skbuff.h 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. #ifdef CONFIG_HAS_DMA
  133. unsigned int num_dma_maps;
  134. #endif
  135. struct sk_buff *frag_list;
  136. skb_frag_t frags[MAX_SKB_FRAGS];
  137. #ifdef CONFIG_HAS_DMA
  138. dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
  139. #endif
  140. };
  141. /* We divide dataref into two halves. The higher 16 bits hold references
  142. * to the payload part of skb->data. The lower 16 bits hold references to
  143. * the entire skb->data. A clone of a headerless skb holds the length of
  144. * the header in skb->hdr_len.
  145. *
  146. * All users must obey the rule that the skb->data reference count must be
  147. * greater than or equal to the payload reference count.
  148. *
  149. * Holding a reference to the payload part means that the user does not
  150. * care about modifications to the header part of skb->data.
  151. */
  152. #define SKB_DATAREF_SHIFT 16
  153. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  154. enum {
  155. SKB_FCLONE_UNAVAILABLE,
  156. SKB_FCLONE_ORIG,
  157. SKB_FCLONE_CLONE,
  158. };
  159. enum {
  160. SKB_GSO_TCPV4 = 1 << 0,
  161. SKB_GSO_UDP = 1 << 1,
  162. /* This indicates the skb is from an untrusted source. */
  163. SKB_GSO_DODGY = 1 << 2,
  164. /* This indicates the tcp segment has CWR set. */
  165. SKB_GSO_TCP_ECN = 1 << 3,
  166. SKB_GSO_TCPV6 = 1 << 4,
  167. };
  168. #if BITS_PER_LONG > 32
  169. #define NET_SKBUFF_DATA_USES_OFFSET 1
  170. #endif
  171. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  172. typedef unsigned int sk_buff_data_t;
  173. #else
  174. typedef unsigned char *sk_buff_data_t;
  175. #endif
  176. /**
  177. * struct sk_buff - socket buffer
  178. * @next: Next buffer in list
  179. * @prev: Previous buffer in list
  180. * @sk: Socket we are owned by
  181. * @tstamp: Time we arrived
  182. * @dev: Device we arrived on/are leaving by
  183. * @transport_header: Transport layer header
  184. * @network_header: Network layer header
  185. * @mac_header: Link layer header
  186. * @dst: destination entry
  187. * @sp: the security path, used for xfrm
  188. * @cb: Control buffer. Free for use by every layer. Put private vars here
  189. * @len: Length of actual data
  190. * @data_len: Data length
  191. * @mac_len: Length of link layer header
  192. * @hdr_len: writable header length of cloned skb
  193. * @csum: Checksum (must include start/offset pair)
  194. * @csum_start: Offset from skb->head where checksumming should start
  195. * @csum_offset: Offset from csum_start where checksum should be stored
  196. * @local_df: allow local fragmentation
  197. * @cloned: Head may be cloned (check refcnt to be sure)
  198. * @nohdr: Payload reference only, must not modify header
  199. * @pkt_type: Packet class
  200. * @fclone: skbuff clone status
  201. * @ip_summed: Driver fed us an IP checksum
  202. * @priority: Packet queueing priority
  203. * @users: User count - see {datagram,tcp}.c
  204. * @protocol: Packet protocol from driver
  205. * @truesize: Buffer size
  206. * @head: Head of buffer
  207. * @data: Data head pointer
  208. * @tail: Tail pointer
  209. * @end: End pointer
  210. * @destructor: Destruct function
  211. * @mark: Generic packet mark
  212. * @nfct: Associated connection, if any
  213. * @ipvs_property: skbuff is owned by ipvs
  214. * @peeked: this packet has been seen already, so stats have been
  215. * done for it, don't do them again
  216. * @nf_trace: netfilter packet trace flag
  217. * @nfctinfo: Relationship of this skb to the connection
  218. * @nfct_reasm: netfilter conntrack re-assembly pointer
  219. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  220. * @iif: ifindex of device we arrived on
  221. * @queue_mapping: Queue mapping for multiqueue devices
  222. * @tc_index: Traffic control index
  223. * @tc_verd: traffic control verdict
  224. * @ndisc_nodetype: router type (from link layer)
  225. * @do_not_encrypt: set to prevent encryption of this frame
  226. * @requeue: set to indicate that the wireless core should attempt
  227. * a software retry on this frame if we failed to
  228. * receive an ACK for it
  229. * @dma_cookie: a cookie to one of several possible DMA operations
  230. * done by skb DMA functions
  231. * @secmark: security marking
  232. * @vlan_tci: vlan tag control information
  233. */
  234. struct sk_buff {
  235. /* These two members must be first. */
  236. struct sk_buff *next;
  237. struct sk_buff *prev;
  238. struct sock *sk;
  239. ktime_t tstamp;
  240. struct net_device *dev;
  241. union {
  242. struct dst_entry *dst;
  243. struct rtable *rtable;
  244. };
  245. #ifdef CONFIG_XFRM
  246. struct sec_path *sp;
  247. #endif
  248. /*
  249. * This is the control buffer. It is free to use for every
  250. * layer. Please put your private variables there. If you
  251. * want to keep them across layers you have to do a skb_clone()
  252. * first. This is owned by whoever has the skb queued ATM.
  253. */
  254. char cb[48];
  255. unsigned int len,
  256. data_len;
  257. __u16 mac_len,
  258. hdr_len;
  259. union {
  260. __wsum csum;
  261. struct {
  262. __u16 csum_start;
  263. __u16 csum_offset;
  264. };
  265. };
  266. __u32 priority;
  267. __u8 local_df:1,
  268. cloned:1,
  269. ip_summed:2,
  270. nohdr:1,
  271. nfctinfo:3;
  272. __u8 pkt_type:3,
  273. fclone:2,
  274. ipvs_property:1,
  275. peeked:1,
  276. nf_trace:1;
  277. __be16 protocol;
  278. void (*destructor)(struct sk_buff *skb);
  279. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  280. struct nf_conntrack *nfct;
  281. struct sk_buff *nfct_reasm;
  282. #endif
  283. #ifdef CONFIG_BRIDGE_NETFILTER
  284. struct nf_bridge_info *nf_bridge;
  285. #endif
  286. int iif;
  287. __u16 queue_mapping;
  288. #ifdef CONFIG_NET_SCHED
  289. __u16 tc_index; /* traffic control index */
  290. #ifdef CONFIG_NET_CLS_ACT
  291. __u16 tc_verd; /* traffic control verdict */
  292. #endif
  293. #endif
  294. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  295. __u8 ndisc_nodetype:2;
  296. #endif
  297. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  298. __u8 do_not_encrypt:1;
  299. __u8 requeue:1;
  300. #endif
  301. /* 0/13/14 bit hole */
  302. #ifdef CONFIG_NET_DMA
  303. dma_cookie_t dma_cookie;
  304. #endif
  305. #ifdef CONFIG_NETWORK_SECMARK
  306. __u32 secmark;
  307. #endif
  308. __u32 mark;
  309. __u16 vlan_tci;
  310. sk_buff_data_t transport_header;
  311. sk_buff_data_t network_header;
  312. sk_buff_data_t mac_header;
  313. /* These elements must be at the end, see alloc_skb() for details. */
  314. sk_buff_data_t tail;
  315. sk_buff_data_t end;
  316. unsigned char *head,
  317. *data;
  318. unsigned int truesize;
  319. atomic_t users;
  320. };
  321. #ifdef __KERNEL__
  322. /*
  323. * Handling routines are only of interest to the kernel
  324. */
  325. #include <linux/slab.h>
  326. #include <asm/system.h>
  327. #ifdef CONFIG_HAS_DMA
  328. #include <linux/dma-mapping.h>
  329. extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
  330. enum dma_data_direction dir);
  331. extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
  332. enum dma_data_direction dir);
  333. #endif
  334. extern void kfree_skb(struct sk_buff *skb);
  335. extern void __kfree_skb(struct sk_buff *skb);
  336. extern struct sk_buff *__alloc_skb(unsigned int size,
  337. gfp_t priority, int fclone, int node);
  338. static inline struct sk_buff *alloc_skb(unsigned int size,
  339. gfp_t priority)
  340. {
  341. return __alloc_skb(size, priority, 0, -1);
  342. }
  343. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  344. gfp_t priority)
  345. {
  346. return __alloc_skb(size, priority, 1, -1);
  347. }
  348. extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
  349. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  350. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  351. gfp_t priority);
  352. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  353. gfp_t priority);
  354. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  355. gfp_t gfp_mask);
  356. extern int pskb_expand_head(struct sk_buff *skb,
  357. int nhead, int ntail,
  358. gfp_t gfp_mask);
  359. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  360. unsigned int headroom);
  361. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  362. int newheadroom, int newtailroom,
  363. gfp_t priority);
  364. extern int skb_to_sgvec(struct sk_buff *skb,
  365. struct scatterlist *sg, int offset,
  366. int len);
  367. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  368. struct sk_buff **trailer);
  369. extern int skb_pad(struct sk_buff *skb, int pad);
  370. #define dev_kfree_skb(a) kfree_skb(a)
  371. extern void skb_over_panic(struct sk_buff *skb, int len,
  372. void *here);
  373. extern void skb_under_panic(struct sk_buff *skb, int len,
  374. void *here);
  375. extern void skb_truesize_bug(struct sk_buff *skb);
  376. static inline void skb_truesize_check(struct sk_buff *skb)
  377. {
  378. int len = sizeof(struct sk_buff) + skb->len;
  379. if (unlikely((int)skb->truesize < len))
  380. skb_truesize_bug(skb);
  381. }
  382. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  383. int getfrag(void *from, char *to, int offset,
  384. int len,int odd, struct sk_buff *skb),
  385. void *from, int length);
  386. struct skb_seq_state
  387. {
  388. __u32 lower_offset;
  389. __u32 upper_offset;
  390. __u32 frag_idx;
  391. __u32 stepped_offset;
  392. struct sk_buff *root_skb;
  393. struct sk_buff *cur_skb;
  394. __u8 *frag_data;
  395. };
  396. extern void skb_prepare_seq_read(struct sk_buff *skb,
  397. unsigned int from, unsigned int to,
  398. struct skb_seq_state *st);
  399. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  400. struct skb_seq_state *st);
  401. extern void skb_abort_seq_read(struct skb_seq_state *st);
  402. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  403. unsigned int to, struct ts_config *config,
  404. struct ts_state *state);
  405. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  406. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  407. {
  408. return skb->head + skb->end;
  409. }
  410. #else
  411. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  412. {
  413. return skb->end;
  414. }
  415. #endif
  416. /* Internal */
  417. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  418. /**
  419. * skb_queue_empty - check if a queue is empty
  420. * @list: queue head
  421. *
  422. * Returns true if the queue is empty, false otherwise.
  423. */
  424. static inline int skb_queue_empty(const struct sk_buff_head *list)
  425. {
  426. return list->next == (struct sk_buff *)list;
  427. }
  428. /**
  429. * skb_queue_is_last - check if skb is the last entry in the queue
  430. * @list: queue head
  431. * @skb: buffer
  432. *
  433. * Returns true if @skb is the last buffer on the list.
  434. */
  435. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  436. const struct sk_buff *skb)
  437. {
  438. return (skb->next == (struct sk_buff *) list);
  439. }
  440. /**
  441. * skb_queue_is_first - check if skb is the first entry in the queue
  442. * @list: queue head
  443. * @skb: buffer
  444. *
  445. * Returns true if @skb is the first buffer on the list.
  446. */
  447. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  448. const struct sk_buff *skb)
  449. {
  450. return (skb->prev == (struct sk_buff *) list);
  451. }
  452. /**
  453. * skb_queue_next - return the next packet in the queue
  454. * @list: queue head
  455. * @skb: current buffer
  456. *
  457. * Return the next packet in @list after @skb. It is only valid to
  458. * call this if skb_queue_is_last() evaluates to false.
  459. */
  460. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  461. const struct sk_buff *skb)
  462. {
  463. /* This BUG_ON may seem severe, but if we just return then we
  464. * are going to dereference garbage.
  465. */
  466. BUG_ON(skb_queue_is_last(list, skb));
  467. return skb->next;
  468. }
  469. /**
  470. * skb_queue_prev - return the prev packet in the queue
  471. * @list: queue head
  472. * @skb: current buffer
  473. *
  474. * Return the prev packet in @list before @skb. It is only valid to
  475. * call this if skb_queue_is_first() evaluates to false.
  476. */
  477. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  478. const struct sk_buff *skb)
  479. {
  480. /* This BUG_ON may seem severe, but if we just return then we
  481. * are going to dereference garbage.
  482. */
  483. BUG_ON(skb_queue_is_first(list, skb));
  484. return skb->prev;
  485. }
  486. /**
  487. * skb_get - reference buffer
  488. * @skb: buffer to reference
  489. *
  490. * Makes another reference to a socket buffer and returns a pointer
  491. * to the buffer.
  492. */
  493. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  494. {
  495. atomic_inc(&skb->users);
  496. return skb;
  497. }
  498. /*
  499. * If users == 1, we are the only owner and are can avoid redundant
  500. * atomic change.
  501. */
  502. /**
  503. * skb_cloned - is the buffer a clone
  504. * @skb: buffer to check
  505. *
  506. * Returns true if the buffer was generated with skb_clone() and is
  507. * one of multiple shared copies of the buffer. Cloned buffers are
  508. * shared data so must not be written to under normal circumstances.
  509. */
  510. static inline int skb_cloned(const struct sk_buff *skb)
  511. {
  512. return skb->cloned &&
  513. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  514. }
  515. /**
  516. * skb_header_cloned - is the header a clone
  517. * @skb: buffer to check
  518. *
  519. * Returns true if modifying the header part of the buffer requires
  520. * the data to be copied.
  521. */
  522. static inline int skb_header_cloned(const struct sk_buff *skb)
  523. {
  524. int dataref;
  525. if (!skb->cloned)
  526. return 0;
  527. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  528. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  529. return dataref != 1;
  530. }
  531. /**
  532. * skb_header_release - release reference to header
  533. * @skb: buffer to operate on
  534. *
  535. * Drop a reference to the header part of the buffer. This is done
  536. * by acquiring a payload reference. You must not read from the header
  537. * part of skb->data after this.
  538. */
  539. static inline void skb_header_release(struct sk_buff *skb)
  540. {
  541. BUG_ON(skb->nohdr);
  542. skb->nohdr = 1;
  543. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  544. }
  545. /**
  546. * skb_shared - is the buffer shared
  547. * @skb: buffer to check
  548. *
  549. * Returns true if more than one person has a reference to this
  550. * buffer.
  551. */
  552. static inline int skb_shared(const struct sk_buff *skb)
  553. {
  554. return atomic_read(&skb->users) != 1;
  555. }
  556. /**
  557. * skb_share_check - check if buffer is shared and if so clone it
  558. * @skb: buffer to check
  559. * @pri: priority for memory allocation
  560. *
  561. * If the buffer is shared the buffer is cloned and the old copy
  562. * drops a reference. A new clone with a single reference is returned.
  563. * If the buffer is not shared the original buffer is returned. When
  564. * being called from interrupt status or with spinlocks held pri must
  565. * be GFP_ATOMIC.
  566. *
  567. * NULL is returned on a memory allocation failure.
  568. */
  569. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  570. gfp_t pri)
  571. {
  572. might_sleep_if(pri & __GFP_WAIT);
  573. if (skb_shared(skb)) {
  574. struct sk_buff *nskb = skb_clone(skb, pri);
  575. kfree_skb(skb);
  576. skb = nskb;
  577. }
  578. return skb;
  579. }
  580. /*
  581. * Copy shared buffers into a new sk_buff. We effectively do COW on
  582. * packets to handle cases where we have a local reader and forward
  583. * and a couple of other messy ones. The normal one is tcpdumping
  584. * a packet thats being forwarded.
  585. */
  586. /**
  587. * skb_unshare - make a copy of a shared buffer
  588. * @skb: buffer to check
  589. * @pri: priority for memory allocation
  590. *
  591. * If the socket buffer is a clone then this function creates a new
  592. * copy of the data, drops a reference count on the old copy and returns
  593. * the new copy with the reference count at 1. If the buffer is not a clone
  594. * the original buffer is returned. When called with a spinlock held or
  595. * from interrupt state @pri must be %GFP_ATOMIC
  596. *
  597. * %NULL is returned on a memory allocation failure.
  598. */
  599. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  600. gfp_t pri)
  601. {
  602. might_sleep_if(pri & __GFP_WAIT);
  603. if (skb_cloned(skb)) {
  604. struct sk_buff *nskb = skb_copy(skb, pri);
  605. kfree_skb(skb); /* Free our shared copy */
  606. skb = nskb;
  607. }
  608. return skb;
  609. }
  610. /**
  611. * skb_peek
  612. * @list_: list to peek at
  613. *
  614. * Peek an &sk_buff. Unlike most other operations you _MUST_
  615. * be careful with this one. A peek leaves the buffer on the
  616. * list and someone else may run off with it. You must hold
  617. * the appropriate locks or have a private queue to do this.
  618. *
  619. * Returns %NULL for an empty list or a pointer to the head element.
  620. * The reference count is not incremented and the reference is therefore
  621. * volatile. Use with caution.
  622. */
  623. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  624. {
  625. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  626. if (list == (struct sk_buff *)list_)
  627. list = NULL;
  628. return list;
  629. }
  630. /**
  631. * skb_peek_tail
  632. * @list_: list to peek at
  633. *
  634. * Peek an &sk_buff. Unlike most other operations you _MUST_
  635. * be careful with this one. A peek leaves the buffer on the
  636. * list and someone else may run off with it. You must hold
  637. * the appropriate locks or have a private queue to do this.
  638. *
  639. * Returns %NULL for an empty list or a pointer to the tail element.
  640. * The reference count is not incremented and the reference is therefore
  641. * volatile. Use with caution.
  642. */
  643. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  644. {
  645. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  646. if (list == (struct sk_buff *)list_)
  647. list = NULL;
  648. return list;
  649. }
  650. /**
  651. * skb_queue_len - get queue length
  652. * @list_: list to measure
  653. *
  654. * Return the length of an &sk_buff queue.
  655. */
  656. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  657. {
  658. return list_->qlen;
  659. }
  660. /**
  661. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  662. * @list: queue to initialize
  663. *
  664. * This initializes only the list and queue length aspects of
  665. * an sk_buff_head object. This allows to initialize the list
  666. * aspects of an sk_buff_head without reinitializing things like
  667. * the spinlock. It can also be used for on-stack sk_buff_head
  668. * objects where the spinlock is known to not be used.
  669. */
  670. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  671. {
  672. list->prev = list->next = (struct sk_buff *)list;
  673. list->qlen = 0;
  674. }
  675. /*
  676. * This function creates a split out lock class for each invocation;
  677. * this is needed for now since a whole lot of users of the skb-queue
  678. * infrastructure in drivers have different locking usage (in hardirq)
  679. * than the networking core (in softirq only). In the long run either the
  680. * network layer or drivers should need annotation to consolidate the
  681. * main types of usage into 3 classes.
  682. */
  683. static inline void skb_queue_head_init(struct sk_buff_head *list)
  684. {
  685. spin_lock_init(&list->lock);
  686. __skb_queue_head_init(list);
  687. }
  688. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  689. struct lock_class_key *class)
  690. {
  691. skb_queue_head_init(list);
  692. lockdep_set_class(&list->lock, class);
  693. }
  694. /*
  695. * Insert an sk_buff on a list.
  696. *
  697. * The "__skb_xxxx()" functions are the non-atomic ones that
  698. * can only be called with interrupts disabled.
  699. */
  700. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  701. static inline void __skb_insert(struct sk_buff *newsk,
  702. struct sk_buff *prev, struct sk_buff *next,
  703. struct sk_buff_head *list)
  704. {
  705. newsk->next = next;
  706. newsk->prev = prev;
  707. next->prev = prev->next = newsk;
  708. list->qlen++;
  709. }
  710. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  711. struct sk_buff *prev,
  712. struct sk_buff *next)
  713. {
  714. struct sk_buff *first = list->next;
  715. struct sk_buff *last = list->prev;
  716. first->prev = prev;
  717. prev->next = first;
  718. last->next = next;
  719. next->prev = last;
  720. }
  721. /**
  722. * skb_queue_splice - join two skb lists, this is designed for stacks
  723. * @list: the new list to add
  724. * @head: the place to add it in the first list
  725. */
  726. static inline void skb_queue_splice(const struct sk_buff_head *list,
  727. struct sk_buff_head *head)
  728. {
  729. if (!skb_queue_empty(list)) {
  730. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  731. head->qlen += list->qlen;
  732. }
  733. }
  734. /**
  735. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  736. * @list: the new list to add
  737. * @head: the place to add it in the first list
  738. *
  739. * The list at @list is reinitialised
  740. */
  741. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  742. struct sk_buff_head *head)
  743. {
  744. if (!skb_queue_empty(list)) {
  745. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  746. head->qlen += list->qlen;
  747. __skb_queue_head_init(list);
  748. }
  749. }
  750. /**
  751. * skb_queue_splice_tail - join two skb lists, each list being a queue
  752. * @list: the new list to add
  753. * @head: the place to add it in the first list
  754. */
  755. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  756. struct sk_buff_head *head)
  757. {
  758. if (!skb_queue_empty(list)) {
  759. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  760. head->qlen += list->qlen;
  761. }
  762. }
  763. /**
  764. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  765. * @list: the new list to add
  766. * @head: the place to add it in the first list
  767. *
  768. * Each of the lists is a queue.
  769. * The list at @list is reinitialised
  770. */
  771. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  772. struct sk_buff_head *head)
  773. {
  774. if (!skb_queue_empty(list)) {
  775. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  776. head->qlen += list->qlen;
  777. __skb_queue_head_init(list);
  778. }
  779. }
  780. /**
  781. * __skb_queue_after - queue a buffer at the list head
  782. * @list: list to use
  783. * @prev: place after this buffer
  784. * @newsk: buffer to queue
  785. *
  786. * Queue a buffer int the middle of a list. This function takes no locks
  787. * and you must therefore hold required locks before calling it.
  788. *
  789. * A buffer cannot be placed on two lists at the same time.
  790. */
  791. static inline void __skb_queue_after(struct sk_buff_head *list,
  792. struct sk_buff *prev,
  793. struct sk_buff *newsk)
  794. {
  795. __skb_insert(newsk, prev, prev->next, list);
  796. }
  797. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  798. struct sk_buff_head *list);
  799. static inline void __skb_queue_before(struct sk_buff_head *list,
  800. struct sk_buff *next,
  801. struct sk_buff *newsk)
  802. {
  803. __skb_insert(newsk, next->prev, next, list);
  804. }
  805. /**
  806. * __skb_queue_head - queue a buffer at the list head
  807. * @list: list to use
  808. * @newsk: buffer to queue
  809. *
  810. * Queue a buffer at the start of a list. This function takes no locks
  811. * and you must therefore hold required locks before calling it.
  812. *
  813. * A buffer cannot be placed on two lists at the same time.
  814. */
  815. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  816. static inline void __skb_queue_head(struct sk_buff_head *list,
  817. struct sk_buff *newsk)
  818. {
  819. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  820. }
  821. /**
  822. * __skb_queue_tail - queue a buffer at the list tail
  823. * @list: list to use
  824. * @newsk: buffer to queue
  825. *
  826. * Queue a buffer at the end of a list. This function takes no locks
  827. * and you must therefore hold required locks before calling it.
  828. *
  829. * A buffer cannot be placed on two lists at the same time.
  830. */
  831. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  832. static inline void __skb_queue_tail(struct sk_buff_head *list,
  833. struct sk_buff *newsk)
  834. {
  835. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  836. }
  837. /*
  838. * remove sk_buff from list. _Must_ be called atomically, and with
  839. * the list known..
  840. */
  841. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  842. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  843. {
  844. struct sk_buff *next, *prev;
  845. list->qlen--;
  846. next = skb->next;
  847. prev = skb->prev;
  848. skb->next = skb->prev = NULL;
  849. next->prev = prev;
  850. prev->next = next;
  851. }
  852. /**
  853. * __skb_dequeue - remove from the head of the queue
  854. * @list: list to dequeue from
  855. *
  856. * Remove the head of the list. This function does not take any locks
  857. * so must be used with appropriate locks held only. The head item is
  858. * returned or %NULL if the list is empty.
  859. */
  860. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  861. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  862. {
  863. struct sk_buff *skb = skb_peek(list);
  864. if (skb)
  865. __skb_unlink(skb, list);
  866. return skb;
  867. }
  868. /**
  869. * __skb_dequeue_tail - remove from the tail of the queue
  870. * @list: list to dequeue from
  871. *
  872. * Remove the tail of the list. This function does not take any locks
  873. * so must be used with appropriate locks held only. The tail item is
  874. * returned or %NULL if the list is empty.
  875. */
  876. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  877. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  878. {
  879. struct sk_buff *skb = skb_peek_tail(list);
  880. if (skb)
  881. __skb_unlink(skb, list);
  882. return skb;
  883. }
  884. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  885. {
  886. return skb->data_len;
  887. }
  888. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  889. {
  890. return skb->len - skb->data_len;
  891. }
  892. static inline int skb_pagelen(const struct sk_buff *skb)
  893. {
  894. int i, len = 0;
  895. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  896. len += skb_shinfo(skb)->frags[i].size;
  897. return len + skb_headlen(skb);
  898. }
  899. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  900. struct page *page, int off, int size)
  901. {
  902. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  903. frag->page = page;
  904. frag->page_offset = off;
  905. frag->size = size;
  906. skb_shinfo(skb)->nr_frags = i + 1;
  907. }
  908. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  909. int off, int size);
  910. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  911. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  912. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  913. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  914. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  915. {
  916. return skb->head + skb->tail;
  917. }
  918. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  919. {
  920. skb->tail = skb->data - skb->head;
  921. }
  922. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  923. {
  924. skb_reset_tail_pointer(skb);
  925. skb->tail += offset;
  926. }
  927. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  928. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  929. {
  930. return skb->tail;
  931. }
  932. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  933. {
  934. skb->tail = skb->data;
  935. }
  936. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  937. {
  938. skb->tail = skb->data + offset;
  939. }
  940. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  941. /*
  942. * Add data to an sk_buff
  943. */
  944. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  945. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  946. {
  947. unsigned char *tmp = skb_tail_pointer(skb);
  948. SKB_LINEAR_ASSERT(skb);
  949. skb->tail += len;
  950. skb->len += len;
  951. return tmp;
  952. }
  953. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  954. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  955. {
  956. skb->data -= len;
  957. skb->len += len;
  958. return skb->data;
  959. }
  960. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  961. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  962. {
  963. skb->len -= len;
  964. BUG_ON(skb->len < skb->data_len);
  965. return skb->data += len;
  966. }
  967. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  968. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  969. {
  970. if (len > skb_headlen(skb) &&
  971. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  972. return NULL;
  973. skb->len -= len;
  974. return skb->data += len;
  975. }
  976. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  977. {
  978. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  979. }
  980. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  981. {
  982. if (likely(len <= skb_headlen(skb)))
  983. return 1;
  984. if (unlikely(len > skb->len))
  985. return 0;
  986. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  987. }
  988. /**
  989. * skb_headroom - bytes at buffer head
  990. * @skb: buffer to check
  991. *
  992. * Return the number of bytes of free space at the head of an &sk_buff.
  993. */
  994. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  995. {
  996. return skb->data - skb->head;
  997. }
  998. /**
  999. * skb_tailroom - bytes at buffer end
  1000. * @skb: buffer to check
  1001. *
  1002. * Return the number of bytes of free space at the tail of an sk_buff
  1003. */
  1004. static inline int skb_tailroom(const struct sk_buff *skb)
  1005. {
  1006. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1007. }
  1008. /**
  1009. * skb_reserve - adjust headroom
  1010. * @skb: buffer to alter
  1011. * @len: bytes to move
  1012. *
  1013. * Increase the headroom of an empty &sk_buff by reducing the tail
  1014. * room. This is only allowed for an empty buffer.
  1015. */
  1016. static inline void skb_reserve(struct sk_buff *skb, int len)
  1017. {
  1018. skb->data += len;
  1019. skb->tail += len;
  1020. }
  1021. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1022. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1023. {
  1024. return skb->head + skb->transport_header;
  1025. }
  1026. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1027. {
  1028. skb->transport_header = skb->data - skb->head;
  1029. }
  1030. static inline void skb_set_transport_header(struct sk_buff *skb,
  1031. const int offset)
  1032. {
  1033. skb_reset_transport_header(skb);
  1034. skb->transport_header += offset;
  1035. }
  1036. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1037. {
  1038. return skb->head + skb->network_header;
  1039. }
  1040. static inline void skb_reset_network_header(struct sk_buff *skb)
  1041. {
  1042. skb->network_header = skb->data - skb->head;
  1043. }
  1044. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1045. {
  1046. skb_reset_network_header(skb);
  1047. skb->network_header += offset;
  1048. }
  1049. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1050. {
  1051. return skb->head + skb->mac_header;
  1052. }
  1053. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1054. {
  1055. return skb->mac_header != ~0U;
  1056. }
  1057. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1058. {
  1059. skb->mac_header = skb->data - skb->head;
  1060. }
  1061. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1062. {
  1063. skb_reset_mac_header(skb);
  1064. skb->mac_header += offset;
  1065. }
  1066. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1067. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1068. {
  1069. return skb->transport_header;
  1070. }
  1071. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1072. {
  1073. skb->transport_header = skb->data;
  1074. }
  1075. static inline void skb_set_transport_header(struct sk_buff *skb,
  1076. const int offset)
  1077. {
  1078. skb->transport_header = skb->data + offset;
  1079. }
  1080. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1081. {
  1082. return skb->network_header;
  1083. }
  1084. static inline void skb_reset_network_header(struct sk_buff *skb)
  1085. {
  1086. skb->network_header = skb->data;
  1087. }
  1088. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1089. {
  1090. skb->network_header = skb->data + offset;
  1091. }
  1092. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1093. {
  1094. return skb->mac_header;
  1095. }
  1096. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1097. {
  1098. return skb->mac_header != NULL;
  1099. }
  1100. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1101. {
  1102. skb->mac_header = skb->data;
  1103. }
  1104. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1105. {
  1106. skb->mac_header = skb->data + offset;
  1107. }
  1108. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1109. static inline int skb_transport_offset(const struct sk_buff *skb)
  1110. {
  1111. return skb_transport_header(skb) - skb->data;
  1112. }
  1113. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1114. {
  1115. return skb->transport_header - skb->network_header;
  1116. }
  1117. static inline int skb_network_offset(const struct sk_buff *skb)
  1118. {
  1119. return skb_network_header(skb) - skb->data;
  1120. }
  1121. /*
  1122. * CPUs often take a performance hit when accessing unaligned memory
  1123. * locations. The actual performance hit varies, it can be small if the
  1124. * hardware handles it or large if we have to take an exception and fix it
  1125. * in software.
  1126. *
  1127. * Since an ethernet header is 14 bytes network drivers often end up with
  1128. * the IP header at an unaligned offset. The IP header can be aligned by
  1129. * shifting the start of the packet by 2 bytes. Drivers should do this
  1130. * with:
  1131. *
  1132. * skb_reserve(NET_IP_ALIGN);
  1133. *
  1134. * The downside to this alignment of the IP header is that the DMA is now
  1135. * unaligned. On some architectures the cost of an unaligned DMA is high
  1136. * and this cost outweighs the gains made by aligning the IP header.
  1137. *
  1138. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1139. * to be overridden.
  1140. */
  1141. #ifndef NET_IP_ALIGN
  1142. #define NET_IP_ALIGN 2
  1143. #endif
  1144. /*
  1145. * The networking layer reserves some headroom in skb data (via
  1146. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1147. * the header has to grow. In the default case, if the header has to grow
  1148. * 16 bytes or less we avoid the reallocation.
  1149. *
  1150. * Unfortunately this headroom changes the DMA alignment of the resulting
  1151. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1152. * on some architectures. An architecture can override this value,
  1153. * perhaps setting it to a cacheline in size (since that will maintain
  1154. * cacheline alignment of the DMA). It must be a power of 2.
  1155. *
  1156. * Various parts of the networking layer expect at least 16 bytes of
  1157. * headroom, you should not reduce this.
  1158. */
  1159. #ifndef NET_SKB_PAD
  1160. #define NET_SKB_PAD 16
  1161. #endif
  1162. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1163. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1164. {
  1165. if (unlikely(skb->data_len)) {
  1166. WARN_ON(1);
  1167. return;
  1168. }
  1169. skb->len = len;
  1170. skb_set_tail_pointer(skb, len);
  1171. }
  1172. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1173. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1174. {
  1175. if (skb->data_len)
  1176. return ___pskb_trim(skb, len);
  1177. __skb_trim(skb, len);
  1178. return 0;
  1179. }
  1180. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1181. {
  1182. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1183. }
  1184. /**
  1185. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1186. * @skb: buffer to alter
  1187. * @len: new length
  1188. *
  1189. * This is identical to pskb_trim except that the caller knows that
  1190. * the skb is not cloned so we should never get an error due to out-
  1191. * of-memory.
  1192. */
  1193. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1194. {
  1195. int err = pskb_trim(skb, len);
  1196. BUG_ON(err);
  1197. }
  1198. /**
  1199. * skb_orphan - orphan a buffer
  1200. * @skb: buffer to orphan
  1201. *
  1202. * If a buffer currently has an owner then we call the owner's
  1203. * destructor function and make the @skb unowned. The buffer continues
  1204. * to exist but is no longer charged to its former owner.
  1205. */
  1206. static inline void skb_orphan(struct sk_buff *skb)
  1207. {
  1208. if (skb->destructor)
  1209. skb->destructor(skb);
  1210. skb->destructor = NULL;
  1211. skb->sk = NULL;
  1212. }
  1213. /**
  1214. * __skb_queue_purge - empty a list
  1215. * @list: list to empty
  1216. *
  1217. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1218. * the list and one reference dropped. This function does not take the
  1219. * list lock and the caller must hold the relevant locks to use it.
  1220. */
  1221. extern void skb_queue_purge(struct sk_buff_head *list);
  1222. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1223. {
  1224. struct sk_buff *skb;
  1225. while ((skb = __skb_dequeue(list)) != NULL)
  1226. kfree_skb(skb);
  1227. }
  1228. /**
  1229. * __dev_alloc_skb - allocate an skbuff for receiving
  1230. * @length: length to allocate
  1231. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1232. *
  1233. * Allocate a new &sk_buff and assign it a usage count of one. The
  1234. * buffer has unspecified headroom built in. Users should allocate
  1235. * the headroom they think they need without accounting for the
  1236. * built in space. The built in space is used for optimisations.
  1237. *
  1238. * %NULL is returned if there is no free memory.
  1239. */
  1240. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1241. gfp_t gfp_mask)
  1242. {
  1243. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1244. if (likely(skb))
  1245. skb_reserve(skb, NET_SKB_PAD);
  1246. return skb;
  1247. }
  1248. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1249. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1250. unsigned int length, gfp_t gfp_mask);
  1251. /**
  1252. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1253. * @dev: network device to receive on
  1254. * @length: length to allocate
  1255. *
  1256. * Allocate a new &sk_buff and assign it a usage count of one. The
  1257. * buffer has unspecified headroom built in. Users should allocate
  1258. * the headroom they think they need without accounting for the
  1259. * built in space. The built in space is used for optimisations.
  1260. *
  1261. * %NULL is returned if there is no free memory. Although this function
  1262. * allocates memory it can be called from an interrupt.
  1263. */
  1264. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1265. unsigned int length)
  1266. {
  1267. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1268. }
  1269. extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
  1270. /**
  1271. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1272. * @dev: network device to receive on
  1273. *
  1274. * Allocate a new page node local to the specified device.
  1275. *
  1276. * %NULL is returned if there is no free memory.
  1277. */
  1278. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1279. {
  1280. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1281. }
  1282. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1283. {
  1284. __free_page(page);
  1285. }
  1286. /**
  1287. * skb_clone_writable - is the header of a clone writable
  1288. * @skb: buffer to check
  1289. * @len: length up to which to write
  1290. *
  1291. * Returns true if modifying the header part of the cloned buffer
  1292. * does not requires the data to be copied.
  1293. */
  1294. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1295. {
  1296. return !skb_header_cloned(skb) &&
  1297. skb_headroom(skb) + len <= skb->hdr_len;
  1298. }
  1299. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1300. int cloned)
  1301. {
  1302. int delta = 0;
  1303. if (headroom < NET_SKB_PAD)
  1304. headroom = NET_SKB_PAD;
  1305. if (headroom > skb_headroom(skb))
  1306. delta = headroom - skb_headroom(skb);
  1307. if (delta || cloned)
  1308. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1309. GFP_ATOMIC);
  1310. return 0;
  1311. }
  1312. /**
  1313. * skb_cow - copy header of skb when it is required
  1314. * @skb: buffer to cow
  1315. * @headroom: needed headroom
  1316. *
  1317. * If the skb passed lacks sufficient headroom or its data part
  1318. * is shared, data is reallocated. If reallocation fails, an error
  1319. * is returned and original skb is not changed.
  1320. *
  1321. * The result is skb with writable area skb->head...skb->tail
  1322. * and at least @headroom of space at head.
  1323. */
  1324. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1325. {
  1326. return __skb_cow(skb, headroom, skb_cloned(skb));
  1327. }
  1328. /**
  1329. * skb_cow_head - skb_cow but only making the head writable
  1330. * @skb: buffer to cow
  1331. * @headroom: needed headroom
  1332. *
  1333. * This function is identical to skb_cow except that we replace the
  1334. * skb_cloned check by skb_header_cloned. It should be used when
  1335. * you only need to push on some header and do not need to modify
  1336. * the data.
  1337. */
  1338. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1339. {
  1340. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1341. }
  1342. /**
  1343. * skb_padto - pad an skbuff up to a minimal size
  1344. * @skb: buffer to pad
  1345. * @len: minimal length
  1346. *
  1347. * Pads up a buffer to ensure the trailing bytes exist and are
  1348. * blanked. If the buffer already contains sufficient data it
  1349. * is untouched. Otherwise it is extended. Returns zero on
  1350. * success. The skb is freed on error.
  1351. */
  1352. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1353. {
  1354. unsigned int size = skb->len;
  1355. if (likely(size >= len))
  1356. return 0;
  1357. return skb_pad(skb, len - size);
  1358. }
  1359. static inline int skb_add_data(struct sk_buff *skb,
  1360. char __user *from, int copy)
  1361. {
  1362. const int off = skb->len;
  1363. if (skb->ip_summed == CHECKSUM_NONE) {
  1364. int err = 0;
  1365. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1366. copy, 0, &err);
  1367. if (!err) {
  1368. skb->csum = csum_block_add(skb->csum, csum, off);
  1369. return 0;
  1370. }
  1371. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1372. return 0;
  1373. __skb_trim(skb, off);
  1374. return -EFAULT;
  1375. }
  1376. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1377. struct page *page, int off)
  1378. {
  1379. if (i) {
  1380. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1381. return page == frag->page &&
  1382. off == frag->page_offset + frag->size;
  1383. }
  1384. return 0;
  1385. }
  1386. static inline int __skb_linearize(struct sk_buff *skb)
  1387. {
  1388. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1389. }
  1390. /**
  1391. * skb_linearize - convert paged skb to linear one
  1392. * @skb: buffer to linarize
  1393. *
  1394. * If there is no free memory -ENOMEM is returned, otherwise zero
  1395. * is returned and the old skb data released.
  1396. */
  1397. static inline int skb_linearize(struct sk_buff *skb)
  1398. {
  1399. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1400. }
  1401. /**
  1402. * skb_linearize_cow - make sure skb is linear and writable
  1403. * @skb: buffer to process
  1404. *
  1405. * If there is no free memory -ENOMEM is returned, otherwise zero
  1406. * is returned and the old skb data released.
  1407. */
  1408. static inline int skb_linearize_cow(struct sk_buff *skb)
  1409. {
  1410. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1411. __skb_linearize(skb) : 0;
  1412. }
  1413. /**
  1414. * skb_postpull_rcsum - update checksum for received skb after pull
  1415. * @skb: buffer to update
  1416. * @start: start of data before pull
  1417. * @len: length of data pulled
  1418. *
  1419. * After doing a pull on a received packet, you need to call this to
  1420. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1421. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1422. */
  1423. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1424. const void *start, unsigned int len)
  1425. {
  1426. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1427. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1428. }
  1429. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1430. /**
  1431. * pskb_trim_rcsum - trim received skb and update checksum
  1432. * @skb: buffer to trim
  1433. * @len: new length
  1434. *
  1435. * This is exactly the same as pskb_trim except that it ensures the
  1436. * checksum of received packets are still valid after the operation.
  1437. */
  1438. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1439. {
  1440. if (likely(len >= skb->len))
  1441. return 0;
  1442. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1443. skb->ip_summed = CHECKSUM_NONE;
  1444. return __pskb_trim(skb, len);
  1445. }
  1446. #define skb_queue_walk(queue, skb) \
  1447. for (skb = (queue)->next; \
  1448. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1449. skb = skb->next)
  1450. #define skb_queue_walk_safe(queue, skb, tmp) \
  1451. for (skb = (queue)->next, tmp = skb->next; \
  1452. skb != (struct sk_buff *)(queue); \
  1453. skb = tmp, tmp = skb->next)
  1454. #define skb_queue_walk_from(queue, skb) \
  1455. for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1456. skb = skb->next)
  1457. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1458. for (tmp = skb->next; \
  1459. skb != (struct sk_buff *)(queue); \
  1460. skb = tmp, tmp = skb->next)
  1461. #define skb_queue_reverse_walk(queue, skb) \
  1462. for (skb = (queue)->prev; \
  1463. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1464. skb = skb->prev)
  1465. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1466. int *peeked, int *err);
  1467. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1468. int noblock, int *err);
  1469. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1470. struct poll_table_struct *wait);
  1471. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1472. int offset, struct iovec *to,
  1473. int size);
  1474. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1475. int hlen,
  1476. struct iovec *iov);
  1477. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1478. int offset,
  1479. struct iovec *from,
  1480. int len);
  1481. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1482. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1483. unsigned int flags);
  1484. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1485. int len, __wsum csum);
  1486. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1487. void *to, int len);
  1488. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1489. const void *from, int len);
  1490. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1491. int offset, u8 *to, int len,
  1492. __wsum csum);
  1493. extern int skb_splice_bits(struct sk_buff *skb,
  1494. unsigned int offset,
  1495. struct pipe_inode_info *pipe,
  1496. unsigned int len,
  1497. unsigned int flags);
  1498. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1499. extern void skb_split(struct sk_buff *skb,
  1500. struct sk_buff *skb1, const u32 len);
  1501. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1502. int shiftlen);
  1503. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1504. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1505. int len, void *buffer)
  1506. {
  1507. int hlen = skb_headlen(skb);
  1508. if (hlen - offset >= len)
  1509. return skb->data + offset;
  1510. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1511. return NULL;
  1512. return buffer;
  1513. }
  1514. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1515. void *to,
  1516. const unsigned int len)
  1517. {
  1518. memcpy(to, skb->data, len);
  1519. }
  1520. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1521. const int offset, void *to,
  1522. const unsigned int len)
  1523. {
  1524. memcpy(to, skb->data + offset, len);
  1525. }
  1526. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1527. const void *from,
  1528. const unsigned int len)
  1529. {
  1530. memcpy(skb->data, from, len);
  1531. }
  1532. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1533. const int offset,
  1534. const void *from,
  1535. const unsigned int len)
  1536. {
  1537. memcpy(skb->data + offset, from, len);
  1538. }
  1539. extern void skb_init(void);
  1540. /**
  1541. * skb_get_timestamp - get timestamp from a skb
  1542. * @skb: skb to get stamp from
  1543. * @stamp: pointer to struct timeval to store stamp in
  1544. *
  1545. * Timestamps are stored in the skb as offsets to a base timestamp.
  1546. * This function converts the offset back to a struct timeval and stores
  1547. * it in stamp.
  1548. */
  1549. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1550. {
  1551. *stamp = ktime_to_timeval(skb->tstamp);
  1552. }
  1553. static inline void __net_timestamp(struct sk_buff *skb)
  1554. {
  1555. skb->tstamp = ktime_get_real();
  1556. }
  1557. static inline ktime_t net_timedelta(ktime_t t)
  1558. {
  1559. return ktime_sub(ktime_get_real(), t);
  1560. }
  1561. static inline ktime_t net_invalid_timestamp(void)
  1562. {
  1563. return ktime_set(0, 0);
  1564. }
  1565. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1566. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1567. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1568. {
  1569. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1570. }
  1571. /**
  1572. * skb_checksum_complete - Calculate checksum of an entire packet
  1573. * @skb: packet to process
  1574. *
  1575. * This function calculates the checksum over the entire packet plus
  1576. * the value of skb->csum. The latter can be used to supply the
  1577. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1578. * checksum.
  1579. *
  1580. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1581. * this function can be used to verify that checksum on received
  1582. * packets. In that case the function should return zero if the
  1583. * checksum is correct. In particular, this function will return zero
  1584. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1585. * hardware has already verified the correctness of the checksum.
  1586. */
  1587. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1588. {
  1589. return skb_csum_unnecessary(skb) ?
  1590. 0 : __skb_checksum_complete(skb);
  1591. }
  1592. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1593. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1594. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1595. {
  1596. if (nfct && atomic_dec_and_test(&nfct->use))
  1597. nf_conntrack_destroy(nfct);
  1598. }
  1599. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1600. {
  1601. if (nfct)
  1602. atomic_inc(&nfct->use);
  1603. }
  1604. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1605. {
  1606. if (skb)
  1607. atomic_inc(&skb->users);
  1608. }
  1609. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1610. {
  1611. if (skb)
  1612. kfree_skb(skb);
  1613. }
  1614. #endif
  1615. #ifdef CONFIG_BRIDGE_NETFILTER
  1616. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1617. {
  1618. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1619. kfree(nf_bridge);
  1620. }
  1621. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1622. {
  1623. if (nf_bridge)
  1624. atomic_inc(&nf_bridge->use);
  1625. }
  1626. #endif /* CONFIG_BRIDGE_NETFILTER */
  1627. static inline void nf_reset(struct sk_buff *skb)
  1628. {
  1629. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1630. nf_conntrack_put(skb->nfct);
  1631. skb->nfct = NULL;
  1632. nf_conntrack_put_reasm(skb->nfct_reasm);
  1633. skb->nfct_reasm = NULL;
  1634. #endif
  1635. #ifdef CONFIG_BRIDGE_NETFILTER
  1636. nf_bridge_put(skb->nf_bridge);
  1637. skb->nf_bridge = NULL;
  1638. #endif
  1639. }
  1640. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1641. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1642. {
  1643. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1644. dst->nfct = src->nfct;
  1645. nf_conntrack_get(src->nfct);
  1646. dst->nfctinfo = src->nfctinfo;
  1647. dst->nfct_reasm = src->nfct_reasm;
  1648. nf_conntrack_get_reasm(src->nfct_reasm);
  1649. #endif
  1650. #ifdef CONFIG_BRIDGE_NETFILTER
  1651. dst->nf_bridge = src->nf_bridge;
  1652. nf_bridge_get(src->nf_bridge);
  1653. #endif
  1654. }
  1655. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1656. {
  1657. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1658. nf_conntrack_put(dst->nfct);
  1659. nf_conntrack_put_reasm(dst->nfct_reasm);
  1660. #endif
  1661. #ifdef CONFIG_BRIDGE_NETFILTER
  1662. nf_bridge_put(dst->nf_bridge);
  1663. #endif
  1664. __nf_copy(dst, src);
  1665. }
  1666. #ifdef CONFIG_NETWORK_SECMARK
  1667. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1668. {
  1669. to->secmark = from->secmark;
  1670. }
  1671. static inline void skb_init_secmark(struct sk_buff *skb)
  1672. {
  1673. skb->secmark = 0;
  1674. }
  1675. #else
  1676. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1677. { }
  1678. static inline void skb_init_secmark(struct sk_buff *skb)
  1679. { }
  1680. #endif
  1681. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1682. {
  1683. skb->queue_mapping = queue_mapping;
  1684. }
  1685. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1686. {
  1687. return skb->queue_mapping;
  1688. }
  1689. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1690. {
  1691. to->queue_mapping = from->queue_mapping;
  1692. }
  1693. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  1694. {
  1695. skb->queue_mapping = rx_queue + 1;
  1696. }
  1697. static inline u16 skb_get_rx_queue(struct sk_buff *skb)
  1698. {
  1699. return skb->queue_mapping - 1;
  1700. }
  1701. static inline bool skb_rx_queue_recorded(struct sk_buff *skb)
  1702. {
  1703. return (skb->queue_mapping != 0);
  1704. }
  1705. #ifdef CONFIG_XFRM
  1706. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1707. {
  1708. return skb->sp;
  1709. }
  1710. #else
  1711. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  1712. {
  1713. return NULL;
  1714. }
  1715. #endif
  1716. static inline int skb_is_gso(const struct sk_buff *skb)
  1717. {
  1718. return skb_shinfo(skb)->gso_size;
  1719. }
  1720. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1721. {
  1722. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1723. }
  1724. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1725. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1726. {
  1727. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1728. * wanted then gso_type will be set. */
  1729. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1730. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1731. __skb_warn_lro_forwarding(skb);
  1732. return true;
  1733. }
  1734. return false;
  1735. }
  1736. static inline void skb_forward_csum(struct sk_buff *skb)
  1737. {
  1738. /* Unfortunately we don't support this one. Any brave souls? */
  1739. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1740. skb->ip_summed = CHECKSUM_NONE;
  1741. }
  1742. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1743. #endif /* __KERNEL__ */
  1744. #endif /* _LINUX_SKBUFF_H */