * Return the list of ath_buf of this mpdu to free queue
  1955. */
  1956. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1957. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1958. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1959. }
  1960. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1961. struct ath_tx_status *ts, int nframes, int nbad,
  1962. int txok)
  1963. {
  1964. struct sk_buff *skb = bf->bf_mpdu;
  1965. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1966. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1967. struct ieee80211_hw *hw = sc->hw;
  1968. struct ath_hw *ah = sc->sc_ah;
  1969. u8 i, tx_rateindex;
  1970. if (txok)
  1971. tx_info->status.ack_signal = ts->ts_rssi;
  1972. tx_rateindex = ts->ts_rateindex;
  1973. WARN_ON(tx_rateindex >= hw->max_rates);
  1974. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1975. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1976. BUG_ON(nbad > nframes);
  1977. }
  1978. tx_info->status.ampdu_len = nframes;
  1979. tx_info->status.ampdu_ack_len = nframes - nbad;
  1980. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1981. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1982. /*
  1983. * If an underrun error is seen assume it as an excessive
  1984. * retry only if max frame trigger level has been reached
  1985. * (2 KB for single stream, and 4 KB for dual stream).
  1986. * Adjust the long retry as if the frame was tried
  1987. * hw->max_rate_tries times to affect how rate control updates
  1988. * PER for the failed rate.
  1989. * In case of congestion on the bus penalizing this type of
  1990. * underruns should help hardware actually transmit new frames
  1991. * successfully by eventually preferring slower rates.
  1992. * This itself should also alleviate congestion on the bus.
  1993. */
  1994. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1995. ATH9K_TX_DELIM_UNDERRUN)) &&
  1996. ieee80211_is_data(hdr->frame_control) &&
  1997. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1998. tx_info->status.rates[tx_rateindex].count =
  1999. hw->max_rate_tries;
  2000. }
  2001. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  2002. tx_info->status.rates[i].count = 0;
  2003. tx_info->status.rates[i].idx = -1;
  2004. }
  2005. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  2006. }
  2007. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2008. {
  2009. struct ath_hw *ah = sc->sc_ah;
  2010. struct ath_common *common = ath9k_hw_common(ah);
  2011. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2012. struct list_head bf_head;
  2013. struct ath_desc *ds;
  2014. struct ath_tx_status ts;
  2015. int status;
  2016. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2017. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2018. txq->axq_link);
  2019. ath_txq_lock(sc, txq);
  2020. for (;;) {
  2021. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2022. break;
  2023. if (list_empty(&txq->axq_q)) {
  2024. txq->axq_link = NULL;
  2025. ath_txq_schedule(sc, txq);
  2026. break;
  2027. }
  2028. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2029. /*
  2030. * There is a race condition that a BH gets scheduled
  2031. * after sw writes TxE and before hw re-load the last
  2032. * descriptor to get the newly chained one.
  2033. * Software must keep the last DONE descriptor as a
  2034. * holding descriptor - software does so by marking
  2035. * it with the STALE flag.
  2036. */
  2037. bf_held = NULL;
  2038. if (bf->bf_state.stale) {
  2039. bf_held = bf;
  2040. if (list_is_last(&bf_held->list, &txq->axq_q))
  2041. break;
  2042. bf = list_entry(bf_held->list.next, struct ath_buf,
  2043. list);
  2044. }
  2045. lastbf = bf->bf_lastbf;
  2046. ds = lastbf->bf_desc;
  2047. memset(&ts, 0, sizeof(ts));
  2048. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2049. if (status == -EINPROGRESS)
  2050. break;
  2051. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2052. /*
  2053. * Remove ath_buf's of the same transmit unit from txq,
  2054. * however leave the last descriptor back as the holding
  2055. * descriptor for hw.
  2056. */
  2057. lastbf->bf_state.stale = true;
  2058. INIT_LIST_HEAD(&bf_head);
  2059. if (!list_is_singular(&lastbf->list))
  2060. list_cut_position(&bf_head,
  2061. &txq->axq_q, lastbf->list.prev);
  2062. if (bf_held) {
  2063. list_del(&bf_held->list);
  2064. ath_tx_return_buffer(sc, bf_held);
  2065. }
  2066. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2067. }
  2068. ath_txq_unlock_complete(sc, txq);
  2069. }
  2070. void ath_tx_tasklet(struct ath_softc *sc)
  2071. {
  2072. struct ath_hw *ah = sc->sc_ah;
  2073. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2074. int i;
  2075. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2076. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2077. ath_tx_processq(sc, &sc->tx.txq[i]);
  2078. }
  2079. }
  2080. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2081. {
  2082. struct ath_tx_status ts;
  2083. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2084. struct ath_hw *ah = sc->sc_ah;
  2085. struct ath_txq *txq;
  2086. struct ath_buf *bf, *lastbf;
  2087. struct list_head bf_head;
  2088. struct list_head *fifo_list;
  2089. int status;
  2090. for (;;) {
  2091. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2092. break;
  2093. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2094. if (status == -EINPROGRESS)
  2095. break;
  2096. if (status == -EIO) {
  2097. ath_dbg(common, XMIT, "Error processing tx status\n");
  2098. break;
  2099. }
  2100. /* Process beacon completions separately */
  2101. if (ts.qid == sc->beacon.beaconq) {
  2102. sc->beacon.tx_processed = true;
  2103. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2104. ath9k_csa_is_finished(sc);
  2105. continue;
  2106. }
  2107. txq = &sc->tx.txq[ts.qid];
  2108. ath_txq_lock(sc, txq);
  2109. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2110. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2111. if (list_empty(fifo_list)) {
  2112. ath_txq_unlock(sc, txq);
  2113. return;
  2114. }
  2115. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2116. if (bf->bf_state.stale) {
  2117. list_del(&bf->list);
  2118. ath_tx_return_buffer(sc, bf);
  2119. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2120. }
  2121. lastbf = bf->bf_lastbf;
  2122. INIT_LIST_HEAD(&bf_head);
  2123. if (list_is_last(&lastbf->list, fifo_list)) {
  2124. list_splice_tail_init(fifo_list, &bf_head);
  2125. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2126. if (!list_empty(&txq->axq_q)) {
  2127. struct list_head bf_q;
  2128. INIT_LIST_HEAD(&bf_q);
  2129. txq->axq_link = NULL;
  2130. list_splice_tail_init(&txq->axq_q, &bf_q);
  2131. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2132. }
  2133. } else {
  2134. lastbf->bf_state.stale = true;
  2135. if (bf != lastbf)
  2136. list_cut_position(&bf_head, fifo_list,
  2137. lastbf->list.prev);
  2138. }
  2139. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2140. ath_txq_unlock_complete(sc, txq);
  2141. }
  2142. }
  2143. /*****************/
  2144. /* Init, Cleanup */
  2145. /*****************/
  2146. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2147. {
  2148. struct ath_descdma *dd = &sc->txsdma;
  2149. u8 txs_len = sc->sc_ah->caps.txs_len;
  2150. dd->dd_desc_len = size * txs_len;
  2151. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2152. &dd->dd_desc_paddr, GFP_KERNEL);
  2153. if (!dd->dd_desc)
  2154. return -ENOMEM;
  2155. return 0;
  2156. }
  2157. static int ath_tx_edma_init(struct ath_softc *sc)
  2158. {
  2159. int err;
  2160. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2161. if (!err)
  2162. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2163. sc->txsdma.dd_desc_paddr,
  2164. ATH_TXSTATUS_RING_SIZE);
  2165. return err;
  2166. }
  2167. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2168. {
  2169. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2170. int error = 0;
  2171. spin_lock_init(&sc->tx.txbuflock);
  2172. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2173. "tx", nbufs, 1, 1);
  2174. if (error != 0) {
  2175. ath_err(common,
  2176. "Failed to allocate tx descriptors: %d\n", error);
  2177. return error;
  2178. }
  2179. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2180. "beacon", ATH_BCBUF, 1, 1);
  2181. if (error != 0) {
  2182. ath_err(common,
  2183. "Failed to allocate beacon descriptors: %d\n", error);
  2184. return error;
  2185. }
  2186. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2187. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2188. error = ath_tx_edma_init(sc);
  2189. return error;
  2190. }
  2191. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2192. {
  2193. struct ath_atx_tid *tid;
  2194. struct ath_atx_ac *ac;
  2195. int tidno, acno;
  2196. for (tidno = 0, tid = &an->tid[tidno];
  2197. tidno < IEEE80211_NUM_TIDS;
  2198. tidno++, tid++) {
  2199. tid->an = an;
  2200. tid->tidno = tidno;
  2201. tid->seq_start = tid->seq_next = 0;
  2202. tid->baw_size = WME_MAX_BA;
  2203. tid->baw_head = tid->baw_tail = 0;
  2204. tid->sched = false;
  2205. tid->paused = false;
  2206. tid->active = false;
  2207. __skb_queue_head_init(&tid->buf_q);
  2208. __skb_queue_head_init(&tid->retry_q);
  2209. acno = TID_TO_WME_AC(tidno);
  2210. tid->ac = &an->ac[acno];
  2211. }
  2212. for (acno = 0, ac = &an->ac[acno];
  2213. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2214. ac->sched = false;
  2215. ac->clear_ps_filter = true;
  2216. ac->txq = sc->tx.txq_map[acno];
  2217. INIT_LIST_HEAD(&ac->tid_q);
  2218. }
  2219. }
  2220. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2221. {
  2222. struct ath_atx_ac *ac;
  2223. struct ath_atx_tid *tid;
  2224. struct ath_txq *txq;
  2225. int tidno;
  2226. for (tidno = 0, tid = &an->tid[tidno];
  2227. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2228. ac = tid->ac;
  2229. txq = ac->txq;
  2230. ath_txq_lock(sc, txq);
  2231. if (tid->sched) {
  2232. list_del(&tid->list);
  2233. tid->sched = false;
  2234. }
  2235. if (ac->sched) {
  2236. list_del(&ac->list);
  2237. tid->ac->sched = false;
  2238. }
  2239. ath_tid_drain(sc, txq, tid);
  2240. tid->active = false;
  2241. ath_txq_unlock(sc, txq);
  2242. }
  2243. }