forcedeth.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. *
  110. * Known bugs:
  111. * We suspect that on some hardware no TX done interrupts are generated.
  112. * This means recovery from netif_stop_queue only happens if the hw timer
  113. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  114. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  115. * If your hardware reliably generates tx done interrupts, then you can remove
  116. * DEV_NEED_TIMERIRQ from the driver_data flags.
  117. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  118. * superfluous timer interrupts from the nic.
  119. */
  120. #define FORCEDETH_VERSION "0.53"
  121. #define DRV_NAME "forcedeth"
  122. #include <linux/module.h>
  123. #include <linux/types.h>
  124. #include <linux/pci.h>
  125. #include <linux/interrupt.h>
  126. #include <linux/netdevice.h>
  127. #include <linux/etherdevice.h>
  128. #include <linux/delay.h>
  129. #include <linux/spinlock.h>
  130. #include <linux/ethtool.h>
  131. #include <linux/timer.h>
  132. #include <linux/skbuff.h>
  133. #include <linux/mii.h>
  134. #include <linux/random.h>
  135. #include <linux/init.h>
  136. #include <linux/if_vlan.h>
  137. #include <linux/dma-mapping.h>
  138. #include <asm/irq.h>
  139. #include <asm/io.h>
  140. #include <asm/uaccess.h>
  141. #include <asm/system.h>
  142. #if 0
  143. #define dprintk printk
  144. #else
  145. #define dprintk(x...) do { } while (0)
  146. #endif
  147. /*
  148. * Hardware access:
  149. */
  150. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  151. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  152. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  153. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  154. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  155. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  156. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  157. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  158. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  159. enum {
  160. NvRegIrqStatus = 0x000,
  161. #define NVREG_IRQSTAT_MIIEVENT 0x040
  162. #define NVREG_IRQSTAT_MASK 0x1ff
  163. NvRegIrqMask = 0x004,
  164. #define NVREG_IRQ_RX_ERROR 0x0001
  165. #define NVREG_IRQ_RX 0x0002
  166. #define NVREG_IRQ_RX_NOBUF 0x0004
  167. #define NVREG_IRQ_TX_ERR 0x0008
  168. #define NVREG_IRQ_TX_OK 0x0010
  169. #define NVREG_IRQ_TIMER 0x0020
  170. #define NVREG_IRQ_LINK 0x0040
  171. #define NVREG_IRQ_RX_FORCED 0x0080
  172. #define NVREG_IRQ_TX_FORCED 0x0100
  173. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  174. #define NVREG_IRQMASK_CPU 0x0040
  175. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  176. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  177. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  178. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  179. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  180. NVREG_IRQ_TX_FORCED))
  181. NvRegUnknownSetupReg6 = 0x008,
  182. #define NVREG_UNKSETUP6_VAL 3
  183. /*
  184. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  185. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  186. */
  187. NvRegPollingInterval = 0x00c,
  188. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  189. #define NVREG_POLL_DEFAULT_CPU 13
  190. NvRegMSIMap0 = 0x020,
  191. NvRegMSIMap1 = 0x024,
  192. NvRegMSIIrqMask = 0x030,
  193. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  194. NvRegMisc1 = 0x080,
  195. #define NVREG_MISC1_HD 0x02
  196. #define NVREG_MISC1_FORCE 0x3b0f3c
  197. NvRegMacReset = 0x3c,
  198. #define NVREG_MAC_RESET_ASSERT 0x0F3
  199. NvRegTransmitterControl = 0x084,
  200. #define NVREG_XMITCTL_START 0x01
  201. NvRegTransmitterStatus = 0x088,
  202. #define NVREG_XMITSTAT_BUSY 0x01
  203. NvRegPacketFilterFlags = 0x8c,
  204. #define NVREG_PFF_ALWAYS 0x7F0008
  205. #define NVREG_PFF_PROMISC 0x80
  206. #define NVREG_PFF_MYADDR 0x20
  207. NvRegOffloadConfig = 0x90,
  208. #define NVREG_OFFLOAD_HOMEPHY 0x601
  209. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  210. NvRegReceiverControl = 0x094,
  211. #define NVREG_RCVCTL_START 0x01
  212. NvRegReceiverStatus = 0x98,
  213. #define NVREG_RCVSTAT_BUSY 0x01
  214. NvRegRandomSeed = 0x9c,
  215. #define NVREG_RNDSEED_MASK 0x00ff
  216. #define NVREG_RNDSEED_FORCE 0x7f00
  217. #define NVREG_RNDSEED_FORCE2 0x2d00
  218. #define NVREG_RNDSEED_FORCE3 0x7400
  219. NvRegUnknownSetupReg1 = 0xA0,
  220. #define NVREG_UNKSETUP1_VAL 0x16070f
  221. NvRegUnknownSetupReg2 = 0xA4,
  222. #define NVREG_UNKSETUP2_VAL 0x16
  223. NvRegMacAddrA = 0xA8,
  224. NvRegMacAddrB = 0xAC,
  225. NvRegMulticastAddrA = 0xB0,
  226. #define NVREG_MCASTADDRA_FORCE 0x01
  227. NvRegMulticastAddrB = 0xB4,
  228. NvRegMulticastMaskA = 0xB8,
  229. NvRegMulticastMaskB = 0xBC,
  230. NvRegPhyInterface = 0xC0,
  231. #define PHY_RGMII 0x10000000
  232. NvRegTxRingPhysAddr = 0x100,
  233. NvRegRxRingPhysAddr = 0x104,
  234. NvRegRingSizes = 0x108,
  235. #define NVREG_RINGSZ_TXSHIFT 0
  236. #define NVREG_RINGSZ_RXSHIFT 16
  237. NvRegUnknownTransmitterReg = 0x10c,
  238. NvRegLinkSpeed = 0x110,
  239. #define NVREG_LINKSPEED_FORCE 0x10000
  240. #define NVREG_LINKSPEED_10 1000
  241. #define NVREG_LINKSPEED_100 100
  242. #define NVREG_LINKSPEED_1000 50
  243. #define NVREG_LINKSPEED_MASK (0xFFF)
  244. NvRegUnknownSetupReg5 = 0x130,
  245. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  246. NvRegUnknownSetupReg3 = 0x13c,
  247. #define NVREG_UNKSETUP3_VAL1 0x200010
  248. NvRegTxRxControl = 0x144,
  249. #define NVREG_TXRXCTL_KICK 0x0001
  250. #define NVREG_TXRXCTL_BIT1 0x0002
  251. #define NVREG_TXRXCTL_BIT2 0x0004
  252. #define NVREG_TXRXCTL_IDLE 0x0008
  253. #define NVREG_TXRXCTL_RESET 0x0010
  254. #define NVREG_TXRXCTL_RXCHECK 0x0400
  255. #define NVREG_TXRXCTL_DESC_1 0
  256. #define NVREG_TXRXCTL_DESC_2 0x02100
  257. #define NVREG_TXRXCTL_DESC_3 0x02200
  258. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  259. #define NVREG_TXRXCTL_VLANINS 0x00080
  260. NvRegTxRingPhysAddrHigh = 0x148,
  261. NvRegRxRingPhysAddrHigh = 0x14C,
  262. NvRegMIIStatus = 0x180,
  263. #define NVREG_MIISTAT_ERROR 0x0001
  264. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  265. #define NVREG_MIISTAT_MASK 0x000f
  266. #define NVREG_MIISTAT_MASK2 0x000f
  267. NvRegUnknownSetupReg4 = 0x184,
  268. #define NVREG_UNKSETUP4_VAL 8
  269. NvRegAdapterControl = 0x188,
  270. #define NVREG_ADAPTCTL_START 0x02
  271. #define NVREG_ADAPTCTL_LINKUP 0x04
  272. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  273. #define NVREG_ADAPTCTL_RUNNING 0x100000
  274. #define NVREG_ADAPTCTL_PHYSHIFT 24
  275. NvRegMIISpeed = 0x18c,
  276. #define NVREG_MIISPEED_BIT8 (1<<8)
  277. #define NVREG_MIIDELAY 5
  278. NvRegMIIControl = 0x190,
  279. #define NVREG_MIICTL_INUSE 0x08000
  280. #define NVREG_MIICTL_WRITE 0x00400
  281. #define NVREG_MIICTL_ADDRSHIFT 5
  282. NvRegMIIData = 0x194,
  283. NvRegWakeUpFlags = 0x200,
  284. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  285. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  286. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  287. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  288. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  289. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  290. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  291. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  292. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  293. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  294. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  295. NvRegPatternCRC = 0x204,
  296. NvRegPatternMask = 0x208,
  297. NvRegPowerCap = 0x268,
  298. #define NVREG_POWERCAP_D3SUPP (1<<30)
  299. #define NVREG_POWERCAP_D2SUPP (1<<26)
  300. #define NVREG_POWERCAP_D1SUPP (1<<25)
  301. NvRegPowerState = 0x26c,
  302. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  303. #define NVREG_POWERSTATE_VALID 0x0100
  304. #define NVREG_POWERSTATE_MASK 0x0003
  305. #define NVREG_POWERSTATE_D0 0x0000
  306. #define NVREG_POWERSTATE_D1 0x0001
  307. #define NVREG_POWERSTATE_D2 0x0002
  308. #define NVREG_POWERSTATE_D3 0x0003
  309. NvRegVlanControl = 0x300,
  310. #define NVREG_VLANCONTROL_ENABLE 0x2000
  311. NvRegMSIXMap0 = 0x3e0,
  312. NvRegMSIXMap1 = 0x3e4,
  313. NvRegMSIXIrqStatus = 0x3f0,
  314. NvRegPowerState2 = 0x600,
  315. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  316. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  317. };
  318. /* Big endian: should work, but is untested */
  319. struct ring_desc {
  320. u32 PacketBuffer;
  321. u32 FlagLen;
  322. };
  323. struct ring_desc_ex {
  324. u32 PacketBufferHigh;
  325. u32 PacketBufferLow;
  326. u32 TxVlan;
  327. u32 FlagLen;
  328. };
  329. typedef union _ring_type {
  330. struct ring_desc* orig;
  331. struct ring_desc_ex* ex;
  332. } ring_type;
  333. #define FLAG_MASK_V1 0xffff0000
  334. #define FLAG_MASK_V2 0xffffc000
  335. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  336. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  337. #define NV_TX_LASTPACKET (1<<16)
  338. #define NV_TX_RETRYERROR (1<<19)
  339. #define NV_TX_FORCED_INTERRUPT (1<<24)
  340. #define NV_TX_DEFERRED (1<<26)
  341. #define NV_TX_CARRIERLOST (1<<27)
  342. #define NV_TX_LATECOLLISION (1<<28)
  343. #define NV_TX_UNDERFLOW (1<<29)
  344. #define NV_TX_ERROR (1<<30)
  345. #define NV_TX_VALID (1<<31)
  346. #define NV_TX2_LASTPACKET (1<<29)
  347. #define NV_TX2_RETRYERROR (1<<18)
  348. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  349. #define NV_TX2_DEFERRED (1<<25)
  350. #define NV_TX2_CARRIERLOST (1<<26)
  351. #define NV_TX2_LATECOLLISION (1<<27)
  352. #define NV_TX2_UNDERFLOW (1<<28)
  353. /* error and valid are the same for both */
  354. #define NV_TX2_ERROR (1<<30)
  355. #define NV_TX2_VALID (1<<31)
  356. #define NV_TX2_TSO (1<<28)
  357. #define NV_TX2_TSO_SHIFT 14
  358. #define NV_TX2_TSO_MAX_SHIFT 14
  359. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  360. #define NV_TX2_CHECKSUM_L3 (1<<27)
  361. #define NV_TX2_CHECKSUM_L4 (1<<26)
  362. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  363. #define NV_RX_DESCRIPTORVALID (1<<16)
  364. #define NV_RX_MISSEDFRAME (1<<17)
  365. #define NV_RX_SUBSTRACT1 (1<<18)
  366. #define NV_RX_ERROR1 (1<<23)
  367. #define NV_RX_ERROR2 (1<<24)
  368. #define NV_RX_ERROR3 (1<<25)
  369. #define NV_RX_ERROR4 (1<<26)
  370. #define NV_RX_CRCERR (1<<27)
  371. #define NV_RX_OVERFLOW (1<<28)
  372. #define NV_RX_FRAMINGERR (1<<29)
  373. #define NV_RX_ERROR (1<<30)
  374. #define NV_RX_AVAIL (1<<31)
  375. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  376. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  377. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  378. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  379. #define NV_RX2_DESCRIPTORVALID (1<<29)
  380. #define NV_RX2_SUBSTRACT1 (1<<25)
  381. #define NV_RX2_ERROR1 (1<<18)
  382. #define NV_RX2_ERROR2 (1<<19)
  383. #define NV_RX2_ERROR3 (1<<20)
  384. #define NV_RX2_ERROR4 (1<<21)
  385. #define NV_RX2_CRCERR (1<<22)
  386. #define NV_RX2_OVERFLOW (1<<23)
  387. #define NV_RX2_FRAMINGERR (1<<24)
  388. /* error and avail are the same for both */
  389. #define NV_RX2_ERROR (1<<30)
  390. #define NV_RX2_AVAIL (1<<31)
  391. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  392. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  393. /* Miscelaneous hardware related defines: */
  394. #define NV_PCI_REGSZ_VER1 0x270
  395. #define NV_PCI_REGSZ_VER2 0x604
  396. /* various timeout delays: all in usec */
  397. #define NV_TXRX_RESET_DELAY 4
  398. #define NV_TXSTOP_DELAY1 10
  399. #define NV_TXSTOP_DELAY1MAX 500000
  400. #define NV_TXSTOP_DELAY2 100
  401. #define NV_RXSTOP_DELAY1 10
  402. #define NV_RXSTOP_DELAY1MAX 500000
  403. #define NV_RXSTOP_DELAY2 100
  404. #define NV_SETUP5_DELAY 5
  405. #define NV_SETUP5_DELAYMAX 50000
  406. #define NV_POWERUP_DELAY 5
  407. #define NV_POWERUP_DELAYMAX 5000
  408. #define NV_MIIBUSY_DELAY 50
  409. #define NV_MIIPHY_DELAY 10
  410. #define NV_MIIPHY_DELAYMAX 10000
  411. #define NV_MAC_RESET_DELAY 64
  412. #define NV_WAKEUPPATTERNS 5
  413. #define NV_WAKEUPMASKENTRIES 4
  414. /* General driver defaults */
  415. #define NV_WATCHDOG_TIMEO (5*HZ)
  416. #define RX_RING 128
  417. #define TX_RING 256
  418. /*
  419. * If your nic mysteriously hangs then try to reduce the limits
  420. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  421. * last valid ring entry. But this would be impossible to
  422. * implement - probably a disassembly error.
  423. */
  424. #define TX_LIMIT_STOP 255
  425. #define TX_LIMIT_START 254
  426. /* rx/tx mac addr + type + vlan + align + slack*/
  427. #define NV_RX_HEADERS (64)
  428. /* even more slack. */
  429. #define NV_RX_ALLOC_PAD (64)
  430. /* maximum mtu size */
  431. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  432. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  433. #define OOM_REFILL (1+HZ/20)
  434. #define POLL_WAIT (1+HZ/100)
  435. #define LINK_TIMEOUT (3*HZ)
  436. /*
  437. * desc_ver values:
  438. * The nic supports three different descriptor types:
  439. * - DESC_VER_1: Original
  440. * - DESC_VER_2: support for jumbo frames.
  441. * - DESC_VER_3: 64-bit format.
  442. */
  443. #define DESC_VER_1 1
  444. #define DESC_VER_2 2
  445. #define DESC_VER_3 3
  446. /* PHY defines */
  447. #define PHY_OUI_MARVELL 0x5043
  448. #define PHY_OUI_CICADA 0x03f1
  449. #define PHYID1_OUI_MASK 0x03ff
  450. #define PHYID1_OUI_SHFT 6
  451. #define PHYID2_OUI_MASK 0xfc00
  452. #define PHYID2_OUI_SHFT 10
  453. #define PHY_INIT1 0x0f000
  454. #define PHY_INIT2 0x0e00
  455. #define PHY_INIT3 0x01000
  456. #define PHY_INIT4 0x0200
  457. #define PHY_INIT5 0x0004
  458. #define PHY_INIT6 0x02000
  459. #define PHY_GIGABIT 0x0100
  460. #define PHY_TIMEOUT 0x1
  461. #define PHY_ERROR 0x2
  462. #define PHY_100 0x1
  463. #define PHY_1000 0x2
  464. #define PHY_HALF 0x100
  465. /* FIXME: MII defines that should be added to <linux/mii.h> */
  466. #define MII_1000BT_CR 0x09
  467. #define MII_1000BT_SR 0x0a
  468. #define ADVERTISE_1000FULL 0x0200
  469. #define ADVERTISE_1000HALF 0x0100
  470. #define LPA_1000FULL 0x0800
  471. #define LPA_1000HALF 0x0400
  472. /* MSI/MSI-X defines */
  473. #define NV_MSI_X_MAX_VECTORS 8
  474. #define NV_MSI_X_VECTORS_MASK 0x000f
  475. #define NV_MSI_CAPABLE 0x0010
  476. #define NV_MSI_X_CAPABLE 0x0020
  477. #define NV_MSI_ENABLED 0x0040
  478. #define NV_MSI_X_ENABLED 0x0080
  479. #define NV_MSI_X_VECTOR_ALL 0x0
  480. #define NV_MSI_X_VECTOR_RX 0x0
  481. #define NV_MSI_X_VECTOR_TX 0x1
  482. #define NV_MSI_X_VECTOR_OTHER 0x2
  483. /*
  484. * SMP locking:
  485. * All hardware access under dev->priv->lock, except the performance
  486. * critical parts:
  487. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  488. * by the arch code for interrupts.
  489. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  490. * needs dev->priv->lock :-(
  491. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  492. */
  493. /* in dev: base, irq */
  494. struct fe_priv {
  495. spinlock_t lock;
  496. /* General data:
  497. * Locking: spin_lock(&np->lock); */
  498. struct net_device_stats stats;
  499. int in_shutdown;
  500. u32 linkspeed;
  501. int duplex;
  502. int autoneg;
  503. int fixed_mode;
  504. int phyaddr;
  505. int wolenabled;
  506. unsigned int phy_oui;
  507. u16 gigabit;
  508. /* General data: RO fields */
  509. dma_addr_t ring_addr;
  510. struct pci_dev *pci_dev;
  511. u32 orig_mac[2];
  512. u32 irqmask;
  513. u32 desc_ver;
  514. u32 txrxctl_bits;
  515. u32 vlanctl_bits;
  516. u32 driver_data;
  517. u32 register_size;
  518. void __iomem *base;
  519. /* rx specific fields.
  520. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  521. */
  522. ring_type rx_ring;
  523. unsigned int cur_rx, refill_rx;
  524. struct sk_buff *rx_skbuff[RX_RING];
  525. dma_addr_t rx_dma[RX_RING];
  526. unsigned int rx_buf_sz;
  527. unsigned int pkt_limit;
  528. struct timer_list oom_kick;
  529. struct timer_list nic_poll;
  530. u32 nic_poll_irq;
  531. /* media detection workaround.
  532. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  533. */
  534. int need_linktimer;
  535. unsigned long link_timeout;
  536. /*
  537. * tx specific fields.
  538. */
  539. ring_type tx_ring;
  540. unsigned int next_tx, nic_tx;
  541. struct sk_buff *tx_skbuff[TX_RING];
  542. dma_addr_t tx_dma[TX_RING];
  543. unsigned int tx_dma_len[TX_RING];
  544. u32 tx_flags;
  545. /* vlan fields */
  546. struct vlan_group *vlangrp;
  547. /* msi/msi-x fields */
  548. u32 msi_flags;
  549. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  550. };
  551. /*
  552. * Maximum number of loops until we assume that a bit in the irq mask
  553. * is stuck. Overridable with module param.
  554. */
  555. static int max_interrupt_work = 5;
  556. /*
  557. * Optimization can be either throuput mode or cpu mode
  558. *
  559. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  560. * CPU Mode: Interrupts are controlled by a timer.
  561. */
  562. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  563. #define NV_OPTIMIZATION_MODE_CPU 1
  564. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  565. /*
  566. * Poll interval for timer irq
  567. *
  568. * This interval determines how frequent an interrupt is generated.
  569. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  570. * Min = 0, and Max = 65535
  571. */
  572. static int poll_interval = -1;
  573. /*
  574. * Disable MSI interrupts
  575. */
  576. static int disable_msi = 0;
  577. /*
  578. * Disable MSIX interrupts
  579. */
  580. static int disable_msix = 0;
  581. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  582. {
  583. return netdev_priv(dev);
  584. }
  585. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  586. {
  587. return ((struct fe_priv *)netdev_priv(dev))->base;
  588. }
  589. static inline void pci_push(u8 __iomem *base)
  590. {
  591. /* force out pending posted writes */
  592. readl(base);
  593. }
  594. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  595. {
  596. return le32_to_cpu(prd->FlagLen)
  597. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  598. }
  599. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  600. {
  601. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  602. }
  603. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  604. int delay, int delaymax, const char *msg)
  605. {
  606. u8 __iomem *base = get_hwbase(dev);
  607. pci_push(base);
  608. do {
  609. udelay(delay);
  610. delaymax -= delay;
  611. if (delaymax < 0) {
  612. if (msg)
  613. printk(msg);
  614. return 1;
  615. }
  616. } while ((readl(base + offset) & mask) != target);
  617. return 0;
  618. }
  619. #define NV_SETUP_RX_RING 0x01
  620. #define NV_SETUP_TX_RING 0x02
  621. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  622. {
  623. struct fe_priv *np = get_nvpriv(dev);
  624. u8 __iomem *base = get_hwbase(dev);
  625. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  626. if (rxtx_flags & NV_SETUP_RX_RING) {
  627. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  628. }
  629. if (rxtx_flags & NV_SETUP_TX_RING) {
  630. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  631. }
  632. } else {
  633. if (rxtx_flags & NV_SETUP_RX_RING) {
  634. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  635. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  636. }
  637. if (rxtx_flags & NV_SETUP_TX_RING) {
  638. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  639. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  640. }
  641. }
  642. }
  643. #define MII_READ (-1)
  644. /* mii_rw: read/write a register on the PHY.
  645. *
  646. * Caller must guarantee serialization
  647. */
  648. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  649. {
  650. u8 __iomem *base = get_hwbase(dev);
  651. u32 reg;
  652. int retval;
  653. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  654. reg = readl(base + NvRegMIIControl);
  655. if (reg & NVREG_MIICTL_INUSE) {
  656. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  657. udelay(NV_MIIBUSY_DELAY);
  658. }
  659. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  660. if (value != MII_READ) {
  661. writel(value, base + NvRegMIIData);
  662. reg |= NVREG_MIICTL_WRITE;
  663. }
  664. writel(reg, base + NvRegMIIControl);
  665. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  666. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  667. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  668. dev->name, miireg, addr);
  669. retval = -1;
  670. } else if (value != MII_READ) {
  671. /* it was a write operation - fewer failures are detectable */
  672. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  673. dev->name, value, miireg, addr);
  674. retval = 0;
  675. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  676. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  677. dev->name, miireg, addr);
  678. retval = -1;
  679. } else {
  680. retval = readl(base + NvRegMIIData);
  681. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  682. dev->name, miireg, addr, retval);
  683. }
  684. return retval;
  685. }
  686. static int phy_reset(struct net_device *dev)
  687. {
  688. struct fe_priv *np = netdev_priv(dev);
  689. u32 miicontrol;
  690. unsigned int tries = 0;
  691. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  692. miicontrol |= BMCR_RESET;
  693. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  694. return -1;
  695. }
  696. /* wait for 500ms */
  697. msleep(500);
  698. /* must wait till reset is deasserted */
  699. while (miicontrol & BMCR_RESET) {
  700. msleep(10);
  701. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  702. /* FIXME: 100 tries seem excessive */
  703. if (tries++ > 100)
  704. return -1;
  705. }
  706. return 0;
  707. }
  708. static int phy_init(struct net_device *dev)
  709. {
  710. struct fe_priv *np = get_nvpriv(dev);
  711. u8 __iomem *base = get_hwbase(dev);
  712. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  713. /* set advertise register */
  714. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  715. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  716. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  717. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  718. return PHY_ERROR;
  719. }
  720. /* get phy interface type */
  721. phyinterface = readl(base + NvRegPhyInterface);
  722. /* see if gigabit phy */
  723. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  724. if (mii_status & PHY_GIGABIT) {
  725. np->gigabit = PHY_GIGABIT;
  726. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  727. mii_control_1000 &= ~ADVERTISE_1000HALF;
  728. if (phyinterface & PHY_RGMII)
  729. mii_control_1000 |= ADVERTISE_1000FULL;
  730. else
  731. mii_control_1000 &= ~ADVERTISE_1000FULL;
  732. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  733. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  734. return PHY_ERROR;
  735. }
  736. }
  737. else
  738. np->gigabit = 0;
  739. /* reset the phy */
  740. if (phy_reset(dev)) {
  741. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  742. return PHY_ERROR;
  743. }
  744. /* phy vendor specific configuration */
  745. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  746. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  747. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  748. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  749. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  750. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  751. return PHY_ERROR;
  752. }
  753. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  754. phy_reserved |= PHY_INIT5;
  755. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  756. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  757. return PHY_ERROR;
  758. }
  759. }
  760. if (np->phy_oui == PHY_OUI_CICADA) {
  761. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  762. phy_reserved |= PHY_INIT6;
  763. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  764. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  765. return PHY_ERROR;
  766. }
  767. }
  768. /* restart auto negotiation */
  769. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  770. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  771. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  772. return PHY_ERROR;
  773. }
  774. return 0;
  775. }
  776. static void nv_start_rx(struct net_device *dev)
  777. {
  778. struct fe_priv *np = netdev_priv(dev);
  779. u8 __iomem *base = get_hwbase(dev);
  780. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  781. /* Already running? Stop it. */
  782. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  783. writel(0, base + NvRegReceiverControl);
  784. pci_push(base);
  785. }
  786. writel(np->linkspeed, base + NvRegLinkSpeed);
  787. pci_push(base);
  788. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  789. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  790. dev->name, np->duplex, np->linkspeed);
  791. pci_push(base);
  792. }
  793. static void nv_stop_rx(struct net_device *dev)
  794. {
  795. u8 __iomem *base = get_hwbase(dev);
  796. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  797. writel(0, base + NvRegReceiverControl);
  798. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  799. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  800. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  801. udelay(NV_RXSTOP_DELAY2);
  802. writel(0, base + NvRegLinkSpeed);
  803. }
  804. static void nv_start_tx(struct net_device *dev)
  805. {
  806. u8 __iomem *base = get_hwbase(dev);
  807. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  808. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  809. pci_push(base);
  810. }
  811. static void nv_stop_tx(struct net_device *dev)
  812. {
  813. u8 __iomem *base = get_hwbase(dev);
  814. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  815. writel(0, base + NvRegTransmitterControl);
  816. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  817. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  818. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  819. udelay(NV_TXSTOP_DELAY2);
  820. writel(0, base + NvRegUnknownTransmitterReg);
  821. }
  822. static void nv_txrx_reset(struct net_device *dev)
  823. {
  824. struct fe_priv *np = netdev_priv(dev);
  825. u8 __iomem *base = get_hwbase(dev);
  826. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  827. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  828. pci_push(base);
  829. udelay(NV_TXRX_RESET_DELAY);
  830. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  831. pci_push(base);
  832. }
  833. static void nv_mac_reset(struct net_device *dev)
  834. {
  835. struct fe_priv *np = netdev_priv(dev);
  836. u8 __iomem *base = get_hwbase(dev);
  837. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  838. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  839. pci_push(base);
  840. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  841. pci_push(base);
  842. udelay(NV_MAC_RESET_DELAY);
  843. writel(0, base + NvRegMacReset);
  844. pci_push(base);
  845. udelay(NV_MAC_RESET_DELAY);
  846. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  847. pci_push(base);
  848. }
  849. /*
  850. * nv_get_stats: dev->get_stats function
  851. * Get latest stats value from the nic.
  852. * Called with read_lock(&dev_base_lock) held for read -
  853. * only synchronized against unregister_netdevice.
  854. */
  855. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  856. {
  857. struct fe_priv *np = netdev_priv(dev);
  858. /* It seems that the nic always generates interrupts and doesn't
  859. * accumulate errors internally. Thus the current values in np->stats
  860. * are already up to date.
  861. */
  862. return &np->stats;
  863. }
  864. /*
  865. * nv_alloc_rx: fill rx ring entries.
  866. * Return 1 if the allocations for the skbs failed and the
  867. * rx engine is without Available descriptors
  868. */
  869. static int nv_alloc_rx(struct net_device *dev)
  870. {
  871. struct fe_priv *np = netdev_priv(dev);
  872. unsigned int refill_rx = np->refill_rx;
  873. int nr;
  874. while (np->cur_rx != refill_rx) {
  875. struct sk_buff *skb;
  876. nr = refill_rx % RX_RING;
  877. if (np->rx_skbuff[nr] == NULL) {
  878. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  879. if (!skb)
  880. break;
  881. skb->dev = dev;
  882. np->rx_skbuff[nr] = skb;
  883. } else {
  884. skb = np->rx_skbuff[nr];
  885. }
  886. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  887. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  888. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  889. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  890. wmb();
  891. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  892. } else {
  893. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  894. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  895. wmb();
  896. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  897. }
  898. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  899. dev->name, refill_rx);
  900. refill_rx++;
  901. }
  902. np->refill_rx = refill_rx;
  903. if (np->cur_rx - refill_rx == RX_RING)
  904. return 1;
  905. return 0;
  906. }
  907. static void nv_do_rx_refill(unsigned long data)
  908. {
  909. struct net_device *dev = (struct net_device *) data;
  910. struct fe_priv *np = netdev_priv(dev);
  911. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  912. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  913. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  914. disable_irq(dev->irq);
  915. } else {
  916. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  917. }
  918. if (nv_alloc_rx(dev)) {
  919. spin_lock(&np->lock);
  920. if (!np->in_shutdown)
  921. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  922. spin_unlock(&np->lock);
  923. }
  924. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  925. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  926. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  927. enable_irq(dev->irq);
  928. } else {
  929. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  930. }
  931. }
  932. static void nv_init_rx(struct net_device *dev)
  933. {
  934. struct fe_priv *np = netdev_priv(dev);
  935. int i;
  936. np->cur_rx = RX_RING;
  937. np->refill_rx = 0;
  938. for (i = 0; i < RX_RING; i++)
  939. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  940. np->rx_ring.orig[i].FlagLen = 0;
  941. else
  942. np->rx_ring.ex[i].FlagLen = 0;
  943. }
  944. static void nv_init_tx(struct net_device *dev)
  945. {
  946. struct fe_priv *np = netdev_priv(dev);
  947. int i;
  948. np->next_tx = np->nic_tx = 0;
  949. for (i = 0; i < TX_RING; i++) {
  950. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  951. np->tx_ring.orig[i].FlagLen = 0;
  952. else
  953. np->tx_ring.ex[i].FlagLen = 0;
  954. np->tx_skbuff[i] = NULL;
  955. np->tx_dma[i] = 0;
  956. }
  957. }
  958. static int nv_init_ring(struct net_device *dev)
  959. {
  960. nv_init_tx(dev);
  961. nv_init_rx(dev);
  962. return nv_alloc_rx(dev);
  963. }
  964. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  965. {
  966. struct fe_priv *np = netdev_priv(dev);
  967. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  968. dev->name, skbnr);
  969. if (np->tx_dma[skbnr]) {
  970. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  971. np->tx_dma_len[skbnr],
  972. PCI_DMA_TODEVICE);
  973. np->tx_dma[skbnr] = 0;
  974. }
  975. if (np->tx_skbuff[skbnr]) {
  976. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  977. np->tx_skbuff[skbnr] = NULL;
  978. return 1;
  979. } else {
  980. return 0;
  981. }
  982. }
  983. static void nv_drain_tx(struct net_device *dev)
  984. {
  985. struct fe_priv *np = netdev_priv(dev);
  986. unsigned int i;
  987. for (i = 0; i < TX_RING; i++) {
  988. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  989. np->tx_ring.orig[i].FlagLen = 0;
  990. else
  991. np->tx_ring.ex[i].FlagLen = 0;
  992. if (nv_release_txskb(dev, i))
  993. np->stats.tx_dropped++;
  994. }
  995. }
  996. static void nv_drain_rx(struct net_device *dev)
  997. {
  998. struct fe_priv *np = netdev_priv(dev);
  999. int i;
  1000. for (i = 0; i < RX_RING; i++) {
  1001. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1002. np->rx_ring.orig[i].FlagLen = 0;
  1003. else
  1004. np->rx_ring.ex[i].FlagLen = 0;
  1005. wmb();
  1006. if (np->rx_skbuff[i]) {
  1007. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1008. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1009. PCI_DMA_FROMDEVICE);
  1010. dev_kfree_skb(np->rx_skbuff[i]);
  1011. np->rx_skbuff[i] = NULL;
  1012. }
  1013. }
  1014. }
  1015. static void drain_ring(struct net_device *dev)
  1016. {
  1017. nv_drain_tx(dev);
  1018. nv_drain_rx(dev);
  1019. }
  1020. /*
  1021. * nv_start_xmit: dev->hard_start_xmit function
  1022. * Called with dev->xmit_lock held.
  1023. */
  1024. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1025. {
  1026. struct fe_priv *np = netdev_priv(dev);
  1027. u32 tx_flags = 0;
  1028. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1029. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1030. unsigned int nr = (np->next_tx - 1) % TX_RING;
  1031. unsigned int start_nr = np->next_tx % TX_RING;
  1032. unsigned int i;
  1033. u32 offset = 0;
  1034. u32 bcnt;
  1035. u32 size = skb->len-skb->data_len;
  1036. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1037. u32 tx_flags_vlan = 0;
  1038. /* add fragments to entries count */
  1039. for (i = 0; i < fragments; i++) {
  1040. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1041. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1042. }
  1043. spin_lock_irq(&np->lock);
  1044. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  1045. spin_unlock_irq(&np->lock);
  1046. netif_stop_queue(dev);
  1047. return NETDEV_TX_BUSY;
  1048. }
  1049. /* setup the header buffer */
  1050. do {
  1051. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1052. nr = (nr + 1) % TX_RING;
  1053. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1054. PCI_DMA_TODEVICE);
  1055. np->tx_dma_len[nr] = bcnt;
  1056. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1057. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1058. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1059. } else {
  1060. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1061. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1062. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1063. }
  1064. tx_flags = np->tx_flags;
  1065. offset += bcnt;
  1066. size -= bcnt;
  1067. } while(size);
  1068. /* setup the fragments */
  1069. for (i = 0; i < fragments; i++) {
  1070. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1071. u32 size = frag->size;
  1072. offset = 0;
  1073. do {
  1074. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1075. nr = (nr + 1) % TX_RING;
  1076. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1077. PCI_DMA_TODEVICE);
  1078. np->tx_dma_len[nr] = bcnt;
  1079. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1080. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1081. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1082. } else {
  1083. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1084. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1085. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1086. }
  1087. offset += bcnt;
  1088. size -= bcnt;
  1089. } while (size);
  1090. }
  1091. /* set last fragment flag */
  1092. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1093. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1094. } else {
  1095. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1096. }
  1097. np->tx_skbuff[nr] = skb;
  1098. #ifdef NETIF_F_TSO
  1099. if (skb_shinfo(skb)->tso_size)
  1100. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1101. else
  1102. #endif
  1103. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1104. /* vlan tag */
  1105. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1106. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1107. }
  1108. /* set tx flags */
  1109. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1110. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1111. } else {
  1112. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1113. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1114. }
  1115. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1116. dev->name, np->next_tx, entries, tx_flags_extra);
  1117. {
  1118. int j;
  1119. for (j=0; j<64; j++) {
  1120. if ((j%16) == 0)
  1121. dprintk("\n%03x:", j);
  1122. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1123. }
  1124. dprintk("\n");
  1125. }
  1126. np->next_tx += entries;
  1127. dev->trans_start = jiffies;
  1128. spin_unlock_irq(&np->lock);
  1129. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1130. pci_push(get_hwbase(dev));
  1131. return NETDEV_TX_OK;
  1132. }
  1133. /*
  1134. * nv_tx_done: check for completed packets, release the skbs.
  1135. *
  1136. * Caller must own np->lock.
  1137. */
  1138. static void nv_tx_done(struct net_device *dev)
  1139. {
  1140. struct fe_priv *np = netdev_priv(dev);
  1141. u32 Flags;
  1142. unsigned int i;
  1143. struct sk_buff *skb;
  1144. while (np->nic_tx != np->next_tx) {
  1145. i = np->nic_tx % TX_RING;
  1146. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1147. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1148. else
  1149. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1150. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1151. dev->name, np->nic_tx, Flags);
  1152. if (Flags & NV_TX_VALID)
  1153. break;
  1154. if (np->desc_ver == DESC_VER_1) {
  1155. if (Flags & NV_TX_LASTPACKET) {
  1156. skb = np->tx_skbuff[i];
  1157. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1158. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1159. if (Flags & NV_TX_UNDERFLOW)
  1160. np->stats.tx_fifo_errors++;
  1161. if (Flags & NV_TX_CARRIERLOST)
  1162. np->stats.tx_carrier_errors++;
  1163. np->stats.tx_errors++;
  1164. } else {
  1165. np->stats.tx_packets++;
  1166. np->stats.tx_bytes += skb->len;
  1167. }
  1168. }
  1169. } else {
  1170. if (Flags & NV_TX2_LASTPACKET) {
  1171. skb = np->tx_skbuff[i];
  1172. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1173. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1174. if (Flags & NV_TX2_UNDERFLOW)
  1175. np->stats.tx_fifo_errors++;
  1176. if (Flags & NV_TX2_CARRIERLOST)
  1177. np->stats.tx_carrier_errors++;
  1178. np->stats.tx_errors++;
  1179. } else {
  1180. np->stats.tx_packets++;
  1181. np->stats.tx_bytes += skb->len;
  1182. }
  1183. }
  1184. }
  1185. nv_release_txskb(dev, i);
  1186. np->nic_tx++;
  1187. }
  1188. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1189. netif_wake_queue(dev);
  1190. }
  1191. /*
  1192. * nv_tx_timeout: dev->tx_timeout function
  1193. * Called with dev->xmit_lock held.
  1194. */
  1195. static void nv_tx_timeout(struct net_device *dev)
  1196. {
  1197. struct fe_priv *np = netdev_priv(dev);
  1198. u8 __iomem *base = get_hwbase(dev);
  1199. u32 status;
  1200. if (np->msi_flags & NV_MSI_X_ENABLED)
  1201. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1202. else
  1203. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1204. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1205. {
  1206. int i;
  1207. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1208. dev->name, (unsigned long)np->ring_addr,
  1209. np->next_tx, np->nic_tx);
  1210. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1211. for (i=0;i<=np->register_size;i+= 32) {
  1212. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1213. i,
  1214. readl(base + i + 0), readl(base + i + 4),
  1215. readl(base + i + 8), readl(base + i + 12),
  1216. readl(base + i + 16), readl(base + i + 20),
  1217. readl(base + i + 24), readl(base + i + 28));
  1218. }
  1219. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1220. for (i=0;i<TX_RING;i+= 4) {
  1221. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1222. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1223. i,
  1224. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1225. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1226. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1227. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1228. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1229. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1230. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1231. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1232. } else {
  1233. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1234. i,
  1235. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1236. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1237. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1238. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1239. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1240. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1241. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1242. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1243. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1244. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1245. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1246. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1247. }
  1248. }
  1249. }
  1250. spin_lock_irq(&np->lock);
  1251. /* 1) stop tx engine */
  1252. nv_stop_tx(dev);
  1253. /* 2) check that the packets were not sent already: */
  1254. nv_tx_done(dev);
  1255. /* 3) if there are dead entries: clear everything */
  1256. if (np->next_tx != np->nic_tx) {
  1257. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1258. nv_drain_tx(dev);
  1259. np->next_tx = np->nic_tx = 0;
  1260. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1261. netif_wake_queue(dev);
  1262. }
  1263. /* 4) restart tx engine */
  1264. nv_start_tx(dev);
  1265. spin_unlock_irq(&np->lock);
  1266. }
  1267. /*
  1268. * Called when the nic notices a mismatch between the actual data len on the
  1269. * wire and the len indicated in the 802 header
  1270. */
  1271. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1272. {
  1273. int hdrlen; /* length of the 802 header */
  1274. int protolen; /* length as stored in the proto field */
  1275. /* 1) calculate len according to header */
  1276. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1277. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1278. hdrlen = VLAN_HLEN;
  1279. } else {
  1280. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1281. hdrlen = ETH_HLEN;
  1282. }
  1283. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1284. dev->name, datalen, protolen, hdrlen);
  1285. if (protolen > ETH_DATA_LEN)
  1286. return datalen; /* Value in proto field not a len, no checks possible */
  1287. protolen += hdrlen;
  1288. /* consistency checks: */
  1289. if (datalen > ETH_ZLEN) {
  1290. if (datalen >= protolen) {
  1291. /* more data on wire than in 802 header, trim of
  1292. * additional data.
  1293. */
  1294. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1295. dev->name, protolen);
  1296. return protolen;
  1297. } else {
  1298. /* less data on wire than mentioned in header.
  1299. * Discard the packet.
  1300. */
  1301. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1302. dev->name);
  1303. return -1;
  1304. }
  1305. } else {
  1306. /* short packet. Accept only if 802 values are also short */
  1307. if (protolen > ETH_ZLEN) {
  1308. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1309. dev->name);
  1310. return -1;
  1311. }
  1312. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1313. dev->name, datalen);
  1314. return datalen;
  1315. }
  1316. }
  1317. static void nv_rx_process(struct net_device *dev)
  1318. {
  1319. struct fe_priv *np = netdev_priv(dev);
  1320. u32 Flags;
  1321. u32 vlanflags = 0;
  1322. for (;;) {
  1323. struct sk_buff *skb;
  1324. int len;
  1325. int i;
  1326. if (np->cur_rx - np->refill_rx >= RX_RING)
  1327. break; /* we scanned the whole ring - do not continue */
  1328. i = np->cur_rx % RX_RING;
  1329. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1330. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1331. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1332. } else {
  1333. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1334. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1335. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1336. }
  1337. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1338. dev->name, np->cur_rx, Flags);
  1339. if (Flags & NV_RX_AVAIL)
  1340. break; /* still owned by hardware, */
  1341. /*
  1342. * the packet is for us - immediately tear down the pci mapping.
  1343. * TODO: check if a prefetch of the first cacheline improves
  1344. * the performance.
  1345. */
  1346. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1347. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1348. PCI_DMA_FROMDEVICE);
  1349. {
  1350. int j;
  1351. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1352. for (j=0; j<64; j++) {
  1353. if ((j%16) == 0)
  1354. dprintk("\n%03x:", j);
  1355. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1356. }
  1357. dprintk("\n");
  1358. }
  1359. /* look at what we actually got: */
  1360. if (np->desc_ver == DESC_VER_1) {
  1361. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1362. goto next_pkt;
  1363. if (Flags & NV_RX_ERROR) {
  1364. if (Flags & NV_RX_MISSEDFRAME) {
  1365. np->stats.rx_missed_errors++;
  1366. np->stats.rx_errors++;
  1367. goto next_pkt;
  1368. }
  1369. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1370. np->stats.rx_errors++;
  1371. goto next_pkt;
  1372. }
  1373. if (Flags & NV_RX_CRCERR) {
  1374. np->stats.rx_crc_errors++;
  1375. np->stats.rx_errors++;
  1376. goto next_pkt;
  1377. }
  1378. if (Flags & NV_RX_OVERFLOW) {
  1379. np->stats.rx_over_errors++;
  1380. np->stats.rx_errors++;
  1381. goto next_pkt;
  1382. }
  1383. if (Flags & NV_RX_ERROR4) {
  1384. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1385. if (len < 0) {
  1386. np->stats.rx_errors++;
  1387. goto next_pkt;
  1388. }
  1389. }
  1390. /* framing errors are soft errors. */
  1391. if (Flags & NV_RX_FRAMINGERR) {
  1392. if (Flags & NV_RX_SUBSTRACT1) {
  1393. len--;
  1394. }
  1395. }
  1396. }
  1397. } else {
  1398. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1399. goto next_pkt;
  1400. if (Flags & NV_RX2_ERROR) {
  1401. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1402. np->stats.rx_errors++;
  1403. goto next_pkt;
  1404. }
  1405. if (Flags & NV_RX2_CRCERR) {
  1406. np->stats.rx_crc_errors++;
  1407. np->stats.rx_errors++;
  1408. goto next_pkt;
  1409. }
  1410. if (Flags & NV_RX2_OVERFLOW) {
  1411. np->stats.rx_over_errors++;
  1412. np->stats.rx_errors++;
  1413. goto next_pkt;
  1414. }
  1415. if (Flags & NV_RX2_ERROR4) {
  1416. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1417. if (len < 0) {
  1418. np->stats.rx_errors++;
  1419. goto next_pkt;
  1420. }
  1421. }
  1422. /* framing errors are soft errors */
  1423. if (Flags & NV_RX2_FRAMINGERR) {
  1424. if (Flags & NV_RX2_SUBSTRACT1) {
  1425. len--;
  1426. }
  1427. }
  1428. }
  1429. Flags &= NV_RX2_CHECKSUMMASK;
  1430. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1431. Flags == NV_RX2_CHECKSUMOK2 ||
  1432. Flags == NV_RX2_CHECKSUMOK3) {
  1433. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1434. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1435. } else {
  1436. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1437. }
  1438. }
  1439. /* got a valid packet - forward it to the network core */
  1440. skb = np->rx_skbuff[i];
  1441. np->rx_skbuff[i] = NULL;
  1442. skb_put(skb, len);
  1443. skb->protocol = eth_type_trans(skb, dev);
  1444. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1445. dev->name, np->cur_rx, len, skb->protocol);
  1446. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1447. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1448. } else {
  1449. netif_rx(skb);
  1450. }
  1451. dev->last_rx = jiffies;
  1452. np->stats.rx_packets++;
  1453. np->stats.rx_bytes += len;
  1454. next_pkt:
  1455. np->cur_rx++;
  1456. }
  1457. }
  1458. static void set_bufsize(struct net_device *dev)
  1459. {
  1460. struct fe_priv *np = netdev_priv(dev);
  1461. if (dev->mtu <= ETH_DATA_LEN)
  1462. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1463. else
  1464. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1465. }
  1466. /*
  1467. * nv_change_mtu: dev->change_mtu function
  1468. * Called with dev_base_lock held for read.
  1469. */
  1470. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1471. {
  1472. struct fe_priv *np = netdev_priv(dev);
  1473. int old_mtu;
  1474. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1475. return -EINVAL;
  1476. old_mtu = dev->mtu;
  1477. dev->mtu = new_mtu;
  1478. /* return early if the buffer sizes will not change */
  1479. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1480. return 0;
  1481. if (old_mtu == new_mtu)
  1482. return 0;
  1483. /* synchronized against open : rtnl_lock() held by caller */
  1484. if (netif_running(dev)) {
  1485. u8 __iomem *base = get_hwbase(dev);
  1486. /*
  1487. * It seems that the nic preloads valid ring entries into an
  1488. * internal buffer. The procedure for flushing everything is
  1489. * guessed, there is probably a simpler approach.
  1490. * Changing the MTU is a rare event, it shouldn't matter.
  1491. */
  1492. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1493. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1494. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1495. disable_irq(dev->irq);
  1496. } else {
  1497. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1498. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1499. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1500. }
  1501. spin_lock_bh(&dev->xmit_lock);
  1502. spin_lock(&np->lock);
  1503. /* stop engines */
  1504. nv_stop_rx(dev);
  1505. nv_stop_tx(dev);
  1506. nv_txrx_reset(dev);
  1507. /* drain rx queue */
  1508. nv_drain_rx(dev);
  1509. nv_drain_tx(dev);
  1510. /* reinit driver view of the rx queue */
  1511. nv_init_rx(dev);
  1512. nv_init_tx(dev);
  1513. /* alloc new rx buffers */
  1514. set_bufsize(dev);
  1515. if (nv_alloc_rx(dev)) {
  1516. if (!np->in_shutdown)
  1517. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1518. }
  1519. /* reinit nic view of the rx queue */
  1520. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1521. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1522. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1523. base + NvRegRingSizes);
  1524. pci_push(base);
  1525. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1526. pci_push(base);
  1527. /* restart rx engine */
  1528. nv_start_rx(dev);
  1529. nv_start_tx(dev);
  1530. spin_unlock(&np->lock);
  1531. spin_unlock_bh(&dev->xmit_lock);
  1532. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  1533. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  1534. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  1535. enable_irq(dev->irq);
  1536. } else {
  1537. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1538. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  1539. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  1540. }
  1541. }
  1542. return 0;
  1543. }
  1544. static void nv_copy_mac_to_hw(struct net_device *dev)
  1545. {
  1546. u8 __iomem *base = get_hwbase(dev);
  1547. u32 mac[2];
  1548. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1549. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1550. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1551. writel(mac[0], base + NvRegMacAddrA);
  1552. writel(mac[1], base + NvRegMacAddrB);
  1553. }
  1554. /*
  1555. * nv_set_mac_address: dev->set_mac_address function
  1556. * Called with rtnl_lock() held.
  1557. */
  1558. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1559. {
  1560. struct fe_priv *np = netdev_priv(dev);
  1561. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1562. if(!is_valid_ether_addr(macaddr->sa_data))
  1563. return -EADDRNOTAVAIL;
  1564. /* synchronized against open : rtnl_lock() held by caller */
  1565. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1566. if (netif_running(dev)) {
  1567. spin_lock_bh(&dev->xmit_lock);
  1568. spin_lock_irq(&np->lock);
  1569. /* stop rx engine */
  1570. nv_stop_rx(dev);
  1571. /* set mac address */
  1572. nv_copy_mac_to_hw(dev);
  1573. /* restart rx engine */
  1574. nv_start_rx(dev);
  1575. spin_unlock_irq(&np->lock);
  1576. spin_unlock_bh(&dev->xmit_lock);
  1577. } else {
  1578. nv_copy_mac_to_hw(dev);
  1579. }
  1580. return 0;
  1581. }
  1582. /*
  1583. * nv_set_multicast: dev->set_multicast function
  1584. * Called with dev->xmit_lock held.
  1585. */
  1586. static void nv_set_multicast(struct net_device *dev)
  1587. {
  1588. struct fe_priv *np = netdev_priv(dev);
  1589. u8 __iomem *base = get_hwbase(dev);
  1590. u32 addr[2];
  1591. u32 mask[2];
  1592. u32 pff;
  1593. memset(addr, 0, sizeof(addr));
  1594. memset(mask, 0, sizeof(mask));
  1595. if (dev->flags & IFF_PROMISC) {
  1596. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1597. pff = NVREG_PFF_PROMISC;
  1598. } else {
  1599. pff = NVREG_PFF_MYADDR;
  1600. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1601. u32 alwaysOff[2];
  1602. u32 alwaysOn[2];
  1603. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1604. if (dev->flags & IFF_ALLMULTI) {
  1605. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1606. } else {
  1607. struct dev_mc_list *walk;
  1608. walk = dev->mc_list;
  1609. while (walk != NULL) {
  1610. u32 a, b;
  1611. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1612. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1613. alwaysOn[0] &= a;
  1614. alwaysOff[0] &= ~a;
  1615. alwaysOn[1] &= b;
  1616. alwaysOff[1] &= ~b;
  1617. walk = walk->next;
  1618. }
  1619. }
  1620. addr[0] = alwaysOn[0];
  1621. addr[1] = alwaysOn[1];
  1622. mask[0] = alwaysOn[0] | alwaysOff[0];
  1623. mask[1] = alwaysOn[1] | alwaysOff[1];
  1624. }
  1625. }
  1626. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1627. pff |= NVREG_PFF_ALWAYS;
  1628. spin_lock_irq(&np->lock);
  1629. nv_stop_rx(dev);
  1630. writel(addr[0], base + NvRegMulticastAddrA);
  1631. writel(addr[1], base + NvRegMulticastAddrB);
  1632. writel(mask[0], base + NvRegMulticastMaskA);
  1633. writel(mask[1], base + NvRegMulticastMaskB);
  1634. writel(pff, base + NvRegPacketFilterFlags);
  1635. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1636. dev->name);
  1637. nv_start_rx(dev);
  1638. spin_unlock_irq(&np->lock);
  1639. }
  1640. /**
  1641. * nv_update_linkspeed: Setup the MAC according to the link partner
  1642. * @dev: Network device to be configured
  1643. *
  1644. * The function queries the PHY and checks if there is a link partner.
  1645. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1646. * set to 10 MBit HD.
  1647. *
  1648. * The function returns 0 if there is no link partner and 1 if there is
  1649. * a good link partner.
  1650. */
  1651. static int nv_update_linkspeed(struct net_device *dev)
  1652. {
  1653. struct fe_priv *np = netdev_priv(dev);
  1654. u8 __iomem *base = get_hwbase(dev);
  1655. int adv, lpa;
  1656. int newls = np->linkspeed;
  1657. int newdup = np->duplex;
  1658. int mii_status;
  1659. int retval = 0;
  1660. u32 control_1000, status_1000, phyreg;
  1661. /* BMSR_LSTATUS is latched, read it twice:
  1662. * we want the current value.
  1663. */
  1664. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1665. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1666. if (!(mii_status & BMSR_LSTATUS)) {
  1667. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1668. dev->name);
  1669. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1670. newdup = 0;
  1671. retval = 0;
  1672. goto set_speed;
  1673. }
  1674. if (np->autoneg == 0) {
  1675. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1676. dev->name, np->fixed_mode);
  1677. if (np->fixed_mode & LPA_100FULL) {
  1678. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1679. newdup = 1;
  1680. } else if (np->fixed_mode & LPA_100HALF) {
  1681. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1682. newdup = 0;
  1683. } else if (np->fixed_mode & LPA_10FULL) {
  1684. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1685. newdup = 1;
  1686. } else {
  1687. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1688. newdup = 0;
  1689. }
  1690. retval = 1;
  1691. goto set_speed;
  1692. }
  1693. /* check auto negotiation is complete */
  1694. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1695. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1696. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1697. newdup = 0;
  1698. retval = 0;
  1699. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1700. goto set_speed;
  1701. }
  1702. retval = 1;
  1703. if (np->gigabit == PHY_GIGABIT) {
  1704. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1705. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1706. if ((control_1000 & ADVERTISE_1000FULL) &&
  1707. (status_1000 & LPA_1000FULL)) {
  1708. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1709. dev->name);
  1710. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1711. newdup = 1;
  1712. goto set_speed;
  1713. }
  1714. }
  1715. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1716. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1717. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1718. dev->name, adv, lpa);
  1719. /* FIXME: handle parallel detection properly */
  1720. lpa = lpa & adv;
  1721. if (lpa & LPA_100FULL) {
  1722. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1723. newdup = 1;
  1724. } else if (lpa & LPA_100HALF) {
  1725. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1726. newdup = 0;
  1727. } else if (lpa & LPA_10FULL) {
  1728. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1729. newdup = 1;
  1730. } else if (lpa & LPA_10HALF) {
  1731. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1732. newdup = 0;
  1733. } else {
  1734. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1735. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1736. newdup = 0;
  1737. }
  1738. set_speed:
  1739. if (np->duplex == newdup && np->linkspeed == newls)
  1740. return retval;
  1741. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1742. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1743. np->duplex = newdup;
  1744. np->linkspeed = newls;
  1745. if (np->gigabit == PHY_GIGABIT) {
  1746. phyreg = readl(base + NvRegRandomSeed);
  1747. phyreg &= ~(0x3FF00);
  1748. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1749. phyreg |= NVREG_RNDSEED_FORCE3;
  1750. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1751. phyreg |= NVREG_RNDSEED_FORCE2;
  1752. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1753. phyreg |= NVREG_RNDSEED_FORCE;
  1754. writel(phyreg, base + NvRegRandomSeed);
  1755. }
  1756. phyreg = readl(base + NvRegPhyInterface);
  1757. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1758. if (np->duplex == 0)
  1759. phyreg |= PHY_HALF;
  1760. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1761. phyreg |= PHY_100;
  1762. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1763. phyreg |= PHY_1000;
  1764. writel(phyreg, base + NvRegPhyInterface);
  1765. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1766. base + NvRegMisc1);
  1767. pci_push(base);
  1768. writel(np->linkspeed, base + NvRegLinkSpeed);
  1769. pci_push(base);
  1770. return retval;
  1771. }
  1772. static void nv_linkchange(struct net_device *dev)
  1773. {
  1774. if (nv_update_linkspeed(dev)) {
  1775. if (!netif_carrier_ok(dev)) {
  1776. netif_carrier_on(dev);
  1777. printk(KERN_INFO "%s: link up.\n", dev->name);
  1778. nv_start_rx(dev);
  1779. }
  1780. } else {
  1781. if (netif_carrier_ok(dev)) {
  1782. netif_carrier_off(dev);
  1783. printk(KERN_INFO "%s: link down.\n", dev->name);
  1784. nv_stop_rx(dev);
  1785. }
  1786. }
  1787. }
  1788. static void nv_link_irq(struct net_device *dev)
  1789. {
  1790. u8 __iomem *base = get_hwbase(dev);
  1791. u32 miistat;
  1792. miistat = readl(base + NvRegMIIStatus);
  1793. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1794. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1795. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1796. nv_linkchange(dev);
  1797. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1798. }
  1799. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1800. {
  1801. struct net_device *dev = (struct net_device *) data;
  1802. struct fe_priv *np = netdev_priv(dev);
  1803. u8 __iomem *base = get_hwbase(dev);
  1804. u32 events;
  1805. int i;
  1806. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1807. for (i=0; ; i++) {
  1808. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1809. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1810. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1811. } else {
  1812. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1813. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1814. }
  1815. pci_push(base);
  1816. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1817. if (!(events & np->irqmask))
  1818. break;
  1819. spin_lock(&np->lock);
  1820. nv_tx_done(dev);
  1821. spin_unlock(&np->lock);
  1822. nv_rx_process(dev);
  1823. if (nv_alloc_rx(dev)) {
  1824. spin_lock(&np->lock);
  1825. if (!np->in_shutdown)
  1826. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1827. spin_unlock(&np->lock);
  1828. }
  1829. if (events & NVREG_IRQ_LINK) {
  1830. spin_lock(&np->lock);
  1831. nv_link_irq(dev);
  1832. spin_unlock(&np->lock);
  1833. }
  1834. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1835. spin_lock(&np->lock);
  1836. nv_linkchange(dev);
  1837. spin_unlock(&np->lock);
  1838. np->link_timeout = jiffies + LINK_TIMEOUT;
  1839. }
  1840. if (events & (NVREG_IRQ_TX_ERR)) {
  1841. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1842. dev->name, events);
  1843. }
  1844. if (events & (NVREG_IRQ_UNKNOWN)) {
  1845. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1846. dev->name, events);
  1847. }
  1848. if (i > max_interrupt_work) {
  1849. spin_lock(&np->lock);
  1850. /* disable interrupts on the nic */
  1851. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1852. writel(0, base + NvRegIrqMask);
  1853. else
  1854. writel(np->irqmask, base + NvRegIrqMask);
  1855. pci_push(base);
  1856. if (!np->in_shutdown) {
  1857. np->nic_poll_irq = np->irqmask;
  1858. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1859. }
  1860. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1861. spin_unlock(&np->lock);
  1862. break;
  1863. }
  1864. }
  1865. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1866. return IRQ_RETVAL(i);
  1867. }
  1868. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  1869. {
  1870. struct net_device *dev = (struct net_device *) data;
  1871. struct fe_priv *np = netdev_priv(dev);
  1872. u8 __iomem *base = get_hwbase(dev);
  1873. u32 events;
  1874. int i;
  1875. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  1876. for (i=0; ; i++) {
  1877. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  1878. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  1879. pci_push(base);
  1880. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  1881. if (!(events & np->irqmask))
  1882. break;
  1883. spin_lock(&np->lock);
  1884. nv_tx_done(dev);
  1885. spin_unlock(&np->lock);
  1886. if (events & (NVREG_IRQ_TX_ERR)) {
  1887. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1888. dev->name, events);
  1889. }
  1890. if (i > max_interrupt_work) {
  1891. spin_lock(&np->lock);
  1892. /* disable interrupts on the nic */
  1893. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  1894. pci_push(base);
  1895. if (!np->in_shutdown) {
  1896. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  1897. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1898. }
  1899. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  1900. spin_unlock(&np->lock);
  1901. break;
  1902. }
  1903. }
  1904. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  1905. return IRQ_RETVAL(i);
  1906. }
  1907. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  1908. {
  1909. struct net_device *dev = (struct net_device *) data;
  1910. struct fe_priv *np = netdev_priv(dev);
  1911. u8 __iomem *base = get_hwbase(dev);
  1912. u32 events;
  1913. int i;
  1914. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  1915. for (i=0; ; i++) {
  1916. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  1917. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  1918. pci_push(base);
  1919. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  1920. if (!(events & np->irqmask))
  1921. break;
  1922. nv_rx_process(dev);
  1923. if (nv_alloc_rx(dev)) {
  1924. spin_lock(&np->lock);
  1925. if (!np->in_shutdown)
  1926. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1927. spin_unlock(&np->lock);
  1928. }
  1929. if (i > max_interrupt_work) {
  1930. spin_lock(&np->lock);
  1931. /* disable interrupts on the nic */
  1932. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  1933. pci_push(base);
  1934. if (!np->in_shutdown) {
  1935. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  1936. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1937. }
  1938. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  1939. spin_unlock(&np->lock);
  1940. break;
  1941. }
  1942. }
  1943. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  1944. return IRQ_RETVAL(i);
  1945. }
  1946. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  1947. {
  1948. struct net_device *dev = (struct net_device *) data;
  1949. struct fe_priv *np = netdev_priv(dev);
  1950. u8 __iomem *base = get_hwbase(dev);
  1951. u32 events;
  1952. int i;
  1953. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  1954. for (i=0; ; i++) {
  1955. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  1956. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  1957. pci_push(base);
  1958. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1959. if (!(events & np->irqmask))
  1960. break;
  1961. if (events & NVREG_IRQ_LINK) {
  1962. spin_lock(&np->lock);
  1963. nv_link_irq(dev);
  1964. spin_unlock(&np->lock);
  1965. }
  1966. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1967. spin_lock(&np->lock);
  1968. nv_linkchange(dev);
  1969. spin_unlock(&np->lock);
  1970. np->link_timeout = jiffies + LINK_TIMEOUT;
  1971. }
  1972. if (events & (NVREG_IRQ_UNKNOWN)) {
  1973. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1974. dev->name, events);
  1975. }
  1976. if (i > max_interrupt_work) {
  1977. spin_lock(&np->lock);
  1978. /* disable interrupts on the nic */
  1979. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  1980. pci_push(base);
  1981. if (!np->in_shutdown) {
  1982. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  1983. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1984. }
  1985. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  1986. spin_unlock(&np->lock);
  1987. break;
  1988. }
  1989. }
  1990. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  1991. return IRQ_RETVAL(i);
  1992. }
  1993. static void nv_do_nic_poll(unsigned long data)
  1994. {
  1995. struct net_device *dev = (struct net_device *) data;
  1996. struct fe_priv *np = netdev_priv(dev);
  1997. u8 __iomem *base = get_hwbase(dev);
  1998. u32 mask = 0;
  1999. /*
  2000. * First disable irq(s) and then
  2001. * reenable interrupts on the nic, we have to do this before calling
  2002. * nv_nic_irq because that may decide to do otherwise
  2003. */
  2004. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  2005. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  2006. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  2007. disable_irq(dev->irq);
  2008. mask = np->irqmask;
  2009. } else {
  2010. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2011. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2012. mask |= NVREG_IRQ_RX_ALL;
  2013. }
  2014. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2015. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2016. mask |= NVREG_IRQ_TX_ALL;
  2017. }
  2018. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2019. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2020. mask |= NVREG_IRQ_OTHER;
  2021. }
  2022. }
  2023. np->nic_poll_irq = 0;
  2024. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2025. writel(mask, base + NvRegIrqMask);
  2026. pci_push(base);
  2027. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  2028. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  2029. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
  2030. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2031. enable_irq(dev->irq);
  2032. } else {
  2033. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2034. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2035. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2036. }
  2037. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2038. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2039. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2040. }
  2041. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2042. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2043. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2044. }
  2045. }
  2046. }
  2047. #ifdef CONFIG_NET_POLL_CONTROLLER
  2048. static void nv_poll_controller(struct net_device *dev)
  2049. {
  2050. nv_do_nic_poll((unsigned long) dev);
  2051. }
  2052. #endif
  2053. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2054. {
  2055. struct fe_priv *np = netdev_priv(dev);
  2056. strcpy(info->driver, "forcedeth");
  2057. strcpy(info->version, FORCEDETH_VERSION);
  2058. strcpy(info->bus_info, pci_name(np->pci_dev));
  2059. }
  2060. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2061. {
  2062. struct fe_priv *np = netdev_priv(dev);
  2063. wolinfo->supported = WAKE_MAGIC;
  2064. spin_lock_irq(&np->lock);
  2065. if (np->wolenabled)
  2066. wolinfo->wolopts = WAKE_MAGIC;
  2067. spin_unlock_irq(&np->lock);
  2068. }
  2069. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2070. {
  2071. struct fe_priv *np = netdev_priv(dev);
  2072. u8 __iomem *base = get_hwbase(dev);
  2073. spin_lock_irq(&np->lock);
  2074. if (wolinfo->wolopts == 0) {
  2075. writel(0, base + NvRegWakeUpFlags);
  2076. np->wolenabled = 0;
  2077. }
  2078. if (wolinfo->wolopts & WAKE_MAGIC) {
  2079. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2080. np->wolenabled = 1;
  2081. }
  2082. spin_unlock_irq(&np->lock);
  2083. return 0;
  2084. }
  2085. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2086. {
  2087. struct fe_priv *np = netdev_priv(dev);
  2088. int adv;
  2089. spin_lock_irq(&np->lock);
  2090. ecmd->port = PORT_MII;
  2091. if (!netif_running(dev)) {
  2092. /* We do not track link speed / duplex setting if the
  2093. * interface is disabled. Force a link check */
  2094. nv_update_linkspeed(dev);
  2095. }
  2096. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2097. case NVREG_LINKSPEED_10:
  2098. ecmd->speed = SPEED_10;
  2099. break;
  2100. case NVREG_LINKSPEED_100:
  2101. ecmd->speed = SPEED_100;
  2102. break;
  2103. case NVREG_LINKSPEED_1000:
  2104. ecmd->speed = SPEED_1000;
  2105. break;
  2106. }
  2107. ecmd->duplex = DUPLEX_HALF;
  2108. if (np->duplex)
  2109. ecmd->duplex = DUPLEX_FULL;
  2110. ecmd->autoneg = np->autoneg;
  2111. ecmd->advertising = ADVERTISED_MII;
  2112. if (np->autoneg) {
  2113. ecmd->advertising |= ADVERTISED_Autoneg;
  2114. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2115. } else {
  2116. adv = np->fixed_mode;
  2117. }
  2118. if (adv & ADVERTISE_10HALF)
  2119. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2120. if (adv & ADVERTISE_10FULL)
  2121. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2122. if (adv & ADVERTISE_100HALF)
  2123. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2124. if (adv & ADVERTISE_100FULL)
  2125. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2126. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  2127. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2128. if (adv & ADVERTISE_1000FULL)
  2129. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2130. }
  2131. ecmd->supported = (SUPPORTED_Autoneg |
  2132. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2133. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2134. SUPPORTED_MII);
  2135. if (np->gigabit == PHY_GIGABIT)
  2136. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2137. ecmd->phy_address = np->phyaddr;
  2138. ecmd->transceiver = XCVR_EXTERNAL;
  2139. /* ignore maxtxpkt, maxrxpkt for now */
  2140. spin_unlock_irq(&np->lock);
  2141. return 0;
  2142. }
  2143. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2144. {
  2145. struct fe_priv *np = netdev_priv(dev);
  2146. if (ecmd->port != PORT_MII)
  2147. return -EINVAL;
  2148. if (ecmd->transceiver != XCVR_EXTERNAL)
  2149. return -EINVAL;
  2150. if (ecmd->phy_address != np->phyaddr) {
  2151. /* TODO: support switching between multiple phys. Should be
  2152. * trivial, but not enabled due to lack of test hardware. */
  2153. return -EINVAL;
  2154. }
  2155. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2156. u32 mask;
  2157. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2158. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2159. if (np->gigabit == PHY_GIGABIT)
  2160. mask |= ADVERTISED_1000baseT_Full;
  2161. if ((ecmd->advertising & mask) == 0)
  2162. return -EINVAL;
  2163. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2164. /* Note: autonegotiation disable, speed 1000 intentionally
  2165. * forbidden - noone should need that. */
  2166. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2167. return -EINVAL;
  2168. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2169. return -EINVAL;
  2170. } else {
  2171. return -EINVAL;
  2172. }
  2173. spin_lock_irq(&np->lock);
  2174. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2175. int adv, bmcr;
  2176. np->autoneg = 1;
  2177. /* advertise only what has been requested */
  2178. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2179. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2180. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2181. adv |= ADVERTISE_10HALF;
  2182. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2183. adv |= ADVERTISE_10FULL;
  2184. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2185. adv |= ADVERTISE_100HALF;
  2186. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2187. adv |= ADVERTISE_100FULL;
  2188. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2189. if (np->gigabit == PHY_GIGABIT) {
  2190. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2191. adv &= ~ADVERTISE_1000FULL;
  2192. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2193. adv |= ADVERTISE_1000FULL;
  2194. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2195. }
  2196. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2197. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2198. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2199. } else {
  2200. int adv, bmcr;
  2201. np->autoneg = 0;
  2202. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2203. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2204. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2205. adv |= ADVERTISE_10HALF;
  2206. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2207. adv |= ADVERTISE_10FULL;
  2208. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2209. adv |= ADVERTISE_100HALF;
  2210. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2211. adv |= ADVERTISE_100FULL;
  2212. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2213. np->fixed_mode = adv;
  2214. if (np->gigabit == PHY_GIGABIT) {
  2215. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2216. adv &= ~ADVERTISE_1000FULL;
  2217. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2218. }
  2219. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2220. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  2221. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2222. bmcr |= BMCR_FULLDPLX;
  2223. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2224. bmcr |= BMCR_SPEED100;
  2225. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2226. if (netif_running(dev)) {
  2227. /* Wait a bit and then reconfigure the nic. */
  2228. udelay(10);
  2229. nv_linkchange(dev);
  2230. }
  2231. }
  2232. spin_unlock_irq(&np->lock);
  2233. return 0;
  2234. }
  2235. #define FORCEDETH_REGS_VER 1
  2236. static int nv_get_regs_len(struct net_device *dev)
  2237. {
  2238. struct fe_priv *np = netdev_priv(dev);
  2239. return np->register_size;
  2240. }
  2241. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2242. {
  2243. struct fe_priv *np = netdev_priv(dev);
  2244. u8 __iomem *base = get_hwbase(dev);
  2245. u32 *rbuf = buf;
  2246. int i;
  2247. regs->version = FORCEDETH_REGS_VER;
  2248. spin_lock_irq(&np->lock);
  2249. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2250. rbuf[i] = readl(base + i*sizeof(u32));
  2251. spin_unlock_irq(&np->lock);
  2252. }
  2253. static int nv_nway_reset(struct net_device *dev)
  2254. {
  2255. struct fe_priv *np = netdev_priv(dev);
  2256. int ret;
  2257. spin_lock_irq(&np->lock);
  2258. if (np->autoneg) {
  2259. int bmcr;
  2260. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2261. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2262. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2263. ret = 0;
  2264. } else {
  2265. ret = -EINVAL;
  2266. }
  2267. spin_unlock_irq(&np->lock);
  2268. return ret;
  2269. }
  2270. static struct ethtool_ops ops = {
  2271. .get_drvinfo = nv_get_drvinfo,
  2272. .get_link = ethtool_op_get_link,
  2273. .get_wol = nv_get_wol,
  2274. .set_wol = nv_set_wol,
  2275. .get_settings = nv_get_settings,
  2276. .set_settings = nv_set_settings,
  2277. .get_regs_len = nv_get_regs_len,
  2278. .get_regs = nv_get_regs,
  2279. .nway_reset = nv_nway_reset,
  2280. .get_perm_addr = ethtool_op_get_perm_addr,
  2281. };
  2282. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2283. {
  2284. struct fe_priv *np = get_nvpriv(dev);
  2285. spin_lock_irq(&np->lock);
  2286. /* save vlan group */
  2287. np->vlangrp = grp;
  2288. if (grp) {
  2289. /* enable vlan on MAC */
  2290. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2291. } else {
  2292. /* disable vlan on MAC */
  2293. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2294. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2295. }
  2296. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2297. spin_unlock_irq(&np->lock);
  2298. };
  2299. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2300. {
  2301. /* nothing to do */
  2302. };
  2303. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2304. {
  2305. u8 __iomem *base = get_hwbase(dev);
  2306. int i;
  2307. u32 msixmap = 0;
  2308. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2309. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2310. * the remaining 8 interrupts.
  2311. */
  2312. for (i = 0; i < 8; i++) {
  2313. if ((irqmask >> i) & 0x1) {
  2314. msixmap |= vector << (i << 2);
  2315. }
  2316. }
  2317. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2318. msixmap = 0;
  2319. for (i = 0; i < 8; i++) {
  2320. if ((irqmask >> (i + 8)) & 0x1) {
  2321. msixmap |= vector << (i << 2);
  2322. }
  2323. }
  2324. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2325. }
  2326. static int nv_open(struct net_device *dev)
  2327. {
  2328. struct fe_priv *np = netdev_priv(dev);
  2329. u8 __iomem *base = get_hwbase(dev);
  2330. int ret = 1;
  2331. int oom, i;
  2332. dprintk(KERN_DEBUG "nv_open: begin\n");
  2333. /* 1) erase previous misconfiguration */
  2334. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  2335. nv_mac_reset(dev);
  2336. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2337. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2338. writel(0, base + NvRegMulticastAddrB);
  2339. writel(0, base + NvRegMulticastMaskA);
  2340. writel(0, base + NvRegMulticastMaskB);
  2341. writel(0, base + NvRegPacketFilterFlags);
  2342. writel(0, base + NvRegTransmitterControl);
  2343. writel(0, base + NvRegReceiverControl);
  2344. writel(0, base + NvRegAdapterControl);
  2345. /* 2) initialize descriptor rings */
  2346. set_bufsize(dev);
  2347. oom = nv_init_ring(dev);
  2348. writel(0, base + NvRegLinkSpeed);
  2349. writel(0, base + NvRegUnknownTransmitterReg);
  2350. nv_txrx_reset(dev);
  2351. writel(0, base + NvRegUnknownSetupReg6);
  2352. np->in_shutdown = 0;
  2353. /* 3) set mac address */
  2354. nv_copy_mac_to_hw(dev);
  2355. /* 4) give hw rings */
  2356. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2357. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2358. base + NvRegRingSizes);
  2359. /* 5) continue setup */
  2360. writel(np->linkspeed, base + NvRegLinkSpeed);
  2361. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2362. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2363. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2364. pci_push(base);
  2365. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2366. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2367. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2368. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2369. writel(0, base + NvRegUnknownSetupReg4);
  2370. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2371. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2372. /* 6) continue setup */
  2373. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2374. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2375. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2376. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2377. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2378. get_random_bytes(&i, sizeof(i));
  2379. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2380. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2381. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2382. if (poll_interval == -1) {
  2383. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2384. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2385. else
  2386. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2387. }
  2388. else
  2389. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2390. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2391. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2392. base + NvRegAdapterControl);
  2393. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2394. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2395. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2396. i = readl(base + NvRegPowerState);
  2397. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2398. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2399. pci_push(base);
  2400. udelay(10);
  2401. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2402. writel(0, base + NvRegIrqMask);
  2403. pci_push(base);
  2404. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2405. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2406. pci_push(base);
  2407. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2408. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2409. np->msi_x_entry[i].entry = i;
  2410. }
  2411. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2412. np->msi_flags |= NV_MSI_X_ENABLED;
  2413. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2414. /* Request irq for rx handling */
  2415. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2416. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2417. pci_disable_msix(np->pci_dev);
  2418. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2419. goto out_drain;
  2420. }
  2421. /* Request irq for tx handling */
  2422. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2423. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2424. pci_disable_msix(np->pci_dev);
  2425. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2426. goto out_drain;
  2427. }
  2428. /* Request irq for link and timer handling */
  2429. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2430. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2431. pci_disable_msix(np->pci_dev);
  2432. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2433. goto out_drain;
  2434. }
  2435. /* map interrupts to their respective vector */
  2436. writel(0, base + NvRegMSIXMap0);
  2437. writel(0, base + NvRegMSIXMap1);
  2438. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2439. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2440. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2441. } else {
  2442. /* Request irq for all interrupts */
  2443. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2444. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2445. pci_disable_msix(np->pci_dev);
  2446. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2447. goto out_drain;
  2448. }
  2449. /* map interrupts to vector 0 */
  2450. writel(0, base + NvRegMSIXMap0);
  2451. writel(0, base + NvRegMSIXMap1);
  2452. }
  2453. }
  2454. }
  2455. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2456. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2457. np->msi_flags |= NV_MSI_ENABLED;
  2458. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2459. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2460. pci_disable_msi(np->pci_dev);
  2461. np->msi_flags &= ~NV_MSI_ENABLED;
  2462. goto out_drain;
  2463. }
  2464. /* map interrupts to vector 0 */
  2465. writel(0, base + NvRegMSIMap0);
  2466. writel(0, base + NvRegMSIMap1);
  2467. /* enable msi vector 0 */
  2468. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2469. }
  2470. }
  2471. if (ret != 0) {
  2472. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2473. goto out_drain;
  2474. }
  2475. /* ask for interrupts */
  2476. writel(np->irqmask, base + NvRegIrqMask);
  2477. spin_lock_irq(&np->lock);
  2478. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2479. writel(0, base + NvRegMulticastAddrB);
  2480. writel(0, base + NvRegMulticastMaskA);
  2481. writel(0, base + NvRegMulticastMaskB);
  2482. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2483. /* One manual link speed update: Interrupts are enabled, future link
  2484. * speed changes cause interrupts and are handled by nv_link_irq().
  2485. */
  2486. {
  2487. u32 miistat;
  2488. miistat = readl(base + NvRegMIIStatus);
  2489. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2490. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2491. }
  2492. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2493. * to init hw */
  2494. np->linkspeed = 0;
  2495. ret = nv_update_linkspeed(dev);
  2496. nv_start_rx(dev);
  2497. nv_start_tx(dev);
  2498. netif_start_queue(dev);
  2499. if (ret) {
  2500. netif_carrier_on(dev);
  2501. } else {
  2502. printk("%s: no link during initialization.\n", dev->name);
  2503. netif_carrier_off(dev);
  2504. }
  2505. if (oom)
  2506. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2507. spin_unlock_irq(&np->lock);
  2508. return 0;
  2509. out_drain:
  2510. drain_ring(dev);
  2511. return ret;
  2512. }
  2513. static int nv_close(struct net_device *dev)
  2514. {
  2515. struct fe_priv *np = netdev_priv(dev);
  2516. u8 __iomem *base;
  2517. int i;
  2518. spin_lock_irq(&np->lock);
  2519. np->in_shutdown = 1;
  2520. spin_unlock_irq(&np->lock);
  2521. synchronize_irq(dev->irq);
  2522. del_timer_sync(&np->oom_kick);
  2523. del_timer_sync(&np->nic_poll);
  2524. netif_stop_queue(dev);
  2525. spin_lock_irq(&np->lock);
  2526. nv_stop_tx(dev);
  2527. nv_stop_rx(dev);
  2528. nv_txrx_reset(dev);
  2529. /* disable interrupts on the nic or we will lock up */
  2530. base = get_hwbase(dev);
  2531. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2532. writel(np->irqmask, base + NvRegIrqMask);
  2533. } else {
  2534. if (np->msi_flags & NV_MSI_ENABLED)
  2535. writel(0, base + NvRegMSIIrqMask);
  2536. writel(0, base + NvRegIrqMask);
  2537. }
  2538. pci_push(base);
  2539. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2540. spin_unlock_irq(&np->lock);
  2541. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2542. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2543. free_irq(np->msi_x_entry[i].vector, dev);
  2544. }
  2545. pci_disable_msix(np->pci_dev);
  2546. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2547. } else {
  2548. free_irq(np->pci_dev->irq, dev);
  2549. if (np->msi_flags & NV_MSI_ENABLED) {
  2550. pci_disable_msi(np->pci_dev);
  2551. np->msi_flags &= ~NV_MSI_ENABLED;
  2552. }
  2553. }
  2554. drain_ring(dev);
  2555. if (np->wolenabled)
  2556. nv_start_rx(dev);
  2557. /* special op: write back the misordered MAC address - otherwise
  2558. * the next nv_probe would see a wrong address.
  2559. */
  2560. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2561. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2562. /* FIXME: power down nic */
  2563. return 0;
  2564. }
  2565. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2566. {
  2567. struct net_device *dev;
  2568. struct fe_priv *np;
  2569. unsigned long addr;
  2570. u8 __iomem *base;
  2571. int err, i;
  2572. u32 powerstate;
  2573. dev = alloc_etherdev(sizeof(struct fe_priv));
  2574. err = -ENOMEM;
  2575. if (!dev)
  2576. goto out;
  2577. np = netdev_priv(dev);
  2578. np->pci_dev = pci_dev;
  2579. spin_lock_init(&np->lock);
  2580. SET_MODULE_OWNER(dev);
  2581. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2582. init_timer(&np->oom_kick);
  2583. np->oom_kick.data = (unsigned long) dev;
  2584. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2585. init_timer(&np->nic_poll);
  2586. np->nic_poll.data = (unsigned long) dev;
  2587. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2588. err = pci_enable_device(pci_dev);
  2589. if (err) {
  2590. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2591. err, pci_name(pci_dev));
  2592. goto out_free;
  2593. }
  2594. pci_set_master(pci_dev);
  2595. err = pci_request_regions(pci_dev, DRV_NAME);
  2596. if (err < 0)
  2597. goto out_disable;
  2598. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
  2599. np->register_size = NV_PCI_REGSZ_VER2;
  2600. else
  2601. np->register_size = NV_PCI_REGSZ_VER1;
  2602. err = -EINVAL;
  2603. addr = 0;
  2604. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2605. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2606. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2607. pci_resource_len(pci_dev, i),
  2608. pci_resource_flags(pci_dev, i));
  2609. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2610. pci_resource_len(pci_dev, i) >= np->register_size) {
  2611. addr = pci_resource_start(pci_dev, i);
  2612. break;
  2613. }
  2614. }
  2615. if (i == DEVICE_COUNT_RESOURCE) {
  2616. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2617. pci_name(pci_dev));
  2618. goto out_relreg;
  2619. }
  2620. /* copy of driver data */
  2621. np->driver_data = id->driver_data;
  2622. /* handle different descriptor versions */
  2623. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2624. /* packet format 3: supports 40-bit addressing */
  2625. np->desc_ver = DESC_VER_3;
  2626. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  2627. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2628. pci_name(pci_dev));
  2629. } else {
  2630. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2631. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2632. pci_name(pci_dev));
  2633. goto out_relreg;
  2634. } else {
  2635. dev->features |= NETIF_F_HIGHDMA;
  2636. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2637. }
  2638. }
  2639. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2640. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2641. /* packet format 2: supports jumbo frames */
  2642. np->desc_ver = DESC_VER_2;
  2643. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2644. } else {
  2645. /* original packet format */
  2646. np->desc_ver = DESC_VER_1;
  2647. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2648. }
  2649. np->pkt_limit = NV_PKTLIMIT_1;
  2650. if (id->driver_data & DEV_HAS_LARGEDESC)
  2651. np->pkt_limit = NV_PKTLIMIT_2;
  2652. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2653. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2654. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2655. #ifdef NETIF_F_TSO
  2656. dev->features |= NETIF_F_TSO;
  2657. #endif
  2658. }
  2659. np->vlanctl_bits = 0;
  2660. if (id->driver_data & DEV_HAS_VLAN) {
  2661. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2662. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2663. dev->vlan_rx_register = nv_vlan_rx_register;
  2664. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2665. }
  2666. np->msi_flags = 0;
  2667. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  2668. np->msi_flags |= NV_MSI_CAPABLE;
  2669. }
  2670. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  2671. np->msi_flags |= NV_MSI_X_CAPABLE;
  2672. }
  2673. err = -ENOMEM;
  2674. np->base = ioremap(addr, np->register_size);
  2675. if (!np->base)
  2676. goto out_relreg;
  2677. dev->base_addr = (unsigned long)np->base;
  2678. dev->irq = pci_dev->irq;
  2679. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2680. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2681. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2682. &np->ring_addr);
  2683. if (!np->rx_ring.orig)
  2684. goto out_unmap;
  2685. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2686. } else {
  2687. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2688. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2689. &np->ring_addr);
  2690. if (!np->rx_ring.ex)
  2691. goto out_unmap;
  2692. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2693. }
  2694. dev->open = nv_open;
  2695. dev->stop = nv_close;
  2696. dev->hard_start_xmit = nv_start_xmit;
  2697. dev->get_stats = nv_get_stats;
  2698. dev->change_mtu = nv_change_mtu;
  2699. dev->set_mac_address = nv_set_mac_address;
  2700. dev->set_multicast_list = nv_set_multicast;
  2701. #ifdef CONFIG_NET_POLL_CONTROLLER
  2702. dev->poll_controller = nv_poll_controller;
  2703. #endif
  2704. SET_ETHTOOL_OPS(dev, &ops);
  2705. dev->tx_timeout = nv_tx_timeout;
  2706. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2707. pci_set_drvdata(pci_dev, dev);
  2708. /* read the mac address */
  2709. base = get_hwbase(dev);
  2710. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2711. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2712. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2713. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2714. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2715. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2716. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2717. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2718. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2719. if (!is_valid_ether_addr(dev->perm_addr)) {
  2720. /*
  2721. * Bad mac address. At least one bios sets the mac address
  2722. * to 01:23:45:67:89:ab
  2723. */
  2724. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2725. pci_name(pci_dev),
  2726. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2727. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2728. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2729. dev->dev_addr[0] = 0x00;
  2730. dev->dev_addr[1] = 0x00;
  2731. dev->dev_addr[2] = 0x6c;
  2732. get_random_bytes(&dev->dev_addr[3], 3);
  2733. }
  2734. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2735. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2736. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2737. /* disable WOL */
  2738. writel(0, base + NvRegWakeUpFlags);
  2739. np->wolenabled = 0;
  2740. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  2741. u8 revision_id;
  2742. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  2743. /* take phy and nic out of low power mode */
  2744. powerstate = readl(base + NvRegPowerState2);
  2745. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  2746. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  2747. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  2748. revision_id >= 0xA3)
  2749. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  2750. writel(powerstate, base + NvRegPowerState2);
  2751. }
  2752. if (np->desc_ver == DESC_VER_1) {
  2753. np->tx_flags = NV_TX_VALID;
  2754. } else {
  2755. np->tx_flags = NV_TX2_VALID;
  2756. }
  2757. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2758. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2759. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2760. np->msi_flags |= 0x0003;
  2761. } else {
  2762. np->irqmask = NVREG_IRQMASK_CPU;
  2763. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2764. np->msi_flags |= 0x0001;
  2765. }
  2766. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2767. np->irqmask |= NVREG_IRQ_TIMER;
  2768. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2769. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2770. np->need_linktimer = 1;
  2771. np->link_timeout = jiffies + LINK_TIMEOUT;
  2772. } else {
  2773. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2774. np->need_linktimer = 0;
  2775. }
  2776. /* find a suitable phy */
  2777. for (i = 1; i <= 32; i++) {
  2778. int id1, id2;
  2779. int phyaddr = i & 0x1F;
  2780. spin_lock_irq(&np->lock);
  2781. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2782. spin_unlock_irq(&np->lock);
  2783. if (id1 < 0 || id1 == 0xffff)
  2784. continue;
  2785. spin_lock_irq(&np->lock);
  2786. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2787. spin_unlock_irq(&np->lock);
  2788. if (id2 < 0 || id2 == 0xffff)
  2789. continue;
  2790. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2791. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2792. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2793. pci_name(pci_dev), id1, id2, phyaddr);
  2794. np->phyaddr = phyaddr;
  2795. np->phy_oui = id1 | id2;
  2796. break;
  2797. }
  2798. if (i == 33) {
  2799. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2800. pci_name(pci_dev));
  2801. goto out_freering;
  2802. }
  2803. /* reset it */
  2804. phy_init(dev);
  2805. /* set default link speed settings */
  2806. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2807. np->duplex = 0;
  2808. np->autoneg = 1;
  2809. err = register_netdev(dev);
  2810. if (err) {
  2811. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2812. goto out_freering;
  2813. }
  2814. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2815. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2816. pci_name(pci_dev));
  2817. return 0;
  2818. out_freering:
  2819. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2820. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2821. np->rx_ring.orig, np->ring_addr);
  2822. else
  2823. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2824. np->rx_ring.ex, np->ring_addr);
  2825. pci_set_drvdata(pci_dev, NULL);
  2826. out_unmap:
  2827. iounmap(get_hwbase(dev));
  2828. out_relreg:
  2829. pci_release_regions(pci_dev);
  2830. out_disable:
  2831. pci_disable_device(pci_dev);
  2832. out_free:
  2833. free_netdev(dev);
  2834. out:
  2835. return err;
  2836. }
  2837. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2838. {
  2839. struct net_device *dev = pci_get_drvdata(pci_dev);
  2840. struct fe_priv *np = netdev_priv(dev);
  2841. unregister_netdev(dev);
  2842. /* free all structures */
  2843. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2844. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2845. else
  2846. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2847. iounmap(get_hwbase(dev));
  2848. pci_release_regions(pci_dev);
  2849. pci_disable_device(pci_dev);
  2850. free_netdev(dev);
  2851. pci_set_drvdata(pci_dev, NULL);
  2852. }
  2853. static struct pci_device_id pci_tbl[] = {
  2854. { /* nForce Ethernet Controller */
  2855. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2856. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2857. },
  2858. { /* nForce2 Ethernet Controller */
  2859. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2860. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2861. },
  2862. { /* nForce3 Ethernet Controller */
  2863. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2864. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2865. },
  2866. { /* nForce3 Ethernet Controller */
  2867. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2868. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2869. },
  2870. { /* nForce3 Ethernet Controller */
  2871. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2872. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2873. },
  2874. { /* nForce3 Ethernet Controller */
  2875. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2876. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2877. },
  2878. { /* nForce3 Ethernet Controller */
  2879. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2880. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2881. },
  2882. { /* CK804 Ethernet Controller */
  2883. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2884. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2885. },
  2886. { /* CK804 Ethernet Controller */
  2887. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2888. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2889. },
  2890. { /* MCP04 Ethernet Controller */
  2891. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2892. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2893. },
  2894. { /* MCP04 Ethernet Controller */
  2895. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2896. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2897. },
  2898. { /* MCP51 Ethernet Controller */
  2899. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2900. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2901. },
  2902. { /* MCP51 Ethernet Controller */
  2903. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2904. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2905. },
  2906. { /* MCP55 Ethernet Controller */
  2907. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2908. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2909. },
  2910. { /* MCP55 Ethernet Controller */
  2911. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2912. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2913. },
  2914. {0,},
  2915. };
  2916. static struct pci_driver driver = {
  2917. .name = "forcedeth",
  2918. .id_table = pci_tbl,
  2919. .probe = nv_probe,
  2920. .remove = __devexit_p(nv_remove),
  2921. };
  2922. static int __init init_nic(void)
  2923. {
  2924. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2925. return pci_module_init(&driver);
  2926. }
  2927. static void __exit exit_nic(void)
  2928. {
  2929. pci_unregister_driver(&driver);
  2930. }
  2931. module_param(max_interrupt_work, int, 0);
  2932. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2933. module_param(optimization_mode, int, 0);
  2934. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2935. module_param(poll_interval, int, 0);
  2936. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2937. module_param(disable_msi, int, 0);
  2938. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  2939. module_param(disable_msix, int, 0);
  2940. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  2941. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  2942. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  2943. MODULE_LICENSE("GPL");
  2944. MODULE_DEVICE_TABLE(pci, pci_tbl);
  2945. module_init(init_nic);
  2946. module_exit(exit_nic);