intel_dp.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. int panel_power_up_delay;
  58. int panel_power_down_delay;
  59. int panel_power_cycle_delay;
  60. int backlight_on_delay;
  61. int backlight_off_delay;
  62. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  63. struct delayed_work panel_vdd_work;
  64. bool want_panel_vdd;
  65. unsigned long panel_off_jiffies;
  66. };
  67. /**
  68. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69. * @intel_dp: DP struct
  70. *
  71. * If a CPU or PCH DP output is attached to an eDP panel, this function
  72. * will return true, and false otherwise.
  73. */
  74. static bool is_edp(struct intel_dp *intel_dp)
  75. {
  76. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  77. }
  78. /**
  79. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  80. * @intel_dp: DP struct
  81. *
  82. * Returns true if the given DP struct corresponds to a PCH DP port attached
  83. * to an eDP panel, false otherwise. Helpful for determining whether we
  84. * may need FDI resources for a given DP output or not.
  85. */
  86. static bool is_pch_edp(struct intel_dp *intel_dp)
  87. {
  88. return intel_dp->is_pch_edp;
  89. }
  90. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  91. {
  92. return container_of(encoder, struct intel_dp, base.base);
  93. }
  94. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95. {
  96. return container_of(intel_attached_encoder(connector),
  97. struct intel_dp, base);
  98. }
  99. /**
  100. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  101. * @encoder: DRM encoder
  102. *
  103. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  104. * by intel_display.c.
  105. */
  106. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  107. {
  108. struct intel_dp *intel_dp;
  109. if (!encoder)
  110. return false;
  111. intel_dp = enc_to_intel_dp(encoder);
  112. return is_pch_edp(intel_dp);
  113. }
  114. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  115. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  116. static void intel_dp_link_down(struct intel_dp *intel_dp);
  117. void
  118. intel_edp_link_config(struct intel_encoder *intel_encoder,
  119. int *lane_num, int *link_bw)
  120. {
  121. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  122. *lane_num = intel_dp->lane_count;
  123. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  124. *link_bw = 162000;
  125. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  126. *link_bw = 270000;
  127. }
  128. static int
  129. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  130. {
  131. int max_lane_count = 4;
  132. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  133. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  134. switch (max_lane_count) {
  135. case 1: case 2: case 4:
  136. break;
  137. default:
  138. max_lane_count = 4;
  139. }
  140. }
  141. return max_lane_count;
  142. }
  143. static int
  144. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  145. {
  146. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  147. switch (max_link_bw) {
  148. case DP_LINK_BW_1_62:
  149. case DP_LINK_BW_2_7:
  150. break;
  151. default:
  152. max_link_bw = DP_LINK_BW_1_62;
  153. break;
  154. }
  155. return max_link_bw;
  156. }
  157. static int
  158. intel_dp_link_clock(uint8_t link_bw)
  159. {
  160. if (link_bw == DP_LINK_BW_2_7)
  161. return 270000;
  162. else
  163. return 162000;
  164. }
  165. /* I think this is a fiction */
  166. static int
  167. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  168. {
  169. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  170. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  171. int bpp = 24;
  172. if (intel_crtc)
  173. bpp = intel_crtc->bpp;
  174. return (pixel_clock * bpp + 7) / 8;
  175. }
  176. static int
  177. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  178. {
  179. return (max_link_clock * max_lanes * 8) / 10;
  180. }
  181. static int
  182. intel_dp_mode_valid(struct drm_connector *connector,
  183. struct drm_display_mode *mode)
  184. {
  185. struct intel_dp *intel_dp = intel_attached_dp(connector);
  186. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  187. int max_lanes = intel_dp_max_lane_count(intel_dp);
  188. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  189. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  190. return MODE_PANEL;
  191. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  192. return MODE_PANEL;
  193. }
  194. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  195. which are outside spec tolerances but somehow work by magic */
  196. if (!is_edp(intel_dp) &&
  197. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  198. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  199. return MODE_CLOCK_HIGH;
  200. if (mode->clock < 10000)
  201. return MODE_CLOCK_LOW;
  202. return MODE_OK;
  203. }
  204. static uint32_t
  205. pack_aux(uint8_t *src, int src_bytes)
  206. {
  207. int i;
  208. uint32_t v = 0;
  209. if (src_bytes > 4)
  210. src_bytes = 4;
  211. for (i = 0; i < src_bytes; i++)
  212. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  213. return v;
  214. }
  215. static void
  216. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  217. {
  218. int i;
  219. if (dst_bytes > 4)
  220. dst_bytes = 4;
  221. for (i = 0; i < dst_bytes; i++)
  222. dst[i] = src >> ((3-i) * 8);
  223. }
  224. /* hrawclock is 1/4 the FSB frequency */
  225. static int
  226. intel_hrawclk(struct drm_device *dev)
  227. {
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. uint32_t clkcfg;
  230. clkcfg = I915_READ(CLKCFG);
  231. switch (clkcfg & CLKCFG_FSB_MASK) {
  232. case CLKCFG_FSB_400:
  233. return 100;
  234. case CLKCFG_FSB_533:
  235. return 133;
  236. case CLKCFG_FSB_667:
  237. return 166;
  238. case CLKCFG_FSB_800:
  239. return 200;
  240. case CLKCFG_FSB_1067:
  241. return 266;
  242. case CLKCFG_FSB_1333:
  243. return 333;
  244. /* these two are just a guess; one of them might be right */
  245. case CLKCFG_FSB_1600:
  246. case CLKCFG_FSB_1600_ALT:
  247. return 400;
  248. default:
  249. return 133;
  250. }
  251. }
  252. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  253. {
  254. struct drm_device *dev = intel_dp->base.base.dev;
  255. struct drm_i915_private *dev_priv = dev->dev_private;
  256. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  257. }
  258. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  259. {
  260. struct drm_device *dev = intel_dp->base.base.dev;
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  263. }
  264. static void
  265. intel_dp_check_edp(struct intel_dp *intel_dp)
  266. {
  267. struct drm_device *dev = intel_dp->base.base.dev;
  268. struct drm_i915_private *dev_priv = dev->dev_private;
  269. if (!is_edp(intel_dp))
  270. return;
  271. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  272. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  273. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  274. I915_READ(PCH_PP_STATUS),
  275. I915_READ(PCH_PP_CONTROL));
  276. }
  277. }
  278. static int
  279. intel_dp_aux_ch(struct intel_dp *intel_dp,
  280. uint8_t *send, int send_bytes,
  281. uint8_t *recv, int recv_size)
  282. {
  283. uint32_t output_reg = intel_dp->output_reg;
  284. struct drm_device *dev = intel_dp->base.base.dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. uint32_t ch_ctl = output_reg + 0x10;
  287. uint32_t ch_data = ch_ctl + 4;
  288. int i;
  289. int recv_bytes;
  290. uint32_t status;
  291. uint32_t aux_clock_divider;
  292. int try, precharge;
  293. intel_dp_check_edp(intel_dp);
  294. /* The clock divider is based off the hrawclk,
  295. * and would like to run at 2MHz. So, take the
  296. * hrawclk value and divide by 2 and use that
  297. *
  298. * Note that PCH attached eDP panels should use a 125MHz input
  299. * clock divider.
  300. */
  301. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  302. if (IS_GEN6(dev))
  303. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  304. else
  305. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  306. } else if (HAS_PCH_SPLIT(dev))
  307. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  308. else
  309. aux_clock_divider = intel_hrawclk(dev) / 2;
  310. if (IS_GEN6(dev))
  311. precharge = 3;
  312. else
  313. precharge = 5;
  314. /* Try to wait for any previous AUX channel activity */
  315. for (try = 0; try < 3; try++) {
  316. status = I915_READ(ch_ctl);
  317. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  318. break;
  319. msleep(1);
  320. }
  321. if (try == 3) {
  322. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  323. I915_READ(ch_ctl));
  324. return -EBUSY;
  325. }
  326. /* Must try at least 3 times according to DP spec */
  327. for (try = 0; try < 5; try++) {
  328. /* Load the send data into the aux channel data registers */
  329. for (i = 0; i < send_bytes; i += 4)
  330. I915_WRITE(ch_data + i,
  331. pack_aux(send + i, send_bytes - i));
  332. /* Send the command and wait for it to complete */
  333. I915_WRITE(ch_ctl,
  334. DP_AUX_CH_CTL_SEND_BUSY |
  335. DP_AUX_CH_CTL_TIME_OUT_400us |
  336. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  337. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  338. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  339. DP_AUX_CH_CTL_DONE |
  340. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  341. DP_AUX_CH_CTL_RECEIVE_ERROR);
  342. for (;;) {
  343. status = I915_READ(ch_ctl);
  344. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  345. break;
  346. udelay(100);
  347. }
  348. /* Clear done status and any errors */
  349. I915_WRITE(ch_ctl,
  350. status |
  351. DP_AUX_CH_CTL_DONE |
  352. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  353. DP_AUX_CH_CTL_RECEIVE_ERROR);
  354. if (status & DP_AUX_CH_CTL_DONE)
  355. break;
  356. }
  357. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  358. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  359. return -EBUSY;
  360. }
  361. /* Check for timeout or receive error.
  362. * Timeouts occur when the sink is not connected
  363. */
  364. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  365. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  366. return -EIO;
  367. }
  368. /* Timeouts occur when the device isn't connected, so they're
  369. * "normal" -- don't fill the kernel log with these */
  370. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  371. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  372. return -ETIMEDOUT;
  373. }
  374. /* Unload any bytes sent back from the other side */
  375. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  376. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  377. if (recv_bytes > recv_size)
  378. recv_bytes = recv_size;
  379. for (i = 0; i < recv_bytes; i += 4)
  380. unpack_aux(I915_READ(ch_data + i),
  381. recv + i, recv_bytes - i);
  382. return recv_bytes;
  383. }
  384. /* Write data to the aux channel in native mode */
  385. static int
  386. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  387. uint16_t address, uint8_t *send, int send_bytes)
  388. {
  389. int ret;
  390. uint8_t msg[20];
  391. int msg_bytes;
  392. uint8_t ack;
  393. intel_dp_check_edp(intel_dp);
  394. if (send_bytes > 16)
  395. return -1;
  396. msg[0] = AUX_NATIVE_WRITE << 4;
  397. msg[1] = address >> 8;
  398. msg[2] = address & 0xff;
  399. msg[3] = send_bytes - 1;
  400. memcpy(&msg[4], send, send_bytes);
  401. msg_bytes = send_bytes + 4;
  402. for (;;) {
  403. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  404. if (ret < 0)
  405. return ret;
  406. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  407. break;
  408. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  409. udelay(100);
  410. else
  411. return -EIO;
  412. }
  413. return send_bytes;
  414. }
  415. /* Write a single byte to the aux channel in native mode */
  416. static int
  417. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  418. uint16_t address, uint8_t byte)
  419. {
  420. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  421. }
  422. /* read bytes from a native aux channel */
  423. static int
  424. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  425. uint16_t address, uint8_t *recv, int recv_bytes)
  426. {
  427. uint8_t msg[4];
  428. int msg_bytes;
  429. uint8_t reply[20];
  430. int reply_bytes;
  431. uint8_t ack;
  432. int ret;
  433. intel_dp_check_edp(intel_dp);
  434. msg[0] = AUX_NATIVE_READ << 4;
  435. msg[1] = address >> 8;
  436. msg[2] = address & 0xff;
  437. msg[3] = recv_bytes - 1;
  438. msg_bytes = 4;
  439. reply_bytes = recv_bytes + 1;
  440. for (;;) {
  441. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  442. reply, reply_bytes);
  443. if (ret == 0)
  444. return -EPROTO;
  445. if (ret < 0)
  446. return ret;
  447. ack = reply[0];
  448. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  449. memcpy(recv, reply + 1, ret - 1);
  450. return ret - 1;
  451. }
  452. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  453. udelay(100);
  454. else
  455. return -EIO;
  456. }
  457. }
  458. static int
  459. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  460. uint8_t write_byte, uint8_t *read_byte)
  461. {
  462. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  463. struct intel_dp *intel_dp = container_of(adapter,
  464. struct intel_dp,
  465. adapter);
  466. uint16_t address = algo_data->address;
  467. uint8_t msg[5];
  468. uint8_t reply[2];
  469. unsigned retry;
  470. int msg_bytes;
  471. int reply_bytes;
  472. int ret;
  473. intel_dp_check_edp(intel_dp);
  474. /* Set up the command byte */
  475. if (mode & MODE_I2C_READ)
  476. msg[0] = AUX_I2C_READ << 4;
  477. else
  478. msg[0] = AUX_I2C_WRITE << 4;
  479. if (!(mode & MODE_I2C_STOP))
  480. msg[0] |= AUX_I2C_MOT << 4;
  481. msg[1] = address >> 8;
  482. msg[2] = address;
  483. switch (mode) {
  484. case MODE_I2C_WRITE:
  485. msg[3] = 0;
  486. msg[4] = write_byte;
  487. msg_bytes = 5;
  488. reply_bytes = 1;
  489. break;
  490. case MODE_I2C_READ:
  491. msg[3] = 0;
  492. msg_bytes = 4;
  493. reply_bytes = 2;
  494. break;
  495. default:
  496. msg_bytes = 3;
  497. reply_bytes = 1;
  498. break;
  499. }
  500. for (retry = 0; retry < 5; retry++) {
  501. ret = intel_dp_aux_ch(intel_dp,
  502. msg, msg_bytes,
  503. reply, reply_bytes);
  504. if (ret < 0) {
  505. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  506. return ret;
  507. }
  508. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  509. case AUX_NATIVE_REPLY_ACK:
  510. /* I2C-over-AUX Reply field is only valid
  511. * when paired with AUX ACK.
  512. */
  513. break;
  514. case AUX_NATIVE_REPLY_NACK:
  515. DRM_DEBUG_KMS("aux_ch native nack\n");
  516. return -EREMOTEIO;
  517. case AUX_NATIVE_REPLY_DEFER:
  518. udelay(100);
  519. continue;
  520. default:
  521. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  522. reply[0]);
  523. return -EREMOTEIO;
  524. }
  525. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  526. case AUX_I2C_REPLY_ACK:
  527. if (mode == MODE_I2C_READ) {
  528. *read_byte = reply[1];
  529. }
  530. return reply_bytes - 1;
  531. case AUX_I2C_REPLY_NACK:
  532. DRM_DEBUG_KMS("aux_i2c nack\n");
  533. return -EREMOTEIO;
  534. case AUX_I2C_REPLY_DEFER:
  535. DRM_DEBUG_KMS("aux_i2c defer\n");
  536. udelay(100);
  537. break;
  538. default:
  539. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  540. return -EREMOTEIO;
  541. }
  542. }
  543. DRM_ERROR("too many retries, giving up\n");
  544. return -EREMOTEIO;
  545. }
  546. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
  547. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  548. static int
  549. intel_dp_i2c_init(struct intel_dp *intel_dp,
  550. struct intel_connector *intel_connector, const char *name)
  551. {
  552. int ret;
  553. DRM_DEBUG_KMS("i2c_init %s\n", name);
  554. intel_dp->algo.running = false;
  555. intel_dp->algo.address = 0;
  556. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  557. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  558. intel_dp->adapter.owner = THIS_MODULE;
  559. intel_dp->adapter.class = I2C_CLASS_DDC;
  560. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  561. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  562. intel_dp->adapter.algo_data = &intel_dp->algo;
  563. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  564. ironlake_edp_panel_vdd_on(intel_dp);
  565. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  566. ironlake_edp_panel_vdd_off(intel_dp, false);
  567. return ret;
  568. }
  569. static bool
  570. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  571. struct drm_display_mode *adjusted_mode)
  572. {
  573. struct drm_device *dev = encoder->dev;
  574. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  575. int lane_count, clock;
  576. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  577. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  578. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  579. if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
  580. intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  581. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  582. mode, adjusted_mode);
  583. /*
  584. * the mode->clock is used to calculate the Data&Link M/N
  585. * of the pipe. For the eDP the fixed clock should be used.
  586. */
  587. mode->clock = intel_dp->panel_fixed_mode->clock;
  588. }
  589. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  590. for (clock = 0; clock <= max_clock; clock++) {
  591. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  592. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  593. <= link_avail) {
  594. intel_dp->link_bw = bws[clock];
  595. intel_dp->lane_count = lane_count;
  596. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  597. DRM_DEBUG_KMS("Display port link bw %02x lane "
  598. "count %d clock %d\n",
  599. intel_dp->link_bw, intel_dp->lane_count,
  600. adjusted_mode->clock);
  601. return true;
  602. }
  603. }
  604. }
  605. if (is_edp(intel_dp)) {
  606. /* okay we failed just pick the highest */
  607. intel_dp->lane_count = max_lane_count;
  608. intel_dp->link_bw = bws[max_clock];
  609. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  610. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  611. "count %d clock %d\n",
  612. intel_dp->link_bw, intel_dp->lane_count,
  613. adjusted_mode->clock);
  614. return true;
  615. }
  616. return false;
  617. }
  618. struct intel_dp_m_n {
  619. uint32_t tu;
  620. uint32_t gmch_m;
  621. uint32_t gmch_n;
  622. uint32_t link_m;
  623. uint32_t link_n;
  624. };
  625. static void
  626. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  627. {
  628. while (*num > 0xffffff || *den > 0xffffff) {
  629. *num >>= 1;
  630. *den >>= 1;
  631. }
  632. }
  633. static void
  634. intel_dp_compute_m_n(int bpp,
  635. int nlanes,
  636. int pixel_clock,
  637. int link_clock,
  638. struct intel_dp_m_n *m_n)
  639. {
  640. m_n->tu = 64;
  641. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  642. m_n->gmch_n = link_clock * nlanes;
  643. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  644. m_n->link_m = pixel_clock;
  645. m_n->link_n = link_clock;
  646. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  647. }
  648. void
  649. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  650. struct drm_display_mode *adjusted_mode)
  651. {
  652. struct drm_device *dev = crtc->dev;
  653. struct drm_mode_config *mode_config = &dev->mode_config;
  654. struct drm_encoder *encoder;
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  657. int lane_count = 4;
  658. struct intel_dp_m_n m_n;
  659. int pipe = intel_crtc->pipe;
  660. /*
  661. * Find the lane count in the intel_encoder private
  662. */
  663. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  664. struct intel_dp *intel_dp;
  665. if (encoder->crtc != crtc)
  666. continue;
  667. intel_dp = enc_to_intel_dp(encoder);
  668. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  669. lane_count = intel_dp->lane_count;
  670. break;
  671. } else if (is_edp(intel_dp)) {
  672. lane_count = dev_priv->edp.lanes;
  673. break;
  674. }
  675. }
  676. /*
  677. * Compute the GMCH and Link ratios. The '3' here is
  678. * the number of bytes_per_pixel post-LUT, which we always
  679. * set up for 8-bits of R/G/B, or 3 bytes total.
  680. */
  681. intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
  682. mode->clock, adjusted_mode->clock, &m_n);
  683. if (HAS_PCH_SPLIT(dev)) {
  684. I915_WRITE(TRANSDATA_M1(pipe),
  685. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  686. m_n.gmch_m);
  687. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  688. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  689. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  690. } else {
  691. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  692. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  693. m_n.gmch_m);
  694. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  695. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  696. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  697. }
  698. }
  699. static void ironlake_edp_pll_on(struct drm_encoder *encoder);
  700. static void ironlake_edp_pll_off(struct drm_encoder *encoder);
  701. static void
  702. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  703. struct drm_display_mode *adjusted_mode)
  704. {
  705. struct drm_device *dev = encoder->dev;
  706. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  707. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  709. /* Turn on the eDP PLL if needed */
  710. if (is_edp(intel_dp)) {
  711. if (!is_pch_edp(intel_dp))
  712. ironlake_edp_pll_on(encoder);
  713. else
  714. ironlake_edp_pll_off(encoder);
  715. }
  716. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  717. intel_dp->DP |= intel_dp->color_range;
  718. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  719. intel_dp->DP |= DP_SYNC_HS_HIGH;
  720. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  721. intel_dp->DP |= DP_SYNC_VS_HIGH;
  722. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  723. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  724. else
  725. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  726. switch (intel_dp->lane_count) {
  727. case 1:
  728. intel_dp->DP |= DP_PORT_WIDTH_1;
  729. break;
  730. case 2:
  731. intel_dp->DP |= DP_PORT_WIDTH_2;
  732. break;
  733. case 4:
  734. intel_dp->DP |= DP_PORT_WIDTH_4;
  735. break;
  736. }
  737. if (intel_dp->has_audio) {
  738. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  739. pipe_name(intel_crtc->pipe));
  740. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  741. intel_write_eld(encoder, adjusted_mode);
  742. }
  743. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  744. intel_dp->link_configuration[0] = intel_dp->link_bw;
  745. intel_dp->link_configuration[1] = intel_dp->lane_count;
  746. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  747. /*
  748. * Check for DPCD version > 1.1 and enhanced framing support
  749. */
  750. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  751. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  752. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  753. intel_dp->DP |= DP_ENHANCED_FRAMING;
  754. }
  755. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  756. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  757. intel_dp->DP |= DP_PIPEB_SELECT;
  758. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  759. /* don't miss out required setting for eDP */
  760. intel_dp->DP |= DP_PLL_ENABLE;
  761. if (adjusted_mode->clock < 200000)
  762. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  763. else
  764. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  765. }
  766. }
  767. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  768. {
  769. unsigned long off_time;
  770. unsigned long delay;
  771. DRM_DEBUG_KMS("Wait for panel power off time\n");
  772. if (ironlake_edp_have_panel_power(intel_dp) ||
  773. ironlake_edp_have_panel_vdd(intel_dp))
  774. {
  775. DRM_DEBUG_KMS("Panel still on, no delay needed\n");
  776. return;
  777. }
  778. off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
  779. if (time_after(jiffies, off_time)) {
  780. DRM_DEBUG_KMS("Time already passed");
  781. return;
  782. }
  783. delay = jiffies_to_msecs(off_time - jiffies);
  784. if (delay > intel_dp->panel_power_down_delay)
  785. delay = intel_dp->panel_power_down_delay;
  786. DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
  787. msleep(delay);
  788. }
  789. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  790. {
  791. struct drm_device *dev = intel_dp->base.base.dev;
  792. struct drm_i915_private *dev_priv = dev->dev_private;
  793. u32 pp;
  794. if (!is_edp(intel_dp))
  795. return;
  796. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  797. WARN(intel_dp->want_panel_vdd,
  798. "eDP VDD already requested on\n");
  799. intel_dp->want_panel_vdd = true;
  800. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  801. DRM_DEBUG_KMS("eDP VDD already on\n");
  802. return;
  803. }
  804. ironlake_wait_panel_off(intel_dp);
  805. pp = I915_READ(PCH_PP_CONTROL);
  806. pp &= ~PANEL_UNLOCK_MASK;
  807. pp |= PANEL_UNLOCK_REGS;
  808. pp |= EDP_FORCE_VDD;
  809. I915_WRITE(PCH_PP_CONTROL, pp);
  810. POSTING_READ(PCH_PP_CONTROL);
  811. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  812. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  813. /*
  814. * If the panel wasn't on, delay before accessing aux channel
  815. */
  816. if (!ironlake_edp_have_panel_power(intel_dp)) {
  817. DRM_DEBUG_KMS("eDP was not running\n");
  818. msleep(intel_dp->panel_power_up_delay);
  819. }
  820. }
  821. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  822. {
  823. struct drm_device *dev = intel_dp->base.base.dev;
  824. struct drm_i915_private *dev_priv = dev->dev_private;
  825. u32 pp;
  826. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  827. pp = I915_READ(PCH_PP_CONTROL);
  828. pp &= ~PANEL_UNLOCK_MASK;
  829. pp |= PANEL_UNLOCK_REGS;
  830. pp &= ~EDP_FORCE_VDD;
  831. I915_WRITE(PCH_PP_CONTROL, pp);
  832. POSTING_READ(PCH_PP_CONTROL);
  833. /* Make sure sequencer is idle before allowing subsequent activity */
  834. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  835. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  836. intel_dp->panel_off_jiffies = jiffies;
  837. }
  838. }
  839. static void ironlake_panel_vdd_work(struct work_struct *__work)
  840. {
  841. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  842. struct intel_dp, panel_vdd_work);
  843. struct drm_device *dev = intel_dp->base.base.dev;
  844. mutex_lock(&dev->struct_mutex);
  845. ironlake_panel_vdd_off_sync(intel_dp);
  846. mutex_unlock(&dev->struct_mutex);
  847. }
  848. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  849. {
  850. if (!is_edp(intel_dp))
  851. return;
  852. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  853. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  854. intel_dp->want_panel_vdd = false;
  855. if (sync) {
  856. ironlake_panel_vdd_off_sync(intel_dp);
  857. } else {
  858. /*
  859. * Queue the timer to fire a long
  860. * time from now (relative to the power down delay)
  861. * to keep the panel power up across a sequence of operations
  862. */
  863. schedule_delayed_work(&intel_dp->panel_vdd_work,
  864. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  865. }
  866. }
  867. /* Returns true if the panel was already on when called */
  868. static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  869. {
  870. struct drm_device *dev = intel_dp->base.base.dev;
  871. struct drm_i915_private *dev_priv = dev->dev_private;
  872. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  873. if (!is_edp(intel_dp))
  874. return;
  875. if (ironlake_edp_have_panel_power(intel_dp))
  876. return;
  877. ironlake_wait_panel_off(intel_dp);
  878. pp = I915_READ(PCH_PP_CONTROL);
  879. pp &= ~PANEL_UNLOCK_MASK;
  880. pp |= PANEL_UNLOCK_REGS;
  881. if (IS_GEN5(dev)) {
  882. /* ILK workaround: disable reset around power sequence */
  883. pp &= ~PANEL_POWER_RESET;
  884. I915_WRITE(PCH_PP_CONTROL, pp);
  885. POSTING_READ(PCH_PP_CONTROL);
  886. }
  887. pp |= POWER_TARGET_ON;
  888. I915_WRITE(PCH_PP_CONTROL, pp);
  889. POSTING_READ(PCH_PP_CONTROL);
  890. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  891. 5000))
  892. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  893. I915_READ(PCH_PP_STATUS));
  894. if (IS_GEN5(dev)) {
  895. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  896. I915_WRITE(PCH_PP_CONTROL, pp);
  897. POSTING_READ(PCH_PP_CONTROL);
  898. }
  899. }
  900. static void ironlake_edp_panel_off(struct drm_encoder *encoder)
  901. {
  902. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  903. struct drm_device *dev = encoder->dev;
  904. struct drm_i915_private *dev_priv = dev->dev_private;
  905. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  906. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  907. if (!is_edp(intel_dp))
  908. return;
  909. pp = I915_READ(PCH_PP_CONTROL);
  910. pp &= ~PANEL_UNLOCK_MASK;
  911. pp |= PANEL_UNLOCK_REGS;
  912. if (IS_GEN5(dev)) {
  913. /* ILK workaround: disable reset around power sequence */
  914. pp &= ~PANEL_POWER_RESET;
  915. I915_WRITE(PCH_PP_CONTROL, pp);
  916. POSTING_READ(PCH_PP_CONTROL);
  917. }
  918. intel_dp->panel_off_jiffies = jiffies;
  919. if (IS_GEN5(dev)) {
  920. pp &= ~POWER_TARGET_ON;
  921. I915_WRITE(PCH_PP_CONTROL, pp);
  922. POSTING_READ(PCH_PP_CONTROL);
  923. pp &= ~POWER_TARGET_ON;
  924. I915_WRITE(PCH_PP_CONTROL, pp);
  925. POSTING_READ(PCH_PP_CONTROL);
  926. msleep(intel_dp->panel_power_cycle_delay);
  927. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  928. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  929. I915_READ(PCH_PP_STATUS));
  930. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  931. I915_WRITE(PCH_PP_CONTROL, pp);
  932. POSTING_READ(PCH_PP_CONTROL);
  933. }
  934. }
  935. static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  936. {
  937. struct drm_device *dev = intel_dp->base.base.dev;
  938. struct drm_i915_private *dev_priv = dev->dev_private;
  939. u32 pp;
  940. if (!is_edp(intel_dp))
  941. return;
  942. DRM_DEBUG_KMS("\n");
  943. /*
  944. * If we enable the backlight right away following a panel power
  945. * on, we may see slight flicker as the panel syncs with the eDP
  946. * link. So delay a bit to make sure the image is solid before
  947. * allowing it to appear.
  948. */
  949. msleep(intel_dp->backlight_on_delay);
  950. pp = I915_READ(PCH_PP_CONTROL);
  951. pp &= ~PANEL_UNLOCK_MASK;
  952. pp |= PANEL_UNLOCK_REGS;
  953. pp |= EDP_BLC_ENABLE;
  954. I915_WRITE(PCH_PP_CONTROL, pp);
  955. POSTING_READ(PCH_PP_CONTROL);
  956. }
  957. static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  958. {
  959. struct drm_device *dev = intel_dp->base.base.dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. u32 pp;
  962. if (!is_edp(intel_dp))
  963. return;
  964. DRM_DEBUG_KMS("\n");
  965. pp = I915_READ(PCH_PP_CONTROL);
  966. pp &= ~PANEL_UNLOCK_MASK;
  967. pp |= PANEL_UNLOCK_REGS;
  968. pp &= ~EDP_BLC_ENABLE;
  969. I915_WRITE(PCH_PP_CONTROL, pp);
  970. POSTING_READ(PCH_PP_CONTROL);
  971. msleep(intel_dp->backlight_off_delay);
  972. }
  973. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  974. {
  975. struct drm_device *dev = encoder->dev;
  976. struct drm_i915_private *dev_priv = dev->dev_private;
  977. u32 dpa_ctl;
  978. DRM_DEBUG_KMS("\n");
  979. dpa_ctl = I915_READ(DP_A);
  980. dpa_ctl |= DP_PLL_ENABLE;
  981. I915_WRITE(DP_A, dpa_ctl);
  982. POSTING_READ(DP_A);
  983. udelay(200);
  984. }
  985. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  986. {
  987. struct drm_device *dev = encoder->dev;
  988. struct drm_i915_private *dev_priv = dev->dev_private;
  989. u32 dpa_ctl;
  990. dpa_ctl = I915_READ(DP_A);
  991. dpa_ctl &= ~DP_PLL_ENABLE;
  992. I915_WRITE(DP_A, dpa_ctl);
  993. POSTING_READ(DP_A);
  994. udelay(200);
  995. }
  996. /* If the sink supports it, try to set the power state appropriately */
  997. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  998. {
  999. int ret, i;
  1000. /* Should have a valid DPCD by this point */
  1001. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1002. return;
  1003. if (mode != DRM_MODE_DPMS_ON) {
  1004. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1005. DP_SET_POWER_D3);
  1006. if (ret != 1)
  1007. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1008. } else {
  1009. /*
  1010. * When turning on, we need to retry for 1ms to give the sink
  1011. * time to wake up.
  1012. */
  1013. for (i = 0; i < 3; i++) {
  1014. ret = intel_dp_aux_native_write_1(intel_dp,
  1015. DP_SET_POWER,
  1016. DP_SET_POWER_D0);
  1017. if (ret == 1)
  1018. break;
  1019. msleep(1);
  1020. }
  1021. }
  1022. }
  1023. static void intel_dp_prepare(struct drm_encoder *encoder)
  1024. {
  1025. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1026. /* Wake up the sink first */
  1027. ironlake_edp_panel_vdd_on(intel_dp);
  1028. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1029. ironlake_edp_panel_vdd_off(intel_dp, false);
  1030. /* Make sure the panel is off before trying to
  1031. * change the mode
  1032. */
  1033. ironlake_edp_backlight_off(intel_dp);
  1034. intel_dp_link_down(intel_dp);
  1035. ironlake_edp_panel_off(encoder);
  1036. }
  1037. static void intel_dp_commit(struct drm_encoder *encoder)
  1038. {
  1039. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1040. ironlake_edp_panel_vdd_on(intel_dp);
  1041. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1042. intel_dp_start_link_train(intel_dp);
  1043. ironlake_edp_panel_on(intel_dp);
  1044. ironlake_edp_panel_vdd_off(intel_dp, true);
  1045. intel_dp_complete_link_train(intel_dp);
  1046. ironlake_edp_backlight_on(intel_dp);
  1047. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  1048. }
  1049. static void
  1050. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  1051. {
  1052. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1053. struct drm_device *dev = encoder->dev;
  1054. struct drm_i915_private *dev_priv = dev->dev_private;
  1055. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1056. if (mode != DRM_MODE_DPMS_ON) {
  1057. ironlake_edp_panel_vdd_on(intel_dp);
  1058. if (is_edp(intel_dp))
  1059. ironlake_edp_backlight_off(intel_dp);
  1060. intel_dp_sink_dpms(intel_dp, mode);
  1061. intel_dp_link_down(intel_dp);
  1062. ironlake_edp_panel_off(encoder);
  1063. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  1064. ironlake_edp_pll_off(encoder);
  1065. ironlake_edp_panel_vdd_off(intel_dp, false);
  1066. } else {
  1067. ironlake_edp_panel_vdd_on(intel_dp);
  1068. intel_dp_sink_dpms(intel_dp, mode);
  1069. if (!(dp_reg & DP_PORT_EN)) {
  1070. intel_dp_start_link_train(intel_dp);
  1071. ironlake_edp_panel_on(intel_dp);
  1072. ironlake_edp_panel_vdd_off(intel_dp, true);
  1073. intel_dp_complete_link_train(intel_dp);
  1074. ironlake_edp_backlight_on(intel_dp);
  1075. } else
  1076. ironlake_edp_panel_vdd_off(intel_dp, false);
  1077. ironlake_edp_backlight_on(intel_dp);
  1078. }
  1079. intel_dp->dpms_mode = mode;
  1080. }
  1081. /*
  1082. * Native read with retry for link status and receiver capability reads for
  1083. * cases where the sink may still be asleep.
  1084. */
  1085. static bool
  1086. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1087. uint8_t *recv, int recv_bytes)
  1088. {
  1089. int ret, i;
  1090. /*
  1091. * Sinks are *supposed* to come up within 1ms from an off state,
  1092. * but we're also supposed to retry 3 times per the spec.
  1093. */
  1094. for (i = 0; i < 3; i++) {
  1095. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1096. recv_bytes);
  1097. if (ret == recv_bytes)
  1098. return true;
  1099. msleep(1);
  1100. }
  1101. return false;
  1102. }
  1103. /*
  1104. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1105. * link status information
  1106. */
  1107. static bool
  1108. intel_dp_get_link_status(struct intel_dp *intel_dp)
  1109. {
  1110. return intel_dp_aux_native_read_retry(intel_dp,
  1111. DP_LANE0_1_STATUS,
  1112. intel_dp->link_status,
  1113. DP_LINK_STATUS_SIZE);
  1114. }
  1115. static uint8_t
  1116. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1117. int r)
  1118. {
  1119. return link_status[r - DP_LANE0_1_STATUS];
  1120. }
  1121. static uint8_t
  1122. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1123. int lane)
  1124. {
  1125. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1126. int s = ((lane & 1) ?
  1127. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  1128. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  1129. uint8_t l = intel_dp_link_status(link_status, i);
  1130. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  1131. }
  1132. static uint8_t
  1133. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1134. int lane)
  1135. {
  1136. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  1137. int s = ((lane & 1) ?
  1138. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  1139. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  1140. uint8_t l = intel_dp_link_status(link_status, i);
  1141. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1142. }
  1143. #if 0
  1144. static char *voltage_names[] = {
  1145. "0.4V", "0.6V", "0.8V", "1.2V"
  1146. };
  1147. static char *pre_emph_names[] = {
  1148. "0dB", "3.5dB", "6dB", "9.5dB"
  1149. };
  1150. static char *link_train_names[] = {
  1151. "pattern 1", "pattern 2", "idle", "off"
  1152. };
  1153. #endif
  1154. /*
  1155. * These are source-specific values; current Intel hardware supports
  1156. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1157. */
  1158. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1159. static uint8_t
  1160. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1161. {
  1162. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1163. case DP_TRAIN_VOLTAGE_SWING_400:
  1164. return DP_TRAIN_PRE_EMPHASIS_6;
  1165. case DP_TRAIN_VOLTAGE_SWING_600:
  1166. return DP_TRAIN_PRE_EMPHASIS_6;
  1167. case DP_TRAIN_VOLTAGE_SWING_800:
  1168. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1169. case DP_TRAIN_VOLTAGE_SWING_1200:
  1170. default:
  1171. return DP_TRAIN_PRE_EMPHASIS_0;
  1172. }
  1173. }
  1174. static void
  1175. intel_get_adjust_train(struct intel_dp *intel_dp)
  1176. {
  1177. uint8_t v = 0;
  1178. uint8_t p = 0;
  1179. int lane;
  1180. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1181. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1182. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1183. if (this_v > v)
  1184. v = this_v;
  1185. if (this_p > p)
  1186. p = this_p;
  1187. }
  1188. if (v >= I830_DP_VOLTAGE_MAX)
  1189. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1190. if (p >= intel_dp_pre_emphasis_max(v))
  1191. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1192. for (lane = 0; lane < 4; lane++)
  1193. intel_dp->train_set[lane] = v | p;
  1194. }
  1195. static uint32_t
  1196. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1197. {
  1198. uint32_t signal_levels = 0;
  1199. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1200. case DP_TRAIN_VOLTAGE_SWING_400:
  1201. default:
  1202. signal_levels |= DP_VOLTAGE_0_4;
  1203. break;
  1204. case DP_TRAIN_VOLTAGE_SWING_600:
  1205. signal_levels |= DP_VOLTAGE_0_6;
  1206. break;
  1207. case DP_TRAIN_VOLTAGE_SWING_800:
  1208. signal_levels |= DP_VOLTAGE_0_8;
  1209. break;
  1210. case DP_TRAIN_VOLTAGE_SWING_1200:
  1211. signal_levels |= DP_VOLTAGE_1_2;
  1212. break;
  1213. }
  1214. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1215. case DP_TRAIN_PRE_EMPHASIS_0:
  1216. default:
  1217. signal_levels |= DP_PRE_EMPHASIS_0;
  1218. break;
  1219. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1220. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1221. break;
  1222. case DP_TRAIN_PRE_EMPHASIS_6:
  1223. signal_levels |= DP_PRE_EMPHASIS_6;
  1224. break;
  1225. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1226. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1227. break;
  1228. }
  1229. return signal_levels;
  1230. }
  1231. /* Gen6's DP voltage swing and pre-emphasis control */
  1232. static uint32_t
  1233. intel_gen6_edp_signal_levels(uint8_t train_set)
  1234. {
  1235. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1236. DP_TRAIN_PRE_EMPHASIS_MASK);
  1237. switch (signal_levels) {
  1238. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1239. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1240. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1241. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1242. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1243. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1244. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1245. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1246. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1247. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1248. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1249. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1250. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1251. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1252. default:
  1253. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1254. "0x%x\n", signal_levels);
  1255. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1256. }
  1257. }
  1258. static uint8_t
  1259. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1260. int lane)
  1261. {
  1262. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1263. int s = (lane & 1) * 4;
  1264. uint8_t l = intel_dp_link_status(link_status, i);
  1265. return (l >> s) & 0xf;
  1266. }
  1267. /* Check for clock recovery is done on all channels */
  1268. static bool
  1269. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1270. {
  1271. int lane;
  1272. uint8_t lane_status;
  1273. for (lane = 0; lane < lane_count; lane++) {
  1274. lane_status = intel_get_lane_status(link_status, lane);
  1275. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1276. return false;
  1277. }
  1278. return true;
  1279. }
  1280. /* Check to see if channel eq is done on all channels */
  1281. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1282. DP_LANE_CHANNEL_EQ_DONE|\
  1283. DP_LANE_SYMBOL_LOCKED)
  1284. static bool
  1285. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1286. {
  1287. uint8_t lane_align;
  1288. uint8_t lane_status;
  1289. int lane;
  1290. lane_align = intel_dp_link_status(intel_dp->link_status,
  1291. DP_LANE_ALIGN_STATUS_UPDATED);
  1292. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1293. return false;
  1294. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1295. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1296. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1297. return false;
  1298. }
  1299. return true;
  1300. }
  1301. static bool
  1302. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1303. uint32_t dp_reg_value,
  1304. uint8_t dp_train_pat)
  1305. {
  1306. struct drm_device *dev = intel_dp->base.base.dev;
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. int ret;
  1309. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1310. POSTING_READ(intel_dp->output_reg);
  1311. intel_dp_aux_native_write_1(intel_dp,
  1312. DP_TRAINING_PATTERN_SET,
  1313. dp_train_pat);
  1314. ret = intel_dp_aux_native_write(intel_dp,
  1315. DP_TRAINING_LANE0_SET,
  1316. intel_dp->train_set, 4);
  1317. if (ret != 4)
  1318. return false;
  1319. return true;
  1320. }
  1321. /* Enable corresponding port and start training pattern 1 */
  1322. static void
  1323. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1324. {
  1325. struct drm_device *dev = intel_dp->base.base.dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1328. int i;
  1329. uint8_t voltage;
  1330. bool clock_recovery = false;
  1331. int tries;
  1332. u32 reg;
  1333. uint32_t DP = intel_dp->DP;
  1334. /*
  1335. * On CPT we have to enable the port in training pattern 1, which
  1336. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1337. * the port and wait for it to become active.
  1338. */
  1339. if (!HAS_PCH_CPT(dev)) {
  1340. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1341. POSTING_READ(intel_dp->output_reg);
  1342. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1343. }
  1344. /* Write the link configuration data */
  1345. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1346. intel_dp->link_configuration,
  1347. DP_LINK_CONFIGURATION_SIZE);
  1348. DP |= DP_PORT_EN;
  1349. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1350. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1351. else
  1352. DP &= ~DP_LINK_TRAIN_MASK;
  1353. memset(intel_dp->train_set, 0, 4);
  1354. voltage = 0xff;
  1355. tries = 0;
  1356. clock_recovery = false;
  1357. for (;;) {
  1358. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1359. uint32_t signal_levels;
  1360. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1361. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1362. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1363. } else {
  1364. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1365. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1366. }
  1367. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1368. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1369. else
  1370. reg = DP | DP_LINK_TRAIN_PAT_1;
  1371. if (!intel_dp_set_link_train(intel_dp, reg,
  1372. DP_TRAINING_PATTERN_1 |
  1373. DP_LINK_SCRAMBLING_DISABLE))
  1374. break;
  1375. /* Set training pattern 1 */
  1376. udelay(100);
  1377. if (!intel_dp_get_link_status(intel_dp))
  1378. break;
  1379. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1380. clock_recovery = true;
  1381. break;
  1382. }
  1383. /* Check to see if we've tried the max voltage */
  1384. for (i = 0; i < intel_dp->lane_count; i++)
  1385. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1386. break;
  1387. if (i == intel_dp->lane_count)
  1388. break;
  1389. /* Check to see if we've tried the same voltage 5 times */
  1390. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1391. ++tries;
  1392. if (tries == 5)
  1393. break;
  1394. } else
  1395. tries = 0;
  1396. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1397. /* Compute new intel_dp->train_set as requested by target */
  1398. intel_get_adjust_train(intel_dp);
  1399. }
  1400. intel_dp->DP = DP;
  1401. }
  1402. static void
  1403. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1404. {
  1405. struct drm_device *dev = intel_dp->base.base.dev;
  1406. struct drm_i915_private *dev_priv = dev->dev_private;
  1407. bool channel_eq = false;
  1408. int tries, cr_tries;
  1409. u32 reg;
  1410. uint32_t DP = intel_dp->DP;
  1411. /* channel equalization */
  1412. tries = 0;
  1413. cr_tries = 0;
  1414. channel_eq = false;
  1415. for (;;) {
  1416. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1417. uint32_t signal_levels;
  1418. if (cr_tries > 5) {
  1419. DRM_ERROR("failed to train DP, aborting\n");
  1420. intel_dp_link_down(intel_dp);
  1421. break;
  1422. }
  1423. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1424. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1425. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1426. } else {
  1427. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1428. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1429. }
  1430. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1431. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1432. else
  1433. reg = DP | DP_LINK_TRAIN_PAT_2;
  1434. /* channel eq pattern */
  1435. if (!intel_dp_set_link_train(intel_dp, reg,
  1436. DP_TRAINING_PATTERN_2 |
  1437. DP_LINK_SCRAMBLING_DISABLE))
  1438. break;
  1439. udelay(400);
  1440. if (!intel_dp_get_link_status(intel_dp))
  1441. break;
  1442. /* Make sure clock is still ok */
  1443. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1444. intel_dp_start_link_train(intel_dp);
  1445. cr_tries++;
  1446. continue;
  1447. }
  1448. if (intel_channel_eq_ok(intel_dp)) {
  1449. channel_eq = true;
  1450. break;
  1451. }
  1452. /* Try 5 times, then try clock recovery if that fails */
  1453. if (tries > 5) {
  1454. intel_dp_link_down(intel_dp);
  1455. intel_dp_start_link_train(intel_dp);
  1456. tries = 0;
  1457. cr_tries++;
  1458. continue;
  1459. }
  1460. /* Compute new intel_dp->train_set as requested by target */
  1461. intel_get_adjust_train(intel_dp);
  1462. ++tries;
  1463. }
  1464. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1465. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1466. else
  1467. reg = DP | DP_LINK_TRAIN_OFF;
  1468. I915_WRITE(intel_dp->output_reg, reg);
  1469. POSTING_READ(intel_dp->output_reg);
  1470. intel_dp_aux_native_write_1(intel_dp,
  1471. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1472. }
  1473. static void
  1474. intel_dp_link_down(struct intel_dp *intel_dp)
  1475. {
  1476. struct drm_device *dev = intel_dp->base.base.dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. uint32_t DP = intel_dp->DP;
  1479. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1480. return;
  1481. DRM_DEBUG_KMS("\n");
  1482. if (is_edp(intel_dp)) {
  1483. DP &= ~DP_PLL_ENABLE;
  1484. I915_WRITE(intel_dp->output_reg, DP);
  1485. POSTING_READ(intel_dp->output_reg);
  1486. udelay(100);
  1487. }
  1488. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1489. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1490. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1491. } else {
  1492. DP &= ~DP_LINK_TRAIN_MASK;
  1493. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1494. }
  1495. POSTING_READ(intel_dp->output_reg);
  1496. msleep(17);
  1497. if (is_edp(intel_dp))
  1498. DP |= DP_LINK_TRAIN_OFF;
  1499. if (!HAS_PCH_CPT(dev) &&
  1500. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1501. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1502. /* Hardware workaround: leaving our transcoder select
  1503. * set to transcoder B while it's off will prevent the
  1504. * corresponding HDMI output on transcoder A.
  1505. *
  1506. * Combine this with another hardware workaround:
  1507. * transcoder select bit can only be cleared while the
  1508. * port is enabled.
  1509. */
  1510. DP &= ~DP_PIPEB_SELECT;
  1511. I915_WRITE(intel_dp->output_reg, DP);
  1512. /* Changes to enable or select take place the vblank
  1513. * after being written.
  1514. */
  1515. if (crtc == NULL) {
  1516. /* We can arrive here never having been attached
  1517. * to a CRTC, for instance, due to inheriting
  1518. * random state from the BIOS.
  1519. *
  1520. * If the pipe is not running, play safe and
  1521. * wait for the clocks to stabilise before
  1522. * continuing.
  1523. */
  1524. POSTING_READ(intel_dp->output_reg);
  1525. msleep(50);
  1526. } else
  1527. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1528. }
  1529. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1530. POSTING_READ(intel_dp->output_reg);
  1531. msleep(intel_dp->panel_power_down_delay);
  1532. }
  1533. static bool
  1534. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1535. {
  1536. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1537. sizeof(intel_dp->dpcd)) &&
  1538. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1539. return true;
  1540. }
  1541. return false;
  1542. }
  1543. /*
  1544. * According to DP spec
  1545. * 5.1.2:
  1546. * 1. Read DPCD
  1547. * 2. Configure link according to Receiver Capabilities
  1548. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1549. * 4. Check link status on receipt of hot-plug interrupt
  1550. */
  1551. static void
  1552. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1553. {
  1554. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1555. return;
  1556. if (!intel_dp->base.base.crtc)
  1557. return;
  1558. /* Try to read receiver status if the link appears to be up */
  1559. if (!intel_dp_get_link_status(intel_dp)) {
  1560. intel_dp_link_down(intel_dp);
  1561. return;
  1562. }
  1563. /* Now read the DPCD to see if it's actually running */
  1564. if (!intel_dp_get_dpcd(intel_dp)) {
  1565. intel_dp_link_down(intel_dp);
  1566. return;
  1567. }
  1568. if (!intel_channel_eq_ok(intel_dp)) {
  1569. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1570. drm_get_encoder_name(&intel_dp->base.base));
  1571. intel_dp_start_link_train(intel_dp);
  1572. intel_dp_complete_link_train(intel_dp);
  1573. }
  1574. }
  1575. static enum drm_connector_status
  1576. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1577. {
  1578. if (intel_dp_get_dpcd(intel_dp))
  1579. return connector_status_connected;
  1580. return connector_status_disconnected;
  1581. }
  1582. static enum drm_connector_status
  1583. ironlake_dp_detect(struct intel_dp *intel_dp)
  1584. {
  1585. enum drm_connector_status status;
  1586. /* Can't disconnect eDP, but you can close the lid... */
  1587. if (is_edp(intel_dp)) {
  1588. status = intel_panel_detect(intel_dp->base.base.dev);
  1589. if (status == connector_status_unknown)
  1590. status = connector_status_connected;
  1591. return status;
  1592. }
  1593. return intel_dp_detect_dpcd(intel_dp);
  1594. }
  1595. static enum drm_connector_status
  1596. g4x_dp_detect(struct intel_dp *intel_dp)
  1597. {
  1598. struct drm_device *dev = intel_dp->base.base.dev;
  1599. struct drm_i915_private *dev_priv = dev->dev_private;
  1600. uint32_t temp, bit;
  1601. switch (intel_dp->output_reg) {
  1602. case DP_B:
  1603. bit = DPB_HOTPLUG_INT_STATUS;
  1604. break;
  1605. case DP_C:
  1606. bit = DPC_HOTPLUG_INT_STATUS;
  1607. break;
  1608. case DP_D:
  1609. bit = DPD_HOTPLUG_INT_STATUS;
  1610. break;
  1611. default:
  1612. return connector_status_unknown;
  1613. }
  1614. temp = I915_READ(PORT_HOTPLUG_STAT);
  1615. if ((temp & bit) == 0)
  1616. return connector_status_disconnected;
  1617. return intel_dp_detect_dpcd(intel_dp);
  1618. }
  1619. static struct edid *
  1620. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1621. {
  1622. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1623. struct edid *edid;
  1624. ironlake_edp_panel_vdd_on(intel_dp);
  1625. edid = drm_get_edid(connector, adapter);
  1626. ironlake_edp_panel_vdd_off(intel_dp, false);
  1627. return edid;
  1628. }
  1629. static int
  1630. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1631. {
  1632. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1633. int ret;
  1634. ironlake_edp_panel_vdd_on(intel_dp);
  1635. ret = intel_ddc_get_modes(connector, adapter);
  1636. ironlake_edp_panel_vdd_off(intel_dp, false);
  1637. return ret;
  1638. }
  1639. /**
  1640. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1641. *
  1642. * \return true if DP port is connected.
  1643. * \return false if DP port is disconnected.
  1644. */
  1645. static enum drm_connector_status
  1646. intel_dp_detect(struct drm_connector *connector, bool force)
  1647. {
  1648. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1649. struct drm_device *dev = intel_dp->base.base.dev;
  1650. enum drm_connector_status status;
  1651. struct edid *edid = NULL;
  1652. intel_dp->has_audio = false;
  1653. if (HAS_PCH_SPLIT(dev))
  1654. status = ironlake_dp_detect(intel_dp);
  1655. else
  1656. status = g4x_dp_detect(intel_dp);
  1657. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1658. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1659. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1660. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1661. if (status != connector_status_connected)
  1662. return status;
  1663. if (intel_dp->force_audio) {
  1664. intel_dp->has_audio = intel_dp->force_audio > 0;
  1665. } else {
  1666. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1667. if (edid) {
  1668. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1669. connector->display_info.raw_edid = NULL;
  1670. kfree(edid);
  1671. }
  1672. }
  1673. return connector_status_connected;
  1674. }
  1675. static int intel_dp_get_modes(struct drm_connector *connector)
  1676. {
  1677. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1678. struct drm_device *dev = intel_dp->base.base.dev;
  1679. struct drm_i915_private *dev_priv = dev->dev_private;
  1680. int ret;
  1681. /* We should parse the EDID data and find out if it has an audio sink
  1682. */
  1683. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  1684. if (ret) {
  1685. if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
  1686. struct drm_display_mode *newmode;
  1687. list_for_each_entry(newmode, &connector->probed_modes,
  1688. head) {
  1689. if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
  1690. intel_dp->panel_fixed_mode =
  1691. drm_mode_duplicate(dev, newmode);
  1692. break;
  1693. }
  1694. }
  1695. }
  1696. return ret;
  1697. }
  1698. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1699. if (is_edp(intel_dp)) {
  1700. /* initialize panel mode from VBT if available for eDP */
  1701. if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
  1702. intel_dp->panel_fixed_mode =
  1703. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1704. if (intel_dp->panel_fixed_mode) {
  1705. intel_dp->panel_fixed_mode->type |=
  1706. DRM_MODE_TYPE_PREFERRED;
  1707. }
  1708. }
  1709. if (intel_dp->panel_fixed_mode) {
  1710. struct drm_display_mode *mode;
  1711. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1712. drm_mode_probed_add(connector, mode);
  1713. return 1;
  1714. }
  1715. }
  1716. return 0;
  1717. }
  1718. static bool
  1719. intel_dp_detect_audio(struct drm_connector *connector)
  1720. {
  1721. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1722. struct edid *edid;
  1723. bool has_audio = false;
  1724. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  1725. if (edid) {
  1726. has_audio = drm_detect_monitor_audio(edid);
  1727. connector->display_info.raw_edid = NULL;
  1728. kfree(edid);
  1729. }
  1730. return has_audio;
  1731. }
  1732. static int
  1733. intel_dp_set_property(struct drm_connector *connector,
  1734. struct drm_property *property,
  1735. uint64_t val)
  1736. {
  1737. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1738. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1739. int ret;
  1740. ret = drm_connector_property_set_value(connector, property, val);
  1741. if (ret)
  1742. return ret;
  1743. if (property == dev_priv->force_audio_property) {
  1744. int i = val;
  1745. bool has_audio;
  1746. if (i == intel_dp->force_audio)
  1747. return 0;
  1748. intel_dp->force_audio = i;
  1749. if (i == 0)
  1750. has_audio = intel_dp_detect_audio(connector);
  1751. else
  1752. has_audio = i > 0;
  1753. if (has_audio == intel_dp->has_audio)
  1754. return 0;
  1755. intel_dp->has_audio = has_audio;
  1756. goto done;
  1757. }
  1758. if (property == dev_priv->broadcast_rgb_property) {
  1759. if (val == !!intel_dp->color_range)
  1760. return 0;
  1761. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1762. goto done;
  1763. }
  1764. return -EINVAL;
  1765. done:
  1766. if (intel_dp->base.base.crtc) {
  1767. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1768. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1769. crtc->x, crtc->y,
  1770. crtc->fb);
  1771. }
  1772. return 0;
  1773. }
  1774. static void
  1775. intel_dp_destroy(struct drm_connector *connector)
  1776. {
  1777. struct drm_device *dev = connector->dev;
  1778. if (intel_dpd_is_edp(dev))
  1779. intel_panel_destroy_backlight(dev);
  1780. drm_sysfs_connector_remove(connector);
  1781. drm_connector_cleanup(connector);
  1782. kfree(connector);
  1783. }
  1784. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1785. {
  1786. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1787. i2c_del_adapter(&intel_dp->adapter);
  1788. drm_encoder_cleanup(encoder);
  1789. if (is_edp(intel_dp)) {
  1790. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  1791. ironlake_panel_vdd_off_sync(intel_dp);
  1792. }
  1793. kfree(intel_dp);
  1794. }
  1795. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1796. .dpms = intel_dp_dpms,
  1797. .mode_fixup = intel_dp_mode_fixup,
  1798. .prepare = intel_dp_prepare,
  1799. .mode_set = intel_dp_mode_set,
  1800. .commit = intel_dp_commit,
  1801. };
  1802. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1803. .dpms = drm_helper_connector_dpms,
  1804. .detect = intel_dp_detect,
  1805. .fill_modes = drm_helper_probe_single_connector_modes,
  1806. .set_property = intel_dp_set_property,
  1807. .destroy = intel_dp_destroy,
  1808. };
  1809. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1810. .get_modes = intel_dp_get_modes,
  1811. .mode_valid = intel_dp_mode_valid,
  1812. .best_encoder = intel_best_encoder,
  1813. };
  1814. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1815. .destroy = intel_dp_encoder_destroy,
  1816. };
  1817. static void
  1818. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1819. {
  1820. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1821. intel_dp_check_link_status(intel_dp);
  1822. }
  1823. /* Return which DP Port should be selected for Transcoder DP control */
  1824. int
  1825. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  1826. {
  1827. struct drm_device *dev = crtc->dev;
  1828. struct drm_mode_config *mode_config = &dev->mode_config;
  1829. struct drm_encoder *encoder;
  1830. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1831. struct intel_dp *intel_dp;
  1832. if (encoder->crtc != crtc)
  1833. continue;
  1834. intel_dp = enc_to_intel_dp(encoder);
  1835. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1836. return intel_dp->output_reg;
  1837. }
  1838. return -1;
  1839. }
  1840. /* check the VBT to see whether the eDP is on DP-D port */
  1841. bool intel_dpd_is_edp(struct drm_device *dev)
  1842. {
  1843. struct drm_i915_private *dev_priv = dev->dev_private;
  1844. struct child_device_config *p_child;
  1845. int i;
  1846. if (!dev_priv->child_dev_num)
  1847. return false;
  1848. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1849. p_child = dev_priv->child_dev + i;
  1850. if (p_child->dvo_port == PORT_IDPD &&
  1851. p_child->device_type == DEVICE_TYPE_eDP)
  1852. return true;
  1853. }
  1854. return false;
  1855. }
  1856. static void
  1857. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1858. {
  1859. intel_attach_force_audio_property(connector);
  1860. intel_attach_broadcast_rgb_property(connector);
  1861. }
  1862. void
  1863. intel_dp_init(struct drm_device *dev, int output_reg)
  1864. {
  1865. struct drm_i915_private *dev_priv = dev->dev_private;
  1866. struct drm_connector *connector;
  1867. struct intel_dp *intel_dp;
  1868. struct intel_encoder *intel_encoder;
  1869. struct intel_connector *intel_connector;
  1870. const char *name = NULL;
  1871. int type;
  1872. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1873. if (!intel_dp)
  1874. return;
  1875. intel_dp->output_reg = output_reg;
  1876. intel_dp->dpms_mode = -1;
  1877. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1878. if (!intel_connector) {
  1879. kfree(intel_dp);
  1880. return;
  1881. }
  1882. intel_encoder = &intel_dp->base;
  1883. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1884. if (intel_dpd_is_edp(dev))
  1885. intel_dp->is_pch_edp = true;
  1886. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1887. type = DRM_MODE_CONNECTOR_eDP;
  1888. intel_encoder->type = INTEL_OUTPUT_EDP;
  1889. } else {
  1890. type = DRM_MODE_CONNECTOR_DisplayPort;
  1891. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1892. }
  1893. connector = &intel_connector->base;
  1894. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1895. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1896. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1897. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1898. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1899. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1900. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1901. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1902. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1903. if (is_edp(intel_dp)) {
  1904. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1905. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  1906. ironlake_panel_vdd_work);
  1907. }
  1908. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1909. connector->interlace_allowed = true;
  1910. connector->doublescan_allowed = 0;
  1911. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1912. DRM_MODE_ENCODER_TMDS);
  1913. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1914. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1915. drm_sysfs_connector_add(connector);
  1916. /* Set up the DDC bus. */
  1917. switch (output_reg) {
  1918. case DP_A:
  1919. name = "DPDDC-A";
  1920. break;
  1921. case DP_B:
  1922. case PCH_DP_B:
  1923. dev_priv->hotplug_supported_mask |=
  1924. HDMIB_HOTPLUG_INT_STATUS;
  1925. name = "DPDDC-B";
  1926. break;
  1927. case DP_C:
  1928. case PCH_DP_C:
  1929. dev_priv->hotplug_supported_mask |=
  1930. HDMIC_HOTPLUG_INT_STATUS;
  1931. name = "DPDDC-C";
  1932. break;
  1933. case DP_D:
  1934. case PCH_DP_D:
  1935. dev_priv->hotplug_supported_mask |=
  1936. HDMID_HOTPLUG_INT_STATUS;
  1937. name = "DPDDC-D";
  1938. break;
  1939. }
  1940. /* Cache some DPCD data in the eDP case */
  1941. if (is_edp(intel_dp)) {
  1942. bool ret;
  1943. struct edp_power_seq cur, vbt;
  1944. u32 pp_on, pp_off, pp_div;
  1945. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1946. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  1947. pp_div = I915_READ(PCH_PP_DIVISOR);
  1948. /* Pull timing values out of registers */
  1949. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  1950. PANEL_POWER_UP_DELAY_SHIFT;
  1951. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  1952. PANEL_LIGHT_ON_DELAY_SHIFT;
  1953. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  1954. PANEL_LIGHT_OFF_DELAY_SHIFT;
  1955. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  1956. PANEL_POWER_DOWN_DELAY_SHIFT;
  1957. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  1958. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  1959. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1960. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  1961. vbt = dev_priv->edp.pps;
  1962. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1963. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  1964. #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
  1965. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  1966. intel_dp->backlight_on_delay = get_delay(t8);
  1967. intel_dp->backlight_off_delay = get_delay(t9);
  1968. intel_dp->panel_power_down_delay = get_delay(t10);
  1969. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  1970. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  1971. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  1972. intel_dp->panel_power_cycle_delay);
  1973. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  1974. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  1975. intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
  1976. ironlake_edp_panel_vdd_on(intel_dp);
  1977. ret = intel_dp_get_dpcd(intel_dp);
  1978. ironlake_edp_panel_vdd_off(intel_dp, false);
  1979. if (ret) {
  1980. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1981. dev_priv->no_aux_handshake =
  1982. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1983. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1984. } else {
  1985. /* if this fails, presume the device is a ghost */
  1986. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1987. intel_dp_encoder_destroy(&intel_dp->base.base);
  1988. intel_dp_destroy(&intel_connector->base);
  1989. return;
  1990. }
  1991. }
  1992. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1993. intel_encoder->hot_plug = intel_dp_hot_plug;
  1994. if (is_edp(intel_dp)) {
  1995. dev_priv->int_edp_connector = connector;
  1996. intel_panel_setup_backlight(dev);
  1997. }
  1998. intel_dp_add_properties(intel_dp, connector);
  1999. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2000. * 0xd. Failure to do so will result in spurious interrupts being
  2001. * generated on the port when a cable is not attached.
  2002. */
  2003. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2004. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2005. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2006. }
  2007. }