mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #define pgprintk(x...) do { printk(x); } while (0)
  28. #define rmap_printk(x...) do { printk(x); } while (0)
  29. #define ASSERT(x) \
  30. if (!(x)) { \
  31. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  32. __FILE__, __LINE__, #x); \
  33. }
  34. #define PT64_PT_BITS 9
  35. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  36. #define PT32_PT_BITS 10
  37. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  38. #define PT_WRITABLE_SHIFT 1
  39. #define PT_PRESENT_MASK (1ULL << 0)
  40. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  41. #define PT_USER_MASK (1ULL << 2)
  42. #define PT_PWT_MASK (1ULL << 3)
  43. #define PT_PCD_MASK (1ULL << 4)
  44. #define PT_ACCESSED_MASK (1ULL << 5)
  45. #define PT_DIRTY_MASK (1ULL << 6)
  46. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  47. #define PT_PAT_MASK (1ULL << 7)
  48. #define PT_GLOBAL_MASK (1ULL << 8)
  49. #define PT64_NX_MASK (1ULL << 63)
  50. #define PT_PAT_SHIFT 7
  51. #define PT_DIR_PAT_SHIFT 12
  52. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  53. #define PT32_DIR_PSE36_SIZE 4
  54. #define PT32_DIR_PSE36_SHIFT 13
  55. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  56. #define PT32_PTE_COPY_MASK \
  57. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  58. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  59. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  60. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  61. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  62. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  63. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  64. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  65. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  66. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  67. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  68. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  69. #define PT64_LEVEL_BITS 9
  70. #define PT64_LEVEL_SHIFT(level) \
  71. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  72. #define PT64_LEVEL_MASK(level) \
  73. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  74. #define PT64_INDEX(address, level)\
  75. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  76. #define PT32_LEVEL_BITS 10
  77. #define PT32_LEVEL_SHIFT(level) \
  78. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  79. #define PT32_LEVEL_MASK(level) \
  80. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  81. #define PT32_INDEX(address, level)\
  82. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  83. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
  84. #define PT64_DIR_BASE_ADDR_MASK \
  85. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  86. #define PT32_BASE_ADDR_MASK PAGE_MASK
  87. #define PT32_DIR_BASE_ADDR_MASK \
  88. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  89. #define PFERR_PRESENT_MASK (1U << 0)
  90. #define PFERR_WRITE_MASK (1U << 1)
  91. #define PFERR_USER_MASK (1U << 2)
  92. #define PT64_ROOT_LEVEL 4
  93. #define PT32_ROOT_LEVEL 2
  94. #define PT32E_ROOT_LEVEL 3
  95. #define PT_DIRECTORY_LEVEL 2
  96. #define PT_PAGE_TABLE_LEVEL 1
  97. #define RMAP_EXT 4
  98. struct kvm_rmap_desc {
  99. u64 *shadow_ptes[RMAP_EXT];
  100. struct kvm_rmap_desc *more;
  101. };
  102. static int is_write_protection(struct kvm_vcpu *vcpu)
  103. {
  104. return vcpu->cr0 & CR0_WP_MASK;
  105. }
  106. static int is_cpuid_PSE36(void)
  107. {
  108. return 1;
  109. }
  110. static int is_present_pte(unsigned long pte)
  111. {
  112. return pte & PT_PRESENT_MASK;
  113. }
  114. static int is_writeble_pte(unsigned long pte)
  115. {
  116. return pte & PT_WRITABLE_MASK;
  117. }
  118. static int is_io_pte(unsigned long pte)
  119. {
  120. return pte & PT_SHADOW_IO_MARK;
  121. }
  122. static int is_rmap_pte(u64 pte)
  123. {
  124. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  125. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  126. }
  127. /*
  128. * Reverse mapping data structures:
  129. *
  130. * If page->private bit zero is zero, then page->private points to the
  131. * shadow page table entry that points to page_address(page).
  132. *
  133. * If page->private bit zero is one, (then page->private & ~1) points
  134. * to a struct kvm_rmap_desc containing more mappings.
  135. */
  136. static void rmap_add(struct kvm *kvm, u64 *spte)
  137. {
  138. struct page *page;
  139. struct kvm_rmap_desc *desc;
  140. int i;
  141. if (!is_rmap_pte(*spte))
  142. return;
  143. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  144. if (!page->private) {
  145. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  146. page->private = (unsigned long)spte;
  147. } else if (!(page->private & 1)) {
  148. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  149. desc = kzalloc(sizeof *desc, GFP_NOWAIT);
  150. if (!desc)
  151. BUG(); /* FIXME: return error */
  152. desc->shadow_ptes[0] = (u64 *)page->private;
  153. desc->shadow_ptes[1] = spte;
  154. page->private = (unsigned long)desc | 1;
  155. } else {
  156. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  157. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  158. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  159. desc = desc->more;
  160. if (desc->shadow_ptes[RMAP_EXT-1]) {
  161. desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
  162. if (!desc->more)
  163. BUG(); /* FIXME: return error */
  164. desc = desc->more;
  165. }
  166. for (i = 0; desc->shadow_ptes[i]; ++i)
  167. ;
  168. desc->shadow_ptes[i] = spte;
  169. }
  170. }
  171. static void rmap_desc_remove_entry(struct page *page,
  172. struct kvm_rmap_desc *desc,
  173. int i,
  174. struct kvm_rmap_desc *prev_desc)
  175. {
  176. int j;
  177. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  178. ;
  179. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  180. desc->shadow_ptes[j] = 0;
  181. if (j != 0)
  182. return;
  183. if (!prev_desc && !desc->more)
  184. page->private = (unsigned long)desc->shadow_ptes[0];
  185. else
  186. if (prev_desc)
  187. prev_desc->more = desc->more;
  188. else
  189. page->private = (unsigned long)desc->more | 1;
  190. kfree(desc);
  191. }
  192. static void rmap_remove(struct kvm *kvm, u64 *spte)
  193. {
  194. struct page *page;
  195. struct kvm_rmap_desc *desc;
  196. struct kvm_rmap_desc *prev_desc;
  197. int i;
  198. if (!is_rmap_pte(*spte))
  199. return;
  200. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  201. if (!page->private) {
  202. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  203. BUG();
  204. } else if (!(page->private & 1)) {
  205. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  206. if ((u64 *)page->private != spte) {
  207. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  208. spte, *spte);
  209. BUG();
  210. }
  211. page->private = 0;
  212. } else {
  213. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  214. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  215. prev_desc = NULL;
  216. while (desc) {
  217. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  218. if (desc->shadow_ptes[i] == spte) {
  219. rmap_desc_remove_entry(page, desc, i,
  220. prev_desc);
  221. return;
  222. }
  223. prev_desc = desc;
  224. desc = desc->more;
  225. }
  226. BUG();
  227. }
  228. }
  229. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  230. {
  231. struct page *page;
  232. struct kvm_memory_slot *slot;
  233. struct kvm_rmap_desc *desc;
  234. u64 *spte;
  235. slot = gfn_to_memslot(kvm, gfn);
  236. BUG_ON(!slot);
  237. page = gfn_to_page(slot, gfn);
  238. while (page->private) {
  239. if (!(page->private & 1))
  240. spte = (u64 *)page->private;
  241. else {
  242. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  243. spte = desc->shadow_ptes[0];
  244. }
  245. BUG_ON(!spte);
  246. BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
  247. page_to_pfn(page) << PAGE_SHIFT);
  248. BUG_ON(!(*spte & PT_PRESENT_MASK));
  249. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  250. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  251. rmap_remove(kvm, spte);
  252. *spte &= ~(u64)PT_WRITABLE_MASK;
  253. }
  254. }
  255. static int is_empty_shadow_page(hpa_t page_hpa)
  256. {
  257. u64 *pos;
  258. u64 *end;
  259. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
  260. pos != end; pos++)
  261. if (*pos != 0) {
  262. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  263. pos, *pos);
  264. return 0;
  265. }
  266. return 1;
  267. }
  268. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  269. {
  270. struct kvm_mmu_page *page_head = page_header(page_hpa);
  271. ASSERT(is_empty_shadow_page(page_hpa));
  272. list_del(&page_head->link);
  273. page_head->page_hpa = page_hpa;
  274. list_add(&page_head->link, &vcpu->free_pages);
  275. ++vcpu->kvm->n_free_mmu_pages;
  276. }
  277. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  278. {
  279. return gfn;
  280. }
  281. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  282. u64 *parent_pte)
  283. {
  284. struct kvm_mmu_page *page;
  285. if (list_empty(&vcpu->free_pages))
  286. return NULL;
  287. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  288. list_del(&page->link);
  289. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  290. ASSERT(is_empty_shadow_page(page->page_hpa));
  291. page->slot_bitmap = 0;
  292. page->global = 1;
  293. page->multimapped = 0;
  294. page->parent_pte = parent_pte;
  295. --vcpu->kvm->n_free_mmu_pages;
  296. return page;
  297. }
  298. static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
  299. {
  300. struct kvm_pte_chain *pte_chain;
  301. struct hlist_node *node;
  302. int i;
  303. if (!parent_pte)
  304. return;
  305. if (!page->multimapped) {
  306. u64 *old = page->parent_pte;
  307. if (!old) {
  308. page->parent_pte = parent_pte;
  309. return;
  310. }
  311. page->multimapped = 1;
  312. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  313. BUG_ON(!pte_chain);
  314. INIT_HLIST_HEAD(&page->parent_ptes);
  315. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  316. pte_chain->parent_ptes[0] = old;
  317. }
  318. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  319. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  320. continue;
  321. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  322. if (!pte_chain->parent_ptes[i]) {
  323. pte_chain->parent_ptes[i] = parent_pte;
  324. return;
  325. }
  326. }
  327. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  328. BUG_ON(!pte_chain);
  329. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  330. pte_chain->parent_ptes[0] = parent_pte;
  331. }
  332. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  333. u64 *parent_pte)
  334. {
  335. struct kvm_pte_chain *pte_chain;
  336. struct hlist_node *node;
  337. int i;
  338. if (!page->multimapped) {
  339. BUG_ON(page->parent_pte != parent_pte);
  340. page->parent_pte = NULL;
  341. return;
  342. }
  343. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  344. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  345. if (!pte_chain->parent_ptes[i])
  346. break;
  347. if (pte_chain->parent_ptes[i] != parent_pte)
  348. continue;
  349. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  350. && pte_chain->parent_ptes[i + 1]) {
  351. pte_chain->parent_ptes[i]
  352. = pte_chain->parent_ptes[i + 1];
  353. ++i;
  354. }
  355. pte_chain->parent_ptes[i] = NULL;
  356. if (i == 0) {
  357. hlist_del(&pte_chain->link);
  358. kfree(pte_chain);
  359. if (hlist_empty(&page->parent_ptes)) {
  360. page->multimapped = 0;
  361. page->parent_pte = NULL;
  362. }
  363. }
  364. return;
  365. }
  366. BUG();
  367. }
  368. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  369. gfn_t gfn)
  370. {
  371. unsigned index;
  372. struct hlist_head *bucket;
  373. struct kvm_mmu_page *page;
  374. struct hlist_node *node;
  375. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  376. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  377. bucket = &vcpu->kvm->mmu_page_hash[index];
  378. hlist_for_each_entry(page, node, bucket, hash_link)
  379. if (page->gfn == gfn && !page->role.metaphysical) {
  380. pgprintk("%s: found role %x\n",
  381. __FUNCTION__, page->role.word);
  382. return page;
  383. }
  384. return NULL;
  385. }
  386. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  387. gfn_t gfn,
  388. gva_t gaddr,
  389. unsigned level,
  390. int metaphysical,
  391. u64 *parent_pte)
  392. {
  393. union kvm_mmu_page_role role;
  394. unsigned index;
  395. unsigned quadrant;
  396. struct hlist_head *bucket;
  397. struct kvm_mmu_page *page;
  398. struct hlist_node *node;
  399. role.word = 0;
  400. role.glevels = vcpu->mmu.root_level;
  401. role.level = level;
  402. role.metaphysical = metaphysical;
  403. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  404. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  405. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  406. role.quadrant = quadrant;
  407. }
  408. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  409. gfn, role.word);
  410. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  411. bucket = &vcpu->kvm->mmu_page_hash[index];
  412. hlist_for_each_entry(page, node, bucket, hash_link)
  413. if (page->gfn == gfn && page->role.word == role.word) {
  414. mmu_page_add_parent_pte(page, parent_pte);
  415. pgprintk("%s: found\n", __FUNCTION__);
  416. return page;
  417. }
  418. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  419. if (!page)
  420. return page;
  421. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  422. page->gfn = gfn;
  423. page->role = role;
  424. hlist_add_head(&page->hash_link, bucket);
  425. if (!metaphysical)
  426. rmap_write_protect(vcpu->kvm, gfn);
  427. return page;
  428. }
  429. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  430. struct kvm_mmu_page *page)
  431. {
  432. unsigned i;
  433. u64 *pt;
  434. u64 ent;
  435. pt = __va(page->page_hpa);
  436. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  437. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  438. if (pt[i] & PT_PRESENT_MASK)
  439. rmap_remove(vcpu->kvm, &pt[i]);
  440. pt[i] = 0;
  441. }
  442. return;
  443. }
  444. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  445. ent = pt[i];
  446. pt[i] = 0;
  447. if (!(ent & PT_PRESENT_MASK))
  448. continue;
  449. ent &= PT64_BASE_ADDR_MASK;
  450. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  451. }
  452. }
  453. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  454. struct kvm_mmu_page *page,
  455. u64 *parent_pte)
  456. {
  457. mmu_page_remove_parent_pte(page, parent_pte);
  458. }
  459. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  460. struct kvm_mmu_page *page)
  461. {
  462. u64 *parent_pte;
  463. while (page->multimapped || page->parent_pte) {
  464. if (!page->multimapped)
  465. parent_pte = page->parent_pte;
  466. else {
  467. struct kvm_pte_chain *chain;
  468. chain = container_of(page->parent_ptes.first,
  469. struct kvm_pte_chain, link);
  470. parent_pte = chain->parent_ptes[0];
  471. }
  472. BUG_ON(!parent_pte);
  473. kvm_mmu_put_page(vcpu, page, parent_pte);
  474. *parent_pte = 0;
  475. }
  476. kvm_mmu_page_unlink_children(vcpu, page);
  477. hlist_del(&page->hash_link);
  478. kvm_mmu_free_page(vcpu, page->page_hpa);
  479. }
  480. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  481. {
  482. unsigned index;
  483. struct hlist_head *bucket;
  484. struct kvm_mmu_page *page;
  485. struct hlist_node *node, *n;
  486. int r;
  487. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  488. r = 0;
  489. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  490. bucket = &vcpu->kvm->mmu_page_hash[index];
  491. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  492. if (page->gfn == gfn && !page->role.metaphysical) {
  493. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  494. page->role.word);
  495. kvm_mmu_zap_page(vcpu, page);
  496. r = 1;
  497. }
  498. return r;
  499. }
  500. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  501. {
  502. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  503. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  504. __set_bit(slot, &page_head->slot_bitmap);
  505. }
  506. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  507. {
  508. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  509. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  510. }
  511. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  512. {
  513. struct kvm_memory_slot *slot;
  514. struct page *page;
  515. ASSERT((gpa & HPA_ERR_MASK) == 0);
  516. slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  517. if (!slot)
  518. return gpa | HPA_ERR_MASK;
  519. page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
  520. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  521. | (gpa & (PAGE_SIZE-1));
  522. }
  523. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  524. {
  525. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  526. if (gpa == UNMAPPED_GVA)
  527. return UNMAPPED_GVA;
  528. return gpa_to_hpa(vcpu, gpa);
  529. }
  530. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  531. {
  532. }
  533. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  534. {
  535. int level = PT32E_ROOT_LEVEL;
  536. hpa_t table_addr = vcpu->mmu.root_hpa;
  537. for (; ; level--) {
  538. u32 index = PT64_INDEX(v, level);
  539. u64 *table;
  540. u64 pte;
  541. ASSERT(VALID_PAGE(table_addr));
  542. table = __va(table_addr);
  543. if (level == 1) {
  544. pte = table[index];
  545. if (is_present_pte(pte) && is_writeble_pte(pte))
  546. return 0;
  547. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  548. page_header_update_slot(vcpu->kvm, table, v);
  549. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  550. PT_USER_MASK;
  551. rmap_add(vcpu->kvm, &table[index]);
  552. return 0;
  553. }
  554. if (table[index] == 0) {
  555. struct kvm_mmu_page *new_table;
  556. gfn_t pseudo_gfn;
  557. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  558. >> PAGE_SHIFT;
  559. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  560. v, level - 1,
  561. 1, &table[index]);
  562. if (!new_table) {
  563. pgprintk("nonpaging_map: ENOMEM\n");
  564. return -ENOMEM;
  565. }
  566. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  567. | PT_WRITABLE_MASK | PT_USER_MASK;
  568. }
  569. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  570. }
  571. }
  572. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  573. {
  574. int i;
  575. #ifdef CONFIG_X86_64
  576. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  577. hpa_t root = vcpu->mmu.root_hpa;
  578. ASSERT(VALID_PAGE(root));
  579. vcpu->mmu.root_hpa = INVALID_PAGE;
  580. return;
  581. }
  582. #endif
  583. for (i = 0; i < 4; ++i) {
  584. hpa_t root = vcpu->mmu.pae_root[i];
  585. ASSERT(VALID_PAGE(root));
  586. root &= PT64_BASE_ADDR_MASK;
  587. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  588. }
  589. vcpu->mmu.root_hpa = INVALID_PAGE;
  590. }
  591. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  592. {
  593. int i;
  594. gfn_t root_gfn;
  595. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  596. #ifdef CONFIG_X86_64
  597. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  598. hpa_t root = vcpu->mmu.root_hpa;
  599. ASSERT(!VALID_PAGE(root));
  600. root = kvm_mmu_get_page(vcpu, root_gfn, 0,
  601. PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
  602. vcpu->mmu.root_hpa = root;
  603. return;
  604. }
  605. #endif
  606. for (i = 0; i < 4; ++i) {
  607. hpa_t root = vcpu->mmu.pae_root[i];
  608. ASSERT(!VALID_PAGE(root));
  609. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  610. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  611. else if (vcpu->mmu.root_level == 0)
  612. root_gfn = 0;
  613. root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  614. PT32_ROOT_LEVEL, !is_paging(vcpu),
  615. NULL)->page_hpa;
  616. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  617. }
  618. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  619. }
  620. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  621. {
  622. return vaddr;
  623. }
  624. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  625. u32 error_code)
  626. {
  627. gpa_t addr = gva;
  628. hpa_t paddr;
  629. ASSERT(vcpu);
  630. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  631. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  632. if (is_error_hpa(paddr))
  633. return 1;
  634. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  635. }
  636. static void nonpaging_free(struct kvm_vcpu *vcpu)
  637. {
  638. mmu_free_roots(vcpu);
  639. }
  640. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  641. {
  642. struct kvm_mmu *context = &vcpu->mmu;
  643. context->new_cr3 = nonpaging_new_cr3;
  644. context->page_fault = nonpaging_page_fault;
  645. context->gva_to_gpa = nonpaging_gva_to_gpa;
  646. context->free = nonpaging_free;
  647. context->root_level = 0;
  648. context->shadow_root_level = PT32E_ROOT_LEVEL;
  649. mmu_alloc_roots(vcpu);
  650. ASSERT(VALID_PAGE(context->root_hpa));
  651. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  652. return 0;
  653. }
  654. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  655. {
  656. ++kvm_stat.tlb_flush;
  657. kvm_arch_ops->tlb_flush(vcpu);
  658. }
  659. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  660. {
  661. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  662. mmu_free_roots(vcpu);
  663. mmu_alloc_roots(vcpu);
  664. kvm_mmu_flush_tlb(vcpu);
  665. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  666. }
  667. static void mark_pagetable_nonglobal(void *shadow_pte)
  668. {
  669. page_header(__pa(shadow_pte))->global = 0;
  670. }
  671. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  672. u64 *shadow_pte,
  673. gpa_t gaddr,
  674. int dirty,
  675. u64 access_bits,
  676. gfn_t gfn)
  677. {
  678. hpa_t paddr;
  679. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  680. if (!dirty)
  681. access_bits &= ~PT_WRITABLE_MASK;
  682. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  683. *shadow_pte |= access_bits;
  684. if (!(*shadow_pte & PT_GLOBAL_MASK))
  685. mark_pagetable_nonglobal(shadow_pte);
  686. if (is_error_hpa(paddr)) {
  687. *shadow_pte |= gaddr;
  688. *shadow_pte |= PT_SHADOW_IO_MARK;
  689. *shadow_pte &= ~PT_PRESENT_MASK;
  690. return;
  691. }
  692. *shadow_pte |= paddr;
  693. if (access_bits & PT_WRITABLE_MASK) {
  694. struct kvm_mmu_page *shadow;
  695. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  696. if (shadow) {
  697. pgprintk("%s: found shadow page for %lx, marking ro\n",
  698. __FUNCTION__, gfn);
  699. access_bits &= ~PT_WRITABLE_MASK;
  700. *shadow_pte &= ~PT_WRITABLE_MASK;
  701. }
  702. }
  703. if (access_bits & PT_WRITABLE_MASK)
  704. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  705. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  706. rmap_add(vcpu->kvm, shadow_pte);
  707. }
  708. static void inject_page_fault(struct kvm_vcpu *vcpu,
  709. u64 addr,
  710. u32 err_code)
  711. {
  712. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  713. }
  714. static inline int fix_read_pf(u64 *shadow_ent)
  715. {
  716. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  717. !(*shadow_ent & PT_USER_MASK)) {
  718. /*
  719. * If supervisor write protect is disabled, we shadow kernel
  720. * pages as user pages so we can trap the write access.
  721. */
  722. *shadow_ent |= PT_USER_MASK;
  723. *shadow_ent &= ~PT_WRITABLE_MASK;
  724. return 1;
  725. }
  726. return 0;
  727. }
  728. static int may_access(u64 pte, int write, int user)
  729. {
  730. if (user && !(pte & PT_USER_MASK))
  731. return 0;
  732. if (write && !(pte & PT_WRITABLE_MASK))
  733. return 0;
  734. return 1;
  735. }
  736. static void paging_free(struct kvm_vcpu *vcpu)
  737. {
  738. nonpaging_free(vcpu);
  739. }
  740. #define PTTYPE 64
  741. #include "paging_tmpl.h"
  742. #undef PTTYPE
  743. #define PTTYPE 32
  744. #include "paging_tmpl.h"
  745. #undef PTTYPE
  746. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  747. {
  748. struct kvm_mmu *context = &vcpu->mmu;
  749. ASSERT(is_pae(vcpu));
  750. context->new_cr3 = paging_new_cr3;
  751. context->page_fault = paging64_page_fault;
  752. context->gva_to_gpa = paging64_gva_to_gpa;
  753. context->free = paging_free;
  754. context->root_level = level;
  755. context->shadow_root_level = level;
  756. mmu_alloc_roots(vcpu);
  757. ASSERT(VALID_PAGE(context->root_hpa));
  758. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  759. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  760. return 0;
  761. }
  762. static int paging64_init_context(struct kvm_vcpu *vcpu)
  763. {
  764. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  765. }
  766. static int paging32_init_context(struct kvm_vcpu *vcpu)
  767. {
  768. struct kvm_mmu *context = &vcpu->mmu;
  769. context->new_cr3 = paging_new_cr3;
  770. context->page_fault = paging32_page_fault;
  771. context->gva_to_gpa = paging32_gva_to_gpa;
  772. context->free = paging_free;
  773. context->root_level = PT32_ROOT_LEVEL;
  774. context->shadow_root_level = PT32E_ROOT_LEVEL;
  775. mmu_alloc_roots(vcpu);
  776. ASSERT(VALID_PAGE(context->root_hpa));
  777. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  778. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  779. return 0;
  780. }
  781. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  782. {
  783. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  784. }
  785. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  786. {
  787. ASSERT(vcpu);
  788. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  789. if (!is_paging(vcpu))
  790. return nonpaging_init_context(vcpu);
  791. else if (is_long_mode(vcpu))
  792. return paging64_init_context(vcpu);
  793. else if (is_pae(vcpu))
  794. return paging32E_init_context(vcpu);
  795. else
  796. return paging32_init_context(vcpu);
  797. }
  798. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  799. {
  800. ASSERT(vcpu);
  801. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  802. vcpu->mmu.free(vcpu);
  803. vcpu->mmu.root_hpa = INVALID_PAGE;
  804. }
  805. }
  806. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  807. {
  808. destroy_kvm_mmu(vcpu);
  809. return init_kvm_mmu(vcpu);
  810. }
  811. void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  812. {
  813. gfn_t gfn = gpa >> PAGE_SHIFT;
  814. struct kvm_mmu_page *page;
  815. struct kvm_mmu_page *child;
  816. struct hlist_node *node, *n;
  817. struct hlist_head *bucket;
  818. unsigned index;
  819. u64 *spte;
  820. u64 pte;
  821. unsigned offset = offset_in_page(gpa);
  822. unsigned pte_size;
  823. unsigned page_offset;
  824. unsigned misaligned;
  825. int level;
  826. int flooded = 0;
  827. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  828. if (gfn == vcpu->last_pt_write_gfn) {
  829. ++vcpu->last_pt_write_count;
  830. if (vcpu->last_pt_write_count >= 3)
  831. flooded = 1;
  832. } else {
  833. vcpu->last_pt_write_gfn = gfn;
  834. vcpu->last_pt_write_count = 1;
  835. }
  836. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  837. bucket = &vcpu->kvm->mmu_page_hash[index];
  838. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  839. if (page->gfn != gfn || page->role.metaphysical)
  840. continue;
  841. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  842. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  843. if (misaligned || flooded) {
  844. /*
  845. * Misaligned accesses are too much trouble to fix
  846. * up; also, they usually indicate a page is not used
  847. * as a page table.
  848. *
  849. * If we're seeing too many writes to a page,
  850. * it may no longer be a page table, or we may be
  851. * forking, in which case it is better to unmap the
  852. * page.
  853. */
  854. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  855. gpa, bytes, page->role.word);
  856. kvm_mmu_zap_page(vcpu, page);
  857. continue;
  858. }
  859. page_offset = offset;
  860. level = page->role.level;
  861. if (page->role.glevels == PT32_ROOT_LEVEL) {
  862. page_offset <<= 1; /* 32->64 */
  863. page_offset &= ~PAGE_MASK;
  864. }
  865. spte = __va(page->page_hpa);
  866. spte += page_offset / sizeof(*spte);
  867. pte = *spte;
  868. if (is_present_pte(pte)) {
  869. if (level == PT_PAGE_TABLE_LEVEL)
  870. rmap_remove(vcpu->kvm, spte);
  871. else {
  872. child = page_header(pte & PT64_BASE_ADDR_MASK);
  873. mmu_page_remove_parent_pte(child, spte);
  874. }
  875. }
  876. *spte = 0;
  877. }
  878. }
  879. void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  880. {
  881. }
  882. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  883. {
  884. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  885. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  886. }
  887. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  888. {
  889. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  890. struct kvm_mmu_page *page;
  891. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  892. struct kvm_mmu_page, link);
  893. kvm_mmu_zap_page(vcpu, page);
  894. }
  895. }
  896. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  897. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  898. {
  899. while (!list_empty(&vcpu->free_pages)) {
  900. struct kvm_mmu_page *page;
  901. page = list_entry(vcpu->free_pages.next,
  902. struct kvm_mmu_page, link);
  903. list_del(&page->link);
  904. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  905. page->page_hpa = INVALID_PAGE;
  906. }
  907. free_page((unsigned long)vcpu->mmu.pae_root);
  908. }
  909. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  910. {
  911. struct page *page;
  912. int i;
  913. ASSERT(vcpu);
  914. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  915. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  916. INIT_LIST_HEAD(&page_header->link);
  917. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  918. goto error_1;
  919. page->private = (unsigned long)page_header;
  920. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  921. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  922. list_add(&page_header->link, &vcpu->free_pages);
  923. ++vcpu->kvm->n_free_mmu_pages;
  924. }
  925. /*
  926. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  927. * Therefore we need to allocate shadow page tables in the first
  928. * 4GB of memory, which happens to fit the DMA32 zone.
  929. */
  930. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  931. if (!page)
  932. goto error_1;
  933. vcpu->mmu.pae_root = page_address(page);
  934. for (i = 0; i < 4; ++i)
  935. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  936. return 0;
  937. error_1:
  938. free_mmu_pages(vcpu);
  939. return -ENOMEM;
  940. }
  941. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  942. {
  943. ASSERT(vcpu);
  944. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  945. ASSERT(list_empty(&vcpu->free_pages));
  946. return alloc_mmu_pages(vcpu);
  947. }
  948. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  949. {
  950. ASSERT(vcpu);
  951. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  952. ASSERT(!list_empty(&vcpu->free_pages));
  953. return init_kvm_mmu(vcpu);
  954. }
  955. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  956. {
  957. ASSERT(vcpu);
  958. destroy_kvm_mmu(vcpu);
  959. free_mmu_pages(vcpu);
  960. }
  961. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  962. {
  963. struct kvm_mmu_page *page;
  964. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  965. int i;
  966. u64 *pt;
  967. if (!test_bit(slot, &page->slot_bitmap))
  968. continue;
  969. pt = __va(page->page_hpa);
  970. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  971. /* avoid RMW */
  972. if (pt[i] & PT_WRITABLE_MASK) {
  973. rmap_remove(kvm, &pt[i]);
  974. pt[i] &= ~PT_WRITABLE_MASK;
  975. }
  976. }
  977. }