mmu.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. set_64bit(sptep, spte);
  227. }
  228. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  229. {
  230. #ifdef CONFIG_X86_64
  231. return xchg(sptep, new_spte);
  232. #else
  233. u64 old_spte;
  234. do {
  235. old_spte = *sptep;
  236. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  237. return old_spte;
  238. #endif
  239. }
  240. static bool spte_has_volatile_bits(u64 spte)
  241. {
  242. if (!shadow_accessed_mask)
  243. return false;
  244. if (!is_shadow_present_pte(spte))
  245. return false;
  246. if (spte & shadow_accessed_mask)
  247. return false;
  248. return true;
  249. }
  250. static void update_spte(u64 *sptep, u64 new_spte)
  251. {
  252. u64 old_spte;
  253. if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask) ||
  254. !is_rmap_spte(*sptep))
  255. __set_spte(sptep, new_spte);
  256. else {
  257. old_spte = __xchg_spte(sptep, new_spte);
  258. if (old_spte & shadow_accessed_mask)
  259. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  260. }
  261. }
  262. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  263. struct kmem_cache *base_cache, int min)
  264. {
  265. void *obj;
  266. if (cache->nobjs >= min)
  267. return 0;
  268. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  269. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  270. if (!obj)
  271. return -ENOMEM;
  272. cache->objects[cache->nobjs++] = obj;
  273. }
  274. return 0;
  275. }
  276. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  277. struct kmem_cache *cache)
  278. {
  279. while (mc->nobjs)
  280. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  281. }
  282. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  283. int min)
  284. {
  285. struct page *page;
  286. if (cache->nobjs >= min)
  287. return 0;
  288. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  289. page = alloc_page(GFP_KERNEL);
  290. if (!page)
  291. return -ENOMEM;
  292. cache->objects[cache->nobjs++] = page_address(page);
  293. }
  294. return 0;
  295. }
  296. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  297. {
  298. while (mc->nobjs)
  299. free_page((unsigned long)mc->objects[--mc->nobjs]);
  300. }
  301. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  302. {
  303. int r;
  304. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  305. pte_chain_cache, 4);
  306. if (r)
  307. goto out;
  308. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  309. rmap_desc_cache, 4);
  310. if (r)
  311. goto out;
  312. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  313. if (r)
  314. goto out;
  315. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  316. mmu_page_header_cache, 4);
  317. out:
  318. return r;
  319. }
  320. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  321. {
  322. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  323. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  324. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  325. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  326. mmu_page_header_cache);
  327. }
  328. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  329. size_t size)
  330. {
  331. void *p;
  332. BUG_ON(!mc->nobjs);
  333. p = mc->objects[--mc->nobjs];
  334. return p;
  335. }
  336. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  337. {
  338. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  339. sizeof(struct kvm_pte_chain));
  340. }
  341. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  342. {
  343. kmem_cache_free(pte_chain_cache, pc);
  344. }
  345. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  346. {
  347. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  348. sizeof(struct kvm_rmap_desc));
  349. }
  350. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  351. {
  352. kmem_cache_free(rmap_desc_cache, rd);
  353. }
  354. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  355. {
  356. if (!sp->role.direct)
  357. return sp->gfns[index];
  358. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  359. }
  360. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  361. {
  362. if (sp->role.direct)
  363. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  364. else
  365. sp->gfns[index] = gfn;
  366. }
  367. /*
  368. * Return the pointer to the largepage write count for a given
  369. * gfn, handling slots that are not large page aligned.
  370. */
  371. static int *slot_largepage_idx(gfn_t gfn,
  372. struct kvm_memory_slot *slot,
  373. int level)
  374. {
  375. unsigned long idx;
  376. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  377. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  378. return &slot->lpage_info[level - 2][idx].write_count;
  379. }
  380. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  381. {
  382. struct kvm_memory_slot *slot;
  383. int *write_count;
  384. int i;
  385. slot = gfn_to_memslot(kvm, gfn);
  386. for (i = PT_DIRECTORY_LEVEL;
  387. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  388. write_count = slot_largepage_idx(gfn, slot, i);
  389. *write_count += 1;
  390. }
  391. }
  392. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  393. {
  394. struct kvm_memory_slot *slot;
  395. int *write_count;
  396. int i;
  397. slot = gfn_to_memslot(kvm, gfn);
  398. for (i = PT_DIRECTORY_LEVEL;
  399. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  400. write_count = slot_largepage_idx(gfn, slot, i);
  401. *write_count -= 1;
  402. WARN_ON(*write_count < 0);
  403. }
  404. }
  405. static int has_wrprotected_page(struct kvm *kvm,
  406. gfn_t gfn,
  407. int level)
  408. {
  409. struct kvm_memory_slot *slot;
  410. int *largepage_idx;
  411. slot = gfn_to_memslot(kvm, gfn);
  412. if (slot) {
  413. largepage_idx = slot_largepage_idx(gfn, slot, level);
  414. return *largepage_idx;
  415. }
  416. return 1;
  417. }
  418. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  419. {
  420. unsigned long page_size;
  421. int i, ret = 0;
  422. page_size = kvm_host_page_size(kvm, gfn);
  423. for (i = PT_PAGE_TABLE_LEVEL;
  424. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  425. if (page_size >= KVM_HPAGE_SIZE(i))
  426. ret = i;
  427. else
  428. break;
  429. }
  430. return ret;
  431. }
  432. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  433. {
  434. struct kvm_memory_slot *slot;
  435. int host_level, level, max_level;
  436. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  437. if (slot && slot->dirty_bitmap)
  438. return PT_PAGE_TABLE_LEVEL;
  439. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  440. if (host_level == PT_PAGE_TABLE_LEVEL)
  441. return host_level;
  442. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  443. kvm_x86_ops->get_lpage_level() : host_level;
  444. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  445. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  446. break;
  447. return level - 1;
  448. }
  449. /*
  450. * Take gfn and return the reverse mapping to it.
  451. */
  452. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  453. {
  454. struct kvm_memory_slot *slot;
  455. unsigned long idx;
  456. slot = gfn_to_memslot(kvm, gfn);
  457. if (likely(level == PT_PAGE_TABLE_LEVEL))
  458. return &slot->rmap[gfn - slot->base_gfn];
  459. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  460. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  461. return &slot->lpage_info[level - 2][idx].rmap_pde;
  462. }
  463. /*
  464. * Reverse mapping data structures:
  465. *
  466. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  467. * that points to page_address(page).
  468. *
  469. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  470. * containing more mappings.
  471. *
  472. * Returns the number of rmap entries before the spte was added or zero if
  473. * the spte was not added.
  474. *
  475. */
  476. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  477. {
  478. struct kvm_mmu_page *sp;
  479. struct kvm_rmap_desc *desc;
  480. unsigned long *rmapp;
  481. int i, count = 0;
  482. if (!is_rmap_spte(*spte))
  483. return count;
  484. sp = page_header(__pa(spte));
  485. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  486. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  487. if (!*rmapp) {
  488. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  489. *rmapp = (unsigned long)spte;
  490. } else if (!(*rmapp & 1)) {
  491. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  492. desc = mmu_alloc_rmap_desc(vcpu);
  493. desc->sptes[0] = (u64 *)*rmapp;
  494. desc->sptes[1] = spte;
  495. *rmapp = (unsigned long)desc | 1;
  496. } else {
  497. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  498. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  499. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  500. desc = desc->more;
  501. count += RMAP_EXT;
  502. }
  503. if (desc->sptes[RMAP_EXT-1]) {
  504. desc->more = mmu_alloc_rmap_desc(vcpu);
  505. desc = desc->more;
  506. }
  507. for (i = 0; desc->sptes[i]; ++i)
  508. ;
  509. desc->sptes[i] = spte;
  510. }
  511. return count;
  512. }
  513. static void rmap_desc_remove_entry(unsigned long *rmapp,
  514. struct kvm_rmap_desc *desc,
  515. int i,
  516. struct kvm_rmap_desc *prev_desc)
  517. {
  518. int j;
  519. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  520. ;
  521. desc->sptes[i] = desc->sptes[j];
  522. desc->sptes[j] = NULL;
  523. if (j != 0)
  524. return;
  525. if (!prev_desc && !desc->more)
  526. *rmapp = (unsigned long)desc->sptes[0];
  527. else
  528. if (prev_desc)
  529. prev_desc->more = desc->more;
  530. else
  531. *rmapp = (unsigned long)desc->more | 1;
  532. mmu_free_rmap_desc(desc);
  533. }
  534. static void rmap_remove(struct kvm *kvm, u64 *spte)
  535. {
  536. struct kvm_rmap_desc *desc;
  537. struct kvm_rmap_desc *prev_desc;
  538. struct kvm_mmu_page *sp;
  539. gfn_t gfn;
  540. unsigned long *rmapp;
  541. int i;
  542. sp = page_header(__pa(spte));
  543. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  544. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  545. if (!*rmapp) {
  546. printk(KERN_ERR "rmap_remove: %p 0->BUG\n", spte);
  547. BUG();
  548. } else if (!(*rmapp & 1)) {
  549. rmap_printk("rmap_remove: %p 1->0\n", spte);
  550. if ((u64 *)*rmapp != spte) {
  551. printk(KERN_ERR "rmap_remove: %p 1->BUG\n", spte);
  552. BUG();
  553. }
  554. *rmapp = 0;
  555. } else {
  556. rmap_printk("rmap_remove: %p many->many\n", spte);
  557. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  558. prev_desc = NULL;
  559. while (desc) {
  560. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  561. if (desc->sptes[i] == spte) {
  562. rmap_desc_remove_entry(rmapp,
  563. desc, i,
  564. prev_desc);
  565. return;
  566. }
  567. prev_desc = desc;
  568. desc = desc->more;
  569. }
  570. pr_err("rmap_remove: %p many->many\n", spte);
  571. BUG();
  572. }
  573. }
  574. static void set_spte_track_bits(u64 *sptep, u64 new_spte)
  575. {
  576. pfn_t pfn;
  577. u64 old_spte = *sptep;
  578. if (!spte_has_volatile_bits(old_spte))
  579. __set_spte(sptep, new_spte);
  580. else
  581. old_spte = __xchg_spte(sptep, new_spte);
  582. if (!is_rmap_spte(old_spte))
  583. return;
  584. pfn = spte_to_pfn(old_spte);
  585. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  586. kvm_set_pfn_accessed(pfn);
  587. if (is_writable_pte(old_spte))
  588. kvm_set_pfn_dirty(pfn);
  589. }
  590. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  591. {
  592. set_spte_track_bits(sptep, new_spte);
  593. rmap_remove(kvm, sptep);
  594. }
  595. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  596. {
  597. struct kvm_rmap_desc *desc;
  598. u64 *prev_spte;
  599. int i;
  600. if (!*rmapp)
  601. return NULL;
  602. else if (!(*rmapp & 1)) {
  603. if (!spte)
  604. return (u64 *)*rmapp;
  605. return NULL;
  606. }
  607. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  608. prev_spte = NULL;
  609. while (desc) {
  610. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  611. if (prev_spte == spte)
  612. return desc->sptes[i];
  613. prev_spte = desc->sptes[i];
  614. }
  615. desc = desc->more;
  616. }
  617. return NULL;
  618. }
  619. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  620. {
  621. unsigned long *rmapp;
  622. u64 *spte;
  623. int i, write_protected = 0;
  624. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  625. spte = rmap_next(kvm, rmapp, NULL);
  626. while (spte) {
  627. BUG_ON(!spte);
  628. BUG_ON(!(*spte & PT_PRESENT_MASK));
  629. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  630. if (is_writable_pte(*spte)) {
  631. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  632. write_protected = 1;
  633. }
  634. spte = rmap_next(kvm, rmapp, spte);
  635. }
  636. if (write_protected) {
  637. pfn_t pfn;
  638. spte = rmap_next(kvm, rmapp, NULL);
  639. pfn = spte_to_pfn(*spte);
  640. kvm_set_pfn_dirty(pfn);
  641. }
  642. /* check for huge page mappings */
  643. for (i = PT_DIRECTORY_LEVEL;
  644. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  645. rmapp = gfn_to_rmap(kvm, gfn, i);
  646. spte = rmap_next(kvm, rmapp, NULL);
  647. while (spte) {
  648. BUG_ON(!spte);
  649. BUG_ON(!(*spte & PT_PRESENT_MASK));
  650. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  651. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  652. if (is_writable_pte(*spte)) {
  653. drop_spte(kvm, spte,
  654. shadow_trap_nonpresent_pte);
  655. --kvm->stat.lpages;
  656. spte = NULL;
  657. write_protected = 1;
  658. }
  659. spte = rmap_next(kvm, rmapp, spte);
  660. }
  661. }
  662. return write_protected;
  663. }
  664. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  665. unsigned long data)
  666. {
  667. u64 *spte;
  668. int need_tlb_flush = 0;
  669. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  670. BUG_ON(!(*spte & PT_PRESENT_MASK));
  671. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  672. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  673. need_tlb_flush = 1;
  674. }
  675. return need_tlb_flush;
  676. }
  677. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  678. unsigned long data)
  679. {
  680. int need_flush = 0;
  681. u64 *spte, new_spte;
  682. pte_t *ptep = (pte_t *)data;
  683. pfn_t new_pfn;
  684. WARN_ON(pte_huge(*ptep));
  685. new_pfn = pte_pfn(*ptep);
  686. spte = rmap_next(kvm, rmapp, NULL);
  687. while (spte) {
  688. BUG_ON(!is_shadow_present_pte(*spte));
  689. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  690. need_flush = 1;
  691. if (pte_write(*ptep)) {
  692. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  693. spte = rmap_next(kvm, rmapp, NULL);
  694. } else {
  695. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  696. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  697. new_spte &= ~PT_WRITABLE_MASK;
  698. new_spte &= ~SPTE_HOST_WRITEABLE;
  699. new_spte &= ~shadow_accessed_mask;
  700. set_spte_track_bits(spte, new_spte);
  701. spte = rmap_next(kvm, rmapp, spte);
  702. }
  703. }
  704. if (need_flush)
  705. kvm_flush_remote_tlbs(kvm);
  706. return 0;
  707. }
  708. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  709. unsigned long data,
  710. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  711. unsigned long data))
  712. {
  713. int i, j;
  714. int ret;
  715. int retval = 0;
  716. struct kvm_memslots *slots;
  717. slots = kvm_memslots(kvm);
  718. for (i = 0; i < slots->nmemslots; i++) {
  719. struct kvm_memory_slot *memslot = &slots->memslots[i];
  720. unsigned long start = memslot->userspace_addr;
  721. unsigned long end;
  722. end = start + (memslot->npages << PAGE_SHIFT);
  723. if (hva >= start && hva < end) {
  724. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  725. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  726. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  727. unsigned long idx;
  728. int sh;
  729. sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
  730. idx = ((memslot->base_gfn+gfn_offset) >> sh) -
  731. (memslot->base_gfn >> sh);
  732. ret |= handler(kvm,
  733. &memslot->lpage_info[j][idx].rmap_pde,
  734. data);
  735. }
  736. trace_kvm_age_page(hva, memslot, ret);
  737. retval |= ret;
  738. }
  739. }
  740. return retval;
  741. }
  742. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  743. {
  744. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  745. }
  746. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  747. {
  748. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  749. }
  750. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  751. unsigned long data)
  752. {
  753. u64 *spte;
  754. int young = 0;
  755. /*
  756. * Emulate the accessed bit for EPT, by checking if this page has
  757. * an EPT mapping, and clearing it if it does. On the next access,
  758. * a new EPT mapping will be established.
  759. * This has some overhead, but not as much as the cost of swapping
  760. * out actively used pages or breaking up actively used hugepages.
  761. */
  762. if (!shadow_accessed_mask)
  763. return kvm_unmap_rmapp(kvm, rmapp, data);
  764. spte = rmap_next(kvm, rmapp, NULL);
  765. while (spte) {
  766. int _young;
  767. u64 _spte = *spte;
  768. BUG_ON(!(_spte & PT_PRESENT_MASK));
  769. _young = _spte & PT_ACCESSED_MASK;
  770. if (_young) {
  771. young = 1;
  772. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  773. }
  774. spte = rmap_next(kvm, rmapp, spte);
  775. }
  776. return young;
  777. }
  778. #define RMAP_RECYCLE_THRESHOLD 1000
  779. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  780. {
  781. unsigned long *rmapp;
  782. struct kvm_mmu_page *sp;
  783. sp = page_header(__pa(spte));
  784. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  785. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  786. kvm_flush_remote_tlbs(vcpu->kvm);
  787. }
  788. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  789. {
  790. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  791. }
  792. #ifdef MMU_DEBUG
  793. static int is_empty_shadow_page(u64 *spt)
  794. {
  795. u64 *pos;
  796. u64 *end;
  797. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  798. if (is_shadow_present_pte(*pos)) {
  799. printk(KERN_ERR "%s: %p %llx\n", __func__,
  800. pos, *pos);
  801. return 0;
  802. }
  803. return 1;
  804. }
  805. #endif
  806. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  807. {
  808. ASSERT(is_empty_shadow_page(sp->spt));
  809. hlist_del(&sp->hash_link);
  810. list_del(&sp->link);
  811. __free_page(virt_to_page(sp->spt));
  812. if (!sp->role.direct)
  813. __free_page(virt_to_page(sp->gfns));
  814. kmem_cache_free(mmu_page_header_cache, sp);
  815. ++kvm->arch.n_free_mmu_pages;
  816. }
  817. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  818. {
  819. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  820. }
  821. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  822. u64 *parent_pte, int direct)
  823. {
  824. struct kvm_mmu_page *sp;
  825. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  826. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  827. if (!direct)
  828. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  829. PAGE_SIZE);
  830. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  831. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  832. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  833. sp->multimapped = 0;
  834. sp->parent_pte = parent_pte;
  835. --vcpu->kvm->arch.n_free_mmu_pages;
  836. return sp;
  837. }
  838. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  839. struct kvm_mmu_page *sp, u64 *parent_pte)
  840. {
  841. struct kvm_pte_chain *pte_chain;
  842. struct hlist_node *node;
  843. int i;
  844. if (!parent_pte)
  845. return;
  846. if (!sp->multimapped) {
  847. u64 *old = sp->parent_pte;
  848. if (!old) {
  849. sp->parent_pte = parent_pte;
  850. return;
  851. }
  852. sp->multimapped = 1;
  853. pte_chain = mmu_alloc_pte_chain(vcpu);
  854. INIT_HLIST_HEAD(&sp->parent_ptes);
  855. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  856. pte_chain->parent_ptes[0] = old;
  857. }
  858. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  859. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  860. continue;
  861. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  862. if (!pte_chain->parent_ptes[i]) {
  863. pte_chain->parent_ptes[i] = parent_pte;
  864. return;
  865. }
  866. }
  867. pte_chain = mmu_alloc_pte_chain(vcpu);
  868. BUG_ON(!pte_chain);
  869. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  870. pte_chain->parent_ptes[0] = parent_pte;
  871. }
  872. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  873. u64 *parent_pte)
  874. {
  875. struct kvm_pte_chain *pte_chain;
  876. struct hlist_node *node;
  877. int i;
  878. if (!sp->multimapped) {
  879. BUG_ON(sp->parent_pte != parent_pte);
  880. sp->parent_pte = NULL;
  881. return;
  882. }
  883. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  884. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  885. if (!pte_chain->parent_ptes[i])
  886. break;
  887. if (pte_chain->parent_ptes[i] != parent_pte)
  888. continue;
  889. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  890. && pte_chain->parent_ptes[i + 1]) {
  891. pte_chain->parent_ptes[i]
  892. = pte_chain->parent_ptes[i + 1];
  893. ++i;
  894. }
  895. pte_chain->parent_ptes[i] = NULL;
  896. if (i == 0) {
  897. hlist_del(&pte_chain->link);
  898. mmu_free_pte_chain(pte_chain);
  899. if (hlist_empty(&sp->parent_ptes)) {
  900. sp->multimapped = 0;
  901. sp->parent_pte = NULL;
  902. }
  903. }
  904. return;
  905. }
  906. BUG();
  907. }
  908. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  909. {
  910. struct kvm_pte_chain *pte_chain;
  911. struct hlist_node *node;
  912. struct kvm_mmu_page *parent_sp;
  913. int i;
  914. if (!sp->multimapped && sp->parent_pte) {
  915. parent_sp = page_header(__pa(sp->parent_pte));
  916. fn(parent_sp, sp->parent_pte);
  917. return;
  918. }
  919. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  920. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  921. u64 *spte = pte_chain->parent_ptes[i];
  922. if (!spte)
  923. break;
  924. parent_sp = page_header(__pa(spte));
  925. fn(parent_sp, spte);
  926. }
  927. }
  928. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  929. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  930. {
  931. mmu_parent_walk(sp, mark_unsync);
  932. }
  933. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  934. {
  935. unsigned int index;
  936. index = spte - sp->spt;
  937. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  938. return;
  939. if (sp->unsync_children++)
  940. return;
  941. kvm_mmu_mark_parents_unsync(sp);
  942. }
  943. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  944. struct kvm_mmu_page *sp)
  945. {
  946. int i;
  947. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  948. sp->spt[i] = shadow_trap_nonpresent_pte;
  949. }
  950. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  951. struct kvm_mmu_page *sp, bool clear_unsync)
  952. {
  953. return 1;
  954. }
  955. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  956. {
  957. }
  958. #define KVM_PAGE_ARRAY_NR 16
  959. struct kvm_mmu_pages {
  960. struct mmu_page_and_offset {
  961. struct kvm_mmu_page *sp;
  962. unsigned int idx;
  963. } page[KVM_PAGE_ARRAY_NR];
  964. unsigned int nr;
  965. };
  966. #define for_each_unsync_children(bitmap, idx) \
  967. for (idx = find_first_bit(bitmap, 512); \
  968. idx < 512; \
  969. idx = find_next_bit(bitmap, 512, idx+1))
  970. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  971. int idx)
  972. {
  973. int i;
  974. if (sp->unsync)
  975. for (i=0; i < pvec->nr; i++)
  976. if (pvec->page[i].sp == sp)
  977. return 0;
  978. pvec->page[pvec->nr].sp = sp;
  979. pvec->page[pvec->nr].idx = idx;
  980. pvec->nr++;
  981. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  982. }
  983. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  984. struct kvm_mmu_pages *pvec)
  985. {
  986. int i, ret, nr_unsync_leaf = 0;
  987. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  988. struct kvm_mmu_page *child;
  989. u64 ent = sp->spt[i];
  990. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  991. goto clear_child_bitmap;
  992. child = page_header(ent & PT64_BASE_ADDR_MASK);
  993. if (child->unsync_children) {
  994. if (mmu_pages_add(pvec, child, i))
  995. return -ENOSPC;
  996. ret = __mmu_unsync_walk(child, pvec);
  997. if (!ret)
  998. goto clear_child_bitmap;
  999. else if (ret > 0)
  1000. nr_unsync_leaf += ret;
  1001. else
  1002. return ret;
  1003. } else if (child->unsync) {
  1004. nr_unsync_leaf++;
  1005. if (mmu_pages_add(pvec, child, i))
  1006. return -ENOSPC;
  1007. } else
  1008. goto clear_child_bitmap;
  1009. continue;
  1010. clear_child_bitmap:
  1011. __clear_bit(i, sp->unsync_child_bitmap);
  1012. sp->unsync_children--;
  1013. WARN_ON((int)sp->unsync_children < 0);
  1014. }
  1015. return nr_unsync_leaf;
  1016. }
  1017. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1018. struct kvm_mmu_pages *pvec)
  1019. {
  1020. if (!sp->unsync_children)
  1021. return 0;
  1022. mmu_pages_add(pvec, sp, 0);
  1023. return __mmu_unsync_walk(sp, pvec);
  1024. }
  1025. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1026. {
  1027. WARN_ON(!sp->unsync);
  1028. trace_kvm_mmu_sync_page(sp);
  1029. sp->unsync = 0;
  1030. --kvm->stat.mmu_unsync;
  1031. }
  1032. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1033. struct list_head *invalid_list);
  1034. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1035. struct list_head *invalid_list);
  1036. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1037. hlist_for_each_entry(sp, pos, \
  1038. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1039. if ((sp)->gfn != (gfn)) {} else
  1040. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1041. hlist_for_each_entry(sp, pos, \
  1042. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1043. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1044. (sp)->role.invalid) {} else
  1045. /* @sp->gfn should be write-protected at the call site */
  1046. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1047. struct list_head *invalid_list, bool clear_unsync)
  1048. {
  1049. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1050. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1051. return 1;
  1052. }
  1053. if (clear_unsync)
  1054. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1055. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1056. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1057. return 1;
  1058. }
  1059. kvm_mmu_flush_tlb(vcpu);
  1060. return 0;
  1061. }
  1062. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1063. struct kvm_mmu_page *sp)
  1064. {
  1065. LIST_HEAD(invalid_list);
  1066. int ret;
  1067. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1068. if (ret)
  1069. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1070. return ret;
  1071. }
  1072. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1073. struct list_head *invalid_list)
  1074. {
  1075. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1076. }
  1077. /* @gfn should be write-protected at the call site */
  1078. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1079. {
  1080. struct kvm_mmu_page *s;
  1081. struct hlist_node *node;
  1082. LIST_HEAD(invalid_list);
  1083. bool flush = false;
  1084. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1085. if (!s->unsync)
  1086. continue;
  1087. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1088. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1089. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1090. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1091. continue;
  1092. }
  1093. kvm_unlink_unsync_page(vcpu->kvm, s);
  1094. flush = true;
  1095. }
  1096. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1097. if (flush)
  1098. kvm_mmu_flush_tlb(vcpu);
  1099. }
  1100. struct mmu_page_path {
  1101. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1102. unsigned int idx[PT64_ROOT_LEVEL-1];
  1103. };
  1104. #define for_each_sp(pvec, sp, parents, i) \
  1105. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1106. sp = pvec.page[i].sp; \
  1107. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1108. i = mmu_pages_next(&pvec, &parents, i))
  1109. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1110. struct mmu_page_path *parents,
  1111. int i)
  1112. {
  1113. int n;
  1114. for (n = i+1; n < pvec->nr; n++) {
  1115. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1116. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1117. parents->idx[0] = pvec->page[n].idx;
  1118. return n;
  1119. }
  1120. parents->parent[sp->role.level-2] = sp;
  1121. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1122. }
  1123. return n;
  1124. }
  1125. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1126. {
  1127. struct kvm_mmu_page *sp;
  1128. unsigned int level = 0;
  1129. do {
  1130. unsigned int idx = parents->idx[level];
  1131. sp = parents->parent[level];
  1132. if (!sp)
  1133. return;
  1134. --sp->unsync_children;
  1135. WARN_ON((int)sp->unsync_children < 0);
  1136. __clear_bit(idx, sp->unsync_child_bitmap);
  1137. level++;
  1138. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1139. }
  1140. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1141. struct mmu_page_path *parents,
  1142. struct kvm_mmu_pages *pvec)
  1143. {
  1144. parents->parent[parent->role.level-1] = NULL;
  1145. pvec->nr = 0;
  1146. }
  1147. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1148. struct kvm_mmu_page *parent)
  1149. {
  1150. int i;
  1151. struct kvm_mmu_page *sp;
  1152. struct mmu_page_path parents;
  1153. struct kvm_mmu_pages pages;
  1154. LIST_HEAD(invalid_list);
  1155. kvm_mmu_pages_init(parent, &parents, &pages);
  1156. while (mmu_unsync_walk(parent, &pages)) {
  1157. int protected = 0;
  1158. for_each_sp(pages, sp, parents, i)
  1159. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1160. if (protected)
  1161. kvm_flush_remote_tlbs(vcpu->kvm);
  1162. for_each_sp(pages, sp, parents, i) {
  1163. kvm_sync_page(vcpu, sp, &invalid_list);
  1164. mmu_pages_clear_parents(&parents);
  1165. }
  1166. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1167. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1168. kvm_mmu_pages_init(parent, &parents, &pages);
  1169. }
  1170. }
  1171. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1172. gfn_t gfn,
  1173. gva_t gaddr,
  1174. unsigned level,
  1175. int direct,
  1176. unsigned access,
  1177. u64 *parent_pte)
  1178. {
  1179. union kvm_mmu_page_role role;
  1180. unsigned quadrant;
  1181. struct kvm_mmu_page *sp;
  1182. struct hlist_node *node;
  1183. bool need_sync = false;
  1184. role = vcpu->arch.mmu.base_role;
  1185. role.level = level;
  1186. role.direct = direct;
  1187. if (role.direct)
  1188. role.cr4_pae = 0;
  1189. role.access = access;
  1190. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1191. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1192. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1193. role.quadrant = quadrant;
  1194. }
  1195. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1196. if (!need_sync && sp->unsync)
  1197. need_sync = true;
  1198. if (sp->role.word != role.word)
  1199. continue;
  1200. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1201. break;
  1202. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1203. if (sp->unsync_children) {
  1204. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1205. kvm_mmu_mark_parents_unsync(sp);
  1206. } else if (sp->unsync)
  1207. kvm_mmu_mark_parents_unsync(sp);
  1208. trace_kvm_mmu_get_page(sp, false);
  1209. return sp;
  1210. }
  1211. ++vcpu->kvm->stat.mmu_cache_miss;
  1212. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1213. if (!sp)
  1214. return sp;
  1215. sp->gfn = gfn;
  1216. sp->role = role;
  1217. hlist_add_head(&sp->hash_link,
  1218. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1219. if (!direct) {
  1220. if (rmap_write_protect(vcpu->kvm, gfn))
  1221. kvm_flush_remote_tlbs(vcpu->kvm);
  1222. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1223. kvm_sync_pages(vcpu, gfn);
  1224. account_shadowed(vcpu->kvm, gfn);
  1225. }
  1226. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1227. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1228. else
  1229. nonpaging_prefetch_page(vcpu, sp);
  1230. trace_kvm_mmu_get_page(sp, true);
  1231. return sp;
  1232. }
  1233. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1234. struct kvm_vcpu *vcpu, u64 addr)
  1235. {
  1236. iterator->addr = addr;
  1237. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1238. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1239. if (iterator->level == PT32E_ROOT_LEVEL) {
  1240. iterator->shadow_addr
  1241. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1242. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1243. --iterator->level;
  1244. if (!iterator->shadow_addr)
  1245. iterator->level = 0;
  1246. }
  1247. }
  1248. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1249. {
  1250. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1251. return false;
  1252. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1253. if (is_large_pte(*iterator->sptep))
  1254. return false;
  1255. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1256. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1257. return true;
  1258. }
  1259. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1260. {
  1261. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1262. --iterator->level;
  1263. }
  1264. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1265. {
  1266. u64 spte;
  1267. spte = __pa(sp->spt)
  1268. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1269. | PT_WRITABLE_MASK | PT_USER_MASK;
  1270. __set_spte(sptep, spte);
  1271. }
  1272. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1273. {
  1274. if (is_large_pte(*sptep)) {
  1275. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1276. kvm_flush_remote_tlbs(vcpu->kvm);
  1277. }
  1278. }
  1279. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1280. unsigned direct_access)
  1281. {
  1282. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1283. struct kvm_mmu_page *child;
  1284. /*
  1285. * For the direct sp, if the guest pte's dirty bit
  1286. * changed form clean to dirty, it will corrupt the
  1287. * sp's access: allow writable in the read-only sp,
  1288. * so we should update the spte at this point to get
  1289. * a new sp with the correct access.
  1290. */
  1291. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1292. if (child->role.access == direct_access)
  1293. return;
  1294. mmu_page_remove_parent_pte(child, sptep);
  1295. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1296. kvm_flush_remote_tlbs(vcpu->kvm);
  1297. }
  1298. }
  1299. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1300. struct kvm_mmu_page *sp)
  1301. {
  1302. unsigned i;
  1303. u64 *pt;
  1304. u64 ent;
  1305. pt = sp->spt;
  1306. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1307. ent = pt[i];
  1308. if (is_shadow_present_pte(ent)) {
  1309. if (!is_last_spte(ent, sp->role.level)) {
  1310. ent &= PT64_BASE_ADDR_MASK;
  1311. mmu_page_remove_parent_pte(page_header(ent),
  1312. &pt[i]);
  1313. } else {
  1314. if (is_large_pte(ent))
  1315. --kvm->stat.lpages;
  1316. drop_spte(kvm, &pt[i],
  1317. shadow_trap_nonpresent_pte);
  1318. }
  1319. }
  1320. pt[i] = shadow_trap_nonpresent_pte;
  1321. }
  1322. }
  1323. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1324. {
  1325. mmu_page_remove_parent_pte(sp, parent_pte);
  1326. }
  1327. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1328. {
  1329. int i;
  1330. struct kvm_vcpu *vcpu;
  1331. kvm_for_each_vcpu(i, vcpu, kvm)
  1332. vcpu->arch.last_pte_updated = NULL;
  1333. }
  1334. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1335. {
  1336. u64 *parent_pte;
  1337. while (sp->multimapped || sp->parent_pte) {
  1338. if (!sp->multimapped)
  1339. parent_pte = sp->parent_pte;
  1340. else {
  1341. struct kvm_pte_chain *chain;
  1342. chain = container_of(sp->parent_ptes.first,
  1343. struct kvm_pte_chain, link);
  1344. parent_pte = chain->parent_ptes[0];
  1345. }
  1346. BUG_ON(!parent_pte);
  1347. kvm_mmu_put_page(sp, parent_pte);
  1348. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1349. }
  1350. }
  1351. static int mmu_zap_unsync_children(struct kvm *kvm,
  1352. struct kvm_mmu_page *parent,
  1353. struct list_head *invalid_list)
  1354. {
  1355. int i, zapped = 0;
  1356. struct mmu_page_path parents;
  1357. struct kvm_mmu_pages pages;
  1358. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1359. return 0;
  1360. kvm_mmu_pages_init(parent, &parents, &pages);
  1361. while (mmu_unsync_walk(parent, &pages)) {
  1362. struct kvm_mmu_page *sp;
  1363. for_each_sp(pages, sp, parents, i) {
  1364. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1365. mmu_pages_clear_parents(&parents);
  1366. zapped++;
  1367. }
  1368. kvm_mmu_pages_init(parent, &parents, &pages);
  1369. }
  1370. return zapped;
  1371. }
  1372. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1373. struct list_head *invalid_list)
  1374. {
  1375. int ret;
  1376. trace_kvm_mmu_prepare_zap_page(sp);
  1377. ++kvm->stat.mmu_shadow_zapped;
  1378. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1379. kvm_mmu_page_unlink_children(kvm, sp);
  1380. kvm_mmu_unlink_parents(kvm, sp);
  1381. if (!sp->role.invalid && !sp->role.direct)
  1382. unaccount_shadowed(kvm, sp->gfn);
  1383. if (sp->unsync)
  1384. kvm_unlink_unsync_page(kvm, sp);
  1385. if (!sp->root_count) {
  1386. /* Count self */
  1387. ret++;
  1388. list_move(&sp->link, invalid_list);
  1389. } else {
  1390. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1391. kvm_reload_remote_mmus(kvm);
  1392. }
  1393. sp->role.invalid = 1;
  1394. kvm_mmu_reset_last_pte_updated(kvm);
  1395. return ret;
  1396. }
  1397. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1398. struct list_head *invalid_list)
  1399. {
  1400. struct kvm_mmu_page *sp;
  1401. if (list_empty(invalid_list))
  1402. return;
  1403. kvm_flush_remote_tlbs(kvm);
  1404. do {
  1405. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1406. WARN_ON(!sp->role.invalid || sp->root_count);
  1407. kvm_mmu_free_page(kvm, sp);
  1408. } while (!list_empty(invalid_list));
  1409. }
  1410. /*
  1411. * Changing the number of mmu pages allocated to the vm
  1412. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1413. */
  1414. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1415. {
  1416. int used_pages;
  1417. LIST_HEAD(invalid_list);
  1418. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1419. used_pages = max(0, used_pages);
  1420. /*
  1421. * If we set the number of mmu pages to be smaller be than the
  1422. * number of actived pages , we must to free some mmu pages before we
  1423. * change the value
  1424. */
  1425. if (used_pages > kvm_nr_mmu_pages) {
  1426. while (used_pages > kvm_nr_mmu_pages &&
  1427. !list_empty(&kvm->arch.active_mmu_pages)) {
  1428. struct kvm_mmu_page *page;
  1429. page = container_of(kvm->arch.active_mmu_pages.prev,
  1430. struct kvm_mmu_page, link);
  1431. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1432. &invalid_list);
  1433. }
  1434. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1435. kvm_nr_mmu_pages = used_pages;
  1436. kvm->arch.n_free_mmu_pages = 0;
  1437. }
  1438. else
  1439. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1440. - kvm->arch.n_alloc_mmu_pages;
  1441. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1442. }
  1443. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1444. {
  1445. struct kvm_mmu_page *sp;
  1446. struct hlist_node *node;
  1447. LIST_HEAD(invalid_list);
  1448. int r;
  1449. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1450. r = 0;
  1451. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1452. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1453. sp->role.word);
  1454. r = 1;
  1455. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1456. }
  1457. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1458. return r;
  1459. }
  1460. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1461. {
  1462. struct kvm_mmu_page *sp;
  1463. struct hlist_node *node;
  1464. LIST_HEAD(invalid_list);
  1465. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1466. pgprintk("%s: zap %lx %x\n",
  1467. __func__, gfn, sp->role.word);
  1468. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1469. }
  1470. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1471. }
  1472. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1473. {
  1474. int slot = memslot_id(kvm, gfn);
  1475. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1476. __set_bit(slot, sp->slot_bitmap);
  1477. }
  1478. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1479. {
  1480. int i;
  1481. u64 *pt = sp->spt;
  1482. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1483. return;
  1484. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1485. if (pt[i] == shadow_notrap_nonpresent_pte)
  1486. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1487. }
  1488. }
  1489. /*
  1490. * The function is based on mtrr_type_lookup() in
  1491. * arch/x86/kernel/cpu/mtrr/generic.c
  1492. */
  1493. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1494. u64 start, u64 end)
  1495. {
  1496. int i;
  1497. u64 base, mask;
  1498. u8 prev_match, curr_match;
  1499. int num_var_ranges = KVM_NR_VAR_MTRR;
  1500. if (!mtrr_state->enabled)
  1501. return 0xFF;
  1502. /* Make end inclusive end, instead of exclusive */
  1503. end--;
  1504. /* Look in fixed ranges. Just return the type as per start */
  1505. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1506. int idx;
  1507. if (start < 0x80000) {
  1508. idx = 0;
  1509. idx += (start >> 16);
  1510. return mtrr_state->fixed_ranges[idx];
  1511. } else if (start < 0xC0000) {
  1512. idx = 1 * 8;
  1513. idx += ((start - 0x80000) >> 14);
  1514. return mtrr_state->fixed_ranges[idx];
  1515. } else if (start < 0x1000000) {
  1516. idx = 3 * 8;
  1517. idx += ((start - 0xC0000) >> 12);
  1518. return mtrr_state->fixed_ranges[idx];
  1519. }
  1520. }
  1521. /*
  1522. * Look in variable ranges
  1523. * Look of multiple ranges matching this address and pick type
  1524. * as per MTRR precedence
  1525. */
  1526. if (!(mtrr_state->enabled & 2))
  1527. return mtrr_state->def_type;
  1528. prev_match = 0xFF;
  1529. for (i = 0; i < num_var_ranges; ++i) {
  1530. unsigned short start_state, end_state;
  1531. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1532. continue;
  1533. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1534. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1535. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1536. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1537. start_state = ((start & mask) == (base & mask));
  1538. end_state = ((end & mask) == (base & mask));
  1539. if (start_state != end_state)
  1540. return 0xFE;
  1541. if ((start & mask) != (base & mask))
  1542. continue;
  1543. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1544. if (prev_match == 0xFF) {
  1545. prev_match = curr_match;
  1546. continue;
  1547. }
  1548. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1549. curr_match == MTRR_TYPE_UNCACHABLE)
  1550. return MTRR_TYPE_UNCACHABLE;
  1551. if ((prev_match == MTRR_TYPE_WRBACK &&
  1552. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1553. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1554. curr_match == MTRR_TYPE_WRBACK)) {
  1555. prev_match = MTRR_TYPE_WRTHROUGH;
  1556. curr_match = MTRR_TYPE_WRTHROUGH;
  1557. }
  1558. if (prev_match != curr_match)
  1559. return MTRR_TYPE_UNCACHABLE;
  1560. }
  1561. if (prev_match != 0xFF)
  1562. return prev_match;
  1563. return mtrr_state->def_type;
  1564. }
  1565. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1566. {
  1567. u8 mtrr;
  1568. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1569. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1570. if (mtrr == 0xfe || mtrr == 0xff)
  1571. mtrr = MTRR_TYPE_WRBACK;
  1572. return mtrr;
  1573. }
  1574. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1575. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1576. {
  1577. trace_kvm_mmu_unsync_page(sp);
  1578. ++vcpu->kvm->stat.mmu_unsync;
  1579. sp->unsync = 1;
  1580. kvm_mmu_mark_parents_unsync(sp);
  1581. mmu_convert_notrap(sp);
  1582. }
  1583. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1584. {
  1585. struct kvm_mmu_page *s;
  1586. struct hlist_node *node;
  1587. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1588. if (s->unsync)
  1589. continue;
  1590. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1591. __kvm_unsync_page(vcpu, s);
  1592. }
  1593. }
  1594. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1595. bool can_unsync)
  1596. {
  1597. struct kvm_mmu_page *s;
  1598. struct hlist_node *node;
  1599. bool need_unsync = false;
  1600. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1601. if (!can_unsync)
  1602. return 1;
  1603. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1604. return 1;
  1605. if (!need_unsync && !s->unsync) {
  1606. if (!oos_shadow)
  1607. return 1;
  1608. need_unsync = true;
  1609. }
  1610. }
  1611. if (need_unsync)
  1612. kvm_unsync_pages(vcpu, gfn);
  1613. return 0;
  1614. }
  1615. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1616. unsigned pte_access, int user_fault,
  1617. int write_fault, int dirty, int level,
  1618. gfn_t gfn, pfn_t pfn, bool speculative,
  1619. bool can_unsync, bool reset_host_protection)
  1620. {
  1621. u64 spte;
  1622. int ret = 0;
  1623. /*
  1624. * We don't set the accessed bit, since we sometimes want to see
  1625. * whether the guest actually used the pte (in order to detect
  1626. * demand paging).
  1627. */
  1628. spte = shadow_base_present_pte | shadow_dirty_mask;
  1629. if (!speculative)
  1630. spte |= shadow_accessed_mask;
  1631. if (!dirty)
  1632. pte_access &= ~ACC_WRITE_MASK;
  1633. if (pte_access & ACC_EXEC_MASK)
  1634. spte |= shadow_x_mask;
  1635. else
  1636. spte |= shadow_nx_mask;
  1637. if (pte_access & ACC_USER_MASK)
  1638. spte |= shadow_user_mask;
  1639. if (level > PT_PAGE_TABLE_LEVEL)
  1640. spte |= PT_PAGE_SIZE_MASK;
  1641. if (tdp_enabled)
  1642. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1643. kvm_is_mmio_pfn(pfn));
  1644. if (reset_host_protection)
  1645. spte |= SPTE_HOST_WRITEABLE;
  1646. spte |= (u64)pfn << PAGE_SHIFT;
  1647. if ((pte_access & ACC_WRITE_MASK)
  1648. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1649. && !user_fault)) {
  1650. if (level > PT_PAGE_TABLE_LEVEL &&
  1651. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1652. ret = 1;
  1653. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1654. goto done;
  1655. }
  1656. spte |= PT_WRITABLE_MASK;
  1657. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1658. spte &= ~PT_USER_MASK;
  1659. /*
  1660. * Optimization: for pte sync, if spte was writable the hash
  1661. * lookup is unnecessary (and expensive). Write protection
  1662. * is responsibility of mmu_get_page / kvm_sync_page.
  1663. * Same reasoning can be applied to dirty page accounting.
  1664. */
  1665. if (!can_unsync && is_writable_pte(*sptep))
  1666. goto set_pte;
  1667. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1668. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1669. __func__, gfn);
  1670. ret = 1;
  1671. pte_access &= ~ACC_WRITE_MASK;
  1672. if (is_writable_pte(spte))
  1673. spte &= ~PT_WRITABLE_MASK;
  1674. }
  1675. }
  1676. if (pte_access & ACC_WRITE_MASK)
  1677. mark_page_dirty(vcpu->kvm, gfn);
  1678. set_pte:
  1679. if (is_writable_pte(*sptep) && !is_writable_pte(spte))
  1680. kvm_set_pfn_dirty(pfn);
  1681. update_spte(sptep, spte);
  1682. done:
  1683. return ret;
  1684. }
  1685. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1686. unsigned pt_access, unsigned pte_access,
  1687. int user_fault, int write_fault, int dirty,
  1688. int *ptwrite, int level, gfn_t gfn,
  1689. pfn_t pfn, bool speculative,
  1690. bool reset_host_protection)
  1691. {
  1692. int was_rmapped = 0;
  1693. int rmap_count;
  1694. pgprintk("%s: spte %llx access %x write_fault %d"
  1695. " user_fault %d gfn %lx\n",
  1696. __func__, *sptep, pt_access,
  1697. write_fault, user_fault, gfn);
  1698. if (is_rmap_spte(*sptep)) {
  1699. /*
  1700. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1701. * the parent of the now unreachable PTE.
  1702. */
  1703. if (level > PT_PAGE_TABLE_LEVEL &&
  1704. !is_large_pte(*sptep)) {
  1705. struct kvm_mmu_page *child;
  1706. u64 pte = *sptep;
  1707. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1708. mmu_page_remove_parent_pte(child, sptep);
  1709. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1710. kvm_flush_remote_tlbs(vcpu->kvm);
  1711. } else if (pfn != spte_to_pfn(*sptep)) {
  1712. pgprintk("hfn old %lx new %lx\n",
  1713. spte_to_pfn(*sptep), pfn);
  1714. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1715. kvm_flush_remote_tlbs(vcpu->kvm);
  1716. } else
  1717. was_rmapped = 1;
  1718. }
  1719. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1720. dirty, level, gfn, pfn, speculative, true,
  1721. reset_host_protection)) {
  1722. if (write_fault)
  1723. *ptwrite = 1;
  1724. kvm_mmu_flush_tlb(vcpu);
  1725. }
  1726. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1727. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1728. is_large_pte(*sptep)? "2MB" : "4kB",
  1729. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1730. *sptep, sptep);
  1731. if (!was_rmapped && is_large_pte(*sptep))
  1732. ++vcpu->kvm->stat.lpages;
  1733. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1734. if (!was_rmapped) {
  1735. rmap_count = rmap_add(vcpu, sptep, gfn);
  1736. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1737. rmap_recycle(vcpu, sptep, gfn);
  1738. }
  1739. kvm_release_pfn_clean(pfn);
  1740. if (speculative) {
  1741. vcpu->arch.last_pte_updated = sptep;
  1742. vcpu->arch.last_pte_gfn = gfn;
  1743. }
  1744. }
  1745. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1746. {
  1747. }
  1748. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1749. int level, gfn_t gfn, pfn_t pfn)
  1750. {
  1751. struct kvm_shadow_walk_iterator iterator;
  1752. struct kvm_mmu_page *sp;
  1753. int pt_write = 0;
  1754. gfn_t pseudo_gfn;
  1755. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1756. if (iterator.level == level) {
  1757. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1758. 0, write, 1, &pt_write,
  1759. level, gfn, pfn, false, true);
  1760. ++vcpu->stat.pf_fixed;
  1761. break;
  1762. }
  1763. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1764. u64 base_addr = iterator.addr;
  1765. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1766. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1767. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1768. iterator.level - 1,
  1769. 1, ACC_ALL, iterator.sptep);
  1770. if (!sp) {
  1771. pgprintk("nonpaging_map: ENOMEM\n");
  1772. kvm_release_pfn_clean(pfn);
  1773. return -ENOMEM;
  1774. }
  1775. __set_spte(iterator.sptep,
  1776. __pa(sp->spt)
  1777. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1778. | shadow_user_mask | shadow_x_mask);
  1779. }
  1780. }
  1781. return pt_write;
  1782. }
  1783. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1784. {
  1785. char buf[1];
  1786. void __user *hva;
  1787. int r;
  1788. /* Touch the page, so send SIGBUS */
  1789. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1790. r = copy_from_user(buf, hva, 1);
  1791. }
  1792. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1793. {
  1794. kvm_release_pfn_clean(pfn);
  1795. if (is_hwpoison_pfn(pfn)) {
  1796. kvm_send_hwpoison_signal(kvm, gfn);
  1797. return 0;
  1798. } else if (is_fault_pfn(pfn))
  1799. return -EFAULT;
  1800. return 1;
  1801. }
  1802. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1803. {
  1804. int r;
  1805. int level;
  1806. pfn_t pfn;
  1807. unsigned long mmu_seq;
  1808. level = mapping_level(vcpu, gfn);
  1809. /*
  1810. * This path builds a PAE pagetable - so we can map 2mb pages at
  1811. * maximum. Therefore check if the level is larger than that.
  1812. */
  1813. if (level > PT_DIRECTORY_LEVEL)
  1814. level = PT_DIRECTORY_LEVEL;
  1815. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1816. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1817. smp_rmb();
  1818. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1819. /* mmio */
  1820. if (is_error_pfn(pfn))
  1821. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1822. spin_lock(&vcpu->kvm->mmu_lock);
  1823. if (mmu_notifier_retry(vcpu, mmu_seq))
  1824. goto out_unlock;
  1825. kvm_mmu_free_some_pages(vcpu);
  1826. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1827. spin_unlock(&vcpu->kvm->mmu_lock);
  1828. return r;
  1829. out_unlock:
  1830. spin_unlock(&vcpu->kvm->mmu_lock);
  1831. kvm_release_pfn_clean(pfn);
  1832. return 0;
  1833. }
  1834. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1835. {
  1836. int i;
  1837. struct kvm_mmu_page *sp;
  1838. LIST_HEAD(invalid_list);
  1839. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1840. return;
  1841. spin_lock(&vcpu->kvm->mmu_lock);
  1842. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1843. hpa_t root = vcpu->arch.mmu.root_hpa;
  1844. sp = page_header(root);
  1845. --sp->root_count;
  1846. if (!sp->root_count && sp->role.invalid) {
  1847. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1848. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1849. }
  1850. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1851. spin_unlock(&vcpu->kvm->mmu_lock);
  1852. return;
  1853. }
  1854. for (i = 0; i < 4; ++i) {
  1855. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1856. if (root) {
  1857. root &= PT64_BASE_ADDR_MASK;
  1858. sp = page_header(root);
  1859. --sp->root_count;
  1860. if (!sp->root_count && sp->role.invalid)
  1861. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1862. &invalid_list);
  1863. }
  1864. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1865. }
  1866. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1867. spin_unlock(&vcpu->kvm->mmu_lock);
  1868. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1869. }
  1870. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1871. {
  1872. int ret = 0;
  1873. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1874. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1875. ret = 1;
  1876. }
  1877. return ret;
  1878. }
  1879. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1880. {
  1881. int i;
  1882. gfn_t root_gfn;
  1883. struct kvm_mmu_page *sp;
  1884. int direct = 0;
  1885. u64 pdptr;
  1886. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1887. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1888. hpa_t root = vcpu->arch.mmu.root_hpa;
  1889. ASSERT(!VALID_PAGE(root));
  1890. if (mmu_check_root(vcpu, root_gfn))
  1891. return 1;
  1892. if (tdp_enabled) {
  1893. direct = 1;
  1894. root_gfn = 0;
  1895. }
  1896. spin_lock(&vcpu->kvm->mmu_lock);
  1897. kvm_mmu_free_some_pages(vcpu);
  1898. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1899. PT64_ROOT_LEVEL, direct,
  1900. ACC_ALL, NULL);
  1901. root = __pa(sp->spt);
  1902. ++sp->root_count;
  1903. spin_unlock(&vcpu->kvm->mmu_lock);
  1904. vcpu->arch.mmu.root_hpa = root;
  1905. return 0;
  1906. }
  1907. direct = !is_paging(vcpu);
  1908. for (i = 0; i < 4; ++i) {
  1909. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1910. ASSERT(!VALID_PAGE(root));
  1911. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1912. pdptr = kvm_pdptr_read(vcpu, i);
  1913. if (!is_present_gpte(pdptr)) {
  1914. vcpu->arch.mmu.pae_root[i] = 0;
  1915. continue;
  1916. }
  1917. root_gfn = pdptr >> PAGE_SHIFT;
  1918. } else if (vcpu->arch.mmu.root_level == 0)
  1919. root_gfn = 0;
  1920. if (mmu_check_root(vcpu, root_gfn))
  1921. return 1;
  1922. if (tdp_enabled) {
  1923. direct = 1;
  1924. root_gfn = i << 30;
  1925. }
  1926. spin_lock(&vcpu->kvm->mmu_lock);
  1927. kvm_mmu_free_some_pages(vcpu);
  1928. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1929. PT32_ROOT_LEVEL, direct,
  1930. ACC_ALL, NULL);
  1931. root = __pa(sp->spt);
  1932. ++sp->root_count;
  1933. spin_unlock(&vcpu->kvm->mmu_lock);
  1934. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1935. }
  1936. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1937. return 0;
  1938. }
  1939. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1940. {
  1941. int i;
  1942. struct kvm_mmu_page *sp;
  1943. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1944. return;
  1945. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1946. hpa_t root = vcpu->arch.mmu.root_hpa;
  1947. sp = page_header(root);
  1948. mmu_sync_children(vcpu, sp);
  1949. return;
  1950. }
  1951. for (i = 0; i < 4; ++i) {
  1952. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1953. if (root && VALID_PAGE(root)) {
  1954. root &= PT64_BASE_ADDR_MASK;
  1955. sp = page_header(root);
  1956. mmu_sync_children(vcpu, sp);
  1957. }
  1958. }
  1959. }
  1960. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1961. {
  1962. spin_lock(&vcpu->kvm->mmu_lock);
  1963. mmu_sync_roots(vcpu);
  1964. spin_unlock(&vcpu->kvm->mmu_lock);
  1965. }
  1966. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1967. u32 access, u32 *error)
  1968. {
  1969. if (error)
  1970. *error = 0;
  1971. return vaddr;
  1972. }
  1973. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1974. u32 error_code)
  1975. {
  1976. gfn_t gfn;
  1977. int r;
  1978. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1979. r = mmu_topup_memory_caches(vcpu);
  1980. if (r)
  1981. return r;
  1982. ASSERT(vcpu);
  1983. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1984. gfn = gva >> PAGE_SHIFT;
  1985. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1986. error_code & PFERR_WRITE_MASK, gfn);
  1987. }
  1988. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1989. u32 error_code)
  1990. {
  1991. pfn_t pfn;
  1992. int r;
  1993. int level;
  1994. gfn_t gfn = gpa >> PAGE_SHIFT;
  1995. unsigned long mmu_seq;
  1996. ASSERT(vcpu);
  1997. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1998. r = mmu_topup_memory_caches(vcpu);
  1999. if (r)
  2000. return r;
  2001. level = mapping_level(vcpu, gfn);
  2002. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2003. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2004. smp_rmb();
  2005. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2006. if (is_error_pfn(pfn))
  2007. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2008. spin_lock(&vcpu->kvm->mmu_lock);
  2009. if (mmu_notifier_retry(vcpu, mmu_seq))
  2010. goto out_unlock;
  2011. kvm_mmu_free_some_pages(vcpu);
  2012. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2013. level, gfn, pfn);
  2014. spin_unlock(&vcpu->kvm->mmu_lock);
  2015. return r;
  2016. out_unlock:
  2017. spin_unlock(&vcpu->kvm->mmu_lock);
  2018. kvm_release_pfn_clean(pfn);
  2019. return 0;
  2020. }
  2021. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2022. {
  2023. mmu_free_roots(vcpu);
  2024. }
  2025. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2026. {
  2027. struct kvm_mmu *context = &vcpu->arch.mmu;
  2028. context->new_cr3 = nonpaging_new_cr3;
  2029. context->page_fault = nonpaging_page_fault;
  2030. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2031. context->free = nonpaging_free;
  2032. context->prefetch_page = nonpaging_prefetch_page;
  2033. context->sync_page = nonpaging_sync_page;
  2034. context->invlpg = nonpaging_invlpg;
  2035. context->root_level = 0;
  2036. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2037. context->root_hpa = INVALID_PAGE;
  2038. return 0;
  2039. }
  2040. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2041. {
  2042. ++vcpu->stat.tlb_flush;
  2043. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2044. }
  2045. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2046. {
  2047. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2048. mmu_free_roots(vcpu);
  2049. }
  2050. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2051. u64 addr,
  2052. u32 err_code)
  2053. {
  2054. kvm_inject_page_fault(vcpu, addr, err_code);
  2055. }
  2056. static void paging_free(struct kvm_vcpu *vcpu)
  2057. {
  2058. nonpaging_free(vcpu);
  2059. }
  2060. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2061. {
  2062. int bit7;
  2063. bit7 = (gpte >> 7) & 1;
  2064. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2065. }
  2066. #define PTTYPE 64
  2067. #include "paging_tmpl.h"
  2068. #undef PTTYPE
  2069. #define PTTYPE 32
  2070. #include "paging_tmpl.h"
  2071. #undef PTTYPE
  2072. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2073. {
  2074. struct kvm_mmu *context = &vcpu->arch.mmu;
  2075. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2076. u64 exb_bit_rsvd = 0;
  2077. if (!is_nx(vcpu))
  2078. exb_bit_rsvd = rsvd_bits(63, 63);
  2079. switch (level) {
  2080. case PT32_ROOT_LEVEL:
  2081. /* no rsvd bits for 2 level 4K page table entries */
  2082. context->rsvd_bits_mask[0][1] = 0;
  2083. context->rsvd_bits_mask[0][0] = 0;
  2084. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2085. if (!is_pse(vcpu)) {
  2086. context->rsvd_bits_mask[1][1] = 0;
  2087. break;
  2088. }
  2089. if (is_cpuid_PSE36())
  2090. /* 36bits PSE 4MB page */
  2091. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2092. else
  2093. /* 32 bits PSE 4MB page */
  2094. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2095. break;
  2096. case PT32E_ROOT_LEVEL:
  2097. context->rsvd_bits_mask[0][2] =
  2098. rsvd_bits(maxphyaddr, 63) |
  2099. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2100. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2101. rsvd_bits(maxphyaddr, 62); /* PDE */
  2102. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2103. rsvd_bits(maxphyaddr, 62); /* PTE */
  2104. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2105. rsvd_bits(maxphyaddr, 62) |
  2106. rsvd_bits(13, 20); /* large page */
  2107. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2108. break;
  2109. case PT64_ROOT_LEVEL:
  2110. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2111. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2112. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2113. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2114. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2115. rsvd_bits(maxphyaddr, 51);
  2116. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2117. rsvd_bits(maxphyaddr, 51);
  2118. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2119. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2120. rsvd_bits(maxphyaddr, 51) |
  2121. rsvd_bits(13, 29);
  2122. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2123. rsvd_bits(maxphyaddr, 51) |
  2124. rsvd_bits(13, 20); /* large page */
  2125. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2126. break;
  2127. }
  2128. }
  2129. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2130. {
  2131. struct kvm_mmu *context = &vcpu->arch.mmu;
  2132. ASSERT(is_pae(vcpu));
  2133. context->new_cr3 = paging_new_cr3;
  2134. context->page_fault = paging64_page_fault;
  2135. context->gva_to_gpa = paging64_gva_to_gpa;
  2136. context->prefetch_page = paging64_prefetch_page;
  2137. context->sync_page = paging64_sync_page;
  2138. context->invlpg = paging64_invlpg;
  2139. context->free = paging_free;
  2140. context->root_level = level;
  2141. context->shadow_root_level = level;
  2142. context->root_hpa = INVALID_PAGE;
  2143. return 0;
  2144. }
  2145. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2146. {
  2147. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2148. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2149. }
  2150. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2151. {
  2152. struct kvm_mmu *context = &vcpu->arch.mmu;
  2153. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2154. context->new_cr3 = paging_new_cr3;
  2155. context->page_fault = paging32_page_fault;
  2156. context->gva_to_gpa = paging32_gva_to_gpa;
  2157. context->free = paging_free;
  2158. context->prefetch_page = paging32_prefetch_page;
  2159. context->sync_page = paging32_sync_page;
  2160. context->invlpg = paging32_invlpg;
  2161. context->root_level = PT32_ROOT_LEVEL;
  2162. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2163. context->root_hpa = INVALID_PAGE;
  2164. return 0;
  2165. }
  2166. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2167. {
  2168. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2169. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2170. }
  2171. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2172. {
  2173. struct kvm_mmu *context = &vcpu->arch.mmu;
  2174. context->new_cr3 = nonpaging_new_cr3;
  2175. context->page_fault = tdp_page_fault;
  2176. context->free = nonpaging_free;
  2177. context->prefetch_page = nonpaging_prefetch_page;
  2178. context->sync_page = nonpaging_sync_page;
  2179. context->invlpg = nonpaging_invlpg;
  2180. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2181. context->root_hpa = INVALID_PAGE;
  2182. if (!is_paging(vcpu)) {
  2183. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2184. context->root_level = 0;
  2185. } else if (is_long_mode(vcpu)) {
  2186. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2187. context->gva_to_gpa = paging64_gva_to_gpa;
  2188. context->root_level = PT64_ROOT_LEVEL;
  2189. } else if (is_pae(vcpu)) {
  2190. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2191. context->gva_to_gpa = paging64_gva_to_gpa;
  2192. context->root_level = PT32E_ROOT_LEVEL;
  2193. } else {
  2194. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2195. context->gva_to_gpa = paging32_gva_to_gpa;
  2196. context->root_level = PT32_ROOT_LEVEL;
  2197. }
  2198. return 0;
  2199. }
  2200. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2201. {
  2202. int r;
  2203. ASSERT(vcpu);
  2204. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2205. if (!is_paging(vcpu))
  2206. r = nonpaging_init_context(vcpu);
  2207. else if (is_long_mode(vcpu))
  2208. r = paging64_init_context(vcpu);
  2209. else if (is_pae(vcpu))
  2210. r = paging32E_init_context(vcpu);
  2211. else
  2212. r = paging32_init_context(vcpu);
  2213. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2214. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2215. return r;
  2216. }
  2217. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2218. {
  2219. vcpu->arch.update_pte.pfn = bad_pfn;
  2220. if (tdp_enabled)
  2221. return init_kvm_tdp_mmu(vcpu);
  2222. else
  2223. return init_kvm_softmmu(vcpu);
  2224. }
  2225. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2226. {
  2227. ASSERT(vcpu);
  2228. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2229. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2230. vcpu->arch.mmu.free(vcpu);
  2231. }
  2232. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2233. {
  2234. destroy_kvm_mmu(vcpu);
  2235. return init_kvm_mmu(vcpu);
  2236. }
  2237. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2238. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2239. {
  2240. int r;
  2241. r = mmu_topup_memory_caches(vcpu);
  2242. if (r)
  2243. goto out;
  2244. r = mmu_alloc_roots(vcpu);
  2245. spin_lock(&vcpu->kvm->mmu_lock);
  2246. mmu_sync_roots(vcpu);
  2247. spin_unlock(&vcpu->kvm->mmu_lock);
  2248. if (r)
  2249. goto out;
  2250. /* set_cr3() should ensure TLB has been flushed */
  2251. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2252. out:
  2253. return r;
  2254. }
  2255. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2256. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2257. {
  2258. mmu_free_roots(vcpu);
  2259. }
  2260. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2261. struct kvm_mmu_page *sp,
  2262. u64 *spte)
  2263. {
  2264. u64 pte;
  2265. struct kvm_mmu_page *child;
  2266. pte = *spte;
  2267. if (is_shadow_present_pte(pte)) {
  2268. if (is_last_spte(pte, sp->role.level))
  2269. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2270. else {
  2271. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2272. mmu_page_remove_parent_pte(child, spte);
  2273. }
  2274. }
  2275. __set_spte(spte, shadow_trap_nonpresent_pte);
  2276. if (is_large_pte(pte))
  2277. --vcpu->kvm->stat.lpages;
  2278. }
  2279. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2280. struct kvm_mmu_page *sp,
  2281. u64 *spte,
  2282. const void *new)
  2283. {
  2284. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2285. ++vcpu->kvm->stat.mmu_pde_zapped;
  2286. return;
  2287. }
  2288. if (is_rsvd_bits_set(vcpu, *(u64 *)new, PT_PAGE_TABLE_LEVEL))
  2289. return;
  2290. ++vcpu->kvm->stat.mmu_pte_updated;
  2291. if (!sp->role.cr4_pae)
  2292. paging32_update_pte(vcpu, sp, spte, new);
  2293. else
  2294. paging64_update_pte(vcpu, sp, spte, new);
  2295. }
  2296. static bool need_remote_flush(u64 old, u64 new)
  2297. {
  2298. if (!is_shadow_present_pte(old))
  2299. return false;
  2300. if (!is_shadow_present_pte(new))
  2301. return true;
  2302. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2303. return true;
  2304. old ^= PT64_NX_MASK;
  2305. new ^= PT64_NX_MASK;
  2306. return (old & ~new & PT64_PERM_MASK) != 0;
  2307. }
  2308. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2309. bool remote_flush, bool local_flush)
  2310. {
  2311. if (zap_page)
  2312. return;
  2313. if (remote_flush)
  2314. kvm_flush_remote_tlbs(vcpu->kvm);
  2315. else if (local_flush)
  2316. kvm_mmu_flush_tlb(vcpu);
  2317. }
  2318. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2319. {
  2320. u64 *spte = vcpu->arch.last_pte_updated;
  2321. return !!(spte && (*spte & shadow_accessed_mask));
  2322. }
  2323. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2324. u64 gpte)
  2325. {
  2326. gfn_t gfn;
  2327. pfn_t pfn;
  2328. if (!is_present_gpte(gpte))
  2329. return;
  2330. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2331. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2332. smp_rmb();
  2333. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2334. if (is_error_pfn(pfn)) {
  2335. kvm_release_pfn_clean(pfn);
  2336. return;
  2337. }
  2338. vcpu->arch.update_pte.gfn = gfn;
  2339. vcpu->arch.update_pte.pfn = pfn;
  2340. }
  2341. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2342. {
  2343. u64 *spte = vcpu->arch.last_pte_updated;
  2344. if (spte
  2345. && vcpu->arch.last_pte_gfn == gfn
  2346. && shadow_accessed_mask
  2347. && !(*spte & shadow_accessed_mask)
  2348. && is_shadow_present_pte(*spte))
  2349. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2350. }
  2351. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2352. const u8 *new, int bytes,
  2353. bool guest_initiated)
  2354. {
  2355. gfn_t gfn = gpa >> PAGE_SHIFT;
  2356. union kvm_mmu_page_role mask = { .word = 0 };
  2357. struct kvm_mmu_page *sp;
  2358. struct hlist_node *node;
  2359. LIST_HEAD(invalid_list);
  2360. u64 entry, gentry;
  2361. u64 *spte;
  2362. unsigned offset = offset_in_page(gpa);
  2363. unsigned pte_size;
  2364. unsigned page_offset;
  2365. unsigned misaligned;
  2366. unsigned quadrant;
  2367. int level;
  2368. int flooded = 0;
  2369. int npte;
  2370. int r;
  2371. int invlpg_counter;
  2372. bool remote_flush, local_flush, zap_page;
  2373. zap_page = remote_flush = local_flush = false;
  2374. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2375. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2376. /*
  2377. * Assume that the pte write on a page table of the same type
  2378. * as the current vcpu paging mode. This is nearly always true
  2379. * (might be false while changing modes). Note it is verified later
  2380. * by update_pte().
  2381. */
  2382. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2383. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2384. if (is_pae(vcpu)) {
  2385. gpa &= ~(gpa_t)7;
  2386. bytes = 8;
  2387. }
  2388. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2389. if (r)
  2390. gentry = 0;
  2391. new = (const u8 *)&gentry;
  2392. }
  2393. switch (bytes) {
  2394. case 4:
  2395. gentry = *(const u32 *)new;
  2396. break;
  2397. case 8:
  2398. gentry = *(const u64 *)new;
  2399. break;
  2400. default:
  2401. gentry = 0;
  2402. break;
  2403. }
  2404. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2405. spin_lock(&vcpu->kvm->mmu_lock);
  2406. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2407. gentry = 0;
  2408. kvm_mmu_access_page(vcpu, gfn);
  2409. kvm_mmu_free_some_pages(vcpu);
  2410. ++vcpu->kvm->stat.mmu_pte_write;
  2411. kvm_mmu_audit(vcpu, "pre pte write");
  2412. if (guest_initiated) {
  2413. if (gfn == vcpu->arch.last_pt_write_gfn
  2414. && !last_updated_pte_accessed(vcpu)) {
  2415. ++vcpu->arch.last_pt_write_count;
  2416. if (vcpu->arch.last_pt_write_count >= 3)
  2417. flooded = 1;
  2418. } else {
  2419. vcpu->arch.last_pt_write_gfn = gfn;
  2420. vcpu->arch.last_pt_write_count = 1;
  2421. vcpu->arch.last_pte_updated = NULL;
  2422. }
  2423. }
  2424. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2425. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2426. pte_size = sp->role.cr4_pae ? 8 : 4;
  2427. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2428. misaligned |= bytes < 4;
  2429. if (misaligned || flooded) {
  2430. /*
  2431. * Misaligned accesses are too much trouble to fix
  2432. * up; also, they usually indicate a page is not used
  2433. * as a page table.
  2434. *
  2435. * If we're seeing too many writes to a page,
  2436. * it may no longer be a page table, or we may be
  2437. * forking, in which case it is better to unmap the
  2438. * page.
  2439. */
  2440. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2441. gpa, bytes, sp->role.word);
  2442. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2443. &invalid_list);
  2444. ++vcpu->kvm->stat.mmu_flooded;
  2445. continue;
  2446. }
  2447. page_offset = offset;
  2448. level = sp->role.level;
  2449. npte = 1;
  2450. if (!sp->role.cr4_pae) {
  2451. page_offset <<= 1; /* 32->64 */
  2452. /*
  2453. * A 32-bit pde maps 4MB while the shadow pdes map
  2454. * only 2MB. So we need to double the offset again
  2455. * and zap two pdes instead of one.
  2456. */
  2457. if (level == PT32_ROOT_LEVEL) {
  2458. page_offset &= ~7; /* kill rounding error */
  2459. page_offset <<= 1;
  2460. npte = 2;
  2461. }
  2462. quadrant = page_offset >> PAGE_SHIFT;
  2463. page_offset &= ~PAGE_MASK;
  2464. if (quadrant != sp->role.quadrant)
  2465. continue;
  2466. }
  2467. local_flush = true;
  2468. spte = &sp->spt[page_offset / sizeof(*spte)];
  2469. while (npte--) {
  2470. entry = *spte;
  2471. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2472. if (gentry &&
  2473. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2474. & mask.word))
  2475. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2476. if (!remote_flush && need_remote_flush(entry, *spte))
  2477. remote_flush = true;
  2478. ++spte;
  2479. }
  2480. }
  2481. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2482. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2483. kvm_mmu_audit(vcpu, "post pte write");
  2484. spin_unlock(&vcpu->kvm->mmu_lock);
  2485. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2486. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2487. vcpu->arch.update_pte.pfn = bad_pfn;
  2488. }
  2489. }
  2490. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2491. {
  2492. gpa_t gpa;
  2493. int r;
  2494. if (tdp_enabled)
  2495. return 0;
  2496. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2497. spin_lock(&vcpu->kvm->mmu_lock);
  2498. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2499. spin_unlock(&vcpu->kvm->mmu_lock);
  2500. return r;
  2501. }
  2502. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2503. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2504. {
  2505. int free_pages;
  2506. LIST_HEAD(invalid_list);
  2507. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2508. while (free_pages < KVM_REFILL_PAGES &&
  2509. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2510. struct kvm_mmu_page *sp;
  2511. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2512. struct kvm_mmu_page, link);
  2513. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2514. &invalid_list);
  2515. ++vcpu->kvm->stat.mmu_recycled;
  2516. }
  2517. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2518. }
  2519. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2520. {
  2521. int r;
  2522. enum emulation_result er;
  2523. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2524. if (r < 0)
  2525. goto out;
  2526. if (!r) {
  2527. r = 1;
  2528. goto out;
  2529. }
  2530. r = mmu_topup_memory_caches(vcpu);
  2531. if (r)
  2532. goto out;
  2533. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2534. switch (er) {
  2535. case EMULATE_DONE:
  2536. return 1;
  2537. case EMULATE_DO_MMIO:
  2538. ++vcpu->stat.mmio_exits;
  2539. /* fall through */
  2540. case EMULATE_FAIL:
  2541. return 0;
  2542. default:
  2543. BUG();
  2544. }
  2545. out:
  2546. return r;
  2547. }
  2548. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2549. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2550. {
  2551. vcpu->arch.mmu.invlpg(vcpu, gva);
  2552. kvm_mmu_flush_tlb(vcpu);
  2553. ++vcpu->stat.invlpg;
  2554. }
  2555. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2556. void kvm_enable_tdp(void)
  2557. {
  2558. tdp_enabled = true;
  2559. }
  2560. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2561. void kvm_disable_tdp(void)
  2562. {
  2563. tdp_enabled = false;
  2564. }
  2565. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2566. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2567. {
  2568. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2569. }
  2570. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2571. {
  2572. struct page *page;
  2573. int i;
  2574. ASSERT(vcpu);
  2575. /*
  2576. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2577. * Therefore we need to allocate shadow page tables in the first
  2578. * 4GB of memory, which happens to fit the DMA32 zone.
  2579. */
  2580. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2581. if (!page)
  2582. return -ENOMEM;
  2583. vcpu->arch.mmu.pae_root = page_address(page);
  2584. for (i = 0; i < 4; ++i)
  2585. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2586. return 0;
  2587. }
  2588. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2589. {
  2590. ASSERT(vcpu);
  2591. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2592. return alloc_mmu_pages(vcpu);
  2593. }
  2594. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2595. {
  2596. ASSERT(vcpu);
  2597. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2598. return init_kvm_mmu(vcpu);
  2599. }
  2600. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2601. {
  2602. ASSERT(vcpu);
  2603. destroy_kvm_mmu(vcpu);
  2604. free_mmu_pages(vcpu);
  2605. mmu_free_memory_caches(vcpu);
  2606. }
  2607. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2608. {
  2609. struct kvm_mmu_page *sp;
  2610. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2611. int i;
  2612. u64 *pt;
  2613. if (!test_bit(slot, sp->slot_bitmap))
  2614. continue;
  2615. pt = sp->spt;
  2616. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2617. /* avoid RMW */
  2618. if (is_writable_pte(pt[i]))
  2619. pt[i] &= ~PT_WRITABLE_MASK;
  2620. }
  2621. kvm_flush_remote_tlbs(kvm);
  2622. }
  2623. void kvm_mmu_zap_all(struct kvm *kvm)
  2624. {
  2625. struct kvm_mmu_page *sp, *node;
  2626. LIST_HEAD(invalid_list);
  2627. spin_lock(&kvm->mmu_lock);
  2628. restart:
  2629. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2630. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2631. goto restart;
  2632. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2633. spin_unlock(&kvm->mmu_lock);
  2634. }
  2635. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2636. struct list_head *invalid_list)
  2637. {
  2638. struct kvm_mmu_page *page;
  2639. page = container_of(kvm->arch.active_mmu_pages.prev,
  2640. struct kvm_mmu_page, link);
  2641. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2642. }
  2643. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2644. {
  2645. struct kvm *kvm;
  2646. struct kvm *kvm_freed = NULL;
  2647. int cache_count = 0;
  2648. spin_lock(&kvm_lock);
  2649. list_for_each_entry(kvm, &vm_list, vm_list) {
  2650. int npages, idx, freed_pages;
  2651. LIST_HEAD(invalid_list);
  2652. idx = srcu_read_lock(&kvm->srcu);
  2653. spin_lock(&kvm->mmu_lock);
  2654. npages = kvm->arch.n_alloc_mmu_pages -
  2655. kvm->arch.n_free_mmu_pages;
  2656. cache_count += npages;
  2657. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2658. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2659. &invalid_list);
  2660. cache_count -= freed_pages;
  2661. kvm_freed = kvm;
  2662. }
  2663. nr_to_scan--;
  2664. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2665. spin_unlock(&kvm->mmu_lock);
  2666. srcu_read_unlock(&kvm->srcu, idx);
  2667. }
  2668. if (kvm_freed)
  2669. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2670. spin_unlock(&kvm_lock);
  2671. return cache_count;
  2672. }
  2673. static struct shrinker mmu_shrinker = {
  2674. .shrink = mmu_shrink,
  2675. .seeks = DEFAULT_SEEKS * 10,
  2676. };
  2677. static void mmu_destroy_caches(void)
  2678. {
  2679. if (pte_chain_cache)
  2680. kmem_cache_destroy(pte_chain_cache);
  2681. if (rmap_desc_cache)
  2682. kmem_cache_destroy(rmap_desc_cache);
  2683. if (mmu_page_header_cache)
  2684. kmem_cache_destroy(mmu_page_header_cache);
  2685. }
  2686. void kvm_mmu_module_exit(void)
  2687. {
  2688. mmu_destroy_caches();
  2689. unregister_shrinker(&mmu_shrinker);
  2690. }
  2691. int kvm_mmu_module_init(void)
  2692. {
  2693. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2694. sizeof(struct kvm_pte_chain),
  2695. 0, 0, NULL);
  2696. if (!pte_chain_cache)
  2697. goto nomem;
  2698. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2699. sizeof(struct kvm_rmap_desc),
  2700. 0, 0, NULL);
  2701. if (!rmap_desc_cache)
  2702. goto nomem;
  2703. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2704. sizeof(struct kvm_mmu_page),
  2705. 0, 0, NULL);
  2706. if (!mmu_page_header_cache)
  2707. goto nomem;
  2708. register_shrinker(&mmu_shrinker);
  2709. return 0;
  2710. nomem:
  2711. mmu_destroy_caches();
  2712. return -ENOMEM;
  2713. }
  2714. /*
  2715. * Caculate mmu pages needed for kvm.
  2716. */
  2717. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2718. {
  2719. int i;
  2720. unsigned int nr_mmu_pages;
  2721. unsigned int nr_pages = 0;
  2722. struct kvm_memslots *slots;
  2723. slots = kvm_memslots(kvm);
  2724. for (i = 0; i < slots->nmemslots; i++)
  2725. nr_pages += slots->memslots[i].npages;
  2726. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2727. nr_mmu_pages = max(nr_mmu_pages,
  2728. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2729. return nr_mmu_pages;
  2730. }
  2731. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2732. unsigned len)
  2733. {
  2734. if (len > buffer->len)
  2735. return NULL;
  2736. return buffer->ptr;
  2737. }
  2738. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2739. unsigned len)
  2740. {
  2741. void *ret;
  2742. ret = pv_mmu_peek_buffer(buffer, len);
  2743. if (!ret)
  2744. return ret;
  2745. buffer->ptr += len;
  2746. buffer->len -= len;
  2747. buffer->processed += len;
  2748. return ret;
  2749. }
  2750. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2751. gpa_t addr, gpa_t value)
  2752. {
  2753. int bytes = 8;
  2754. int r;
  2755. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2756. bytes = 4;
  2757. r = mmu_topup_memory_caches(vcpu);
  2758. if (r)
  2759. return r;
  2760. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2761. return -EFAULT;
  2762. return 1;
  2763. }
  2764. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2765. {
  2766. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2767. return 1;
  2768. }
  2769. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2770. {
  2771. spin_lock(&vcpu->kvm->mmu_lock);
  2772. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2773. spin_unlock(&vcpu->kvm->mmu_lock);
  2774. return 1;
  2775. }
  2776. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2777. struct kvm_pv_mmu_op_buffer *buffer)
  2778. {
  2779. struct kvm_mmu_op_header *header;
  2780. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2781. if (!header)
  2782. return 0;
  2783. switch (header->op) {
  2784. case KVM_MMU_OP_WRITE_PTE: {
  2785. struct kvm_mmu_op_write_pte *wpte;
  2786. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2787. if (!wpte)
  2788. return 0;
  2789. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2790. wpte->pte_val);
  2791. }
  2792. case KVM_MMU_OP_FLUSH_TLB: {
  2793. struct kvm_mmu_op_flush_tlb *ftlb;
  2794. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2795. if (!ftlb)
  2796. return 0;
  2797. return kvm_pv_mmu_flush_tlb(vcpu);
  2798. }
  2799. case KVM_MMU_OP_RELEASE_PT: {
  2800. struct kvm_mmu_op_release_pt *rpt;
  2801. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2802. if (!rpt)
  2803. return 0;
  2804. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2805. }
  2806. default: return 0;
  2807. }
  2808. }
  2809. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2810. gpa_t addr, unsigned long *ret)
  2811. {
  2812. int r;
  2813. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2814. buffer->ptr = buffer->buf;
  2815. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2816. buffer->processed = 0;
  2817. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2818. if (r)
  2819. goto out;
  2820. while (buffer->len) {
  2821. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2822. if (r < 0)
  2823. goto out;
  2824. if (r == 0)
  2825. break;
  2826. }
  2827. r = 1;
  2828. out:
  2829. *ret = buffer->processed;
  2830. return r;
  2831. }
  2832. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2833. {
  2834. struct kvm_shadow_walk_iterator iterator;
  2835. int nr_sptes = 0;
  2836. spin_lock(&vcpu->kvm->mmu_lock);
  2837. for_each_shadow_entry(vcpu, addr, iterator) {
  2838. sptes[iterator.level-1] = *iterator.sptep;
  2839. nr_sptes++;
  2840. if (!is_shadow_present_pte(*iterator.sptep))
  2841. break;
  2842. }
  2843. spin_unlock(&vcpu->kvm->mmu_lock);
  2844. return nr_sptes;
  2845. }
  2846. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2847. #ifdef AUDIT
  2848. static const char *audit_msg;
  2849. static gva_t canonicalize(gva_t gva)
  2850. {
  2851. #ifdef CONFIG_X86_64
  2852. gva = (long long)(gva << 16) >> 16;
  2853. #endif
  2854. return gva;
  2855. }
  2856. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2857. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2858. inspect_spte_fn fn)
  2859. {
  2860. int i;
  2861. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2862. u64 ent = sp->spt[i];
  2863. if (is_shadow_present_pte(ent)) {
  2864. if (!is_last_spte(ent, sp->role.level)) {
  2865. struct kvm_mmu_page *child;
  2866. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2867. __mmu_spte_walk(kvm, child, fn);
  2868. } else
  2869. fn(kvm, &sp->spt[i]);
  2870. }
  2871. }
  2872. }
  2873. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2874. {
  2875. int i;
  2876. struct kvm_mmu_page *sp;
  2877. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2878. return;
  2879. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2880. hpa_t root = vcpu->arch.mmu.root_hpa;
  2881. sp = page_header(root);
  2882. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2883. return;
  2884. }
  2885. for (i = 0; i < 4; ++i) {
  2886. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2887. if (root && VALID_PAGE(root)) {
  2888. root &= PT64_BASE_ADDR_MASK;
  2889. sp = page_header(root);
  2890. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2891. }
  2892. }
  2893. return;
  2894. }
  2895. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2896. gva_t va, int level)
  2897. {
  2898. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2899. int i;
  2900. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2901. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2902. u64 ent = pt[i];
  2903. if (ent == shadow_trap_nonpresent_pte)
  2904. continue;
  2905. va = canonicalize(va);
  2906. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2907. audit_mappings_page(vcpu, ent, va, level - 1);
  2908. else {
  2909. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2910. gfn_t gfn = gpa >> PAGE_SHIFT;
  2911. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2912. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2913. if (is_error_pfn(pfn)) {
  2914. kvm_release_pfn_clean(pfn);
  2915. continue;
  2916. }
  2917. if (is_shadow_present_pte(ent)
  2918. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2919. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2920. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2921. audit_msg, vcpu->arch.mmu.root_level,
  2922. va, gpa, hpa, ent,
  2923. is_shadow_present_pte(ent));
  2924. else if (ent == shadow_notrap_nonpresent_pte
  2925. && !is_error_hpa(hpa))
  2926. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2927. " valid guest gva %lx\n", audit_msg, va);
  2928. kvm_release_pfn_clean(pfn);
  2929. }
  2930. }
  2931. }
  2932. static void audit_mappings(struct kvm_vcpu *vcpu)
  2933. {
  2934. unsigned i;
  2935. if (vcpu->arch.mmu.root_level == 4)
  2936. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2937. else
  2938. for (i = 0; i < 4; ++i)
  2939. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2940. audit_mappings_page(vcpu,
  2941. vcpu->arch.mmu.pae_root[i],
  2942. i << 30,
  2943. 2);
  2944. }
  2945. static int count_rmaps(struct kvm_vcpu *vcpu)
  2946. {
  2947. struct kvm *kvm = vcpu->kvm;
  2948. struct kvm_memslots *slots;
  2949. int nmaps = 0;
  2950. int i, j, k, idx;
  2951. idx = srcu_read_lock(&kvm->srcu);
  2952. slots = kvm_memslots(kvm);
  2953. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2954. struct kvm_memory_slot *m = &slots->memslots[i];
  2955. struct kvm_rmap_desc *d;
  2956. for (j = 0; j < m->npages; ++j) {
  2957. unsigned long *rmapp = &m->rmap[j];
  2958. if (!*rmapp)
  2959. continue;
  2960. if (!(*rmapp & 1)) {
  2961. ++nmaps;
  2962. continue;
  2963. }
  2964. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2965. while (d) {
  2966. for (k = 0; k < RMAP_EXT; ++k)
  2967. if (d->sptes[k])
  2968. ++nmaps;
  2969. else
  2970. break;
  2971. d = d->more;
  2972. }
  2973. }
  2974. }
  2975. srcu_read_unlock(&kvm->srcu, idx);
  2976. return nmaps;
  2977. }
  2978. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2979. {
  2980. unsigned long *rmapp;
  2981. struct kvm_mmu_page *rev_sp;
  2982. gfn_t gfn;
  2983. if (is_writable_pte(*sptep)) {
  2984. rev_sp = page_header(__pa(sptep));
  2985. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2986. if (!gfn_to_memslot(kvm, gfn)) {
  2987. if (!printk_ratelimit())
  2988. return;
  2989. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2990. audit_msg, gfn);
  2991. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2992. audit_msg, (long int)(sptep - rev_sp->spt),
  2993. rev_sp->gfn);
  2994. dump_stack();
  2995. return;
  2996. }
  2997. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2998. if (!*rmapp) {
  2999. if (!printk_ratelimit())
  3000. return;
  3001. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  3002. audit_msg, *sptep);
  3003. dump_stack();
  3004. }
  3005. }
  3006. }
  3007. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  3008. {
  3009. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  3010. }
  3011. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  3012. {
  3013. struct kvm_mmu_page *sp;
  3014. int i;
  3015. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3016. u64 *pt = sp->spt;
  3017. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3018. continue;
  3019. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3020. u64 ent = pt[i];
  3021. if (!(ent & PT_PRESENT_MASK))
  3022. continue;
  3023. if (!is_writable_pte(ent))
  3024. continue;
  3025. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3026. }
  3027. }
  3028. return;
  3029. }
  3030. static void audit_rmap(struct kvm_vcpu *vcpu)
  3031. {
  3032. check_writable_mappings_rmap(vcpu);
  3033. count_rmaps(vcpu);
  3034. }
  3035. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3036. {
  3037. struct kvm_mmu_page *sp;
  3038. struct kvm_memory_slot *slot;
  3039. unsigned long *rmapp;
  3040. u64 *spte;
  3041. gfn_t gfn;
  3042. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3043. if (sp->role.direct)
  3044. continue;
  3045. if (sp->unsync)
  3046. continue;
  3047. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3048. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3049. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3050. while (spte) {
  3051. if (is_writable_pte(*spte))
  3052. printk(KERN_ERR "%s: (%s) shadow page has "
  3053. "writable mappings: gfn %lx role %x\n",
  3054. __func__, audit_msg, sp->gfn,
  3055. sp->role.word);
  3056. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3057. }
  3058. }
  3059. }
  3060. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3061. {
  3062. int olddbg = dbg;
  3063. dbg = 0;
  3064. audit_msg = msg;
  3065. audit_rmap(vcpu);
  3066. audit_write_protection(vcpu);
  3067. if (strcmp("pre pte write", audit_msg) != 0)
  3068. audit_mappings(vcpu);
  3069. audit_writable_sptes_have_rmaps(vcpu);
  3070. dbg = olddbg;
  3071. }
  3072. #endif