kvm_main.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. bool kvm_is_mmio_pfn(pfn_t pfn)
  87. {
  88. if (pfn_valid(pfn)) {
  89. int reserved;
  90. struct page *tail = pfn_to_page(pfn);
  91. struct page *head = compound_trans_head(tail);
  92. reserved = PageReserved(head);
  93. if (head != tail) {
  94. /*
  95. * "head" is not a dangling pointer
  96. * (compound_trans_head takes care of that)
  97. * but the hugepage may have been splitted
  98. * from under us (and we may not hold a
  99. * reference count on the head page so it can
  100. * be reused before we run PageReferenced), so
  101. * we've to check PageTail before returning
  102. * what we just read.
  103. */
  104. smp_rmb();
  105. if (PageTail(tail))
  106. return reserved;
  107. }
  108. return PageReserved(tail);
  109. }
  110. return true;
  111. }
  112. /*
  113. * Switches to specified vcpu, until a matching vcpu_put()
  114. */
  115. void vcpu_load(struct kvm_vcpu *vcpu)
  116. {
  117. int cpu;
  118. mutex_lock(&vcpu->mutex);
  119. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  120. /* The thread running this VCPU changed. */
  121. struct pid *oldpid = vcpu->pid;
  122. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  123. rcu_assign_pointer(vcpu->pid, newpid);
  124. synchronize_rcu();
  125. put_pid(oldpid);
  126. }
  127. cpu = get_cpu();
  128. preempt_notifier_register(&vcpu->preempt_notifier);
  129. kvm_arch_vcpu_load(vcpu, cpu);
  130. put_cpu();
  131. }
  132. void vcpu_put(struct kvm_vcpu *vcpu)
  133. {
  134. preempt_disable();
  135. kvm_arch_vcpu_put(vcpu);
  136. preempt_notifier_unregister(&vcpu->preempt_notifier);
  137. preempt_enable();
  138. mutex_unlock(&vcpu->mutex);
  139. }
  140. static void ack_flush(void *_completed)
  141. {
  142. }
  143. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  144. {
  145. int i, cpu, me;
  146. cpumask_var_t cpus;
  147. bool called = true;
  148. struct kvm_vcpu *vcpu;
  149. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  150. me = get_cpu();
  151. kvm_for_each_vcpu(i, vcpu, kvm) {
  152. kvm_make_request(req, vcpu);
  153. cpu = vcpu->cpu;
  154. /* Set ->requests bit before we read ->mode */
  155. smp_mb();
  156. if (cpus != NULL && cpu != -1 && cpu != me &&
  157. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  158. cpumask_set_cpu(cpu, cpus);
  159. }
  160. if (unlikely(cpus == NULL))
  161. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  162. else if (!cpumask_empty(cpus))
  163. smp_call_function_many(cpus, ack_flush, NULL, 1);
  164. else
  165. called = false;
  166. put_cpu();
  167. free_cpumask_var(cpus);
  168. return called;
  169. }
  170. void kvm_flush_remote_tlbs(struct kvm *kvm)
  171. {
  172. long dirty_count = kvm->tlbs_dirty;
  173. smp_mb();
  174. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  175. ++kvm->stat.remote_tlb_flush;
  176. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  177. }
  178. void kvm_reload_remote_mmus(struct kvm *kvm)
  179. {
  180. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  181. }
  182. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  183. {
  184. struct page *page;
  185. int r;
  186. mutex_init(&vcpu->mutex);
  187. vcpu->cpu = -1;
  188. vcpu->kvm = kvm;
  189. vcpu->vcpu_id = id;
  190. vcpu->pid = NULL;
  191. init_waitqueue_head(&vcpu->wq);
  192. kvm_async_pf_vcpu_init(vcpu);
  193. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  194. if (!page) {
  195. r = -ENOMEM;
  196. goto fail;
  197. }
  198. vcpu->run = page_address(page);
  199. kvm_vcpu_set_in_spin_loop(vcpu, false);
  200. kvm_vcpu_set_dy_eligible(vcpu, false);
  201. r = kvm_arch_vcpu_init(vcpu);
  202. if (r < 0)
  203. goto fail_free_run;
  204. return 0;
  205. fail_free_run:
  206. free_page((unsigned long)vcpu->run);
  207. fail:
  208. return r;
  209. }
  210. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  211. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  212. {
  213. put_pid(vcpu->pid);
  214. kvm_arch_vcpu_uninit(vcpu);
  215. free_page((unsigned long)vcpu->run);
  216. }
  217. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  218. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  219. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  220. {
  221. return container_of(mn, struct kvm, mmu_notifier);
  222. }
  223. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  224. struct mm_struct *mm,
  225. unsigned long address)
  226. {
  227. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  228. int need_tlb_flush, idx;
  229. /*
  230. * When ->invalidate_page runs, the linux pte has been zapped
  231. * already but the page is still allocated until
  232. * ->invalidate_page returns. So if we increase the sequence
  233. * here the kvm page fault will notice if the spte can't be
  234. * established because the page is going to be freed. If
  235. * instead the kvm page fault establishes the spte before
  236. * ->invalidate_page runs, kvm_unmap_hva will release it
  237. * before returning.
  238. *
  239. * The sequence increase only need to be seen at spin_unlock
  240. * time, and not at spin_lock time.
  241. *
  242. * Increasing the sequence after the spin_unlock would be
  243. * unsafe because the kvm page fault could then establish the
  244. * pte after kvm_unmap_hva returned, without noticing the page
  245. * is going to be freed.
  246. */
  247. idx = srcu_read_lock(&kvm->srcu);
  248. spin_lock(&kvm->mmu_lock);
  249. kvm->mmu_notifier_seq++;
  250. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  251. /* we've to flush the tlb before the pages can be freed */
  252. if (need_tlb_flush)
  253. kvm_flush_remote_tlbs(kvm);
  254. spin_unlock(&kvm->mmu_lock);
  255. srcu_read_unlock(&kvm->srcu, idx);
  256. }
  257. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  258. struct mm_struct *mm,
  259. unsigned long address,
  260. pte_t pte)
  261. {
  262. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  263. int idx;
  264. idx = srcu_read_lock(&kvm->srcu);
  265. spin_lock(&kvm->mmu_lock);
  266. kvm->mmu_notifier_seq++;
  267. kvm_set_spte_hva(kvm, address, pte);
  268. spin_unlock(&kvm->mmu_lock);
  269. srcu_read_unlock(&kvm->srcu, idx);
  270. }
  271. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  272. struct mm_struct *mm,
  273. unsigned long start,
  274. unsigned long end)
  275. {
  276. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  277. int need_tlb_flush = 0, idx;
  278. idx = srcu_read_lock(&kvm->srcu);
  279. spin_lock(&kvm->mmu_lock);
  280. /*
  281. * The count increase must become visible at unlock time as no
  282. * spte can be established without taking the mmu_lock and
  283. * count is also read inside the mmu_lock critical section.
  284. */
  285. kvm->mmu_notifier_count++;
  286. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  287. need_tlb_flush |= kvm->tlbs_dirty;
  288. /* we've to flush the tlb before the pages can be freed */
  289. if (need_tlb_flush)
  290. kvm_flush_remote_tlbs(kvm);
  291. spin_unlock(&kvm->mmu_lock);
  292. srcu_read_unlock(&kvm->srcu, idx);
  293. }
  294. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  295. struct mm_struct *mm,
  296. unsigned long start,
  297. unsigned long end)
  298. {
  299. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  300. spin_lock(&kvm->mmu_lock);
  301. /*
  302. * This sequence increase will notify the kvm page fault that
  303. * the page that is going to be mapped in the spte could have
  304. * been freed.
  305. */
  306. kvm->mmu_notifier_seq++;
  307. smp_wmb();
  308. /*
  309. * The above sequence increase must be visible before the
  310. * below count decrease, which is ensured by the smp_wmb above
  311. * in conjunction with the smp_rmb in mmu_notifier_retry().
  312. */
  313. kvm->mmu_notifier_count--;
  314. spin_unlock(&kvm->mmu_lock);
  315. BUG_ON(kvm->mmu_notifier_count < 0);
  316. }
  317. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  318. struct mm_struct *mm,
  319. unsigned long address)
  320. {
  321. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  322. int young, idx;
  323. idx = srcu_read_lock(&kvm->srcu);
  324. spin_lock(&kvm->mmu_lock);
  325. young = kvm_age_hva(kvm, address);
  326. if (young)
  327. kvm_flush_remote_tlbs(kvm);
  328. spin_unlock(&kvm->mmu_lock);
  329. srcu_read_unlock(&kvm->srcu, idx);
  330. return young;
  331. }
  332. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  333. struct mm_struct *mm,
  334. unsigned long address)
  335. {
  336. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  337. int young, idx;
  338. idx = srcu_read_lock(&kvm->srcu);
  339. spin_lock(&kvm->mmu_lock);
  340. young = kvm_test_age_hva(kvm, address);
  341. spin_unlock(&kvm->mmu_lock);
  342. srcu_read_unlock(&kvm->srcu, idx);
  343. return young;
  344. }
  345. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  346. struct mm_struct *mm)
  347. {
  348. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  349. int idx;
  350. idx = srcu_read_lock(&kvm->srcu);
  351. kvm_arch_flush_shadow(kvm);
  352. srcu_read_unlock(&kvm->srcu, idx);
  353. }
  354. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  355. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  356. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  357. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  358. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  359. .test_young = kvm_mmu_notifier_test_young,
  360. .change_pte = kvm_mmu_notifier_change_pte,
  361. .release = kvm_mmu_notifier_release,
  362. };
  363. static int kvm_init_mmu_notifier(struct kvm *kvm)
  364. {
  365. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  366. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  367. }
  368. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  369. static int kvm_init_mmu_notifier(struct kvm *kvm)
  370. {
  371. return 0;
  372. }
  373. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  374. static void kvm_init_memslots_id(struct kvm *kvm)
  375. {
  376. int i;
  377. struct kvm_memslots *slots = kvm->memslots;
  378. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  379. slots->id_to_index[i] = slots->memslots[i].id = i;
  380. }
  381. static struct kvm *kvm_create_vm(unsigned long type)
  382. {
  383. int r, i;
  384. struct kvm *kvm = kvm_arch_alloc_vm();
  385. if (!kvm)
  386. return ERR_PTR(-ENOMEM);
  387. r = kvm_arch_init_vm(kvm, type);
  388. if (r)
  389. goto out_err_nodisable;
  390. r = hardware_enable_all();
  391. if (r)
  392. goto out_err_nodisable;
  393. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  394. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  395. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  396. #endif
  397. r = -ENOMEM;
  398. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  399. if (!kvm->memslots)
  400. goto out_err_nosrcu;
  401. kvm_init_memslots_id(kvm);
  402. if (init_srcu_struct(&kvm->srcu))
  403. goto out_err_nosrcu;
  404. for (i = 0; i < KVM_NR_BUSES; i++) {
  405. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  406. GFP_KERNEL);
  407. if (!kvm->buses[i])
  408. goto out_err;
  409. }
  410. spin_lock_init(&kvm->mmu_lock);
  411. kvm->mm = current->mm;
  412. atomic_inc(&kvm->mm->mm_count);
  413. kvm_eventfd_init(kvm);
  414. mutex_init(&kvm->lock);
  415. mutex_init(&kvm->irq_lock);
  416. mutex_init(&kvm->slots_lock);
  417. atomic_set(&kvm->users_count, 1);
  418. r = kvm_init_mmu_notifier(kvm);
  419. if (r)
  420. goto out_err;
  421. raw_spin_lock(&kvm_lock);
  422. list_add(&kvm->vm_list, &vm_list);
  423. raw_spin_unlock(&kvm_lock);
  424. return kvm;
  425. out_err:
  426. cleanup_srcu_struct(&kvm->srcu);
  427. out_err_nosrcu:
  428. hardware_disable_all();
  429. out_err_nodisable:
  430. for (i = 0; i < KVM_NR_BUSES; i++)
  431. kfree(kvm->buses[i]);
  432. kfree(kvm->memslots);
  433. kvm_arch_free_vm(kvm);
  434. return ERR_PTR(r);
  435. }
  436. /*
  437. * Avoid using vmalloc for a small buffer.
  438. * Should not be used when the size is statically known.
  439. */
  440. void *kvm_kvzalloc(unsigned long size)
  441. {
  442. if (size > PAGE_SIZE)
  443. return vzalloc(size);
  444. else
  445. return kzalloc(size, GFP_KERNEL);
  446. }
  447. void kvm_kvfree(const void *addr)
  448. {
  449. if (is_vmalloc_addr(addr))
  450. vfree(addr);
  451. else
  452. kfree(addr);
  453. }
  454. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  455. {
  456. if (!memslot->dirty_bitmap)
  457. return;
  458. kvm_kvfree(memslot->dirty_bitmap);
  459. memslot->dirty_bitmap = NULL;
  460. }
  461. /*
  462. * Free any memory in @free but not in @dont.
  463. */
  464. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  465. struct kvm_memory_slot *dont)
  466. {
  467. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  468. kvm_destroy_dirty_bitmap(free);
  469. kvm_arch_free_memslot(free, dont);
  470. free->npages = 0;
  471. }
  472. void kvm_free_physmem(struct kvm *kvm)
  473. {
  474. struct kvm_memslots *slots = kvm->memslots;
  475. struct kvm_memory_slot *memslot;
  476. kvm_for_each_memslot(memslot, slots)
  477. kvm_free_physmem_slot(memslot, NULL);
  478. kfree(kvm->memslots);
  479. }
  480. static void kvm_destroy_vm(struct kvm *kvm)
  481. {
  482. int i;
  483. struct mm_struct *mm = kvm->mm;
  484. kvm_arch_sync_events(kvm);
  485. raw_spin_lock(&kvm_lock);
  486. list_del(&kvm->vm_list);
  487. raw_spin_unlock(&kvm_lock);
  488. kvm_free_irq_routing(kvm);
  489. for (i = 0; i < KVM_NR_BUSES; i++)
  490. kvm_io_bus_destroy(kvm->buses[i]);
  491. kvm_coalesced_mmio_free(kvm);
  492. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  493. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  494. #else
  495. kvm_arch_flush_shadow(kvm);
  496. #endif
  497. kvm_arch_destroy_vm(kvm);
  498. kvm_free_physmem(kvm);
  499. cleanup_srcu_struct(&kvm->srcu);
  500. kvm_arch_free_vm(kvm);
  501. hardware_disable_all();
  502. mmdrop(mm);
  503. }
  504. void kvm_get_kvm(struct kvm *kvm)
  505. {
  506. atomic_inc(&kvm->users_count);
  507. }
  508. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  509. void kvm_put_kvm(struct kvm *kvm)
  510. {
  511. if (atomic_dec_and_test(&kvm->users_count))
  512. kvm_destroy_vm(kvm);
  513. }
  514. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  515. static int kvm_vm_release(struct inode *inode, struct file *filp)
  516. {
  517. struct kvm *kvm = filp->private_data;
  518. kvm_irqfd_release(kvm);
  519. kvm_put_kvm(kvm);
  520. return 0;
  521. }
  522. /*
  523. * Allocation size is twice as large as the actual dirty bitmap size.
  524. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  525. */
  526. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  527. {
  528. #ifndef CONFIG_S390
  529. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  530. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  531. if (!memslot->dirty_bitmap)
  532. return -ENOMEM;
  533. #endif /* !CONFIG_S390 */
  534. return 0;
  535. }
  536. static int cmp_memslot(const void *slot1, const void *slot2)
  537. {
  538. struct kvm_memory_slot *s1, *s2;
  539. s1 = (struct kvm_memory_slot *)slot1;
  540. s2 = (struct kvm_memory_slot *)slot2;
  541. if (s1->npages < s2->npages)
  542. return 1;
  543. if (s1->npages > s2->npages)
  544. return -1;
  545. return 0;
  546. }
  547. /*
  548. * Sort the memslots base on its size, so the larger slots
  549. * will get better fit.
  550. */
  551. static void sort_memslots(struct kvm_memslots *slots)
  552. {
  553. int i;
  554. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  555. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  556. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  557. slots->id_to_index[slots->memslots[i].id] = i;
  558. }
  559. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  560. {
  561. if (new) {
  562. int id = new->id;
  563. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  564. unsigned long npages = old->npages;
  565. *old = *new;
  566. if (new->npages != npages)
  567. sort_memslots(slots);
  568. }
  569. slots->generation++;
  570. }
  571. static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
  572. {
  573. if (mem->flags & ~KVM_MEM_LOG_DIRTY_PAGES)
  574. return -EINVAL;
  575. return 0;
  576. }
  577. /*
  578. * Allocate some memory and give it an address in the guest physical address
  579. * space.
  580. *
  581. * Discontiguous memory is allowed, mostly for framebuffers.
  582. *
  583. * Must be called holding mmap_sem for write.
  584. */
  585. int __kvm_set_memory_region(struct kvm *kvm,
  586. struct kvm_userspace_memory_region *mem,
  587. int user_alloc)
  588. {
  589. int r;
  590. gfn_t base_gfn;
  591. unsigned long npages;
  592. unsigned long i;
  593. struct kvm_memory_slot *memslot;
  594. struct kvm_memory_slot old, new;
  595. struct kvm_memslots *slots, *old_memslots;
  596. r = check_memory_region_flags(mem);
  597. if (r)
  598. goto out;
  599. r = -EINVAL;
  600. /* General sanity checks */
  601. if (mem->memory_size & (PAGE_SIZE - 1))
  602. goto out;
  603. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  604. goto out;
  605. /* We can read the guest memory with __xxx_user() later on. */
  606. if (user_alloc &&
  607. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  608. !access_ok(VERIFY_WRITE,
  609. (void __user *)(unsigned long)mem->userspace_addr,
  610. mem->memory_size)))
  611. goto out;
  612. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  613. goto out;
  614. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  615. goto out;
  616. memslot = id_to_memslot(kvm->memslots, mem->slot);
  617. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  618. npages = mem->memory_size >> PAGE_SHIFT;
  619. r = -EINVAL;
  620. if (npages > KVM_MEM_MAX_NR_PAGES)
  621. goto out;
  622. if (!npages)
  623. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  624. new = old = *memslot;
  625. new.id = mem->slot;
  626. new.base_gfn = base_gfn;
  627. new.npages = npages;
  628. new.flags = mem->flags;
  629. /* Disallow changing a memory slot's size. */
  630. r = -EINVAL;
  631. if (npages && old.npages && npages != old.npages)
  632. goto out_free;
  633. /* Check for overlaps */
  634. r = -EEXIST;
  635. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  636. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  637. if (s == memslot || !s->npages)
  638. continue;
  639. if (!((base_gfn + npages <= s->base_gfn) ||
  640. (base_gfn >= s->base_gfn + s->npages)))
  641. goto out_free;
  642. }
  643. /* Free page dirty bitmap if unneeded */
  644. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  645. new.dirty_bitmap = NULL;
  646. r = -ENOMEM;
  647. /* Allocate if a slot is being created */
  648. if (npages && !old.npages) {
  649. new.user_alloc = user_alloc;
  650. new.userspace_addr = mem->userspace_addr;
  651. if (kvm_arch_create_memslot(&new, npages))
  652. goto out_free;
  653. }
  654. /* Allocate page dirty bitmap if needed */
  655. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  656. if (kvm_create_dirty_bitmap(&new) < 0)
  657. goto out_free;
  658. /* destroy any largepage mappings for dirty tracking */
  659. }
  660. if (!npages) {
  661. struct kvm_memory_slot *slot;
  662. r = -ENOMEM;
  663. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  664. GFP_KERNEL);
  665. if (!slots)
  666. goto out_free;
  667. slot = id_to_memslot(slots, mem->slot);
  668. slot->flags |= KVM_MEMSLOT_INVALID;
  669. update_memslots(slots, NULL);
  670. old_memslots = kvm->memslots;
  671. rcu_assign_pointer(kvm->memslots, slots);
  672. synchronize_srcu_expedited(&kvm->srcu);
  673. /* From this point no new shadow pages pointing to a deleted
  674. * memslot will be created.
  675. *
  676. * validation of sp->gfn happens in:
  677. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  678. * - kvm_is_visible_gfn (mmu_check_roots)
  679. */
  680. kvm_arch_flush_shadow(kvm);
  681. kfree(old_memslots);
  682. }
  683. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  684. if (r)
  685. goto out_free;
  686. /* map/unmap the pages in iommu page table */
  687. if (npages) {
  688. r = kvm_iommu_map_pages(kvm, &new);
  689. if (r)
  690. goto out_free;
  691. } else
  692. kvm_iommu_unmap_pages(kvm, &old);
  693. r = -ENOMEM;
  694. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  695. GFP_KERNEL);
  696. if (!slots)
  697. goto out_free;
  698. /* actual memory is freed via old in kvm_free_physmem_slot below */
  699. if (!npages) {
  700. new.dirty_bitmap = NULL;
  701. memset(&new.arch, 0, sizeof(new.arch));
  702. }
  703. update_memslots(slots, &new);
  704. old_memslots = kvm->memslots;
  705. rcu_assign_pointer(kvm->memslots, slots);
  706. synchronize_srcu_expedited(&kvm->srcu);
  707. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  708. /*
  709. * If the new memory slot is created, we need to clear all
  710. * mmio sptes.
  711. */
  712. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  713. kvm_arch_flush_shadow(kvm);
  714. kvm_free_physmem_slot(&old, &new);
  715. kfree(old_memslots);
  716. return 0;
  717. out_free:
  718. kvm_free_physmem_slot(&new, &old);
  719. out:
  720. return r;
  721. }
  722. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  723. int kvm_set_memory_region(struct kvm *kvm,
  724. struct kvm_userspace_memory_region *mem,
  725. int user_alloc)
  726. {
  727. int r;
  728. mutex_lock(&kvm->slots_lock);
  729. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  730. mutex_unlock(&kvm->slots_lock);
  731. return r;
  732. }
  733. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  734. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  735. struct
  736. kvm_userspace_memory_region *mem,
  737. int user_alloc)
  738. {
  739. if (mem->slot >= KVM_MEMORY_SLOTS)
  740. return -EINVAL;
  741. return kvm_set_memory_region(kvm, mem, user_alloc);
  742. }
  743. int kvm_get_dirty_log(struct kvm *kvm,
  744. struct kvm_dirty_log *log, int *is_dirty)
  745. {
  746. struct kvm_memory_slot *memslot;
  747. int r, i;
  748. unsigned long n;
  749. unsigned long any = 0;
  750. r = -EINVAL;
  751. if (log->slot >= KVM_MEMORY_SLOTS)
  752. goto out;
  753. memslot = id_to_memslot(kvm->memslots, log->slot);
  754. r = -ENOENT;
  755. if (!memslot->dirty_bitmap)
  756. goto out;
  757. n = kvm_dirty_bitmap_bytes(memslot);
  758. for (i = 0; !any && i < n/sizeof(long); ++i)
  759. any = memslot->dirty_bitmap[i];
  760. r = -EFAULT;
  761. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  762. goto out;
  763. if (any)
  764. *is_dirty = 1;
  765. r = 0;
  766. out:
  767. return r;
  768. }
  769. bool kvm_largepages_enabled(void)
  770. {
  771. return largepages_enabled;
  772. }
  773. void kvm_disable_largepages(void)
  774. {
  775. largepages_enabled = false;
  776. }
  777. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  778. static inline unsigned long bad_hva(void)
  779. {
  780. return PAGE_OFFSET;
  781. }
  782. int kvm_is_error_hva(unsigned long addr)
  783. {
  784. return addr == bad_hva();
  785. }
  786. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  787. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  788. {
  789. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  790. }
  791. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  792. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  793. {
  794. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  795. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  796. memslot->flags & KVM_MEMSLOT_INVALID)
  797. return 0;
  798. return 1;
  799. }
  800. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  801. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  802. {
  803. struct vm_area_struct *vma;
  804. unsigned long addr, size;
  805. size = PAGE_SIZE;
  806. addr = gfn_to_hva(kvm, gfn);
  807. if (kvm_is_error_hva(addr))
  808. return PAGE_SIZE;
  809. down_read(&current->mm->mmap_sem);
  810. vma = find_vma(current->mm, addr);
  811. if (!vma)
  812. goto out;
  813. size = vma_kernel_pagesize(vma);
  814. out:
  815. up_read(&current->mm->mmap_sem);
  816. return size;
  817. }
  818. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  819. gfn_t *nr_pages)
  820. {
  821. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  822. return bad_hva();
  823. if (nr_pages)
  824. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  825. return gfn_to_hva_memslot(slot, gfn);
  826. }
  827. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  828. {
  829. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  830. }
  831. EXPORT_SYMBOL_GPL(gfn_to_hva);
  832. /*
  833. * The hva returned by this function is only allowed to be read.
  834. * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
  835. */
  836. static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
  837. {
  838. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  839. }
  840. static int kvm_read_hva(void *data, void __user *hva, int len)
  841. {
  842. return __copy_from_user(data, hva, len);
  843. }
  844. static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
  845. {
  846. return __copy_from_user_inatomic(data, hva, len);
  847. }
  848. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  849. unsigned long start, int write, struct page **page)
  850. {
  851. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  852. if (write)
  853. flags |= FOLL_WRITE;
  854. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  855. }
  856. static inline int check_user_page_hwpoison(unsigned long addr)
  857. {
  858. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  859. rc = __get_user_pages(current, current->mm, addr, 1,
  860. flags, NULL, NULL, NULL);
  861. return rc == -EHWPOISON;
  862. }
  863. static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  864. bool write_fault, bool *writable)
  865. {
  866. struct page *page[1];
  867. int npages = 0;
  868. pfn_t pfn;
  869. /* we can do it either atomically or asynchronously, not both */
  870. BUG_ON(atomic && async);
  871. BUG_ON(!write_fault && !writable);
  872. if (writable)
  873. *writable = true;
  874. if (atomic || async)
  875. npages = __get_user_pages_fast(addr, 1, 1, page);
  876. if (unlikely(npages != 1) && !atomic) {
  877. might_sleep();
  878. if (writable)
  879. *writable = write_fault;
  880. if (async) {
  881. down_read(&current->mm->mmap_sem);
  882. npages = get_user_page_nowait(current, current->mm,
  883. addr, write_fault, page);
  884. up_read(&current->mm->mmap_sem);
  885. } else
  886. npages = get_user_pages_fast(addr, 1, write_fault,
  887. page);
  888. /* map read fault as writable if possible */
  889. if (unlikely(!write_fault) && npages == 1) {
  890. struct page *wpage[1];
  891. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  892. if (npages == 1) {
  893. *writable = true;
  894. put_page(page[0]);
  895. page[0] = wpage[0];
  896. }
  897. npages = 1;
  898. }
  899. }
  900. if (unlikely(npages != 1)) {
  901. struct vm_area_struct *vma;
  902. if (atomic)
  903. return KVM_PFN_ERR_FAULT;
  904. down_read(&current->mm->mmap_sem);
  905. if (npages == -EHWPOISON ||
  906. (!async && check_user_page_hwpoison(addr))) {
  907. up_read(&current->mm->mmap_sem);
  908. return KVM_PFN_ERR_HWPOISON;
  909. }
  910. vma = find_vma_intersection(current->mm, addr, addr+1);
  911. if (vma == NULL)
  912. pfn = KVM_PFN_ERR_FAULT;
  913. else if ((vma->vm_flags & VM_PFNMAP)) {
  914. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  915. vma->vm_pgoff;
  916. BUG_ON(!kvm_is_mmio_pfn(pfn));
  917. } else {
  918. if (async && (vma->vm_flags & VM_WRITE))
  919. *async = true;
  920. pfn = KVM_PFN_ERR_FAULT;
  921. }
  922. up_read(&current->mm->mmap_sem);
  923. } else
  924. pfn = page_to_pfn(page[0]);
  925. return pfn;
  926. }
  927. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  928. bool write_fault, bool *writable)
  929. {
  930. unsigned long addr;
  931. if (async)
  932. *async = false;
  933. addr = gfn_to_hva(kvm, gfn);
  934. if (kvm_is_error_hva(addr))
  935. return KVM_PFN_ERR_BAD;
  936. return hva_to_pfn(addr, atomic, async, write_fault, writable);
  937. }
  938. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  939. {
  940. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  941. }
  942. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  943. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  944. bool write_fault, bool *writable)
  945. {
  946. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  947. }
  948. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  949. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  950. {
  951. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  952. }
  953. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  954. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  955. bool *writable)
  956. {
  957. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  958. }
  959. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  960. pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  961. {
  962. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  963. return hva_to_pfn(addr, false, NULL, true, NULL);
  964. }
  965. pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
  966. {
  967. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  968. return hva_to_pfn(addr, true, NULL, true, NULL);
  969. }
  970. EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
  971. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  972. int nr_pages)
  973. {
  974. unsigned long addr;
  975. gfn_t entry;
  976. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  977. if (kvm_is_error_hva(addr))
  978. return -1;
  979. if (entry < nr_pages)
  980. return 0;
  981. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  982. }
  983. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  984. static struct page *kvm_pfn_to_page(pfn_t pfn)
  985. {
  986. if (is_error_pfn(pfn))
  987. return KVM_ERR_PTR_BAD_PAGE;
  988. if (kvm_is_mmio_pfn(pfn)) {
  989. WARN_ON(1);
  990. return KVM_ERR_PTR_BAD_PAGE;
  991. }
  992. return pfn_to_page(pfn);
  993. }
  994. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  995. {
  996. pfn_t pfn;
  997. pfn = gfn_to_pfn(kvm, gfn);
  998. return kvm_pfn_to_page(pfn);
  999. }
  1000. EXPORT_SYMBOL_GPL(gfn_to_page);
  1001. void kvm_release_page_clean(struct page *page)
  1002. {
  1003. WARN_ON(is_error_page(page));
  1004. kvm_release_pfn_clean(page_to_pfn(page));
  1005. }
  1006. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1007. void kvm_release_pfn_clean(pfn_t pfn)
  1008. {
  1009. WARN_ON(is_error_pfn(pfn));
  1010. if (!kvm_is_mmio_pfn(pfn))
  1011. put_page(pfn_to_page(pfn));
  1012. }
  1013. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1014. void kvm_release_page_dirty(struct page *page)
  1015. {
  1016. WARN_ON(is_error_page(page));
  1017. kvm_release_pfn_dirty(page_to_pfn(page));
  1018. }
  1019. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1020. void kvm_release_pfn_dirty(pfn_t pfn)
  1021. {
  1022. kvm_set_pfn_dirty(pfn);
  1023. kvm_release_pfn_clean(pfn);
  1024. }
  1025. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1026. void kvm_set_page_dirty(struct page *page)
  1027. {
  1028. kvm_set_pfn_dirty(page_to_pfn(page));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1031. void kvm_set_pfn_dirty(pfn_t pfn)
  1032. {
  1033. if (!kvm_is_mmio_pfn(pfn)) {
  1034. struct page *page = pfn_to_page(pfn);
  1035. if (!PageReserved(page))
  1036. SetPageDirty(page);
  1037. }
  1038. }
  1039. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1040. void kvm_set_pfn_accessed(pfn_t pfn)
  1041. {
  1042. if (!kvm_is_mmio_pfn(pfn))
  1043. mark_page_accessed(pfn_to_page(pfn));
  1044. }
  1045. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1046. void kvm_get_pfn(pfn_t pfn)
  1047. {
  1048. if (!kvm_is_mmio_pfn(pfn))
  1049. get_page(pfn_to_page(pfn));
  1050. }
  1051. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1052. static int next_segment(unsigned long len, int offset)
  1053. {
  1054. if (len > PAGE_SIZE - offset)
  1055. return PAGE_SIZE - offset;
  1056. else
  1057. return len;
  1058. }
  1059. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1060. int len)
  1061. {
  1062. int r;
  1063. unsigned long addr;
  1064. addr = gfn_to_hva_read(kvm, gfn);
  1065. if (kvm_is_error_hva(addr))
  1066. return -EFAULT;
  1067. r = kvm_read_hva(data, (void __user *)addr + offset, len);
  1068. if (r)
  1069. return -EFAULT;
  1070. return 0;
  1071. }
  1072. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1073. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1074. {
  1075. gfn_t gfn = gpa >> PAGE_SHIFT;
  1076. int seg;
  1077. int offset = offset_in_page(gpa);
  1078. int ret;
  1079. while ((seg = next_segment(len, offset)) != 0) {
  1080. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1081. if (ret < 0)
  1082. return ret;
  1083. offset = 0;
  1084. len -= seg;
  1085. data += seg;
  1086. ++gfn;
  1087. }
  1088. return 0;
  1089. }
  1090. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1091. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1092. unsigned long len)
  1093. {
  1094. int r;
  1095. unsigned long addr;
  1096. gfn_t gfn = gpa >> PAGE_SHIFT;
  1097. int offset = offset_in_page(gpa);
  1098. addr = gfn_to_hva_read(kvm, gfn);
  1099. if (kvm_is_error_hva(addr))
  1100. return -EFAULT;
  1101. pagefault_disable();
  1102. r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
  1103. pagefault_enable();
  1104. if (r)
  1105. return -EFAULT;
  1106. return 0;
  1107. }
  1108. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1109. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1110. int offset, int len)
  1111. {
  1112. int r;
  1113. unsigned long addr;
  1114. addr = gfn_to_hva(kvm, gfn);
  1115. if (kvm_is_error_hva(addr))
  1116. return -EFAULT;
  1117. r = __copy_to_user((void __user *)addr + offset, data, len);
  1118. if (r)
  1119. return -EFAULT;
  1120. mark_page_dirty(kvm, gfn);
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1124. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1125. unsigned long len)
  1126. {
  1127. gfn_t gfn = gpa >> PAGE_SHIFT;
  1128. int seg;
  1129. int offset = offset_in_page(gpa);
  1130. int ret;
  1131. while ((seg = next_segment(len, offset)) != 0) {
  1132. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1133. if (ret < 0)
  1134. return ret;
  1135. offset = 0;
  1136. len -= seg;
  1137. data += seg;
  1138. ++gfn;
  1139. }
  1140. return 0;
  1141. }
  1142. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1143. gpa_t gpa)
  1144. {
  1145. struct kvm_memslots *slots = kvm_memslots(kvm);
  1146. int offset = offset_in_page(gpa);
  1147. gfn_t gfn = gpa >> PAGE_SHIFT;
  1148. ghc->gpa = gpa;
  1149. ghc->generation = slots->generation;
  1150. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1151. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1152. if (!kvm_is_error_hva(ghc->hva))
  1153. ghc->hva += offset;
  1154. else
  1155. return -EFAULT;
  1156. return 0;
  1157. }
  1158. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1159. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1160. void *data, unsigned long len)
  1161. {
  1162. struct kvm_memslots *slots = kvm_memslots(kvm);
  1163. int r;
  1164. if (slots->generation != ghc->generation)
  1165. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1166. if (kvm_is_error_hva(ghc->hva))
  1167. return -EFAULT;
  1168. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1169. if (r)
  1170. return -EFAULT;
  1171. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1172. return 0;
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1175. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1176. void *data, unsigned long len)
  1177. {
  1178. struct kvm_memslots *slots = kvm_memslots(kvm);
  1179. int r;
  1180. if (slots->generation != ghc->generation)
  1181. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1182. if (kvm_is_error_hva(ghc->hva))
  1183. return -EFAULT;
  1184. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1185. if (r)
  1186. return -EFAULT;
  1187. return 0;
  1188. }
  1189. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1190. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1191. {
  1192. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1193. offset, len);
  1194. }
  1195. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1196. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1197. {
  1198. gfn_t gfn = gpa >> PAGE_SHIFT;
  1199. int seg;
  1200. int offset = offset_in_page(gpa);
  1201. int ret;
  1202. while ((seg = next_segment(len, offset)) != 0) {
  1203. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1204. if (ret < 0)
  1205. return ret;
  1206. offset = 0;
  1207. len -= seg;
  1208. ++gfn;
  1209. }
  1210. return 0;
  1211. }
  1212. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1213. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1214. gfn_t gfn)
  1215. {
  1216. if (memslot && memslot->dirty_bitmap) {
  1217. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1218. /* TODO: introduce set_bit_le() and use it */
  1219. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1220. }
  1221. }
  1222. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1223. {
  1224. struct kvm_memory_slot *memslot;
  1225. memslot = gfn_to_memslot(kvm, gfn);
  1226. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1227. }
  1228. /*
  1229. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1230. */
  1231. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1232. {
  1233. DEFINE_WAIT(wait);
  1234. for (;;) {
  1235. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1236. if (kvm_arch_vcpu_runnable(vcpu)) {
  1237. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1238. break;
  1239. }
  1240. if (kvm_cpu_has_pending_timer(vcpu))
  1241. break;
  1242. if (signal_pending(current))
  1243. break;
  1244. schedule();
  1245. }
  1246. finish_wait(&vcpu->wq, &wait);
  1247. }
  1248. #ifndef CONFIG_S390
  1249. /*
  1250. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1251. */
  1252. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1253. {
  1254. int me;
  1255. int cpu = vcpu->cpu;
  1256. wait_queue_head_t *wqp;
  1257. wqp = kvm_arch_vcpu_wq(vcpu);
  1258. if (waitqueue_active(wqp)) {
  1259. wake_up_interruptible(wqp);
  1260. ++vcpu->stat.halt_wakeup;
  1261. }
  1262. me = get_cpu();
  1263. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1264. if (kvm_arch_vcpu_should_kick(vcpu))
  1265. smp_send_reschedule(cpu);
  1266. put_cpu();
  1267. }
  1268. #endif /* !CONFIG_S390 */
  1269. void kvm_resched(struct kvm_vcpu *vcpu)
  1270. {
  1271. if (!need_resched())
  1272. return;
  1273. cond_resched();
  1274. }
  1275. EXPORT_SYMBOL_GPL(kvm_resched);
  1276. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1277. {
  1278. struct pid *pid;
  1279. struct task_struct *task = NULL;
  1280. rcu_read_lock();
  1281. pid = rcu_dereference(target->pid);
  1282. if (pid)
  1283. task = get_pid_task(target->pid, PIDTYPE_PID);
  1284. rcu_read_unlock();
  1285. if (!task)
  1286. return false;
  1287. if (task->flags & PF_VCPU) {
  1288. put_task_struct(task);
  1289. return false;
  1290. }
  1291. if (yield_to(task, 1)) {
  1292. put_task_struct(task);
  1293. return true;
  1294. }
  1295. put_task_struct(task);
  1296. return false;
  1297. }
  1298. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1299. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1300. /*
  1301. * Helper that checks whether a VCPU is eligible for directed yield.
  1302. * Most eligible candidate to yield is decided by following heuristics:
  1303. *
  1304. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1305. * (preempted lock holder), indicated by @in_spin_loop.
  1306. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1307. *
  1308. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1309. * chance last time (mostly it has become eligible now since we have probably
  1310. * yielded to lockholder in last iteration. This is done by toggling
  1311. * @dy_eligible each time a VCPU checked for eligibility.)
  1312. *
  1313. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1314. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1315. * burning. Giving priority for a potential lock-holder increases lock
  1316. * progress.
  1317. *
  1318. * Since algorithm is based on heuristics, accessing another VCPU data without
  1319. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1320. * and continue with next VCPU and so on.
  1321. */
  1322. bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1323. {
  1324. bool eligible;
  1325. eligible = !vcpu->spin_loop.in_spin_loop ||
  1326. (vcpu->spin_loop.in_spin_loop &&
  1327. vcpu->spin_loop.dy_eligible);
  1328. if (vcpu->spin_loop.in_spin_loop)
  1329. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1330. return eligible;
  1331. }
  1332. #endif
  1333. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1334. {
  1335. struct kvm *kvm = me->kvm;
  1336. struct kvm_vcpu *vcpu;
  1337. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1338. int yielded = 0;
  1339. int pass;
  1340. int i;
  1341. kvm_vcpu_set_in_spin_loop(me, true);
  1342. /*
  1343. * We boost the priority of a VCPU that is runnable but not
  1344. * currently running, because it got preempted by something
  1345. * else and called schedule in __vcpu_run. Hopefully that
  1346. * VCPU is holding the lock that we need and will release it.
  1347. * We approximate round-robin by starting at the last boosted VCPU.
  1348. */
  1349. for (pass = 0; pass < 2 && !yielded; pass++) {
  1350. kvm_for_each_vcpu(i, vcpu, kvm) {
  1351. if (!pass && i <= last_boosted_vcpu) {
  1352. i = last_boosted_vcpu;
  1353. continue;
  1354. } else if (pass && i > last_boosted_vcpu)
  1355. break;
  1356. if (vcpu == me)
  1357. continue;
  1358. if (waitqueue_active(&vcpu->wq))
  1359. continue;
  1360. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1361. continue;
  1362. if (kvm_vcpu_yield_to(vcpu)) {
  1363. kvm->last_boosted_vcpu = i;
  1364. yielded = 1;
  1365. break;
  1366. }
  1367. }
  1368. }
  1369. kvm_vcpu_set_in_spin_loop(me, false);
  1370. /* Ensure vcpu is not eligible during next spinloop */
  1371. kvm_vcpu_set_dy_eligible(me, false);
  1372. }
  1373. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1374. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1375. {
  1376. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1377. struct page *page;
  1378. if (vmf->pgoff == 0)
  1379. page = virt_to_page(vcpu->run);
  1380. #ifdef CONFIG_X86
  1381. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1382. page = virt_to_page(vcpu->arch.pio_data);
  1383. #endif
  1384. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1385. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1386. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1387. #endif
  1388. else
  1389. return kvm_arch_vcpu_fault(vcpu, vmf);
  1390. get_page(page);
  1391. vmf->page = page;
  1392. return 0;
  1393. }
  1394. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1395. .fault = kvm_vcpu_fault,
  1396. };
  1397. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1398. {
  1399. vma->vm_ops = &kvm_vcpu_vm_ops;
  1400. return 0;
  1401. }
  1402. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1403. {
  1404. struct kvm_vcpu *vcpu = filp->private_data;
  1405. kvm_put_kvm(vcpu->kvm);
  1406. return 0;
  1407. }
  1408. static struct file_operations kvm_vcpu_fops = {
  1409. .release = kvm_vcpu_release,
  1410. .unlocked_ioctl = kvm_vcpu_ioctl,
  1411. #ifdef CONFIG_COMPAT
  1412. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1413. #endif
  1414. .mmap = kvm_vcpu_mmap,
  1415. .llseek = noop_llseek,
  1416. };
  1417. /*
  1418. * Allocates an inode for the vcpu.
  1419. */
  1420. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1421. {
  1422. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1423. }
  1424. /*
  1425. * Creates some virtual cpus. Good luck creating more than one.
  1426. */
  1427. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1428. {
  1429. int r;
  1430. struct kvm_vcpu *vcpu, *v;
  1431. vcpu = kvm_arch_vcpu_create(kvm, id);
  1432. if (IS_ERR(vcpu))
  1433. return PTR_ERR(vcpu);
  1434. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1435. r = kvm_arch_vcpu_setup(vcpu);
  1436. if (r)
  1437. goto vcpu_destroy;
  1438. mutex_lock(&kvm->lock);
  1439. if (!kvm_vcpu_compatible(vcpu)) {
  1440. r = -EINVAL;
  1441. goto unlock_vcpu_destroy;
  1442. }
  1443. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1444. r = -EINVAL;
  1445. goto unlock_vcpu_destroy;
  1446. }
  1447. kvm_for_each_vcpu(r, v, kvm)
  1448. if (v->vcpu_id == id) {
  1449. r = -EEXIST;
  1450. goto unlock_vcpu_destroy;
  1451. }
  1452. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1453. /* Now it's all set up, let userspace reach it */
  1454. kvm_get_kvm(kvm);
  1455. r = create_vcpu_fd(vcpu);
  1456. if (r < 0) {
  1457. kvm_put_kvm(kvm);
  1458. goto unlock_vcpu_destroy;
  1459. }
  1460. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1461. smp_wmb();
  1462. atomic_inc(&kvm->online_vcpus);
  1463. mutex_unlock(&kvm->lock);
  1464. return r;
  1465. unlock_vcpu_destroy:
  1466. mutex_unlock(&kvm->lock);
  1467. vcpu_destroy:
  1468. kvm_arch_vcpu_destroy(vcpu);
  1469. return r;
  1470. }
  1471. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1472. {
  1473. if (sigset) {
  1474. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1475. vcpu->sigset_active = 1;
  1476. vcpu->sigset = *sigset;
  1477. } else
  1478. vcpu->sigset_active = 0;
  1479. return 0;
  1480. }
  1481. static long kvm_vcpu_ioctl(struct file *filp,
  1482. unsigned int ioctl, unsigned long arg)
  1483. {
  1484. struct kvm_vcpu *vcpu = filp->private_data;
  1485. void __user *argp = (void __user *)arg;
  1486. int r;
  1487. struct kvm_fpu *fpu = NULL;
  1488. struct kvm_sregs *kvm_sregs = NULL;
  1489. if (vcpu->kvm->mm != current->mm)
  1490. return -EIO;
  1491. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1492. /*
  1493. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1494. * so vcpu_load() would break it.
  1495. */
  1496. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1497. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1498. #endif
  1499. vcpu_load(vcpu);
  1500. switch (ioctl) {
  1501. case KVM_RUN:
  1502. r = -EINVAL;
  1503. if (arg)
  1504. goto out;
  1505. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1506. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1507. break;
  1508. case KVM_GET_REGS: {
  1509. struct kvm_regs *kvm_regs;
  1510. r = -ENOMEM;
  1511. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1512. if (!kvm_regs)
  1513. goto out;
  1514. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1515. if (r)
  1516. goto out_free1;
  1517. r = -EFAULT;
  1518. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1519. goto out_free1;
  1520. r = 0;
  1521. out_free1:
  1522. kfree(kvm_regs);
  1523. break;
  1524. }
  1525. case KVM_SET_REGS: {
  1526. struct kvm_regs *kvm_regs;
  1527. r = -ENOMEM;
  1528. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1529. if (IS_ERR(kvm_regs)) {
  1530. r = PTR_ERR(kvm_regs);
  1531. goto out;
  1532. }
  1533. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1534. if (r)
  1535. goto out_free2;
  1536. r = 0;
  1537. out_free2:
  1538. kfree(kvm_regs);
  1539. break;
  1540. }
  1541. case KVM_GET_SREGS: {
  1542. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1543. r = -ENOMEM;
  1544. if (!kvm_sregs)
  1545. goto out;
  1546. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1547. if (r)
  1548. goto out;
  1549. r = -EFAULT;
  1550. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1551. goto out;
  1552. r = 0;
  1553. break;
  1554. }
  1555. case KVM_SET_SREGS: {
  1556. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1557. if (IS_ERR(kvm_sregs)) {
  1558. r = PTR_ERR(kvm_sregs);
  1559. goto out;
  1560. }
  1561. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1562. if (r)
  1563. goto out;
  1564. r = 0;
  1565. break;
  1566. }
  1567. case KVM_GET_MP_STATE: {
  1568. struct kvm_mp_state mp_state;
  1569. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1570. if (r)
  1571. goto out;
  1572. r = -EFAULT;
  1573. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1574. goto out;
  1575. r = 0;
  1576. break;
  1577. }
  1578. case KVM_SET_MP_STATE: {
  1579. struct kvm_mp_state mp_state;
  1580. r = -EFAULT;
  1581. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1582. goto out;
  1583. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1584. if (r)
  1585. goto out;
  1586. r = 0;
  1587. break;
  1588. }
  1589. case KVM_TRANSLATE: {
  1590. struct kvm_translation tr;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&tr, argp, sizeof tr))
  1593. goto out;
  1594. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1595. if (r)
  1596. goto out;
  1597. r = -EFAULT;
  1598. if (copy_to_user(argp, &tr, sizeof tr))
  1599. goto out;
  1600. r = 0;
  1601. break;
  1602. }
  1603. case KVM_SET_GUEST_DEBUG: {
  1604. struct kvm_guest_debug dbg;
  1605. r = -EFAULT;
  1606. if (copy_from_user(&dbg, argp, sizeof dbg))
  1607. goto out;
  1608. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1609. if (r)
  1610. goto out;
  1611. r = 0;
  1612. break;
  1613. }
  1614. case KVM_SET_SIGNAL_MASK: {
  1615. struct kvm_signal_mask __user *sigmask_arg = argp;
  1616. struct kvm_signal_mask kvm_sigmask;
  1617. sigset_t sigset, *p;
  1618. p = NULL;
  1619. if (argp) {
  1620. r = -EFAULT;
  1621. if (copy_from_user(&kvm_sigmask, argp,
  1622. sizeof kvm_sigmask))
  1623. goto out;
  1624. r = -EINVAL;
  1625. if (kvm_sigmask.len != sizeof sigset)
  1626. goto out;
  1627. r = -EFAULT;
  1628. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1629. sizeof sigset))
  1630. goto out;
  1631. p = &sigset;
  1632. }
  1633. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1634. break;
  1635. }
  1636. case KVM_GET_FPU: {
  1637. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1638. r = -ENOMEM;
  1639. if (!fpu)
  1640. goto out;
  1641. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1642. if (r)
  1643. goto out;
  1644. r = -EFAULT;
  1645. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1646. goto out;
  1647. r = 0;
  1648. break;
  1649. }
  1650. case KVM_SET_FPU: {
  1651. fpu = memdup_user(argp, sizeof(*fpu));
  1652. if (IS_ERR(fpu)) {
  1653. r = PTR_ERR(fpu);
  1654. goto out;
  1655. }
  1656. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1657. if (r)
  1658. goto out;
  1659. r = 0;
  1660. break;
  1661. }
  1662. default:
  1663. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1664. }
  1665. out:
  1666. vcpu_put(vcpu);
  1667. kfree(fpu);
  1668. kfree(kvm_sregs);
  1669. return r;
  1670. }
  1671. #ifdef CONFIG_COMPAT
  1672. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1673. unsigned int ioctl, unsigned long arg)
  1674. {
  1675. struct kvm_vcpu *vcpu = filp->private_data;
  1676. void __user *argp = compat_ptr(arg);
  1677. int r;
  1678. if (vcpu->kvm->mm != current->mm)
  1679. return -EIO;
  1680. switch (ioctl) {
  1681. case KVM_SET_SIGNAL_MASK: {
  1682. struct kvm_signal_mask __user *sigmask_arg = argp;
  1683. struct kvm_signal_mask kvm_sigmask;
  1684. compat_sigset_t csigset;
  1685. sigset_t sigset;
  1686. if (argp) {
  1687. r = -EFAULT;
  1688. if (copy_from_user(&kvm_sigmask, argp,
  1689. sizeof kvm_sigmask))
  1690. goto out;
  1691. r = -EINVAL;
  1692. if (kvm_sigmask.len != sizeof csigset)
  1693. goto out;
  1694. r = -EFAULT;
  1695. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1696. sizeof csigset))
  1697. goto out;
  1698. }
  1699. sigset_from_compat(&sigset, &csigset);
  1700. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1701. break;
  1702. }
  1703. default:
  1704. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1705. }
  1706. out:
  1707. return r;
  1708. }
  1709. #endif
  1710. static long kvm_vm_ioctl(struct file *filp,
  1711. unsigned int ioctl, unsigned long arg)
  1712. {
  1713. struct kvm *kvm = filp->private_data;
  1714. void __user *argp = (void __user *)arg;
  1715. int r;
  1716. if (kvm->mm != current->mm)
  1717. return -EIO;
  1718. switch (ioctl) {
  1719. case KVM_CREATE_VCPU:
  1720. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1721. if (r < 0)
  1722. goto out;
  1723. break;
  1724. case KVM_SET_USER_MEMORY_REGION: {
  1725. struct kvm_userspace_memory_region kvm_userspace_mem;
  1726. r = -EFAULT;
  1727. if (copy_from_user(&kvm_userspace_mem, argp,
  1728. sizeof kvm_userspace_mem))
  1729. goto out;
  1730. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1731. if (r)
  1732. goto out;
  1733. break;
  1734. }
  1735. case KVM_GET_DIRTY_LOG: {
  1736. struct kvm_dirty_log log;
  1737. r = -EFAULT;
  1738. if (copy_from_user(&log, argp, sizeof log))
  1739. goto out;
  1740. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1741. if (r)
  1742. goto out;
  1743. break;
  1744. }
  1745. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1746. case KVM_REGISTER_COALESCED_MMIO: {
  1747. struct kvm_coalesced_mmio_zone zone;
  1748. r = -EFAULT;
  1749. if (copy_from_user(&zone, argp, sizeof zone))
  1750. goto out;
  1751. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1752. if (r)
  1753. goto out;
  1754. r = 0;
  1755. break;
  1756. }
  1757. case KVM_UNREGISTER_COALESCED_MMIO: {
  1758. struct kvm_coalesced_mmio_zone zone;
  1759. r = -EFAULT;
  1760. if (copy_from_user(&zone, argp, sizeof zone))
  1761. goto out;
  1762. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1763. if (r)
  1764. goto out;
  1765. r = 0;
  1766. break;
  1767. }
  1768. #endif
  1769. case KVM_IRQFD: {
  1770. struct kvm_irqfd data;
  1771. r = -EFAULT;
  1772. if (copy_from_user(&data, argp, sizeof data))
  1773. goto out;
  1774. r = kvm_irqfd(kvm, &data);
  1775. break;
  1776. }
  1777. case KVM_IOEVENTFD: {
  1778. struct kvm_ioeventfd data;
  1779. r = -EFAULT;
  1780. if (copy_from_user(&data, argp, sizeof data))
  1781. goto out;
  1782. r = kvm_ioeventfd(kvm, &data);
  1783. break;
  1784. }
  1785. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1786. case KVM_SET_BOOT_CPU_ID:
  1787. r = 0;
  1788. mutex_lock(&kvm->lock);
  1789. if (atomic_read(&kvm->online_vcpus) != 0)
  1790. r = -EBUSY;
  1791. else
  1792. kvm->bsp_vcpu_id = arg;
  1793. mutex_unlock(&kvm->lock);
  1794. break;
  1795. #endif
  1796. #ifdef CONFIG_HAVE_KVM_MSI
  1797. case KVM_SIGNAL_MSI: {
  1798. struct kvm_msi msi;
  1799. r = -EFAULT;
  1800. if (copy_from_user(&msi, argp, sizeof msi))
  1801. goto out;
  1802. r = kvm_send_userspace_msi(kvm, &msi);
  1803. break;
  1804. }
  1805. #endif
  1806. #ifdef __KVM_HAVE_IRQ_LINE
  1807. case KVM_IRQ_LINE_STATUS:
  1808. case KVM_IRQ_LINE: {
  1809. struct kvm_irq_level irq_event;
  1810. r = -EFAULT;
  1811. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1812. goto out;
  1813. r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
  1814. if (r)
  1815. goto out;
  1816. r = -EFAULT;
  1817. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1818. if (copy_to_user(argp, &irq_event, sizeof irq_event))
  1819. goto out;
  1820. }
  1821. r = 0;
  1822. break;
  1823. }
  1824. #endif
  1825. default:
  1826. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1827. if (r == -ENOTTY)
  1828. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1829. }
  1830. out:
  1831. return r;
  1832. }
  1833. #ifdef CONFIG_COMPAT
  1834. struct compat_kvm_dirty_log {
  1835. __u32 slot;
  1836. __u32 padding1;
  1837. union {
  1838. compat_uptr_t dirty_bitmap; /* one bit per page */
  1839. __u64 padding2;
  1840. };
  1841. };
  1842. static long kvm_vm_compat_ioctl(struct file *filp,
  1843. unsigned int ioctl, unsigned long arg)
  1844. {
  1845. struct kvm *kvm = filp->private_data;
  1846. int r;
  1847. if (kvm->mm != current->mm)
  1848. return -EIO;
  1849. switch (ioctl) {
  1850. case KVM_GET_DIRTY_LOG: {
  1851. struct compat_kvm_dirty_log compat_log;
  1852. struct kvm_dirty_log log;
  1853. r = -EFAULT;
  1854. if (copy_from_user(&compat_log, (void __user *)arg,
  1855. sizeof(compat_log)))
  1856. goto out;
  1857. log.slot = compat_log.slot;
  1858. log.padding1 = compat_log.padding1;
  1859. log.padding2 = compat_log.padding2;
  1860. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1861. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1862. if (r)
  1863. goto out;
  1864. break;
  1865. }
  1866. default:
  1867. r = kvm_vm_ioctl(filp, ioctl, arg);
  1868. }
  1869. out:
  1870. return r;
  1871. }
  1872. #endif
  1873. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1874. {
  1875. struct page *page[1];
  1876. unsigned long addr;
  1877. int npages;
  1878. gfn_t gfn = vmf->pgoff;
  1879. struct kvm *kvm = vma->vm_file->private_data;
  1880. addr = gfn_to_hva(kvm, gfn);
  1881. if (kvm_is_error_hva(addr))
  1882. return VM_FAULT_SIGBUS;
  1883. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1884. NULL);
  1885. if (unlikely(npages != 1))
  1886. return VM_FAULT_SIGBUS;
  1887. vmf->page = page[0];
  1888. return 0;
  1889. }
  1890. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1891. .fault = kvm_vm_fault,
  1892. };
  1893. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1894. {
  1895. vma->vm_ops = &kvm_vm_vm_ops;
  1896. return 0;
  1897. }
  1898. static struct file_operations kvm_vm_fops = {
  1899. .release = kvm_vm_release,
  1900. .unlocked_ioctl = kvm_vm_ioctl,
  1901. #ifdef CONFIG_COMPAT
  1902. .compat_ioctl = kvm_vm_compat_ioctl,
  1903. #endif
  1904. .mmap = kvm_vm_mmap,
  1905. .llseek = noop_llseek,
  1906. };
  1907. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1908. {
  1909. int r;
  1910. struct kvm *kvm;
  1911. kvm = kvm_create_vm(type);
  1912. if (IS_ERR(kvm))
  1913. return PTR_ERR(kvm);
  1914. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1915. r = kvm_coalesced_mmio_init(kvm);
  1916. if (r < 0) {
  1917. kvm_put_kvm(kvm);
  1918. return r;
  1919. }
  1920. #endif
  1921. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1922. if (r < 0)
  1923. kvm_put_kvm(kvm);
  1924. return r;
  1925. }
  1926. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1927. {
  1928. switch (arg) {
  1929. case KVM_CAP_USER_MEMORY:
  1930. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1931. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1932. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1933. case KVM_CAP_SET_BOOT_CPU_ID:
  1934. #endif
  1935. case KVM_CAP_INTERNAL_ERROR_DATA:
  1936. #ifdef CONFIG_HAVE_KVM_MSI
  1937. case KVM_CAP_SIGNAL_MSI:
  1938. #endif
  1939. return 1;
  1940. #ifdef KVM_CAP_IRQ_ROUTING
  1941. case KVM_CAP_IRQ_ROUTING:
  1942. return KVM_MAX_IRQ_ROUTES;
  1943. #endif
  1944. default:
  1945. break;
  1946. }
  1947. return kvm_dev_ioctl_check_extension(arg);
  1948. }
  1949. static long kvm_dev_ioctl(struct file *filp,
  1950. unsigned int ioctl, unsigned long arg)
  1951. {
  1952. long r = -EINVAL;
  1953. switch (ioctl) {
  1954. case KVM_GET_API_VERSION:
  1955. r = -EINVAL;
  1956. if (arg)
  1957. goto out;
  1958. r = KVM_API_VERSION;
  1959. break;
  1960. case KVM_CREATE_VM:
  1961. r = kvm_dev_ioctl_create_vm(arg);
  1962. break;
  1963. case KVM_CHECK_EXTENSION:
  1964. r = kvm_dev_ioctl_check_extension_generic(arg);
  1965. break;
  1966. case KVM_GET_VCPU_MMAP_SIZE:
  1967. r = -EINVAL;
  1968. if (arg)
  1969. goto out;
  1970. r = PAGE_SIZE; /* struct kvm_run */
  1971. #ifdef CONFIG_X86
  1972. r += PAGE_SIZE; /* pio data page */
  1973. #endif
  1974. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1975. r += PAGE_SIZE; /* coalesced mmio ring page */
  1976. #endif
  1977. break;
  1978. case KVM_TRACE_ENABLE:
  1979. case KVM_TRACE_PAUSE:
  1980. case KVM_TRACE_DISABLE:
  1981. r = -EOPNOTSUPP;
  1982. break;
  1983. default:
  1984. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1985. }
  1986. out:
  1987. return r;
  1988. }
  1989. static struct file_operations kvm_chardev_ops = {
  1990. .unlocked_ioctl = kvm_dev_ioctl,
  1991. .compat_ioctl = kvm_dev_ioctl,
  1992. .llseek = noop_llseek,
  1993. };
  1994. static struct miscdevice kvm_dev = {
  1995. KVM_MINOR,
  1996. "kvm",
  1997. &kvm_chardev_ops,
  1998. };
  1999. static void hardware_enable_nolock(void *junk)
  2000. {
  2001. int cpu = raw_smp_processor_id();
  2002. int r;
  2003. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2004. return;
  2005. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2006. r = kvm_arch_hardware_enable(NULL);
  2007. if (r) {
  2008. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2009. atomic_inc(&hardware_enable_failed);
  2010. printk(KERN_INFO "kvm: enabling virtualization on "
  2011. "CPU%d failed\n", cpu);
  2012. }
  2013. }
  2014. static void hardware_enable(void *junk)
  2015. {
  2016. raw_spin_lock(&kvm_lock);
  2017. hardware_enable_nolock(junk);
  2018. raw_spin_unlock(&kvm_lock);
  2019. }
  2020. static void hardware_disable_nolock(void *junk)
  2021. {
  2022. int cpu = raw_smp_processor_id();
  2023. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2024. return;
  2025. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2026. kvm_arch_hardware_disable(NULL);
  2027. }
  2028. static void hardware_disable(void *junk)
  2029. {
  2030. raw_spin_lock(&kvm_lock);
  2031. hardware_disable_nolock(junk);
  2032. raw_spin_unlock(&kvm_lock);
  2033. }
  2034. static void hardware_disable_all_nolock(void)
  2035. {
  2036. BUG_ON(!kvm_usage_count);
  2037. kvm_usage_count--;
  2038. if (!kvm_usage_count)
  2039. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2040. }
  2041. static void hardware_disable_all(void)
  2042. {
  2043. raw_spin_lock(&kvm_lock);
  2044. hardware_disable_all_nolock();
  2045. raw_spin_unlock(&kvm_lock);
  2046. }
  2047. static int hardware_enable_all(void)
  2048. {
  2049. int r = 0;
  2050. raw_spin_lock(&kvm_lock);
  2051. kvm_usage_count++;
  2052. if (kvm_usage_count == 1) {
  2053. atomic_set(&hardware_enable_failed, 0);
  2054. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2055. if (atomic_read(&hardware_enable_failed)) {
  2056. hardware_disable_all_nolock();
  2057. r = -EBUSY;
  2058. }
  2059. }
  2060. raw_spin_unlock(&kvm_lock);
  2061. return r;
  2062. }
  2063. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2064. void *v)
  2065. {
  2066. int cpu = (long)v;
  2067. if (!kvm_usage_count)
  2068. return NOTIFY_OK;
  2069. val &= ~CPU_TASKS_FROZEN;
  2070. switch (val) {
  2071. case CPU_DYING:
  2072. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2073. cpu);
  2074. hardware_disable(NULL);
  2075. break;
  2076. case CPU_STARTING:
  2077. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2078. cpu);
  2079. hardware_enable(NULL);
  2080. break;
  2081. }
  2082. return NOTIFY_OK;
  2083. }
  2084. asmlinkage void kvm_spurious_fault(void)
  2085. {
  2086. /* Fault while not rebooting. We want the trace. */
  2087. BUG();
  2088. }
  2089. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2090. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2091. void *v)
  2092. {
  2093. /*
  2094. * Some (well, at least mine) BIOSes hang on reboot if
  2095. * in vmx root mode.
  2096. *
  2097. * And Intel TXT required VMX off for all cpu when system shutdown.
  2098. */
  2099. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2100. kvm_rebooting = true;
  2101. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2102. return NOTIFY_OK;
  2103. }
  2104. static struct notifier_block kvm_reboot_notifier = {
  2105. .notifier_call = kvm_reboot,
  2106. .priority = 0,
  2107. };
  2108. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2109. {
  2110. int i;
  2111. for (i = 0; i < bus->dev_count; i++) {
  2112. struct kvm_io_device *pos = bus->range[i].dev;
  2113. kvm_iodevice_destructor(pos);
  2114. }
  2115. kfree(bus);
  2116. }
  2117. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2118. {
  2119. const struct kvm_io_range *r1 = p1;
  2120. const struct kvm_io_range *r2 = p2;
  2121. if (r1->addr < r2->addr)
  2122. return -1;
  2123. if (r1->addr + r1->len > r2->addr + r2->len)
  2124. return 1;
  2125. return 0;
  2126. }
  2127. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2128. gpa_t addr, int len)
  2129. {
  2130. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2131. .addr = addr,
  2132. .len = len,
  2133. .dev = dev,
  2134. };
  2135. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2136. kvm_io_bus_sort_cmp, NULL);
  2137. return 0;
  2138. }
  2139. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2140. gpa_t addr, int len)
  2141. {
  2142. struct kvm_io_range *range, key;
  2143. int off;
  2144. key = (struct kvm_io_range) {
  2145. .addr = addr,
  2146. .len = len,
  2147. };
  2148. range = bsearch(&key, bus->range, bus->dev_count,
  2149. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2150. if (range == NULL)
  2151. return -ENOENT;
  2152. off = range - bus->range;
  2153. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2154. off--;
  2155. return off;
  2156. }
  2157. /* kvm_io_bus_write - called under kvm->slots_lock */
  2158. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2159. int len, const void *val)
  2160. {
  2161. int idx;
  2162. struct kvm_io_bus *bus;
  2163. struct kvm_io_range range;
  2164. range = (struct kvm_io_range) {
  2165. .addr = addr,
  2166. .len = len,
  2167. };
  2168. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2169. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2170. if (idx < 0)
  2171. return -EOPNOTSUPP;
  2172. while (idx < bus->dev_count &&
  2173. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2174. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2175. return 0;
  2176. idx++;
  2177. }
  2178. return -EOPNOTSUPP;
  2179. }
  2180. /* kvm_io_bus_read - called under kvm->slots_lock */
  2181. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2182. int len, void *val)
  2183. {
  2184. int idx;
  2185. struct kvm_io_bus *bus;
  2186. struct kvm_io_range range;
  2187. range = (struct kvm_io_range) {
  2188. .addr = addr,
  2189. .len = len,
  2190. };
  2191. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2192. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2193. if (idx < 0)
  2194. return -EOPNOTSUPP;
  2195. while (idx < bus->dev_count &&
  2196. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2197. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2198. return 0;
  2199. idx++;
  2200. }
  2201. return -EOPNOTSUPP;
  2202. }
  2203. /* Caller must hold slots_lock. */
  2204. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2205. int len, struct kvm_io_device *dev)
  2206. {
  2207. struct kvm_io_bus *new_bus, *bus;
  2208. bus = kvm->buses[bus_idx];
  2209. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2210. return -ENOSPC;
  2211. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2212. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2213. if (!new_bus)
  2214. return -ENOMEM;
  2215. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2216. sizeof(struct kvm_io_range)));
  2217. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2218. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2219. synchronize_srcu_expedited(&kvm->srcu);
  2220. kfree(bus);
  2221. return 0;
  2222. }
  2223. /* Caller must hold slots_lock. */
  2224. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2225. struct kvm_io_device *dev)
  2226. {
  2227. int i, r;
  2228. struct kvm_io_bus *new_bus, *bus;
  2229. bus = kvm->buses[bus_idx];
  2230. r = -ENOENT;
  2231. for (i = 0; i < bus->dev_count; i++)
  2232. if (bus->range[i].dev == dev) {
  2233. r = 0;
  2234. break;
  2235. }
  2236. if (r)
  2237. return r;
  2238. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2239. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2240. if (!new_bus)
  2241. return -ENOMEM;
  2242. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2243. new_bus->dev_count--;
  2244. memcpy(new_bus->range + i, bus->range + i + 1,
  2245. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2246. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2247. synchronize_srcu_expedited(&kvm->srcu);
  2248. kfree(bus);
  2249. return r;
  2250. }
  2251. static struct notifier_block kvm_cpu_notifier = {
  2252. .notifier_call = kvm_cpu_hotplug,
  2253. };
  2254. static int vm_stat_get(void *_offset, u64 *val)
  2255. {
  2256. unsigned offset = (long)_offset;
  2257. struct kvm *kvm;
  2258. *val = 0;
  2259. raw_spin_lock(&kvm_lock);
  2260. list_for_each_entry(kvm, &vm_list, vm_list)
  2261. *val += *(u32 *)((void *)kvm + offset);
  2262. raw_spin_unlock(&kvm_lock);
  2263. return 0;
  2264. }
  2265. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2266. static int vcpu_stat_get(void *_offset, u64 *val)
  2267. {
  2268. unsigned offset = (long)_offset;
  2269. struct kvm *kvm;
  2270. struct kvm_vcpu *vcpu;
  2271. int i;
  2272. *val = 0;
  2273. raw_spin_lock(&kvm_lock);
  2274. list_for_each_entry(kvm, &vm_list, vm_list)
  2275. kvm_for_each_vcpu(i, vcpu, kvm)
  2276. *val += *(u32 *)((void *)vcpu + offset);
  2277. raw_spin_unlock(&kvm_lock);
  2278. return 0;
  2279. }
  2280. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2281. static const struct file_operations *stat_fops[] = {
  2282. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2283. [KVM_STAT_VM] = &vm_stat_fops,
  2284. };
  2285. static int kvm_init_debug(void)
  2286. {
  2287. int r = -EFAULT;
  2288. struct kvm_stats_debugfs_item *p;
  2289. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2290. if (kvm_debugfs_dir == NULL)
  2291. goto out;
  2292. for (p = debugfs_entries; p->name; ++p) {
  2293. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2294. (void *)(long)p->offset,
  2295. stat_fops[p->kind]);
  2296. if (p->dentry == NULL)
  2297. goto out_dir;
  2298. }
  2299. return 0;
  2300. out_dir:
  2301. debugfs_remove_recursive(kvm_debugfs_dir);
  2302. out:
  2303. return r;
  2304. }
  2305. static void kvm_exit_debug(void)
  2306. {
  2307. struct kvm_stats_debugfs_item *p;
  2308. for (p = debugfs_entries; p->name; ++p)
  2309. debugfs_remove(p->dentry);
  2310. debugfs_remove(kvm_debugfs_dir);
  2311. }
  2312. static int kvm_suspend(void)
  2313. {
  2314. if (kvm_usage_count)
  2315. hardware_disable_nolock(NULL);
  2316. return 0;
  2317. }
  2318. static void kvm_resume(void)
  2319. {
  2320. if (kvm_usage_count) {
  2321. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2322. hardware_enable_nolock(NULL);
  2323. }
  2324. }
  2325. static struct syscore_ops kvm_syscore_ops = {
  2326. .suspend = kvm_suspend,
  2327. .resume = kvm_resume,
  2328. };
  2329. static inline
  2330. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2331. {
  2332. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2333. }
  2334. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2335. {
  2336. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2337. kvm_arch_vcpu_load(vcpu, cpu);
  2338. }
  2339. static void kvm_sched_out(struct preempt_notifier *pn,
  2340. struct task_struct *next)
  2341. {
  2342. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2343. kvm_arch_vcpu_put(vcpu);
  2344. }
  2345. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2346. struct module *module)
  2347. {
  2348. int r;
  2349. int cpu;
  2350. r = kvm_arch_init(opaque);
  2351. if (r)
  2352. goto out_fail;
  2353. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2354. r = -ENOMEM;
  2355. goto out_free_0;
  2356. }
  2357. r = kvm_arch_hardware_setup();
  2358. if (r < 0)
  2359. goto out_free_0a;
  2360. for_each_online_cpu(cpu) {
  2361. smp_call_function_single(cpu,
  2362. kvm_arch_check_processor_compat,
  2363. &r, 1);
  2364. if (r < 0)
  2365. goto out_free_1;
  2366. }
  2367. r = register_cpu_notifier(&kvm_cpu_notifier);
  2368. if (r)
  2369. goto out_free_2;
  2370. register_reboot_notifier(&kvm_reboot_notifier);
  2371. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2372. if (!vcpu_align)
  2373. vcpu_align = __alignof__(struct kvm_vcpu);
  2374. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2375. 0, NULL);
  2376. if (!kvm_vcpu_cache) {
  2377. r = -ENOMEM;
  2378. goto out_free_3;
  2379. }
  2380. r = kvm_async_pf_init();
  2381. if (r)
  2382. goto out_free;
  2383. kvm_chardev_ops.owner = module;
  2384. kvm_vm_fops.owner = module;
  2385. kvm_vcpu_fops.owner = module;
  2386. r = misc_register(&kvm_dev);
  2387. if (r) {
  2388. printk(KERN_ERR "kvm: misc device register failed\n");
  2389. goto out_unreg;
  2390. }
  2391. register_syscore_ops(&kvm_syscore_ops);
  2392. kvm_preempt_ops.sched_in = kvm_sched_in;
  2393. kvm_preempt_ops.sched_out = kvm_sched_out;
  2394. r = kvm_init_debug();
  2395. if (r) {
  2396. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2397. goto out_undebugfs;
  2398. }
  2399. return 0;
  2400. out_undebugfs:
  2401. unregister_syscore_ops(&kvm_syscore_ops);
  2402. out_unreg:
  2403. kvm_async_pf_deinit();
  2404. out_free:
  2405. kmem_cache_destroy(kvm_vcpu_cache);
  2406. out_free_3:
  2407. unregister_reboot_notifier(&kvm_reboot_notifier);
  2408. unregister_cpu_notifier(&kvm_cpu_notifier);
  2409. out_free_2:
  2410. out_free_1:
  2411. kvm_arch_hardware_unsetup();
  2412. out_free_0a:
  2413. free_cpumask_var(cpus_hardware_enabled);
  2414. out_free_0:
  2415. kvm_arch_exit();
  2416. out_fail:
  2417. return r;
  2418. }
  2419. EXPORT_SYMBOL_GPL(kvm_init);
  2420. void kvm_exit(void)
  2421. {
  2422. kvm_exit_debug();
  2423. misc_deregister(&kvm_dev);
  2424. kmem_cache_destroy(kvm_vcpu_cache);
  2425. kvm_async_pf_deinit();
  2426. unregister_syscore_ops(&kvm_syscore_ops);
  2427. unregister_reboot_notifier(&kvm_reboot_notifier);
  2428. unregister_cpu_notifier(&kvm_cpu_notifier);
  2429. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2430. kvm_arch_hardware_unsetup();
  2431. kvm_arch_exit();
  2432. free_cpumask_var(cpus_hardware_enabled);
  2433. }
  2434. EXPORT_SYMBOL_GPL(kvm_exit);