e1000_ethtool.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  69. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  70. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  71. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  72. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  73. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  74. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  75. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  76. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  77. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  78. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  79. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
  80. };
  81. #define E1000_STATS_LEN \
  82. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  83. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  84. "Register test (offline)", "Eeprom test (offline)",
  85. "Interrupt test (offline)", "Loopback test (offline)",
  86. "Link test (on/offline)"
  87. };
  88. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  89. static int
  90. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  91. {
  92. struct e1000_adapter *adapter = netdev_priv(netdev);
  93. struct e1000_hw *hw = &adapter->hw;
  94. if(hw->media_type == e1000_media_type_copper) {
  95. ecmd->supported = (SUPPORTED_10baseT_Half |
  96. SUPPORTED_10baseT_Full |
  97. SUPPORTED_100baseT_Half |
  98. SUPPORTED_100baseT_Full |
  99. SUPPORTED_1000baseT_Full|
  100. SUPPORTED_Autoneg |
  101. SUPPORTED_TP);
  102. ecmd->advertising = ADVERTISED_TP;
  103. if(hw->autoneg == 1) {
  104. ecmd->advertising |= ADVERTISED_Autoneg;
  105. /* the e1000 autoneg seems to match ethtool nicely */
  106. ecmd->advertising |= hw->autoneg_advertised;
  107. }
  108. ecmd->port = PORT_TP;
  109. ecmd->phy_address = hw->phy_addr;
  110. if(hw->mac_type == e1000_82543)
  111. ecmd->transceiver = XCVR_EXTERNAL;
  112. else
  113. ecmd->transceiver = XCVR_INTERNAL;
  114. } else {
  115. ecmd->supported = (SUPPORTED_1000baseT_Full |
  116. SUPPORTED_FIBRE |
  117. SUPPORTED_Autoneg);
  118. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  119. ADVERTISED_FIBRE |
  120. ADVERTISED_Autoneg);
  121. ecmd->port = PORT_FIBRE;
  122. if(hw->mac_type >= e1000_82545)
  123. ecmd->transceiver = XCVR_INTERNAL;
  124. else
  125. ecmd->transceiver = XCVR_EXTERNAL;
  126. }
  127. if(netif_carrier_ok(adapter->netdev)) {
  128. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  129. &adapter->link_duplex);
  130. ecmd->speed = adapter->link_speed;
  131. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  132. * and HALF_DUPLEX != DUPLEX_HALF */
  133. if(adapter->link_duplex == FULL_DUPLEX)
  134. ecmd->duplex = DUPLEX_FULL;
  135. else
  136. ecmd->duplex = DUPLEX_HALF;
  137. } else {
  138. ecmd->speed = -1;
  139. ecmd->duplex = -1;
  140. }
  141. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  142. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  143. return 0;
  144. }
  145. static int
  146. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  147. {
  148. struct e1000_adapter *adapter = netdev_priv(netdev);
  149. struct e1000_hw *hw = &adapter->hw;
  150. if(ecmd->autoneg == AUTONEG_ENABLE) {
  151. hw->autoneg = 1;
  152. if(hw->media_type == e1000_media_type_fiber)
  153. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  154. ADVERTISED_FIBRE |
  155. ADVERTISED_Autoneg;
  156. else
  157. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  158. ADVERTISED_10baseT_Full |
  159. ADVERTISED_100baseT_Half |
  160. ADVERTISED_100baseT_Full |
  161. ADVERTISED_1000baseT_Full|
  162. ADVERTISED_Autoneg |
  163. ADVERTISED_TP;
  164. ecmd->advertising = hw->autoneg_advertised;
  165. } else
  166. if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  167. return -EINVAL;
  168. /* reset the link */
  169. if(netif_running(adapter->netdev)) {
  170. e1000_down(adapter);
  171. e1000_reset(adapter);
  172. e1000_up(adapter);
  173. } else
  174. e1000_reset(adapter);
  175. return 0;
  176. }
  177. static void
  178. e1000_get_pauseparam(struct net_device *netdev,
  179. struct ethtool_pauseparam *pause)
  180. {
  181. struct e1000_adapter *adapter = netdev_priv(netdev);
  182. struct e1000_hw *hw = &adapter->hw;
  183. pause->autoneg =
  184. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  185. if(hw->fc == e1000_fc_rx_pause)
  186. pause->rx_pause = 1;
  187. else if(hw->fc == e1000_fc_tx_pause)
  188. pause->tx_pause = 1;
  189. else if(hw->fc == e1000_fc_full) {
  190. pause->rx_pause = 1;
  191. pause->tx_pause = 1;
  192. }
  193. }
  194. static int
  195. e1000_set_pauseparam(struct net_device *netdev,
  196. struct ethtool_pauseparam *pause)
  197. {
  198. struct e1000_adapter *adapter = netdev_priv(netdev);
  199. struct e1000_hw *hw = &adapter->hw;
  200. adapter->fc_autoneg = pause->autoneg;
  201. if(pause->rx_pause && pause->tx_pause)
  202. hw->fc = e1000_fc_full;
  203. else if(pause->rx_pause && !pause->tx_pause)
  204. hw->fc = e1000_fc_rx_pause;
  205. else if(!pause->rx_pause && pause->tx_pause)
  206. hw->fc = e1000_fc_tx_pause;
  207. else if(!pause->rx_pause && !pause->tx_pause)
  208. hw->fc = e1000_fc_none;
  209. hw->original_fc = hw->fc;
  210. if(adapter->fc_autoneg == AUTONEG_ENABLE) {
  211. if(netif_running(adapter->netdev)) {
  212. e1000_down(adapter);
  213. e1000_up(adapter);
  214. } else
  215. e1000_reset(adapter);
  216. }
  217. else
  218. return ((hw->media_type == e1000_media_type_fiber) ?
  219. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  220. return 0;
  221. }
  222. static uint32_t
  223. e1000_get_rx_csum(struct net_device *netdev)
  224. {
  225. struct e1000_adapter *adapter = netdev_priv(netdev);
  226. return adapter->rx_csum;
  227. }
  228. static int
  229. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  230. {
  231. struct e1000_adapter *adapter = netdev_priv(netdev);
  232. adapter->rx_csum = data;
  233. if(netif_running(netdev)) {
  234. e1000_down(adapter);
  235. e1000_up(adapter);
  236. } else
  237. e1000_reset(adapter);
  238. return 0;
  239. }
  240. static uint32_t
  241. e1000_get_tx_csum(struct net_device *netdev)
  242. {
  243. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  244. }
  245. static int
  246. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  247. {
  248. struct e1000_adapter *adapter = netdev_priv(netdev);
  249. if(adapter->hw.mac_type < e1000_82543) {
  250. if (!data)
  251. return -EINVAL;
  252. return 0;
  253. }
  254. if (data)
  255. netdev->features |= NETIF_F_HW_CSUM;
  256. else
  257. netdev->features &= ~NETIF_F_HW_CSUM;
  258. return 0;
  259. }
  260. #ifdef NETIF_F_TSO
  261. static int
  262. e1000_set_tso(struct net_device *netdev, uint32_t data)
  263. {
  264. struct e1000_adapter *adapter = netdev_priv(netdev);
  265. if((adapter->hw.mac_type < e1000_82544) ||
  266. (adapter->hw.mac_type == e1000_82547))
  267. return data ? -EINVAL : 0;
  268. if (data)
  269. netdev->features |= NETIF_F_TSO;
  270. else
  271. netdev->features &= ~NETIF_F_TSO;
  272. return 0;
  273. }
  274. #endif /* NETIF_F_TSO */
  275. static uint32_t
  276. e1000_get_msglevel(struct net_device *netdev)
  277. {
  278. struct e1000_adapter *adapter = netdev_priv(netdev);
  279. return adapter->msg_enable;
  280. }
  281. static void
  282. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  283. {
  284. struct e1000_adapter *adapter = netdev_priv(netdev);
  285. adapter->msg_enable = data;
  286. }
  287. static int
  288. e1000_get_regs_len(struct net_device *netdev)
  289. {
  290. #define E1000_REGS_LEN 32
  291. return E1000_REGS_LEN * sizeof(uint32_t);
  292. }
  293. static void
  294. e1000_get_regs(struct net_device *netdev,
  295. struct ethtool_regs *regs, void *p)
  296. {
  297. struct e1000_adapter *adapter = netdev_priv(netdev);
  298. struct e1000_hw *hw = &adapter->hw;
  299. uint32_t *regs_buff = p;
  300. uint16_t phy_data;
  301. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  302. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  303. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  304. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  305. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  306. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  307. regs_buff[4] = E1000_READ_REG(hw, RDH);
  308. regs_buff[5] = E1000_READ_REG(hw, RDT);
  309. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  310. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  311. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  312. regs_buff[9] = E1000_READ_REG(hw, TDH);
  313. regs_buff[10] = E1000_READ_REG(hw, TDT);
  314. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  315. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  316. if(hw->phy_type == e1000_phy_igp) {
  317. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  318. IGP01E1000_PHY_AGC_A);
  319. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  320. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  321. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  322. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  323. IGP01E1000_PHY_AGC_B);
  324. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  325. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  326. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  327. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  328. IGP01E1000_PHY_AGC_C);
  329. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  330. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  331. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  332. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  333. IGP01E1000_PHY_AGC_D);
  334. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  335. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  336. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  337. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  338. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  339. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  340. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  341. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  342. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  343. IGP01E1000_PHY_PCS_INIT_REG);
  344. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  345. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  346. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  347. regs_buff[20] = 0; /* polarity correction enabled (always) */
  348. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  349. regs_buff[23] = regs_buff[18]; /* mdix mode */
  350. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  351. } else {
  352. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  353. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  354. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  355. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  356. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  357. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  358. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  359. regs_buff[18] = regs_buff[13]; /* cable polarity */
  360. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  361. regs_buff[20] = regs_buff[17]; /* polarity correction */
  362. /* phy receive errors */
  363. regs_buff[22] = adapter->phy_stats.receive_errors;
  364. regs_buff[23] = regs_buff[13]; /* mdix mode */
  365. }
  366. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  367. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  368. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  369. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  370. if(hw->mac_type >= e1000_82540 &&
  371. hw->media_type == e1000_media_type_copper) {
  372. regs_buff[26] = E1000_READ_REG(hw, MANC);
  373. }
  374. }
  375. static int
  376. e1000_get_eeprom_len(struct net_device *netdev)
  377. {
  378. struct e1000_adapter *adapter = netdev_priv(netdev);
  379. return adapter->hw.eeprom.word_size * 2;
  380. }
  381. static int
  382. e1000_get_eeprom(struct net_device *netdev,
  383. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  384. {
  385. struct e1000_adapter *adapter = netdev_priv(netdev);
  386. struct e1000_hw *hw = &adapter->hw;
  387. uint16_t *eeprom_buff;
  388. int first_word, last_word;
  389. int ret_val = 0;
  390. uint16_t i;
  391. if(eeprom->len == 0)
  392. return -EINVAL;
  393. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  394. first_word = eeprom->offset >> 1;
  395. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  396. eeprom_buff = kmalloc(sizeof(uint16_t) *
  397. (last_word - first_word + 1), GFP_KERNEL);
  398. if(!eeprom_buff)
  399. return -ENOMEM;
  400. if(hw->eeprom.type == e1000_eeprom_spi)
  401. ret_val = e1000_read_eeprom(hw, first_word,
  402. last_word - first_word + 1,
  403. eeprom_buff);
  404. else {
  405. for (i = 0; i < last_word - first_word + 1; i++)
  406. if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  407. &eeprom_buff[i])))
  408. break;
  409. }
  410. /* Device's eeprom is always little-endian, word addressable */
  411. for (i = 0; i < last_word - first_word + 1; i++)
  412. le16_to_cpus(&eeprom_buff[i]);
  413. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  414. eeprom->len);
  415. kfree(eeprom_buff);
  416. return ret_val;
  417. }
  418. static int
  419. e1000_set_eeprom(struct net_device *netdev,
  420. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  421. {
  422. struct e1000_adapter *adapter = netdev_priv(netdev);
  423. struct e1000_hw *hw = &adapter->hw;
  424. uint16_t *eeprom_buff;
  425. void *ptr;
  426. int max_len, first_word, last_word, ret_val = 0;
  427. uint16_t i;
  428. if(eeprom->len == 0)
  429. return -EOPNOTSUPP;
  430. if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  431. return -EFAULT;
  432. max_len = hw->eeprom.word_size * 2;
  433. first_word = eeprom->offset >> 1;
  434. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  435. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  436. if(!eeprom_buff)
  437. return -ENOMEM;
  438. ptr = (void *)eeprom_buff;
  439. if(eeprom->offset & 1) {
  440. /* need read/modify/write of first changed EEPROM word */
  441. /* only the second byte of the word is being modified */
  442. ret_val = e1000_read_eeprom(hw, first_word, 1,
  443. &eeprom_buff[0]);
  444. ptr++;
  445. }
  446. if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  447. /* need read/modify/write of last changed EEPROM word */
  448. /* only the first byte of the word is being modified */
  449. ret_val = e1000_read_eeprom(hw, last_word, 1,
  450. &eeprom_buff[last_word - first_word]);
  451. }
  452. /* Device's eeprom is always little-endian, word addressable */
  453. for (i = 0; i < last_word - first_word + 1; i++)
  454. le16_to_cpus(&eeprom_buff[i]);
  455. memcpy(ptr, bytes, eeprom->len);
  456. for (i = 0; i < last_word - first_word + 1; i++)
  457. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  458. ret_val = e1000_write_eeprom(hw, first_word,
  459. last_word - first_word + 1, eeprom_buff);
  460. /* Update the checksum over the first part of the EEPROM if needed */
  461. if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
  462. e1000_update_eeprom_checksum(hw);
  463. kfree(eeprom_buff);
  464. return ret_val;
  465. }
  466. static void
  467. e1000_get_drvinfo(struct net_device *netdev,
  468. struct ethtool_drvinfo *drvinfo)
  469. {
  470. struct e1000_adapter *adapter = netdev_priv(netdev);
  471. strncpy(drvinfo->driver, e1000_driver_name, 32);
  472. strncpy(drvinfo->version, e1000_driver_version, 32);
  473. strncpy(drvinfo->fw_version, "N/A", 32);
  474. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  475. drvinfo->n_stats = E1000_STATS_LEN;
  476. drvinfo->testinfo_len = E1000_TEST_LEN;
  477. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  478. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  479. }
  480. static void
  481. e1000_get_ringparam(struct net_device *netdev,
  482. struct ethtool_ringparam *ring)
  483. {
  484. struct e1000_adapter *adapter = netdev_priv(netdev);
  485. e1000_mac_type mac_type = adapter->hw.mac_type;
  486. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  487. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  488. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  489. E1000_MAX_82544_RXD;
  490. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  491. E1000_MAX_82544_TXD;
  492. ring->rx_mini_max_pending = 0;
  493. ring->rx_jumbo_max_pending = 0;
  494. ring->rx_pending = rxdr->count;
  495. ring->tx_pending = txdr->count;
  496. ring->rx_mini_pending = 0;
  497. ring->rx_jumbo_pending = 0;
  498. }
  499. static int
  500. e1000_set_ringparam(struct net_device *netdev,
  501. struct ethtool_ringparam *ring)
  502. {
  503. struct e1000_adapter *adapter = netdev_priv(netdev);
  504. e1000_mac_type mac_type = adapter->hw.mac_type;
  505. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  506. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  507. struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
  508. int err;
  509. tx_old = adapter->tx_ring;
  510. rx_old = adapter->rx_ring;
  511. if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  512. return -EINVAL;
  513. if(netif_running(adapter->netdev))
  514. e1000_down(adapter);
  515. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  516. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  517. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  518. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  519. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  520. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  521. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  522. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  523. if(netif_running(adapter->netdev)) {
  524. /* Try to get new resources before deleting old */
  525. if((err = e1000_setup_rx_resources(adapter)))
  526. goto err_setup_rx;
  527. if((err = e1000_setup_tx_resources(adapter)))
  528. goto err_setup_tx;
  529. /* save the new, restore the old in order to free it,
  530. * then restore the new back again */
  531. rx_new = adapter->rx_ring;
  532. tx_new = adapter->tx_ring;
  533. adapter->rx_ring = rx_old;
  534. adapter->tx_ring = tx_old;
  535. e1000_free_rx_resources(adapter);
  536. e1000_free_tx_resources(adapter);
  537. adapter->rx_ring = rx_new;
  538. adapter->tx_ring = tx_new;
  539. if((err = e1000_up(adapter)))
  540. return err;
  541. }
  542. return 0;
  543. err_setup_tx:
  544. e1000_free_rx_resources(adapter);
  545. err_setup_rx:
  546. adapter->rx_ring = rx_old;
  547. adapter->tx_ring = tx_old;
  548. e1000_up(adapter);
  549. return err;
  550. }
  551. #define REG_PATTERN_TEST(R, M, W) \
  552. { \
  553. uint32_t pat, value; \
  554. uint32_t test[] = \
  555. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  556. for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  557. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  558. value = E1000_READ_REG(&adapter->hw, R); \
  559. if(value != (test[pat] & W & M)) { \
  560. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  561. "0x%08X expected 0x%08X\n", \
  562. E1000_##R, value, (test[pat] & W & M)); \
  563. *data = (adapter->hw.mac_type < e1000_82543) ? \
  564. E1000_82542_##R : E1000_##R; \
  565. return 1; \
  566. } \
  567. } \
  568. }
  569. #define REG_SET_AND_CHECK(R, M, W) \
  570. { \
  571. uint32_t value; \
  572. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  573. value = E1000_READ_REG(&adapter->hw, R); \
  574. if((W & M) != (value & M)) { \
  575. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  576. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  577. *data = (adapter->hw.mac_type < e1000_82543) ? \
  578. E1000_82542_##R : E1000_##R; \
  579. return 1; \
  580. } \
  581. }
  582. static int
  583. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  584. {
  585. uint32_t value, before, after;
  586. uint32_t i, toggle;
  587. /* The status register is Read Only, so a write should fail.
  588. * Some bits that get toggled are ignored.
  589. */
  590. switch (adapter->hw.mac_type) {
  591. /* there are several bits on newer hardware that are r/w */
  592. case e1000_82571:
  593. case e1000_82572:
  594. toggle = 0x7FFFF3FF;
  595. break;
  596. case e1000_82573:
  597. toggle = 0x7FFFF033;
  598. break;
  599. default:
  600. toggle = 0xFFFFF833;
  601. break;
  602. }
  603. before = E1000_READ_REG(&adapter->hw, STATUS);
  604. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  605. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  606. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  607. if(value != after) {
  608. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  609. "0x%08X expected: 0x%08X\n", after, value);
  610. *data = 1;
  611. return 1;
  612. }
  613. /* restore previous status */
  614. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  615. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  616. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  617. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  618. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  619. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  620. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  621. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  622. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  623. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  624. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  625. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  626. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  627. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  628. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  629. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  630. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  631. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  632. if(adapter->hw.mac_type >= e1000_82543) {
  633. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  634. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  635. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  636. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  637. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  638. for(i = 0; i < E1000_RAR_ENTRIES; i++) {
  639. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  640. 0xFFFFFFFF);
  641. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  642. 0xFFFFFFFF);
  643. }
  644. } else {
  645. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  646. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  647. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  648. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  649. }
  650. for(i = 0; i < E1000_MC_TBL_SIZE; i++)
  651. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  652. *data = 0;
  653. return 0;
  654. }
  655. static int
  656. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  657. {
  658. uint16_t temp;
  659. uint16_t checksum = 0;
  660. uint16_t i;
  661. *data = 0;
  662. /* Read and add up the contents of the EEPROM */
  663. for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  664. if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  665. *data = 1;
  666. break;
  667. }
  668. checksum += temp;
  669. }
  670. /* If Checksum is not Correct return error else test passed */
  671. if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  672. *data = 2;
  673. return *data;
  674. }
  675. static irqreturn_t
  676. e1000_test_intr(int irq,
  677. void *data,
  678. struct pt_regs *regs)
  679. {
  680. struct net_device *netdev = (struct net_device *) data;
  681. struct e1000_adapter *adapter = netdev_priv(netdev);
  682. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  683. return IRQ_HANDLED;
  684. }
  685. static int
  686. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  687. {
  688. struct net_device *netdev = adapter->netdev;
  689. uint32_t mask, i=0, shared_int = TRUE;
  690. uint32_t irq = adapter->pdev->irq;
  691. *data = 0;
  692. /* Hook up test interrupt handler just for this test */
  693. if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  694. shared_int = FALSE;
  695. } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  696. netdev->name, netdev)){
  697. *data = 1;
  698. return -1;
  699. }
  700. /* Disable all the interrupts */
  701. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  702. msec_delay(10);
  703. /* Test each interrupt */
  704. for(; i < 10; i++) {
  705. /* Interrupt to test */
  706. mask = 1 << i;
  707. if(!shared_int) {
  708. /* Disable the interrupt to be reported in
  709. * the cause register and then force the same
  710. * interrupt and see if one gets posted. If
  711. * an interrupt was posted to the bus, the
  712. * test failed.
  713. */
  714. adapter->test_icr = 0;
  715. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  716. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  717. msec_delay(10);
  718. if(adapter->test_icr & mask) {
  719. *data = 3;
  720. break;
  721. }
  722. }
  723. /* Enable the interrupt to be reported in
  724. * the cause register and then force the same
  725. * interrupt and see if one gets posted. If
  726. * an interrupt was not posted to the bus, the
  727. * test failed.
  728. */
  729. adapter->test_icr = 0;
  730. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  731. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  732. msec_delay(10);
  733. if(!(adapter->test_icr & mask)) {
  734. *data = 4;
  735. break;
  736. }
  737. if(!shared_int) {
  738. /* Disable the other interrupts to be reported in
  739. * the cause register and then force the other
  740. * interrupts and see if any get posted. If
  741. * an interrupt was posted to the bus, the
  742. * test failed.
  743. */
  744. adapter->test_icr = 0;
  745. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  746. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  747. msec_delay(10);
  748. if(adapter->test_icr) {
  749. *data = 5;
  750. break;
  751. }
  752. }
  753. }
  754. /* Disable all the interrupts */
  755. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  756. msec_delay(10);
  757. /* Unhook test interrupt handler */
  758. free_irq(irq, netdev);
  759. return *data;
  760. }
  761. static void
  762. e1000_free_desc_rings(struct e1000_adapter *adapter)
  763. {
  764. struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
  765. struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
  766. struct pci_dev *pdev = adapter->pdev;
  767. int i;
  768. if(txdr->desc && txdr->buffer_info) {
  769. for(i = 0; i < txdr->count; i++) {
  770. if(txdr->buffer_info[i].dma)
  771. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  772. txdr->buffer_info[i].length,
  773. PCI_DMA_TODEVICE);
  774. if(txdr->buffer_info[i].skb)
  775. dev_kfree_skb(txdr->buffer_info[i].skb);
  776. }
  777. }
  778. if(rxdr->desc && rxdr->buffer_info) {
  779. for(i = 0; i < rxdr->count; i++) {
  780. if(rxdr->buffer_info[i].dma)
  781. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  782. rxdr->buffer_info[i].length,
  783. PCI_DMA_FROMDEVICE);
  784. if(rxdr->buffer_info[i].skb)
  785. dev_kfree_skb(rxdr->buffer_info[i].skb);
  786. }
  787. }
  788. if(txdr->desc)
  789. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  790. if(rxdr->desc)
  791. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  792. if(txdr->buffer_info)
  793. kfree(txdr->buffer_info);
  794. if(rxdr->buffer_info)
  795. kfree(rxdr->buffer_info);
  796. return;
  797. }
  798. static int
  799. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  800. {
  801. struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
  802. struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
  803. struct pci_dev *pdev = adapter->pdev;
  804. uint32_t rctl;
  805. int size, i, ret_val;
  806. /* Setup Tx descriptor ring and Tx buffers */
  807. if(!txdr->count)
  808. txdr->count = E1000_DEFAULT_TXD;
  809. size = txdr->count * sizeof(struct e1000_buffer);
  810. if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  811. ret_val = 1;
  812. goto err_nomem;
  813. }
  814. memset(txdr->buffer_info, 0, size);
  815. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  816. E1000_ROUNDUP(txdr->size, 4096);
  817. if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  818. ret_val = 2;
  819. goto err_nomem;
  820. }
  821. memset(txdr->desc, 0, txdr->size);
  822. txdr->next_to_use = txdr->next_to_clean = 0;
  823. E1000_WRITE_REG(&adapter->hw, TDBAL,
  824. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  825. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  826. E1000_WRITE_REG(&adapter->hw, TDLEN,
  827. txdr->count * sizeof(struct e1000_tx_desc));
  828. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  829. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  830. E1000_WRITE_REG(&adapter->hw, TCTL,
  831. E1000_TCTL_PSP | E1000_TCTL_EN |
  832. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  833. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  834. for(i = 0; i < txdr->count; i++) {
  835. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  836. struct sk_buff *skb;
  837. unsigned int size = 1024;
  838. if(!(skb = alloc_skb(size, GFP_KERNEL))) {
  839. ret_val = 3;
  840. goto err_nomem;
  841. }
  842. skb_put(skb, size);
  843. txdr->buffer_info[i].skb = skb;
  844. txdr->buffer_info[i].length = skb->len;
  845. txdr->buffer_info[i].dma =
  846. pci_map_single(pdev, skb->data, skb->len,
  847. PCI_DMA_TODEVICE);
  848. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  849. tx_desc->lower.data = cpu_to_le32(skb->len);
  850. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  851. E1000_TXD_CMD_IFCS |
  852. E1000_TXD_CMD_RPS);
  853. tx_desc->upper.data = 0;
  854. }
  855. /* Setup Rx descriptor ring and Rx buffers */
  856. if(!rxdr->count)
  857. rxdr->count = E1000_DEFAULT_RXD;
  858. size = rxdr->count * sizeof(struct e1000_buffer);
  859. if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  860. ret_val = 4;
  861. goto err_nomem;
  862. }
  863. memset(rxdr->buffer_info, 0, size);
  864. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  865. if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  866. ret_val = 5;
  867. goto err_nomem;
  868. }
  869. memset(rxdr->desc, 0, rxdr->size);
  870. rxdr->next_to_use = rxdr->next_to_clean = 0;
  871. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  872. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  873. E1000_WRITE_REG(&adapter->hw, RDBAL,
  874. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  875. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  876. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  877. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  878. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  879. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  880. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  881. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  882. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  883. for(i = 0; i < rxdr->count; i++) {
  884. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  885. struct sk_buff *skb;
  886. if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  887. GFP_KERNEL))) {
  888. ret_val = 6;
  889. goto err_nomem;
  890. }
  891. skb_reserve(skb, NET_IP_ALIGN);
  892. rxdr->buffer_info[i].skb = skb;
  893. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  894. rxdr->buffer_info[i].dma =
  895. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  896. PCI_DMA_FROMDEVICE);
  897. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  898. memset(skb->data, 0x00, skb->len);
  899. }
  900. return 0;
  901. err_nomem:
  902. e1000_free_desc_rings(adapter);
  903. return ret_val;
  904. }
  905. static void
  906. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  907. {
  908. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  909. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  910. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  911. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  912. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  913. }
  914. static void
  915. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  916. {
  917. uint16_t phy_reg;
  918. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  919. * Extended PHY Specific Control Register to 25MHz clock. This
  920. * value defaults back to a 2.5MHz clock when the PHY is reset.
  921. */
  922. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  923. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  924. e1000_write_phy_reg(&adapter->hw,
  925. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  926. /* In addition, because of the s/w reset above, we need to enable
  927. * CRS on TX. This must be set for both full and half duplex
  928. * operation.
  929. */
  930. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  931. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  932. e1000_write_phy_reg(&adapter->hw,
  933. M88E1000_PHY_SPEC_CTRL, phy_reg);
  934. }
  935. static int
  936. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  937. {
  938. uint32_t ctrl_reg;
  939. uint16_t phy_reg;
  940. /* Setup the Device Control Register for PHY loopback test. */
  941. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  942. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  943. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  944. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  945. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  946. E1000_CTRL_FD); /* Force Duplex to FULL */
  947. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  948. /* Read the PHY Specific Control Register (0x10) */
  949. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  950. /* Clear Auto-Crossover bits in PHY Specific Control Register
  951. * (bits 6:5).
  952. */
  953. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  954. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  955. /* Perform software reset on the PHY */
  956. e1000_phy_reset(&adapter->hw);
  957. /* Have to setup TX_CLK and TX_CRS after software reset */
  958. e1000_phy_reset_clk_and_crs(adapter);
  959. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  960. /* Wait for reset to complete. */
  961. udelay(500);
  962. /* Have to setup TX_CLK and TX_CRS after software reset */
  963. e1000_phy_reset_clk_and_crs(adapter);
  964. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  965. e1000_phy_disable_receiver(adapter);
  966. /* Set the loopback bit in the PHY control register. */
  967. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  968. phy_reg |= MII_CR_LOOPBACK;
  969. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  970. /* Setup TX_CLK and TX_CRS one more time. */
  971. e1000_phy_reset_clk_and_crs(adapter);
  972. /* Check Phy Configuration */
  973. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  974. if(phy_reg != 0x4100)
  975. return 9;
  976. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  977. if(phy_reg != 0x0070)
  978. return 10;
  979. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  980. if(phy_reg != 0x001A)
  981. return 11;
  982. return 0;
  983. }
  984. static int
  985. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  986. {
  987. uint32_t ctrl_reg = 0;
  988. uint32_t stat_reg = 0;
  989. adapter->hw.autoneg = FALSE;
  990. if(adapter->hw.phy_type == e1000_phy_m88) {
  991. /* Auto-MDI/MDIX Off */
  992. e1000_write_phy_reg(&adapter->hw,
  993. M88E1000_PHY_SPEC_CTRL, 0x0808);
  994. /* reset to update Auto-MDI/MDIX */
  995. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  996. /* autoneg off */
  997. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  998. }
  999. /* force 1000, set loopback */
  1000. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1001. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1002. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1003. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1004. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1005. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1006. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1007. E1000_CTRL_FD); /* Force Duplex to FULL */
  1008. if(adapter->hw.media_type == e1000_media_type_copper &&
  1009. adapter->hw.phy_type == e1000_phy_m88) {
  1010. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1011. } else {
  1012. /* Set the ILOS bit on the fiber Nic is half
  1013. * duplex link is detected. */
  1014. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1015. if((stat_reg & E1000_STATUS_FD) == 0)
  1016. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1017. }
  1018. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1019. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1020. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1021. */
  1022. if(adapter->hw.phy_type == e1000_phy_m88)
  1023. e1000_phy_disable_receiver(adapter);
  1024. udelay(500);
  1025. return 0;
  1026. }
  1027. static int
  1028. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1029. {
  1030. uint16_t phy_reg = 0;
  1031. uint16_t count = 0;
  1032. switch (adapter->hw.mac_type) {
  1033. case e1000_82543:
  1034. if(adapter->hw.media_type == e1000_media_type_copper) {
  1035. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1036. * Some PHY registers get corrupted at random, so
  1037. * attempt this 10 times.
  1038. */
  1039. while(e1000_nonintegrated_phy_loopback(adapter) &&
  1040. count++ < 10);
  1041. if(count < 11)
  1042. return 0;
  1043. }
  1044. break;
  1045. case e1000_82544:
  1046. case e1000_82540:
  1047. case e1000_82545:
  1048. case e1000_82545_rev_3:
  1049. case e1000_82546:
  1050. case e1000_82546_rev_3:
  1051. case e1000_82541:
  1052. case e1000_82541_rev_2:
  1053. case e1000_82547:
  1054. case e1000_82547_rev_2:
  1055. case e1000_82571:
  1056. case e1000_82572:
  1057. case e1000_82573:
  1058. return e1000_integrated_phy_loopback(adapter);
  1059. break;
  1060. default:
  1061. /* Default PHY loopback work is to read the MII
  1062. * control register and assert bit 14 (loopback mode).
  1063. */
  1064. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1065. phy_reg |= MII_CR_LOOPBACK;
  1066. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1067. return 0;
  1068. break;
  1069. }
  1070. return 8;
  1071. }
  1072. static int
  1073. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1074. {
  1075. uint32_t rctl;
  1076. if(adapter->hw.media_type == e1000_media_type_fiber ||
  1077. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1078. if(adapter->hw.mac_type == e1000_82545 ||
  1079. adapter->hw.mac_type == e1000_82546 ||
  1080. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1081. adapter->hw.mac_type == e1000_82546_rev_3)
  1082. return e1000_set_phy_loopback(adapter);
  1083. else {
  1084. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1085. rctl |= E1000_RCTL_LBM_TCVR;
  1086. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1087. return 0;
  1088. }
  1089. } else if(adapter->hw.media_type == e1000_media_type_copper)
  1090. return e1000_set_phy_loopback(adapter);
  1091. return 7;
  1092. }
  1093. static void
  1094. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1095. {
  1096. uint32_t rctl;
  1097. uint16_t phy_reg;
  1098. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1099. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1100. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1101. if(adapter->hw.media_type == e1000_media_type_copper ||
  1102. ((adapter->hw.media_type == e1000_media_type_fiber ||
  1103. adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1104. (adapter->hw.mac_type == e1000_82545 ||
  1105. adapter->hw.mac_type == e1000_82546 ||
  1106. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1107. adapter->hw.mac_type == e1000_82546_rev_3))) {
  1108. adapter->hw.autoneg = TRUE;
  1109. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1110. if(phy_reg & MII_CR_LOOPBACK) {
  1111. phy_reg &= ~MII_CR_LOOPBACK;
  1112. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1113. e1000_phy_reset(&adapter->hw);
  1114. }
  1115. }
  1116. }
  1117. static void
  1118. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1119. {
  1120. memset(skb->data, 0xFF, frame_size);
  1121. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1122. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1123. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1124. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1125. }
  1126. static int
  1127. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1128. {
  1129. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1130. if(*(skb->data + 3) == 0xFF) {
  1131. if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1132. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1133. return 0;
  1134. }
  1135. }
  1136. return 13;
  1137. }
  1138. static int
  1139. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1140. {
  1141. struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
  1142. struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
  1143. struct pci_dev *pdev = adapter->pdev;
  1144. int i, j, k, l, lc, good_cnt, ret_val=0;
  1145. unsigned long time;
  1146. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1147. /* Calculate the loop count based on the largest descriptor ring
  1148. * The idea is to wrap the largest ring a number of times using 64
  1149. * send/receive pairs during each loop
  1150. */
  1151. if(rxdr->count <= txdr->count)
  1152. lc = ((txdr->count / 64) * 2) + 1;
  1153. else
  1154. lc = ((rxdr->count / 64) * 2) + 1;
  1155. k = l = 0;
  1156. for(j = 0; j <= lc; j++) { /* loop count loop */
  1157. for(i = 0; i < 64; i++) { /* send the packets */
  1158. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1159. 1024);
  1160. pci_dma_sync_single_for_device(pdev,
  1161. txdr->buffer_info[k].dma,
  1162. txdr->buffer_info[k].length,
  1163. PCI_DMA_TODEVICE);
  1164. if(unlikely(++k == txdr->count)) k = 0;
  1165. }
  1166. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1167. msec_delay(200);
  1168. time = jiffies; /* set the start time for the receive */
  1169. good_cnt = 0;
  1170. do { /* receive the sent packets */
  1171. pci_dma_sync_single_for_cpu(pdev,
  1172. rxdr->buffer_info[l].dma,
  1173. rxdr->buffer_info[l].length,
  1174. PCI_DMA_FROMDEVICE);
  1175. ret_val = e1000_check_lbtest_frame(
  1176. rxdr->buffer_info[l].skb,
  1177. 1024);
  1178. if(!ret_val)
  1179. good_cnt++;
  1180. if(unlikely(++l == rxdr->count)) l = 0;
  1181. /* time + 20 msecs (200 msecs on 2.4) is more than
  1182. * enough time to complete the receives, if it's
  1183. * exceeded, break and error off
  1184. */
  1185. } while (good_cnt < 64 && jiffies < (time + 20));
  1186. if(good_cnt != 64) {
  1187. ret_val = 13; /* ret_val is the same as mis-compare */
  1188. break;
  1189. }
  1190. if(jiffies >= (time + 2)) {
  1191. ret_val = 14; /* error code for time out error */
  1192. break;
  1193. }
  1194. } /* end loop count loop */
  1195. return ret_val;
  1196. }
  1197. static int
  1198. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1199. {
  1200. if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
  1201. if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
  1202. *data = e1000_run_loopback_test(adapter);
  1203. e1000_loopback_cleanup(adapter);
  1204. e1000_free_desc_rings(adapter);
  1205. err_loopback:
  1206. return *data;
  1207. }
  1208. static int
  1209. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1210. {
  1211. *data = 0;
  1212. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1213. int i = 0;
  1214. adapter->hw.serdes_link_down = TRUE;
  1215. /* On some blade server designs, link establishment
  1216. * could take as long as 2-3 minutes */
  1217. do {
  1218. e1000_check_for_link(&adapter->hw);
  1219. if (adapter->hw.serdes_link_down == FALSE)
  1220. return *data;
  1221. msec_delay(20);
  1222. } while (i++ < 3750);
  1223. *data = 1;
  1224. } else {
  1225. e1000_check_for_link(&adapter->hw);
  1226. if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1227. msec_delay(4000);
  1228. if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1229. *data = 1;
  1230. }
  1231. }
  1232. return *data;
  1233. }
  1234. static int
  1235. e1000_diag_test_count(struct net_device *netdev)
  1236. {
  1237. return E1000_TEST_LEN;
  1238. }
  1239. static void
  1240. e1000_diag_test(struct net_device *netdev,
  1241. struct ethtool_test *eth_test, uint64_t *data)
  1242. {
  1243. struct e1000_adapter *adapter = netdev_priv(netdev);
  1244. boolean_t if_running = netif_running(netdev);
  1245. if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1246. /* Offline tests */
  1247. /* save speed, duplex, autoneg settings */
  1248. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1249. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1250. uint8_t autoneg = adapter->hw.autoneg;
  1251. /* Link test performed before hardware reset so autoneg doesn't
  1252. * interfere with test result */
  1253. if(e1000_link_test(adapter, &data[4]))
  1254. eth_test->flags |= ETH_TEST_FL_FAILED;
  1255. if(if_running)
  1256. e1000_down(adapter);
  1257. else
  1258. e1000_reset(adapter);
  1259. if(e1000_reg_test(adapter, &data[0]))
  1260. eth_test->flags |= ETH_TEST_FL_FAILED;
  1261. e1000_reset(adapter);
  1262. if(e1000_eeprom_test(adapter, &data[1]))
  1263. eth_test->flags |= ETH_TEST_FL_FAILED;
  1264. e1000_reset(adapter);
  1265. if(e1000_intr_test(adapter, &data[2]))
  1266. eth_test->flags |= ETH_TEST_FL_FAILED;
  1267. e1000_reset(adapter);
  1268. if(e1000_loopback_test(adapter, &data[3]))
  1269. eth_test->flags |= ETH_TEST_FL_FAILED;
  1270. /* restore speed, duplex, autoneg settings */
  1271. adapter->hw.autoneg_advertised = autoneg_advertised;
  1272. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1273. adapter->hw.autoneg = autoneg;
  1274. e1000_reset(adapter);
  1275. if(if_running)
  1276. e1000_up(adapter);
  1277. } else {
  1278. /* Online tests */
  1279. if(e1000_link_test(adapter, &data[4]))
  1280. eth_test->flags |= ETH_TEST_FL_FAILED;
  1281. /* Offline tests aren't run; pass by default */
  1282. data[0] = 0;
  1283. data[1] = 0;
  1284. data[2] = 0;
  1285. data[3] = 0;
  1286. }
  1287. }
  1288. static void
  1289. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1290. {
  1291. struct e1000_adapter *adapter = netdev_priv(netdev);
  1292. struct e1000_hw *hw = &adapter->hw;
  1293. switch(adapter->hw.device_id) {
  1294. case E1000_DEV_ID_82542:
  1295. case E1000_DEV_ID_82543GC_FIBER:
  1296. case E1000_DEV_ID_82543GC_COPPER:
  1297. case E1000_DEV_ID_82544EI_FIBER:
  1298. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1299. case E1000_DEV_ID_82545EM_FIBER:
  1300. case E1000_DEV_ID_82545EM_COPPER:
  1301. wol->supported = 0;
  1302. wol->wolopts = 0;
  1303. return;
  1304. case E1000_DEV_ID_82546EB_FIBER:
  1305. case E1000_DEV_ID_82546GB_FIBER:
  1306. /* Wake events only supported on port A for dual fiber */
  1307. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1308. wol->supported = 0;
  1309. wol->wolopts = 0;
  1310. return;
  1311. }
  1312. /* Fall Through */
  1313. default:
  1314. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1315. WAKE_BCAST | WAKE_MAGIC;
  1316. wol->wolopts = 0;
  1317. if(adapter->wol & E1000_WUFC_EX)
  1318. wol->wolopts |= WAKE_UCAST;
  1319. if(adapter->wol & E1000_WUFC_MC)
  1320. wol->wolopts |= WAKE_MCAST;
  1321. if(adapter->wol & E1000_WUFC_BC)
  1322. wol->wolopts |= WAKE_BCAST;
  1323. if(adapter->wol & E1000_WUFC_MAG)
  1324. wol->wolopts |= WAKE_MAGIC;
  1325. return;
  1326. }
  1327. }
  1328. static int
  1329. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1330. {
  1331. struct e1000_adapter *adapter = netdev_priv(netdev);
  1332. struct e1000_hw *hw = &adapter->hw;
  1333. switch(adapter->hw.device_id) {
  1334. case E1000_DEV_ID_82542:
  1335. case E1000_DEV_ID_82543GC_FIBER:
  1336. case E1000_DEV_ID_82543GC_COPPER:
  1337. case E1000_DEV_ID_82544EI_FIBER:
  1338. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1339. case E1000_DEV_ID_82545EM_FIBER:
  1340. case E1000_DEV_ID_82545EM_COPPER:
  1341. return wol->wolopts ? -EOPNOTSUPP : 0;
  1342. case E1000_DEV_ID_82546EB_FIBER:
  1343. case E1000_DEV_ID_82546GB_FIBER:
  1344. /* Wake events only supported on port A for dual fiber */
  1345. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1346. return wol->wolopts ? -EOPNOTSUPP : 0;
  1347. /* Fall Through */
  1348. default:
  1349. if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1350. return -EOPNOTSUPP;
  1351. adapter->wol = 0;
  1352. if(wol->wolopts & WAKE_UCAST)
  1353. adapter->wol |= E1000_WUFC_EX;
  1354. if(wol->wolopts & WAKE_MCAST)
  1355. adapter->wol |= E1000_WUFC_MC;
  1356. if(wol->wolopts & WAKE_BCAST)
  1357. adapter->wol |= E1000_WUFC_BC;
  1358. if(wol->wolopts & WAKE_MAGIC)
  1359. adapter->wol |= E1000_WUFC_MAG;
  1360. }
  1361. return 0;
  1362. }
  1363. /* toggle LED 4 times per second = 2 "blinks" per second */
  1364. #define E1000_ID_INTERVAL (HZ/4)
  1365. /* bit defines for adapter->led_status */
  1366. #define E1000_LED_ON 0
  1367. static void
  1368. e1000_led_blink_callback(unsigned long data)
  1369. {
  1370. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1371. if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1372. e1000_led_off(&adapter->hw);
  1373. else
  1374. e1000_led_on(&adapter->hw);
  1375. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1376. }
  1377. static int
  1378. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1379. {
  1380. struct e1000_adapter *adapter = netdev_priv(netdev);
  1381. if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1382. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1383. if(adapter->hw.mac_type < e1000_82571) {
  1384. if(!adapter->blink_timer.function) {
  1385. init_timer(&adapter->blink_timer);
  1386. adapter->blink_timer.function = e1000_led_blink_callback;
  1387. adapter->blink_timer.data = (unsigned long) adapter;
  1388. }
  1389. e1000_setup_led(&adapter->hw);
  1390. mod_timer(&adapter->blink_timer, jiffies);
  1391. msleep_interruptible(data * 1000);
  1392. del_timer_sync(&adapter->blink_timer);
  1393. }
  1394. else {
  1395. E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
  1396. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1397. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1398. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1399. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1400. msleep_interruptible(data * 1000);
  1401. }
  1402. e1000_led_off(&adapter->hw);
  1403. clear_bit(E1000_LED_ON, &adapter->led_status);
  1404. e1000_cleanup_led(&adapter->hw);
  1405. return 0;
  1406. }
  1407. static int
  1408. e1000_nway_reset(struct net_device *netdev)
  1409. {
  1410. struct e1000_adapter *adapter = netdev_priv(netdev);
  1411. if(netif_running(netdev)) {
  1412. e1000_down(adapter);
  1413. e1000_up(adapter);
  1414. }
  1415. return 0;
  1416. }
  1417. static int
  1418. e1000_get_stats_count(struct net_device *netdev)
  1419. {
  1420. return E1000_STATS_LEN;
  1421. }
  1422. static void
  1423. e1000_get_ethtool_stats(struct net_device *netdev,
  1424. struct ethtool_stats *stats, uint64_t *data)
  1425. {
  1426. struct e1000_adapter *adapter = netdev_priv(netdev);
  1427. int i;
  1428. e1000_update_stats(adapter);
  1429. for(i = 0; i < E1000_STATS_LEN; i++) {
  1430. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1431. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1432. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1433. }
  1434. }
  1435. static void
  1436. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1437. {
  1438. int i;
  1439. switch(stringset) {
  1440. case ETH_SS_TEST:
  1441. memcpy(data, *e1000_gstrings_test,
  1442. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1443. break;
  1444. case ETH_SS_STATS:
  1445. for (i=0; i < E1000_STATS_LEN; i++) {
  1446. memcpy(data + i * ETH_GSTRING_LEN,
  1447. e1000_gstrings_stats[i].stat_string,
  1448. ETH_GSTRING_LEN);
  1449. }
  1450. break;
  1451. }
  1452. }
  1453. struct ethtool_ops e1000_ethtool_ops = {
  1454. .get_settings = e1000_get_settings,
  1455. .set_settings = e1000_set_settings,
  1456. .get_drvinfo = e1000_get_drvinfo,
  1457. .get_regs_len = e1000_get_regs_len,
  1458. .get_regs = e1000_get_regs,
  1459. .get_wol = e1000_get_wol,
  1460. .set_wol = e1000_set_wol,
  1461. .get_msglevel = e1000_get_msglevel,
  1462. .set_msglevel = e1000_set_msglevel,
  1463. .nway_reset = e1000_nway_reset,
  1464. .get_link = ethtool_op_get_link,
  1465. .get_eeprom_len = e1000_get_eeprom_len,
  1466. .get_eeprom = e1000_get_eeprom,
  1467. .set_eeprom = e1000_set_eeprom,
  1468. .get_ringparam = e1000_get_ringparam,
  1469. .set_ringparam = e1000_set_ringparam,
  1470. .get_pauseparam = e1000_get_pauseparam,
  1471. .set_pauseparam = e1000_set_pauseparam,
  1472. .get_rx_csum = e1000_get_rx_csum,
  1473. .set_rx_csum = e1000_set_rx_csum,
  1474. .get_tx_csum = e1000_get_tx_csum,
  1475. .set_tx_csum = e1000_set_tx_csum,
  1476. .get_sg = ethtool_op_get_sg,
  1477. .set_sg = ethtool_op_set_sg,
  1478. #ifdef NETIF_F_TSO
  1479. .get_tso = ethtool_op_get_tso,
  1480. .set_tso = e1000_set_tso,
  1481. #endif
  1482. .self_test_count = e1000_diag_test_count,
  1483. .self_test = e1000_diag_test,
  1484. .get_strings = e1000_get_strings,
  1485. .phys_id = e1000_phys_id,
  1486. .get_stats_count = e1000_get_stats_count,
  1487. .get_ethtool_stats = e1000_get_ethtool_stats,
  1488. .get_perm_addr = ethtool_op_get_perm_addr,
  1489. };
  1490. void e1000_set_ethtool_ops(struct net_device *netdev)
  1491. {
  1492. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1493. }