qlge_main.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int seconds = 3;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. ssleep(1);
  123. } while (--seconds);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  224. if (status)
  225. return status;
  226. switch (type) {
  227. case MAC_ADDR_TYPE_MULTI_MAC:
  228. case MAC_ADDR_TYPE_CAM_MAC:
  229. {
  230. status =
  231. ql_wait_reg_rdy(qdev,
  232. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  233. if (status)
  234. goto exit;
  235. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  236. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  237. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  238. status =
  239. ql_wait_reg_rdy(qdev,
  240. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  241. if (status)
  242. goto exit;
  243. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  247. if (status)
  248. goto exit;
  249. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  250. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  251. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  252. status =
  253. ql_wait_reg_rdy(qdev,
  254. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  255. if (status)
  256. goto exit;
  257. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  258. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  259. status =
  260. ql_wait_reg_rdy(qdev,
  261. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  262. if (status)
  263. goto exit;
  264. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  265. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  266. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  267. status =
  268. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  269. MAC_ADDR_MR, MAC_ADDR_E);
  270. if (status)
  271. goto exit;
  272. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  273. }
  274. break;
  275. }
  276. case MAC_ADDR_TYPE_VLAN:
  277. case MAC_ADDR_TYPE_MULTI_FLTR:
  278. default:
  279. QPRINTK(qdev, IFUP, CRIT,
  280. "Address type %d not yet supported.\n", type);
  281. status = -EPERM;
  282. }
  283. exit:
  284. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  285. return status;
  286. }
  287. /* Set up a MAC, multicast or VLAN address for the
  288. * inbound frame matching.
  289. */
  290. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  291. u16 index)
  292. {
  293. u32 offset = 0;
  294. int status = 0;
  295. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  296. if (status)
  297. return status;
  298. switch (type) {
  299. case MAC_ADDR_TYPE_MULTI_MAC:
  300. case MAC_ADDR_TYPE_CAM_MAC:
  301. {
  302. u32 cam_output;
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower =
  305. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  306. (addr[5]);
  307. QPRINTK(qdev, IFUP, INFO,
  308. "Adding %s address %pM"
  309. " at index %d in the CAM.\n",
  310. ((type ==
  311. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  312. "UNICAST"), addr, index);
  313. status =
  314. ql_wait_reg_rdy(qdev,
  315. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  316. if (status)
  317. goto exit;
  318. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  319. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  320. type); /* type */
  321. ql_write32(qdev, MAC_ADDR_DATA, lower);
  322. status =
  323. ql_wait_reg_rdy(qdev,
  324. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  325. if (status)
  326. goto exit;
  327. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  328. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  329. type); /* type */
  330. ql_write32(qdev, MAC_ADDR_DATA, upper);
  331. status =
  332. ql_wait_reg_rdy(qdev,
  333. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  334. if (status)
  335. goto exit;
  336. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  337. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  338. type); /* type */
  339. /* This field should also include the queue id
  340. and possibly the function id. Right now we hardcode
  341. the route field to NIC core.
  342. */
  343. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  344. cam_output = (CAM_OUT_ROUTE_NIC |
  345. (qdev->
  346. func << CAM_OUT_FUNC_SHIFT) |
  347. (qdev->
  348. rss_ring_first_cq_id <<
  349. CAM_OUT_CQ_ID_SHIFT));
  350. if (qdev->vlgrp)
  351. cam_output |= CAM_OUT_RV;
  352. /* route to NIC core */
  353. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  354. }
  355. break;
  356. }
  357. case MAC_ADDR_TYPE_VLAN:
  358. {
  359. u32 enable_bit = *((u32 *) &addr[0]);
  360. /* For VLAN, the addr actually holds a bit that
  361. * either enables or disables the vlan id we are
  362. * addressing. It's either MAC_ADDR_E on or off.
  363. * That's bit-27 we're talking about.
  364. */
  365. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  366. (enable_bit ? "Adding" : "Removing"),
  367. index, (enable_bit ? "to" : "from"));
  368. status =
  369. ql_wait_reg_rdy(qdev,
  370. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  371. if (status)
  372. goto exit;
  373. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  374. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  375. type | /* type */
  376. enable_bit); /* enable/disable */
  377. break;
  378. }
  379. case MAC_ADDR_TYPE_MULTI_FLTR:
  380. default:
  381. QPRINTK(qdev, IFUP, CRIT,
  382. "Address type %d not yet supported.\n", type);
  383. status = -EPERM;
  384. }
  385. exit:
  386. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  387. return status;
  388. }
  389. /* Get a specific frame routing value from the CAM.
  390. * Used for debug and reg dump.
  391. */
  392. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  393. {
  394. int status = 0;
  395. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  396. if (status)
  397. goto exit;
  398. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
  399. if (status)
  400. goto exit;
  401. ql_write32(qdev, RT_IDX,
  402. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  403. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
  404. if (status)
  405. goto exit;
  406. *value = ql_read32(qdev, RT_DATA);
  407. exit:
  408. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  409. return status;
  410. }
  411. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  412. * to route different frame types to various inbound queues. We send broadcast/
  413. * multicast/error frames to the default queue for slow handling,
  414. * and CAM hit/RSS frames to the fast handling queues.
  415. */
  416. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  417. int enable)
  418. {
  419. int status;
  420. u32 value = 0;
  421. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  422. if (status)
  423. return status;
  424. QPRINTK(qdev, IFUP, DEBUG,
  425. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  426. (enable ? "Adding" : "Removing"),
  427. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  428. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  429. ((index ==
  430. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  431. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  432. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  434. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  435. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  436. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  437. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  438. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  439. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  440. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  441. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  442. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  443. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  444. (enable ? "to" : "from"));
  445. switch (mask) {
  446. case RT_IDX_CAM_HIT:
  447. {
  448. value = RT_IDX_DST_CAM_Q | /* dest */
  449. RT_IDX_TYPE_NICQ | /* type */
  450. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  451. break;
  452. }
  453. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  454. {
  455. value = RT_IDX_DST_DFLT_Q | /* dest */
  456. RT_IDX_TYPE_NICQ | /* type */
  457. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  458. break;
  459. }
  460. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  461. {
  462. value = RT_IDX_DST_DFLT_Q | /* dest */
  463. RT_IDX_TYPE_NICQ | /* type */
  464. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  465. break;
  466. }
  467. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  468. {
  469. value = RT_IDX_DST_DFLT_Q | /* dest */
  470. RT_IDX_TYPE_NICQ | /* type */
  471. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  472. break;
  473. }
  474. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  475. {
  476. value = RT_IDX_DST_CAM_Q | /* dest */
  477. RT_IDX_TYPE_NICQ | /* type */
  478. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  479. break;
  480. }
  481. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  489. {
  490. value = RT_IDX_DST_RSS | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case 0: /* Clear the E-bit on an entry. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (index << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. default:
  503. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  504. mask);
  505. status = -EPERM;
  506. goto exit;
  507. }
  508. if (value) {
  509. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  510. if (status)
  511. goto exit;
  512. value |= (enable ? RT_IDX_E : 0);
  513. ql_write32(qdev, RT_IDX, value);
  514. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  515. }
  516. exit:
  517. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  518. return status;
  519. }
  520. static void ql_enable_interrupts(struct ql_adapter *qdev)
  521. {
  522. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  523. }
  524. static void ql_disable_interrupts(struct ql_adapter *qdev)
  525. {
  526. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  527. }
  528. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  529. * Otherwise, we may have multiple outstanding workers and don't want to
  530. * enable until the last one finishes. In this case, the irq_cnt gets
  531. * incremented everytime we queue a worker and decremented everytime
  532. * a worker finishes. Once it hits zero we enable the interrupt.
  533. */
  534. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  535. {
  536. u32 var = 0;
  537. unsigned long hw_flags = 0;
  538. struct intr_context *ctx = qdev->intr_context + intr;
  539. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  540. /* Always enable if we're MSIX multi interrupts and
  541. * it's not the default (zeroeth) interrupt.
  542. */
  543. ql_write32(qdev, INTR_EN,
  544. ctx->intr_en_mask);
  545. var = ql_read32(qdev, STS);
  546. return var;
  547. }
  548. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  549. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  550. ql_write32(qdev, INTR_EN,
  551. ctx->intr_en_mask);
  552. var = ql_read32(qdev, STS);
  553. }
  554. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  555. return var;
  556. }
  557. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  558. {
  559. u32 var = 0;
  560. unsigned long hw_flags;
  561. struct intr_context *ctx;
  562. /* HW disables for us if we're MSIX multi interrupts and
  563. * it's not the default (zeroeth) interrupt.
  564. */
  565. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  566. return 0;
  567. ctx = qdev->intr_context + intr;
  568. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  569. if (!atomic_read(&ctx->irq_cnt)) {
  570. ql_write32(qdev, INTR_EN,
  571. ctx->intr_dis_mask);
  572. var = ql_read32(qdev, STS);
  573. }
  574. atomic_inc(&ctx->irq_cnt);
  575. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  576. return var;
  577. }
  578. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  579. {
  580. int i;
  581. for (i = 0; i < qdev->intr_count; i++) {
  582. /* The enable call does a atomic_dec_and_test
  583. * and enables only if the result is zero.
  584. * So we precharge it here.
  585. */
  586. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  587. i == 0))
  588. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  589. ql_enable_completion_interrupt(qdev, i);
  590. }
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* get the data */
  608. *data = ql_read32(qdev, FLASH_DATA);
  609. exit:
  610. return status;
  611. }
  612. static int ql_get_flash_params(struct ql_adapter *qdev)
  613. {
  614. int i;
  615. int status;
  616. u32 *p = (u32 *)&qdev->flash;
  617. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  618. return -ETIMEDOUT;
  619. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  620. status = ql_read_flash_word(qdev, i, p);
  621. if (status) {
  622. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  623. goto exit;
  624. }
  625. }
  626. exit:
  627. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  628. return status;
  629. }
  630. /* xgmac register are located behind the xgmac_addr and xgmac_data
  631. * register pair. Each read/write requires us to wait for the ready
  632. * bit before reading/writing the data.
  633. */
  634. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  635. {
  636. int status;
  637. /* wait for reg to come ready */
  638. status = ql_wait_reg_rdy(qdev,
  639. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  640. if (status)
  641. return status;
  642. /* write the data to the data reg */
  643. ql_write32(qdev, XGMAC_DATA, data);
  644. /* trigger the write */
  645. ql_write32(qdev, XGMAC_ADDR, reg);
  646. return status;
  647. }
  648. /* xgmac register are located behind the xgmac_addr and xgmac_data
  649. * register pair. Each read/write requires us to wait for the ready
  650. * bit before reading/writing the data.
  651. */
  652. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  653. {
  654. int status = 0;
  655. /* wait for reg to come ready */
  656. status = ql_wait_reg_rdy(qdev,
  657. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  658. if (status)
  659. goto exit;
  660. /* set up for reg read */
  661. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  665. if (status)
  666. goto exit;
  667. /* get the data */
  668. *data = ql_read32(qdev, XGMAC_DATA);
  669. exit:
  670. return status;
  671. }
  672. /* This is used for reading the 64-bit statistics regs. */
  673. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  674. {
  675. int status = 0;
  676. u32 hi = 0;
  677. u32 lo = 0;
  678. status = ql_read_xgmac_reg(qdev, reg, &lo);
  679. if (status)
  680. goto exit;
  681. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  682. if (status)
  683. goto exit;
  684. *data = (u64) lo | ((u64) hi << 32);
  685. exit:
  686. return status;
  687. }
  688. /* Take the MAC Core out of reset.
  689. * Enable statistics counting.
  690. * Take the transmitter/receiver out of reset.
  691. * This functionality may be done in the MPI firmware at a
  692. * later date.
  693. */
  694. static int ql_port_initialize(struct ql_adapter *qdev)
  695. {
  696. int status = 0;
  697. u32 data;
  698. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  699. /* Another function has the semaphore, so
  700. * wait for the port init bit to come ready.
  701. */
  702. QPRINTK(qdev, LINK, INFO,
  703. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  704. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  705. if (status) {
  706. QPRINTK(qdev, LINK, CRIT,
  707. "Port initialize timed out.\n");
  708. }
  709. return status;
  710. }
  711. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  712. /* Set the core reset. */
  713. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  714. if (status)
  715. goto end;
  716. data |= GLOBAL_CFG_RESET;
  717. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  718. if (status)
  719. goto end;
  720. /* Clear the core reset and turn on jumbo for receiver. */
  721. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  722. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  723. data |= GLOBAL_CFG_TX_STAT_EN;
  724. data |= GLOBAL_CFG_RX_STAT_EN;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Enable transmitter, and clear it's reset. */
  729. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  730. if (status)
  731. goto end;
  732. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  733. data |= TX_CFG_EN; /* Enable the transmitter. */
  734. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  735. if (status)
  736. goto end;
  737. /* Enable receiver and clear it's reset. */
  738. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  739. if (status)
  740. goto end;
  741. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  742. data |= RX_CFG_EN; /* Enable the receiver. */
  743. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  744. if (status)
  745. goto end;
  746. /* Turn on jumbo. */
  747. status =
  748. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  749. if (status)
  750. goto end;
  751. status =
  752. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  753. if (status)
  754. goto end;
  755. /* Signal to the world that the port is enabled. */
  756. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  757. end:
  758. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  759. return status;
  760. }
  761. /* Get the next large buffer. */
  762. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  763. {
  764. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  765. rx_ring->lbq_curr_idx++;
  766. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  767. rx_ring->lbq_curr_idx = 0;
  768. rx_ring->lbq_free_cnt++;
  769. return lbq_desc;
  770. }
  771. /* Get the next small buffer. */
  772. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  773. {
  774. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  775. rx_ring->sbq_curr_idx++;
  776. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  777. rx_ring->sbq_curr_idx = 0;
  778. rx_ring->sbq_free_cnt++;
  779. return sbq_desc;
  780. }
  781. /* Update an rx ring index. */
  782. static void ql_update_cq(struct rx_ring *rx_ring)
  783. {
  784. rx_ring->cnsmr_idx++;
  785. rx_ring->curr_entry++;
  786. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  787. rx_ring->cnsmr_idx = 0;
  788. rx_ring->curr_entry = rx_ring->cq_base;
  789. }
  790. }
  791. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  792. {
  793. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  794. }
  795. /* Process (refill) a large buffer queue. */
  796. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  797. {
  798. int clean_idx = rx_ring->lbq_clean_idx;
  799. struct bq_desc *lbq_desc;
  800. struct bq_element *bq;
  801. u64 map;
  802. int i;
  803. while (rx_ring->lbq_free_cnt > 16) {
  804. for (i = 0; i < 16; i++) {
  805. QPRINTK(qdev, RX_STATUS, DEBUG,
  806. "lbq: try cleaning clean_idx = %d.\n",
  807. clean_idx);
  808. lbq_desc = &rx_ring->lbq[clean_idx];
  809. bq = lbq_desc->bq;
  810. if (lbq_desc->p.lbq_page == NULL) {
  811. QPRINTK(qdev, RX_STATUS, DEBUG,
  812. "lbq: getting new page for index %d.\n",
  813. lbq_desc->index);
  814. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  815. if (lbq_desc->p.lbq_page == NULL) {
  816. QPRINTK(qdev, RX_STATUS, ERR,
  817. "Couldn't get a page.\n");
  818. return;
  819. }
  820. map = pci_map_page(qdev->pdev,
  821. lbq_desc->p.lbq_page,
  822. 0, PAGE_SIZE,
  823. PCI_DMA_FROMDEVICE);
  824. if (pci_dma_mapping_error(qdev->pdev, map)) {
  825. QPRINTK(qdev, RX_STATUS, ERR,
  826. "PCI mapping failed.\n");
  827. return;
  828. }
  829. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  830. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  831. bq->addr_lo = /*lbq_desc->addr_lo = */
  832. cpu_to_le32(map);
  833. bq->addr_hi = /*lbq_desc->addr_hi = */
  834. cpu_to_le32(map >> 32);
  835. }
  836. clean_idx++;
  837. if (clean_idx == rx_ring->lbq_len)
  838. clean_idx = 0;
  839. }
  840. rx_ring->lbq_clean_idx = clean_idx;
  841. rx_ring->lbq_prod_idx += 16;
  842. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  843. rx_ring->lbq_prod_idx = 0;
  844. QPRINTK(qdev, RX_STATUS, DEBUG,
  845. "lbq: updating prod idx = %d.\n",
  846. rx_ring->lbq_prod_idx);
  847. ql_write_db_reg(rx_ring->lbq_prod_idx,
  848. rx_ring->lbq_prod_idx_db_reg);
  849. rx_ring->lbq_free_cnt -= 16;
  850. }
  851. }
  852. /* Process (refill) a small buffer queue. */
  853. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  854. {
  855. int clean_idx = rx_ring->sbq_clean_idx;
  856. struct bq_desc *sbq_desc;
  857. struct bq_element *bq;
  858. u64 map;
  859. int i;
  860. while (rx_ring->sbq_free_cnt > 16) {
  861. for (i = 0; i < 16; i++) {
  862. sbq_desc = &rx_ring->sbq[clean_idx];
  863. QPRINTK(qdev, RX_STATUS, DEBUG,
  864. "sbq: try cleaning clean_idx = %d.\n",
  865. clean_idx);
  866. bq = sbq_desc->bq;
  867. if (sbq_desc->p.skb == NULL) {
  868. QPRINTK(qdev, RX_STATUS, DEBUG,
  869. "sbq: getting new skb for index %d.\n",
  870. sbq_desc->index);
  871. sbq_desc->p.skb =
  872. netdev_alloc_skb(qdev->ndev,
  873. rx_ring->sbq_buf_size);
  874. if (sbq_desc->p.skb == NULL) {
  875. QPRINTK(qdev, PROBE, ERR,
  876. "Couldn't get an skb.\n");
  877. rx_ring->sbq_clean_idx = clean_idx;
  878. return;
  879. }
  880. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  881. map = pci_map_single(qdev->pdev,
  882. sbq_desc->p.skb->data,
  883. rx_ring->sbq_buf_size /
  884. 2, PCI_DMA_FROMDEVICE);
  885. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  886. pci_unmap_len_set(sbq_desc, maplen,
  887. rx_ring->sbq_buf_size / 2);
  888. bq->addr_lo = cpu_to_le32(map);
  889. bq->addr_hi = cpu_to_le32(map >> 32);
  890. }
  891. clean_idx++;
  892. if (clean_idx == rx_ring->sbq_len)
  893. clean_idx = 0;
  894. }
  895. rx_ring->sbq_clean_idx = clean_idx;
  896. rx_ring->sbq_prod_idx += 16;
  897. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  898. rx_ring->sbq_prod_idx = 0;
  899. QPRINTK(qdev, RX_STATUS, DEBUG,
  900. "sbq: updating prod idx = %d.\n",
  901. rx_ring->sbq_prod_idx);
  902. ql_write_db_reg(rx_ring->sbq_prod_idx,
  903. rx_ring->sbq_prod_idx_db_reg);
  904. rx_ring->sbq_free_cnt -= 16;
  905. }
  906. }
  907. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  908. struct rx_ring *rx_ring)
  909. {
  910. ql_update_sbq(qdev, rx_ring);
  911. ql_update_lbq(qdev, rx_ring);
  912. }
  913. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  914. * fails at some stage, or from the interrupt when a tx completes.
  915. */
  916. static void ql_unmap_send(struct ql_adapter *qdev,
  917. struct tx_ring_desc *tx_ring_desc, int mapped)
  918. {
  919. int i;
  920. for (i = 0; i < mapped; i++) {
  921. if (i == 0 || (i == 7 && mapped > 7)) {
  922. /*
  923. * Unmap the skb->data area, or the
  924. * external sglist (AKA the Outbound
  925. * Address List (OAL)).
  926. * If its the zeroeth element, then it's
  927. * the skb->data area. If it's the 7th
  928. * element and there is more than 6 frags,
  929. * then its an OAL.
  930. */
  931. if (i == 7) {
  932. QPRINTK(qdev, TX_DONE, DEBUG,
  933. "unmapping OAL area.\n");
  934. }
  935. pci_unmap_single(qdev->pdev,
  936. pci_unmap_addr(&tx_ring_desc->map[i],
  937. mapaddr),
  938. pci_unmap_len(&tx_ring_desc->map[i],
  939. maplen),
  940. PCI_DMA_TODEVICE);
  941. } else {
  942. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  943. i);
  944. pci_unmap_page(qdev->pdev,
  945. pci_unmap_addr(&tx_ring_desc->map[i],
  946. mapaddr),
  947. pci_unmap_len(&tx_ring_desc->map[i],
  948. maplen), PCI_DMA_TODEVICE);
  949. }
  950. }
  951. }
  952. /* Map the buffers for this transmit. This will return
  953. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  954. */
  955. static int ql_map_send(struct ql_adapter *qdev,
  956. struct ob_mac_iocb_req *mac_iocb_ptr,
  957. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  958. {
  959. int len = skb_headlen(skb);
  960. dma_addr_t map;
  961. int frag_idx, err, map_idx = 0;
  962. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  963. int frag_cnt = skb_shinfo(skb)->nr_frags;
  964. if (frag_cnt) {
  965. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  966. }
  967. /*
  968. * Map the skb buffer first.
  969. */
  970. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  971. err = pci_dma_mapping_error(qdev->pdev, map);
  972. if (err) {
  973. QPRINTK(qdev, TX_QUEUED, ERR,
  974. "PCI mapping failed with error: %d\n", err);
  975. return NETDEV_TX_BUSY;
  976. }
  977. tbd->len = cpu_to_le32(len);
  978. tbd->addr = cpu_to_le64(map);
  979. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  980. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  981. map_idx++;
  982. /*
  983. * This loop fills the remainder of the 8 address descriptors
  984. * in the IOCB. If there are more than 7 fragments, then the
  985. * eighth address desc will point to an external list (OAL).
  986. * When this happens, the remainder of the frags will be stored
  987. * in this list.
  988. */
  989. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  990. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  991. tbd++;
  992. if (frag_idx == 6 && frag_cnt > 7) {
  993. /* Let's tack on an sglist.
  994. * Our control block will now
  995. * look like this:
  996. * iocb->seg[0] = skb->data
  997. * iocb->seg[1] = frag[0]
  998. * iocb->seg[2] = frag[1]
  999. * iocb->seg[3] = frag[2]
  1000. * iocb->seg[4] = frag[3]
  1001. * iocb->seg[5] = frag[4]
  1002. * iocb->seg[6] = frag[5]
  1003. * iocb->seg[7] = ptr to OAL (external sglist)
  1004. * oal->seg[0] = frag[6]
  1005. * oal->seg[1] = frag[7]
  1006. * oal->seg[2] = frag[8]
  1007. * oal->seg[3] = frag[9]
  1008. * oal->seg[4] = frag[10]
  1009. * etc...
  1010. */
  1011. /* Tack on the OAL in the eighth segment of IOCB. */
  1012. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1013. sizeof(struct oal),
  1014. PCI_DMA_TODEVICE);
  1015. err = pci_dma_mapping_error(qdev->pdev, map);
  1016. if (err) {
  1017. QPRINTK(qdev, TX_QUEUED, ERR,
  1018. "PCI mapping outbound address list with error: %d\n",
  1019. err);
  1020. goto map_error;
  1021. }
  1022. tbd->addr = cpu_to_le64(map);
  1023. /*
  1024. * The length is the number of fragments
  1025. * that remain to be mapped times the length
  1026. * of our sglist (OAL).
  1027. */
  1028. tbd->len =
  1029. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1030. (frag_cnt - frag_idx)) | TX_DESC_C);
  1031. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1032. map);
  1033. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1034. sizeof(struct oal));
  1035. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1036. map_idx++;
  1037. }
  1038. map =
  1039. pci_map_page(qdev->pdev, frag->page,
  1040. frag->page_offset, frag->size,
  1041. PCI_DMA_TODEVICE);
  1042. err = pci_dma_mapping_error(qdev->pdev, map);
  1043. if (err) {
  1044. QPRINTK(qdev, TX_QUEUED, ERR,
  1045. "PCI mapping frags failed with error: %d.\n",
  1046. err);
  1047. goto map_error;
  1048. }
  1049. tbd->addr = cpu_to_le64(map);
  1050. tbd->len = cpu_to_le32(frag->size);
  1051. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1052. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1053. frag->size);
  1054. }
  1055. /* Save the number of segments we've mapped. */
  1056. tx_ring_desc->map_cnt = map_idx;
  1057. /* Terminate the last segment. */
  1058. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1059. return NETDEV_TX_OK;
  1060. map_error:
  1061. /*
  1062. * If the first frag mapping failed, then i will be zero.
  1063. * This causes the unmap of the skb->data area. Otherwise
  1064. * we pass in the number of frags that mapped successfully
  1065. * so they can be umapped.
  1066. */
  1067. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1068. return NETDEV_TX_BUSY;
  1069. }
  1070. static void ql_realign_skb(struct sk_buff *skb, int len)
  1071. {
  1072. void *temp_addr = skb->data;
  1073. /* Undo the skb_reserve(skb,32) we did before
  1074. * giving to hardware, and realign data on
  1075. * a 2-byte boundary.
  1076. */
  1077. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1078. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1079. skb_copy_to_linear_data(skb, temp_addr,
  1080. (unsigned int)len);
  1081. }
  1082. /*
  1083. * This function builds an skb for the given inbound
  1084. * completion. It will be rewritten for readability in the near
  1085. * future, but for not it works well.
  1086. */
  1087. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1088. struct rx_ring *rx_ring,
  1089. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1090. {
  1091. struct bq_desc *lbq_desc;
  1092. struct bq_desc *sbq_desc;
  1093. struct sk_buff *skb = NULL;
  1094. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1095. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1096. /*
  1097. * Handle the header buffer if present.
  1098. */
  1099. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1100. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1101. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1102. /*
  1103. * Headers fit nicely into a small buffer.
  1104. */
  1105. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1106. pci_unmap_single(qdev->pdev,
  1107. pci_unmap_addr(sbq_desc, mapaddr),
  1108. pci_unmap_len(sbq_desc, maplen),
  1109. PCI_DMA_FROMDEVICE);
  1110. skb = sbq_desc->p.skb;
  1111. ql_realign_skb(skb, hdr_len);
  1112. skb_put(skb, hdr_len);
  1113. sbq_desc->p.skb = NULL;
  1114. }
  1115. /*
  1116. * Handle the data buffer(s).
  1117. */
  1118. if (unlikely(!length)) { /* Is there data too? */
  1119. QPRINTK(qdev, RX_STATUS, DEBUG,
  1120. "No Data buffer in this packet.\n");
  1121. return skb;
  1122. }
  1123. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1124. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1125. QPRINTK(qdev, RX_STATUS, DEBUG,
  1126. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1127. /*
  1128. * Data is less than small buffer size so it's
  1129. * stuffed in a small buffer.
  1130. * For this case we append the data
  1131. * from the "data" small buffer to the "header" small
  1132. * buffer.
  1133. */
  1134. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1135. pci_dma_sync_single_for_cpu(qdev->pdev,
  1136. pci_unmap_addr
  1137. (sbq_desc, mapaddr),
  1138. pci_unmap_len
  1139. (sbq_desc, maplen),
  1140. PCI_DMA_FROMDEVICE);
  1141. memcpy(skb_put(skb, length),
  1142. sbq_desc->p.skb->data, length);
  1143. pci_dma_sync_single_for_device(qdev->pdev,
  1144. pci_unmap_addr
  1145. (sbq_desc,
  1146. mapaddr),
  1147. pci_unmap_len
  1148. (sbq_desc,
  1149. maplen),
  1150. PCI_DMA_FROMDEVICE);
  1151. } else {
  1152. QPRINTK(qdev, RX_STATUS, DEBUG,
  1153. "%d bytes in a single small buffer.\n", length);
  1154. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1155. skb = sbq_desc->p.skb;
  1156. ql_realign_skb(skb, length);
  1157. skb_put(skb, length);
  1158. pci_unmap_single(qdev->pdev,
  1159. pci_unmap_addr(sbq_desc,
  1160. mapaddr),
  1161. pci_unmap_len(sbq_desc,
  1162. maplen),
  1163. PCI_DMA_FROMDEVICE);
  1164. sbq_desc->p.skb = NULL;
  1165. }
  1166. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1167. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1168. QPRINTK(qdev, RX_STATUS, DEBUG,
  1169. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1170. /*
  1171. * The data is in a single large buffer. We
  1172. * chain it to the header buffer's skb and let
  1173. * it rip.
  1174. */
  1175. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1176. pci_unmap_page(qdev->pdev,
  1177. pci_unmap_addr(lbq_desc,
  1178. mapaddr),
  1179. pci_unmap_len(lbq_desc, maplen),
  1180. PCI_DMA_FROMDEVICE);
  1181. QPRINTK(qdev, RX_STATUS, DEBUG,
  1182. "Chaining page to skb.\n");
  1183. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1184. 0, length);
  1185. skb->len += length;
  1186. skb->data_len += length;
  1187. skb->truesize += length;
  1188. lbq_desc->p.lbq_page = NULL;
  1189. } else {
  1190. /*
  1191. * The headers and data are in a single large buffer. We
  1192. * copy it to a new skb and let it go. This can happen with
  1193. * jumbo mtu on a non-TCP/UDP frame.
  1194. */
  1195. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1196. skb = netdev_alloc_skb(qdev->ndev, length);
  1197. if (skb == NULL) {
  1198. QPRINTK(qdev, PROBE, DEBUG,
  1199. "No skb available, drop the packet.\n");
  1200. return NULL;
  1201. }
  1202. skb_reserve(skb, NET_IP_ALIGN);
  1203. QPRINTK(qdev, RX_STATUS, DEBUG,
  1204. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1205. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1206. 0, length);
  1207. skb->len += length;
  1208. skb->data_len += length;
  1209. skb->truesize += length;
  1210. length -= length;
  1211. lbq_desc->p.lbq_page = NULL;
  1212. __pskb_pull_tail(skb,
  1213. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1214. VLAN_ETH_HLEN : ETH_HLEN);
  1215. }
  1216. } else {
  1217. /*
  1218. * The data is in a chain of large buffers
  1219. * pointed to by a small buffer. We loop
  1220. * thru and chain them to the our small header
  1221. * buffer's skb.
  1222. * frags: There are 18 max frags and our small
  1223. * buffer will hold 32 of them. The thing is,
  1224. * we'll use 3 max for our 9000 byte jumbo
  1225. * frames. If the MTU goes up we could
  1226. * eventually be in trouble.
  1227. */
  1228. int size, offset, i = 0;
  1229. struct bq_element *bq, bq_array[8];
  1230. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1231. pci_unmap_single(qdev->pdev,
  1232. pci_unmap_addr(sbq_desc, mapaddr),
  1233. pci_unmap_len(sbq_desc, maplen),
  1234. PCI_DMA_FROMDEVICE);
  1235. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1236. /*
  1237. * This is an non TCP/UDP IP frame, so
  1238. * the headers aren't split into a small
  1239. * buffer. We have to use the small buffer
  1240. * that contains our sg list as our skb to
  1241. * send upstairs. Copy the sg list here to
  1242. * a local buffer and use it to find the
  1243. * pages to chain.
  1244. */
  1245. QPRINTK(qdev, RX_STATUS, DEBUG,
  1246. "%d bytes of headers & data in chain of large.\n", length);
  1247. skb = sbq_desc->p.skb;
  1248. bq = &bq_array[0];
  1249. memcpy(bq, skb->data, sizeof(bq_array));
  1250. sbq_desc->p.skb = NULL;
  1251. skb_reserve(skb, NET_IP_ALIGN);
  1252. } else {
  1253. QPRINTK(qdev, RX_STATUS, DEBUG,
  1254. "Headers in small, %d bytes of data in chain of large.\n", length);
  1255. bq = (struct bq_element *)sbq_desc->p.skb->data;
  1256. }
  1257. while (length > 0) {
  1258. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1259. if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
  1260. QPRINTK(qdev, RX_STATUS, ERR,
  1261. "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
  1262. lbq_desc->bq->addr_lo, bq->addr_lo);
  1263. return NULL;
  1264. }
  1265. pci_unmap_page(qdev->pdev,
  1266. pci_unmap_addr(lbq_desc,
  1267. mapaddr),
  1268. pci_unmap_len(lbq_desc,
  1269. maplen),
  1270. PCI_DMA_FROMDEVICE);
  1271. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1272. offset = 0;
  1273. QPRINTK(qdev, RX_STATUS, DEBUG,
  1274. "Adding page %d to skb for %d bytes.\n",
  1275. i, size);
  1276. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1277. offset, size);
  1278. skb->len += size;
  1279. skb->data_len += size;
  1280. skb->truesize += size;
  1281. length -= size;
  1282. lbq_desc->p.lbq_page = NULL;
  1283. bq++;
  1284. i++;
  1285. }
  1286. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1287. VLAN_ETH_HLEN : ETH_HLEN);
  1288. }
  1289. return skb;
  1290. }
  1291. /* Process an inbound completion from an rx ring. */
  1292. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1293. struct rx_ring *rx_ring,
  1294. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1295. {
  1296. struct net_device *ndev = qdev->ndev;
  1297. struct sk_buff *skb = NULL;
  1298. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1299. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1300. if (unlikely(!skb)) {
  1301. QPRINTK(qdev, RX_STATUS, DEBUG,
  1302. "No skb available, drop packet.\n");
  1303. return;
  1304. }
  1305. prefetch(skb->data);
  1306. skb->dev = ndev;
  1307. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1308. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1309. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1310. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1311. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1312. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1313. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1314. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1315. }
  1316. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1317. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1318. }
  1319. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1320. QPRINTK(qdev, RX_STATUS, ERR,
  1321. "Bad checksum for this %s packet.\n",
  1322. ((ib_mac_rsp->
  1323. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1324. skb->ip_summed = CHECKSUM_NONE;
  1325. } else if (qdev->rx_csum &&
  1326. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1327. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1328. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1329. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1330. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1331. }
  1332. qdev->stats.rx_packets++;
  1333. qdev->stats.rx_bytes += skb->len;
  1334. skb->protocol = eth_type_trans(skb, ndev);
  1335. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1336. QPRINTK(qdev, RX_STATUS, DEBUG,
  1337. "Passing a VLAN packet upstream.\n");
  1338. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1339. le16_to_cpu(ib_mac_rsp->vlan_id));
  1340. } else {
  1341. QPRINTK(qdev, RX_STATUS, DEBUG,
  1342. "Passing a normal packet upstream.\n");
  1343. netif_rx(skb);
  1344. }
  1345. }
  1346. /* Process an outbound completion from an rx ring. */
  1347. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1348. struct ob_mac_iocb_rsp *mac_rsp)
  1349. {
  1350. struct tx_ring *tx_ring;
  1351. struct tx_ring_desc *tx_ring_desc;
  1352. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1353. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1354. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1355. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1356. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1357. qdev->stats.tx_packets++;
  1358. dev_kfree_skb(tx_ring_desc->skb);
  1359. tx_ring_desc->skb = NULL;
  1360. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1361. OB_MAC_IOCB_RSP_S |
  1362. OB_MAC_IOCB_RSP_L |
  1363. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1364. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1365. QPRINTK(qdev, TX_DONE, WARNING,
  1366. "Total descriptor length did not match transfer length.\n");
  1367. }
  1368. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1369. QPRINTK(qdev, TX_DONE, WARNING,
  1370. "Frame too short to be legal, not sent.\n");
  1371. }
  1372. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1373. QPRINTK(qdev, TX_DONE, WARNING,
  1374. "Frame too long, but sent anyway.\n");
  1375. }
  1376. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1377. QPRINTK(qdev, TX_DONE, WARNING,
  1378. "PCI backplane error. Frame not sent.\n");
  1379. }
  1380. }
  1381. atomic_inc(&tx_ring->tx_count);
  1382. }
  1383. /* Fire up a handler to reset the MPI processor. */
  1384. void ql_queue_fw_error(struct ql_adapter *qdev)
  1385. {
  1386. netif_stop_queue(qdev->ndev);
  1387. netif_carrier_off(qdev->ndev);
  1388. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1389. }
  1390. void ql_queue_asic_error(struct ql_adapter *qdev)
  1391. {
  1392. netif_stop_queue(qdev->ndev);
  1393. netif_carrier_off(qdev->ndev);
  1394. ql_disable_interrupts(qdev);
  1395. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1396. }
  1397. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1398. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1399. {
  1400. switch (ib_ae_rsp->event) {
  1401. case MGMT_ERR_EVENT:
  1402. QPRINTK(qdev, RX_ERR, ERR,
  1403. "Management Processor Fatal Error.\n");
  1404. ql_queue_fw_error(qdev);
  1405. return;
  1406. case CAM_LOOKUP_ERR_EVENT:
  1407. QPRINTK(qdev, LINK, ERR,
  1408. "Multiple CAM hits lookup occurred.\n");
  1409. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1410. ql_queue_asic_error(qdev);
  1411. return;
  1412. case SOFT_ECC_ERROR_EVENT:
  1413. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1414. ql_queue_asic_error(qdev);
  1415. break;
  1416. case PCI_ERR_ANON_BUF_RD:
  1417. QPRINTK(qdev, RX_ERR, ERR,
  1418. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1419. ib_ae_rsp->q_id);
  1420. ql_queue_asic_error(qdev);
  1421. break;
  1422. default:
  1423. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1424. ib_ae_rsp->event);
  1425. ql_queue_asic_error(qdev);
  1426. break;
  1427. }
  1428. }
  1429. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1430. {
  1431. struct ql_adapter *qdev = rx_ring->qdev;
  1432. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1433. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1434. int count = 0;
  1435. /* While there are entries in the completion queue. */
  1436. while (prod != rx_ring->cnsmr_idx) {
  1437. QPRINTK(qdev, RX_STATUS, DEBUG,
  1438. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1439. prod, rx_ring->cnsmr_idx);
  1440. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1441. rmb();
  1442. switch (net_rsp->opcode) {
  1443. case OPCODE_OB_MAC_TSO_IOCB:
  1444. case OPCODE_OB_MAC_IOCB:
  1445. ql_process_mac_tx_intr(qdev, net_rsp);
  1446. break;
  1447. default:
  1448. QPRINTK(qdev, RX_STATUS, DEBUG,
  1449. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1450. net_rsp->opcode);
  1451. }
  1452. count++;
  1453. ql_update_cq(rx_ring);
  1454. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1455. }
  1456. ql_write_cq_idx(rx_ring);
  1457. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1458. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1459. if (atomic_read(&tx_ring->queue_stopped) &&
  1460. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1461. /*
  1462. * The queue got stopped because the tx_ring was full.
  1463. * Wake it up, because it's now at least 25% empty.
  1464. */
  1465. netif_wake_queue(qdev->ndev);
  1466. }
  1467. return count;
  1468. }
  1469. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1470. {
  1471. struct ql_adapter *qdev = rx_ring->qdev;
  1472. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1473. struct ql_net_rsp_iocb *net_rsp;
  1474. int count = 0;
  1475. /* While there are entries in the completion queue. */
  1476. while (prod != rx_ring->cnsmr_idx) {
  1477. QPRINTK(qdev, RX_STATUS, DEBUG,
  1478. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1479. prod, rx_ring->cnsmr_idx);
  1480. net_rsp = rx_ring->curr_entry;
  1481. rmb();
  1482. switch (net_rsp->opcode) {
  1483. case OPCODE_IB_MAC_IOCB:
  1484. ql_process_mac_rx_intr(qdev, rx_ring,
  1485. (struct ib_mac_iocb_rsp *)
  1486. net_rsp);
  1487. break;
  1488. case OPCODE_IB_AE_IOCB:
  1489. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1490. net_rsp);
  1491. break;
  1492. default:
  1493. {
  1494. QPRINTK(qdev, RX_STATUS, DEBUG,
  1495. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1496. net_rsp->opcode);
  1497. }
  1498. }
  1499. count++;
  1500. ql_update_cq(rx_ring);
  1501. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1502. if (count == budget)
  1503. break;
  1504. }
  1505. ql_update_buffer_queues(qdev, rx_ring);
  1506. ql_write_cq_idx(rx_ring);
  1507. return count;
  1508. }
  1509. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1510. {
  1511. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1512. struct ql_adapter *qdev = rx_ring->qdev;
  1513. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1514. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1515. rx_ring->cq_id);
  1516. if (work_done < budget) {
  1517. __netif_rx_complete(qdev->ndev, napi);
  1518. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1519. }
  1520. return work_done;
  1521. }
  1522. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1523. {
  1524. struct ql_adapter *qdev = netdev_priv(ndev);
  1525. qdev->vlgrp = grp;
  1526. if (grp) {
  1527. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1528. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1529. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1530. } else {
  1531. QPRINTK(qdev, IFUP, DEBUG,
  1532. "Turning off VLAN in NIC_RCV_CFG.\n");
  1533. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1534. }
  1535. }
  1536. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1537. {
  1538. struct ql_adapter *qdev = netdev_priv(ndev);
  1539. u32 enable_bit = MAC_ADDR_E;
  1540. spin_lock(&qdev->hw_lock);
  1541. if (ql_set_mac_addr_reg
  1542. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1543. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1544. }
  1545. spin_unlock(&qdev->hw_lock);
  1546. }
  1547. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1548. {
  1549. struct ql_adapter *qdev = netdev_priv(ndev);
  1550. u32 enable_bit = 0;
  1551. spin_lock(&qdev->hw_lock);
  1552. if (ql_set_mac_addr_reg
  1553. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1554. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1555. }
  1556. spin_unlock(&qdev->hw_lock);
  1557. }
  1558. /* Worker thread to process a given rx_ring that is dedicated
  1559. * to outbound completions.
  1560. */
  1561. static void ql_tx_clean(struct work_struct *work)
  1562. {
  1563. struct rx_ring *rx_ring =
  1564. container_of(work, struct rx_ring, rx_work.work);
  1565. ql_clean_outbound_rx_ring(rx_ring);
  1566. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1567. }
  1568. /* Worker thread to process a given rx_ring that is dedicated
  1569. * to inbound completions.
  1570. */
  1571. static void ql_rx_clean(struct work_struct *work)
  1572. {
  1573. struct rx_ring *rx_ring =
  1574. container_of(work, struct rx_ring, rx_work.work);
  1575. ql_clean_inbound_rx_ring(rx_ring, 64);
  1576. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1577. }
  1578. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1579. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1580. {
  1581. struct rx_ring *rx_ring = dev_id;
  1582. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1583. &rx_ring->rx_work, 0);
  1584. return IRQ_HANDLED;
  1585. }
  1586. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1587. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1588. {
  1589. struct rx_ring *rx_ring = dev_id;
  1590. struct ql_adapter *qdev = rx_ring->qdev;
  1591. netif_rx_schedule(qdev->ndev, &rx_ring->napi);
  1592. return IRQ_HANDLED;
  1593. }
  1594. /* This handles a fatal error, MPI activity, and the default
  1595. * rx_ring in an MSI-X multiple vector environment.
  1596. * In MSI/Legacy environment it also process the rest of
  1597. * the rx_rings.
  1598. */
  1599. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1600. {
  1601. struct rx_ring *rx_ring = dev_id;
  1602. struct ql_adapter *qdev = rx_ring->qdev;
  1603. struct intr_context *intr_context = &qdev->intr_context[0];
  1604. u32 var;
  1605. int i;
  1606. int work_done = 0;
  1607. spin_lock(&qdev->hw_lock);
  1608. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1609. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1610. spin_unlock(&qdev->hw_lock);
  1611. return IRQ_NONE;
  1612. }
  1613. spin_unlock(&qdev->hw_lock);
  1614. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1615. /*
  1616. * Check for fatal error.
  1617. */
  1618. if (var & STS_FE) {
  1619. ql_queue_asic_error(qdev);
  1620. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1621. var = ql_read32(qdev, ERR_STS);
  1622. QPRINTK(qdev, INTR, ERR,
  1623. "Resetting chip. Error Status Register = 0x%x\n", var);
  1624. return IRQ_HANDLED;
  1625. }
  1626. /*
  1627. * Check MPI processor activity.
  1628. */
  1629. if (var & STS_PI) {
  1630. /*
  1631. * We've got an async event or mailbox completion.
  1632. * Handle it and clear the source of the interrupt.
  1633. */
  1634. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1635. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1636. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1637. &qdev->mpi_work, 0);
  1638. work_done++;
  1639. }
  1640. /*
  1641. * Check the default queue and wake handler if active.
  1642. */
  1643. rx_ring = &qdev->rx_ring[0];
  1644. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1645. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1646. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1647. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1648. &rx_ring->rx_work, 0);
  1649. work_done++;
  1650. }
  1651. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1652. /*
  1653. * Start the DPC for each active queue.
  1654. */
  1655. for (i = 1; i < qdev->rx_ring_count; i++) {
  1656. rx_ring = &qdev->rx_ring[i];
  1657. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1658. rx_ring->cnsmr_idx) {
  1659. QPRINTK(qdev, INTR, INFO,
  1660. "Waking handler for rx_ring[%d].\n", i);
  1661. ql_disable_completion_interrupt(qdev,
  1662. intr_context->
  1663. intr);
  1664. if (i < qdev->rss_ring_first_cq_id)
  1665. queue_delayed_work_on(rx_ring->cpu,
  1666. qdev->q_workqueue,
  1667. &rx_ring->rx_work,
  1668. 0);
  1669. else
  1670. netif_rx_schedule(qdev->ndev,
  1671. &rx_ring->napi);
  1672. work_done++;
  1673. }
  1674. }
  1675. }
  1676. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1677. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1678. }
  1679. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1680. {
  1681. if (skb_is_gso(skb)) {
  1682. int err;
  1683. if (skb_header_cloned(skb)) {
  1684. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1685. if (err)
  1686. return err;
  1687. }
  1688. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1689. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1690. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1691. mac_iocb_ptr->total_hdrs_len =
  1692. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1693. mac_iocb_ptr->net_trans_offset =
  1694. cpu_to_le16(skb_network_offset(skb) |
  1695. skb_transport_offset(skb)
  1696. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1697. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1698. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1699. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1700. struct iphdr *iph = ip_hdr(skb);
  1701. iph->check = 0;
  1702. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1703. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1704. iph->daddr, 0,
  1705. IPPROTO_TCP,
  1706. 0);
  1707. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1708. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1709. tcp_hdr(skb)->check =
  1710. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1711. &ipv6_hdr(skb)->daddr,
  1712. 0, IPPROTO_TCP, 0);
  1713. }
  1714. return 1;
  1715. }
  1716. return 0;
  1717. }
  1718. static void ql_hw_csum_setup(struct sk_buff *skb,
  1719. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1720. {
  1721. int len;
  1722. struct iphdr *iph = ip_hdr(skb);
  1723. u16 *check;
  1724. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1725. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1726. mac_iocb_ptr->net_trans_offset =
  1727. cpu_to_le16(skb_network_offset(skb) |
  1728. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1729. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1730. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1731. if (likely(iph->protocol == IPPROTO_TCP)) {
  1732. check = &(tcp_hdr(skb)->check);
  1733. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1734. mac_iocb_ptr->total_hdrs_len =
  1735. cpu_to_le16(skb_transport_offset(skb) +
  1736. (tcp_hdr(skb)->doff << 2));
  1737. } else {
  1738. check = &(udp_hdr(skb)->check);
  1739. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1740. mac_iocb_ptr->total_hdrs_len =
  1741. cpu_to_le16(skb_transport_offset(skb) +
  1742. sizeof(struct udphdr));
  1743. }
  1744. *check = ~csum_tcpudp_magic(iph->saddr,
  1745. iph->daddr, len, iph->protocol, 0);
  1746. }
  1747. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1748. {
  1749. struct tx_ring_desc *tx_ring_desc;
  1750. struct ob_mac_iocb_req *mac_iocb_ptr;
  1751. struct ql_adapter *qdev = netdev_priv(ndev);
  1752. int tso;
  1753. struct tx_ring *tx_ring;
  1754. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1755. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1756. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1757. QPRINTK(qdev, TX_QUEUED, INFO,
  1758. "%s: shutting down tx queue %d du to lack of resources.\n",
  1759. __func__, tx_ring_idx);
  1760. netif_stop_queue(ndev);
  1761. atomic_inc(&tx_ring->queue_stopped);
  1762. return NETDEV_TX_BUSY;
  1763. }
  1764. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1765. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1766. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1767. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1768. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1769. return NETDEV_TX_BUSY;
  1770. }
  1771. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1772. mac_iocb_ptr->tid = tx_ring_desc->index;
  1773. /* We use the upper 32-bits to store the tx queue for this IO.
  1774. * When we get the completion we can use it to establish the context.
  1775. */
  1776. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1777. tx_ring_desc->skb = skb;
  1778. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1779. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1780. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1781. vlan_tx_tag_get(skb));
  1782. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1783. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1784. }
  1785. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1786. if (tso < 0) {
  1787. dev_kfree_skb_any(skb);
  1788. return NETDEV_TX_OK;
  1789. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1790. ql_hw_csum_setup(skb,
  1791. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1792. }
  1793. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1794. tx_ring->prod_idx++;
  1795. if (tx_ring->prod_idx == tx_ring->wq_len)
  1796. tx_ring->prod_idx = 0;
  1797. wmb();
  1798. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1799. ndev->trans_start = jiffies;
  1800. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1801. tx_ring->prod_idx, skb->len);
  1802. atomic_dec(&tx_ring->tx_count);
  1803. return NETDEV_TX_OK;
  1804. }
  1805. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1806. {
  1807. if (qdev->rx_ring_shadow_reg_area) {
  1808. pci_free_consistent(qdev->pdev,
  1809. PAGE_SIZE,
  1810. qdev->rx_ring_shadow_reg_area,
  1811. qdev->rx_ring_shadow_reg_dma);
  1812. qdev->rx_ring_shadow_reg_area = NULL;
  1813. }
  1814. if (qdev->tx_ring_shadow_reg_area) {
  1815. pci_free_consistent(qdev->pdev,
  1816. PAGE_SIZE,
  1817. qdev->tx_ring_shadow_reg_area,
  1818. qdev->tx_ring_shadow_reg_dma);
  1819. qdev->tx_ring_shadow_reg_area = NULL;
  1820. }
  1821. }
  1822. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1823. {
  1824. qdev->rx_ring_shadow_reg_area =
  1825. pci_alloc_consistent(qdev->pdev,
  1826. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1827. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1828. QPRINTK(qdev, IFUP, ERR,
  1829. "Allocation of RX shadow space failed.\n");
  1830. return -ENOMEM;
  1831. }
  1832. qdev->tx_ring_shadow_reg_area =
  1833. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1834. &qdev->tx_ring_shadow_reg_dma);
  1835. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1836. QPRINTK(qdev, IFUP, ERR,
  1837. "Allocation of TX shadow space failed.\n");
  1838. goto err_wqp_sh_area;
  1839. }
  1840. return 0;
  1841. err_wqp_sh_area:
  1842. pci_free_consistent(qdev->pdev,
  1843. PAGE_SIZE,
  1844. qdev->rx_ring_shadow_reg_area,
  1845. qdev->rx_ring_shadow_reg_dma);
  1846. return -ENOMEM;
  1847. }
  1848. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1849. {
  1850. struct tx_ring_desc *tx_ring_desc;
  1851. int i;
  1852. struct ob_mac_iocb_req *mac_iocb_ptr;
  1853. mac_iocb_ptr = tx_ring->wq_base;
  1854. tx_ring_desc = tx_ring->q;
  1855. for (i = 0; i < tx_ring->wq_len; i++) {
  1856. tx_ring_desc->index = i;
  1857. tx_ring_desc->skb = NULL;
  1858. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1859. mac_iocb_ptr++;
  1860. tx_ring_desc++;
  1861. }
  1862. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1863. atomic_set(&tx_ring->queue_stopped, 0);
  1864. }
  1865. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1866. struct tx_ring *tx_ring)
  1867. {
  1868. if (tx_ring->wq_base) {
  1869. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1870. tx_ring->wq_base, tx_ring->wq_base_dma);
  1871. tx_ring->wq_base = NULL;
  1872. }
  1873. kfree(tx_ring->q);
  1874. tx_ring->q = NULL;
  1875. }
  1876. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1877. struct tx_ring *tx_ring)
  1878. {
  1879. tx_ring->wq_base =
  1880. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1881. &tx_ring->wq_base_dma);
  1882. if ((tx_ring->wq_base == NULL)
  1883. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1884. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1885. return -ENOMEM;
  1886. }
  1887. tx_ring->q =
  1888. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1889. if (tx_ring->q == NULL)
  1890. goto err;
  1891. return 0;
  1892. err:
  1893. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1894. tx_ring->wq_base, tx_ring->wq_base_dma);
  1895. return -ENOMEM;
  1896. }
  1897. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1898. {
  1899. int i;
  1900. struct bq_desc *lbq_desc;
  1901. for (i = 0; i < rx_ring->lbq_len; i++) {
  1902. lbq_desc = &rx_ring->lbq[i];
  1903. if (lbq_desc->p.lbq_page) {
  1904. pci_unmap_page(qdev->pdev,
  1905. pci_unmap_addr(lbq_desc, mapaddr),
  1906. pci_unmap_len(lbq_desc, maplen),
  1907. PCI_DMA_FROMDEVICE);
  1908. put_page(lbq_desc->p.lbq_page);
  1909. lbq_desc->p.lbq_page = NULL;
  1910. }
  1911. lbq_desc->bq->addr_lo = 0;
  1912. lbq_desc->bq->addr_hi = 0;
  1913. }
  1914. }
  1915. /*
  1916. * Allocate and map a page for each element of the lbq.
  1917. */
  1918. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1919. struct rx_ring *rx_ring)
  1920. {
  1921. int i;
  1922. struct bq_desc *lbq_desc;
  1923. u64 map;
  1924. struct bq_element *bq = rx_ring->lbq_base;
  1925. for (i = 0; i < rx_ring->lbq_len; i++) {
  1926. lbq_desc = &rx_ring->lbq[i];
  1927. memset(lbq_desc, 0, sizeof(lbq_desc));
  1928. lbq_desc->bq = bq;
  1929. lbq_desc->index = i;
  1930. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1931. if (unlikely(!lbq_desc->p.lbq_page)) {
  1932. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1933. goto mem_error;
  1934. } else {
  1935. map = pci_map_page(qdev->pdev,
  1936. lbq_desc->p.lbq_page,
  1937. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1938. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1939. QPRINTK(qdev, IFUP, ERR,
  1940. "PCI mapping failed.\n");
  1941. goto mem_error;
  1942. }
  1943. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1944. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1945. bq->addr_lo = cpu_to_le32(map);
  1946. bq->addr_hi = cpu_to_le32(map >> 32);
  1947. }
  1948. bq++;
  1949. }
  1950. return 0;
  1951. mem_error:
  1952. ql_free_lbq_buffers(qdev, rx_ring);
  1953. return -ENOMEM;
  1954. }
  1955. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1956. {
  1957. int i;
  1958. struct bq_desc *sbq_desc;
  1959. for (i = 0; i < rx_ring->sbq_len; i++) {
  1960. sbq_desc = &rx_ring->sbq[i];
  1961. if (sbq_desc == NULL) {
  1962. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1963. return;
  1964. }
  1965. if (sbq_desc->p.skb) {
  1966. pci_unmap_single(qdev->pdev,
  1967. pci_unmap_addr(sbq_desc, mapaddr),
  1968. pci_unmap_len(sbq_desc, maplen),
  1969. PCI_DMA_FROMDEVICE);
  1970. dev_kfree_skb(sbq_desc->p.skb);
  1971. sbq_desc->p.skb = NULL;
  1972. }
  1973. if (sbq_desc->bq == NULL) {
  1974. QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
  1975. i);
  1976. return;
  1977. }
  1978. sbq_desc->bq->addr_lo = 0;
  1979. sbq_desc->bq->addr_hi = 0;
  1980. }
  1981. }
  1982. /* Allocate and map an skb for each element of the sbq. */
  1983. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1984. struct rx_ring *rx_ring)
  1985. {
  1986. int i;
  1987. struct bq_desc *sbq_desc;
  1988. struct sk_buff *skb;
  1989. u64 map;
  1990. struct bq_element *bq = rx_ring->sbq_base;
  1991. for (i = 0; i < rx_ring->sbq_len; i++) {
  1992. sbq_desc = &rx_ring->sbq[i];
  1993. memset(sbq_desc, 0, sizeof(sbq_desc));
  1994. sbq_desc->index = i;
  1995. sbq_desc->bq = bq;
  1996. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  1997. if (unlikely(!skb)) {
  1998. /* Better luck next round */
  1999. QPRINTK(qdev, IFUP, ERR,
  2000. "small buff alloc failed for %d bytes at index %d.\n",
  2001. rx_ring->sbq_buf_size, i);
  2002. goto mem_err;
  2003. }
  2004. skb_reserve(skb, QLGE_SB_PAD);
  2005. sbq_desc->p.skb = skb;
  2006. /*
  2007. * Map only half the buffer. Because the
  2008. * other half may get some data copied to it
  2009. * when the completion arrives.
  2010. */
  2011. map = pci_map_single(qdev->pdev,
  2012. skb->data,
  2013. rx_ring->sbq_buf_size / 2,
  2014. PCI_DMA_FROMDEVICE);
  2015. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2016. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2017. goto mem_err;
  2018. }
  2019. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2020. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2021. bq->addr_lo = /*sbq_desc->addr_lo = */
  2022. cpu_to_le32(map);
  2023. bq->addr_hi = /*sbq_desc->addr_hi = */
  2024. cpu_to_le32(map >> 32);
  2025. bq++;
  2026. }
  2027. return 0;
  2028. mem_err:
  2029. ql_free_sbq_buffers(qdev, rx_ring);
  2030. return -ENOMEM;
  2031. }
  2032. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2033. struct rx_ring *rx_ring)
  2034. {
  2035. if (rx_ring->sbq_len)
  2036. ql_free_sbq_buffers(qdev, rx_ring);
  2037. if (rx_ring->lbq_len)
  2038. ql_free_lbq_buffers(qdev, rx_ring);
  2039. /* Free the small buffer queue. */
  2040. if (rx_ring->sbq_base) {
  2041. pci_free_consistent(qdev->pdev,
  2042. rx_ring->sbq_size,
  2043. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2044. rx_ring->sbq_base = NULL;
  2045. }
  2046. /* Free the small buffer queue control blocks. */
  2047. kfree(rx_ring->sbq);
  2048. rx_ring->sbq = NULL;
  2049. /* Free the large buffer queue. */
  2050. if (rx_ring->lbq_base) {
  2051. pci_free_consistent(qdev->pdev,
  2052. rx_ring->lbq_size,
  2053. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2054. rx_ring->lbq_base = NULL;
  2055. }
  2056. /* Free the large buffer queue control blocks. */
  2057. kfree(rx_ring->lbq);
  2058. rx_ring->lbq = NULL;
  2059. /* Free the rx queue. */
  2060. if (rx_ring->cq_base) {
  2061. pci_free_consistent(qdev->pdev,
  2062. rx_ring->cq_size,
  2063. rx_ring->cq_base, rx_ring->cq_base_dma);
  2064. rx_ring->cq_base = NULL;
  2065. }
  2066. }
  2067. /* Allocate queues and buffers for this completions queue based
  2068. * on the values in the parameter structure. */
  2069. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2070. struct rx_ring *rx_ring)
  2071. {
  2072. /*
  2073. * Allocate the completion queue for this rx_ring.
  2074. */
  2075. rx_ring->cq_base =
  2076. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2077. &rx_ring->cq_base_dma);
  2078. if (rx_ring->cq_base == NULL) {
  2079. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2080. return -ENOMEM;
  2081. }
  2082. if (rx_ring->sbq_len) {
  2083. /*
  2084. * Allocate small buffer queue.
  2085. */
  2086. rx_ring->sbq_base =
  2087. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2088. &rx_ring->sbq_base_dma);
  2089. if (rx_ring->sbq_base == NULL) {
  2090. QPRINTK(qdev, IFUP, ERR,
  2091. "Small buffer queue allocation failed.\n");
  2092. goto err_mem;
  2093. }
  2094. /*
  2095. * Allocate small buffer queue control blocks.
  2096. */
  2097. rx_ring->sbq =
  2098. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2099. GFP_KERNEL);
  2100. if (rx_ring->sbq == NULL) {
  2101. QPRINTK(qdev, IFUP, ERR,
  2102. "Small buffer queue control block allocation failed.\n");
  2103. goto err_mem;
  2104. }
  2105. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2106. QPRINTK(qdev, IFUP, ERR,
  2107. "Small buffer allocation failed.\n");
  2108. goto err_mem;
  2109. }
  2110. }
  2111. if (rx_ring->lbq_len) {
  2112. /*
  2113. * Allocate large buffer queue.
  2114. */
  2115. rx_ring->lbq_base =
  2116. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2117. &rx_ring->lbq_base_dma);
  2118. if (rx_ring->lbq_base == NULL) {
  2119. QPRINTK(qdev, IFUP, ERR,
  2120. "Large buffer queue allocation failed.\n");
  2121. goto err_mem;
  2122. }
  2123. /*
  2124. * Allocate large buffer queue control blocks.
  2125. */
  2126. rx_ring->lbq =
  2127. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2128. GFP_KERNEL);
  2129. if (rx_ring->lbq == NULL) {
  2130. QPRINTK(qdev, IFUP, ERR,
  2131. "Large buffer queue control block allocation failed.\n");
  2132. goto err_mem;
  2133. }
  2134. /*
  2135. * Allocate the buffers.
  2136. */
  2137. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2138. QPRINTK(qdev, IFUP, ERR,
  2139. "Large buffer allocation failed.\n");
  2140. goto err_mem;
  2141. }
  2142. }
  2143. return 0;
  2144. err_mem:
  2145. ql_free_rx_resources(qdev, rx_ring);
  2146. return -ENOMEM;
  2147. }
  2148. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2149. {
  2150. struct tx_ring *tx_ring;
  2151. struct tx_ring_desc *tx_ring_desc;
  2152. int i, j;
  2153. /*
  2154. * Loop through all queues and free
  2155. * any resources.
  2156. */
  2157. for (j = 0; j < qdev->tx_ring_count; j++) {
  2158. tx_ring = &qdev->tx_ring[j];
  2159. for (i = 0; i < tx_ring->wq_len; i++) {
  2160. tx_ring_desc = &tx_ring->q[i];
  2161. if (tx_ring_desc && tx_ring_desc->skb) {
  2162. QPRINTK(qdev, IFDOWN, ERR,
  2163. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2164. tx_ring_desc->skb, j,
  2165. tx_ring_desc->index);
  2166. ql_unmap_send(qdev, tx_ring_desc,
  2167. tx_ring_desc->map_cnt);
  2168. dev_kfree_skb(tx_ring_desc->skb);
  2169. tx_ring_desc->skb = NULL;
  2170. }
  2171. }
  2172. }
  2173. }
  2174. static void ql_free_ring_cb(struct ql_adapter *qdev)
  2175. {
  2176. kfree(qdev->ring_mem);
  2177. }
  2178. static int ql_alloc_ring_cb(struct ql_adapter *qdev)
  2179. {
  2180. /* Allocate space for tx/rx ring control blocks. */
  2181. qdev->ring_mem_size =
  2182. (qdev->tx_ring_count * sizeof(struct tx_ring)) +
  2183. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2184. qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
  2185. if (qdev->ring_mem == NULL) {
  2186. return -ENOMEM;
  2187. } else {
  2188. qdev->rx_ring = qdev->ring_mem;
  2189. qdev->tx_ring = qdev->ring_mem +
  2190. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2191. }
  2192. return 0;
  2193. }
  2194. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2195. {
  2196. int i;
  2197. for (i = 0; i < qdev->tx_ring_count; i++)
  2198. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2199. for (i = 0; i < qdev->rx_ring_count; i++)
  2200. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2201. ql_free_shadow_space(qdev);
  2202. }
  2203. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2204. {
  2205. int i;
  2206. /* Allocate space for our shadow registers and such. */
  2207. if (ql_alloc_shadow_space(qdev))
  2208. return -ENOMEM;
  2209. for (i = 0; i < qdev->rx_ring_count; i++) {
  2210. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2211. QPRINTK(qdev, IFUP, ERR,
  2212. "RX resource allocation failed.\n");
  2213. goto err_mem;
  2214. }
  2215. }
  2216. /* Allocate tx queue resources */
  2217. for (i = 0; i < qdev->tx_ring_count; i++) {
  2218. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2219. QPRINTK(qdev, IFUP, ERR,
  2220. "TX resource allocation failed.\n");
  2221. goto err_mem;
  2222. }
  2223. }
  2224. return 0;
  2225. err_mem:
  2226. ql_free_mem_resources(qdev);
  2227. return -ENOMEM;
  2228. }
  2229. /* Set up the rx ring control block and pass it to the chip.
  2230. * The control block is defined as
  2231. * "Completion Queue Initialization Control Block", or cqicb.
  2232. */
  2233. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2234. {
  2235. struct cqicb *cqicb = &rx_ring->cqicb;
  2236. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2237. (rx_ring->cq_id * sizeof(u64) * 4);
  2238. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2239. (rx_ring->cq_id * sizeof(u64) * 4);
  2240. void __iomem *doorbell_area =
  2241. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2242. int err = 0;
  2243. u16 bq_len;
  2244. /* Set up the shadow registers for this ring. */
  2245. rx_ring->prod_idx_sh_reg = shadow_reg;
  2246. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2247. shadow_reg += sizeof(u64);
  2248. shadow_reg_dma += sizeof(u64);
  2249. rx_ring->lbq_base_indirect = shadow_reg;
  2250. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2251. shadow_reg += sizeof(u64);
  2252. shadow_reg_dma += sizeof(u64);
  2253. rx_ring->sbq_base_indirect = shadow_reg;
  2254. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2255. /* PCI doorbell mem area + 0x00 for consumer index register */
  2256. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2257. rx_ring->cnsmr_idx = 0;
  2258. rx_ring->curr_entry = rx_ring->cq_base;
  2259. /* PCI doorbell mem area + 0x04 for valid register */
  2260. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2261. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2262. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2263. /* PCI doorbell mem area + 0x1c */
  2264. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2265. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2266. cqicb->msix_vect = rx_ring->irq;
  2267. cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
  2268. cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
  2269. cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
  2270. cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
  2271. cqicb->prod_idx_addr_hi =
  2272. cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
  2273. /*
  2274. * Set up the control block load flags.
  2275. */
  2276. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2277. FLAGS_LV | /* Load MSI-X vector */
  2278. FLAGS_LI; /* Load irq delay values */
  2279. if (rx_ring->lbq_len) {
  2280. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2281. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2282. cqicb->lbq_addr_lo =
  2283. cpu_to_le32(rx_ring->lbq_base_indirect_dma);
  2284. cqicb->lbq_addr_hi =
  2285. cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
  2286. cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
  2287. bq_len = (u16) rx_ring->lbq_len;
  2288. cqicb->lbq_len = cpu_to_le16(bq_len);
  2289. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2290. rx_ring->lbq_curr_idx = 0;
  2291. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2292. rx_ring->lbq_free_cnt = 16;
  2293. }
  2294. if (rx_ring->sbq_len) {
  2295. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2296. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2297. cqicb->sbq_addr_lo =
  2298. cpu_to_le32(rx_ring->sbq_base_indirect_dma);
  2299. cqicb->sbq_addr_hi =
  2300. cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
  2301. cqicb->sbq_buf_size =
  2302. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2303. bq_len = (u16) rx_ring->sbq_len;
  2304. cqicb->sbq_len = cpu_to_le16(bq_len);
  2305. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2306. rx_ring->sbq_curr_idx = 0;
  2307. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2308. rx_ring->sbq_free_cnt = 16;
  2309. }
  2310. switch (rx_ring->type) {
  2311. case TX_Q:
  2312. /* If there's only one interrupt, then we use
  2313. * worker threads to process the outbound
  2314. * completion handling rx_rings. We do this so
  2315. * they can be run on multiple CPUs. There is
  2316. * room to play with this more where we would only
  2317. * run in a worker if there are more than x number
  2318. * of outbound completions on the queue and more
  2319. * than one queue active. Some threshold that
  2320. * would indicate a benefit in spite of the cost
  2321. * of a context switch.
  2322. * If there's more than one interrupt, then the
  2323. * outbound completions are processed in the ISR.
  2324. */
  2325. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2326. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2327. else {
  2328. /* With all debug warnings on we see a WARN_ON message
  2329. * when we free the skb in the interrupt context.
  2330. */
  2331. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2332. }
  2333. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2334. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2335. break;
  2336. case DEFAULT_Q:
  2337. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2338. cqicb->irq_delay = 0;
  2339. cqicb->pkt_delay = 0;
  2340. break;
  2341. case RX_Q:
  2342. /* Inbound completion handling rx_rings run in
  2343. * separate NAPI contexts.
  2344. */
  2345. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2346. 64);
  2347. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2348. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2349. break;
  2350. default:
  2351. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2352. rx_ring->type);
  2353. }
  2354. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2355. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2356. CFG_LCQ, rx_ring->cq_id);
  2357. if (err) {
  2358. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2359. return err;
  2360. }
  2361. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2362. /*
  2363. * Advance the producer index for the buffer queues.
  2364. */
  2365. wmb();
  2366. if (rx_ring->lbq_len)
  2367. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2368. rx_ring->lbq_prod_idx_db_reg);
  2369. if (rx_ring->sbq_len)
  2370. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2371. rx_ring->sbq_prod_idx_db_reg);
  2372. return err;
  2373. }
  2374. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2375. {
  2376. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2377. void __iomem *doorbell_area =
  2378. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2379. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2380. (tx_ring->wq_id * sizeof(u64));
  2381. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2382. (tx_ring->wq_id * sizeof(u64));
  2383. int err = 0;
  2384. /*
  2385. * Assign doorbell registers for this tx_ring.
  2386. */
  2387. /* TX PCI doorbell mem area for tx producer index */
  2388. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2389. tx_ring->prod_idx = 0;
  2390. /* TX PCI doorbell mem area + 0x04 */
  2391. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2392. /*
  2393. * Assign shadow registers for this tx_ring.
  2394. */
  2395. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2396. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2397. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2398. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2399. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2400. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2401. wqicb->rid = 0;
  2402. wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
  2403. wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
  2404. wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
  2405. wqicb->cnsmr_idx_addr_hi =
  2406. cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
  2407. ql_init_tx_ring(qdev, tx_ring);
  2408. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2409. (u16) tx_ring->wq_id);
  2410. if (err) {
  2411. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2412. return err;
  2413. }
  2414. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2415. return err;
  2416. }
  2417. static void ql_disable_msix(struct ql_adapter *qdev)
  2418. {
  2419. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2420. pci_disable_msix(qdev->pdev);
  2421. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2422. kfree(qdev->msi_x_entry);
  2423. qdev->msi_x_entry = NULL;
  2424. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2425. pci_disable_msi(qdev->pdev);
  2426. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2427. }
  2428. }
  2429. static void ql_enable_msix(struct ql_adapter *qdev)
  2430. {
  2431. int i;
  2432. qdev->intr_count = 1;
  2433. /* Get the MSIX vectors. */
  2434. if (irq_type == MSIX_IRQ) {
  2435. /* Try to alloc space for the msix struct,
  2436. * if it fails then go to MSI/legacy.
  2437. */
  2438. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2439. sizeof(struct msix_entry),
  2440. GFP_KERNEL);
  2441. if (!qdev->msi_x_entry) {
  2442. irq_type = MSI_IRQ;
  2443. goto msi;
  2444. }
  2445. for (i = 0; i < qdev->rx_ring_count; i++)
  2446. qdev->msi_x_entry[i].entry = i;
  2447. if (!pci_enable_msix
  2448. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2449. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2450. qdev->intr_count = qdev->rx_ring_count;
  2451. QPRINTK(qdev, IFUP, INFO,
  2452. "MSI-X Enabled, got %d vectors.\n",
  2453. qdev->intr_count);
  2454. return;
  2455. } else {
  2456. kfree(qdev->msi_x_entry);
  2457. qdev->msi_x_entry = NULL;
  2458. QPRINTK(qdev, IFUP, WARNING,
  2459. "MSI-X Enable failed, trying MSI.\n");
  2460. irq_type = MSI_IRQ;
  2461. }
  2462. }
  2463. msi:
  2464. if (irq_type == MSI_IRQ) {
  2465. if (!pci_enable_msi(qdev->pdev)) {
  2466. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2467. QPRINTK(qdev, IFUP, INFO,
  2468. "Running with MSI interrupts.\n");
  2469. return;
  2470. }
  2471. }
  2472. irq_type = LEG_IRQ;
  2473. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2474. }
  2475. /*
  2476. * Here we build the intr_context structures based on
  2477. * our rx_ring count and intr vector count.
  2478. * The intr_context structure is used to hook each vector
  2479. * to possibly different handlers.
  2480. */
  2481. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2482. {
  2483. int i = 0;
  2484. struct intr_context *intr_context = &qdev->intr_context[0];
  2485. ql_enable_msix(qdev);
  2486. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2487. /* Each rx_ring has it's
  2488. * own intr_context since we have separate
  2489. * vectors for each queue.
  2490. * This only true when MSI-X is enabled.
  2491. */
  2492. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2493. qdev->rx_ring[i].irq = i;
  2494. intr_context->intr = i;
  2495. intr_context->qdev = qdev;
  2496. /*
  2497. * We set up each vectors enable/disable/read bits so
  2498. * there's no bit/mask calculations in the critical path.
  2499. */
  2500. intr_context->intr_en_mask =
  2501. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2502. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2503. | i;
  2504. intr_context->intr_dis_mask =
  2505. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2506. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2507. INTR_EN_IHD | i;
  2508. intr_context->intr_read_mask =
  2509. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2510. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2511. i;
  2512. if (i == 0) {
  2513. /*
  2514. * Default queue handles bcast/mcast plus
  2515. * async events. Needs buffers.
  2516. */
  2517. intr_context->handler = qlge_isr;
  2518. sprintf(intr_context->name, "%s-default-queue",
  2519. qdev->ndev->name);
  2520. } else if (i < qdev->rss_ring_first_cq_id) {
  2521. /*
  2522. * Outbound queue is for outbound completions only.
  2523. */
  2524. intr_context->handler = qlge_msix_tx_isr;
  2525. sprintf(intr_context->name, "%s-txq-%d",
  2526. qdev->ndev->name, i);
  2527. } else {
  2528. /*
  2529. * Inbound queues handle unicast frames only.
  2530. */
  2531. intr_context->handler = qlge_msix_rx_isr;
  2532. sprintf(intr_context->name, "%s-rxq-%d",
  2533. qdev->ndev->name, i);
  2534. }
  2535. }
  2536. } else {
  2537. /*
  2538. * All rx_rings use the same intr_context since
  2539. * there is only one vector.
  2540. */
  2541. intr_context->intr = 0;
  2542. intr_context->qdev = qdev;
  2543. /*
  2544. * We set up each vectors enable/disable/read bits so
  2545. * there's no bit/mask calculations in the critical path.
  2546. */
  2547. intr_context->intr_en_mask =
  2548. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2549. intr_context->intr_dis_mask =
  2550. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2551. INTR_EN_TYPE_DISABLE;
  2552. intr_context->intr_read_mask =
  2553. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2554. /*
  2555. * Single interrupt means one handler for all rings.
  2556. */
  2557. intr_context->handler = qlge_isr;
  2558. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2559. for (i = 0; i < qdev->rx_ring_count; i++)
  2560. qdev->rx_ring[i].irq = 0;
  2561. }
  2562. }
  2563. static void ql_free_irq(struct ql_adapter *qdev)
  2564. {
  2565. int i;
  2566. struct intr_context *intr_context = &qdev->intr_context[0];
  2567. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2568. if (intr_context->hooked) {
  2569. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2570. free_irq(qdev->msi_x_entry[i].vector,
  2571. &qdev->rx_ring[i]);
  2572. QPRINTK(qdev, IFDOWN, ERR,
  2573. "freeing msix interrupt %d.\n", i);
  2574. } else {
  2575. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2576. QPRINTK(qdev, IFDOWN, ERR,
  2577. "freeing msi interrupt %d.\n", i);
  2578. }
  2579. }
  2580. }
  2581. ql_disable_msix(qdev);
  2582. }
  2583. static int ql_request_irq(struct ql_adapter *qdev)
  2584. {
  2585. int i;
  2586. int status = 0;
  2587. struct pci_dev *pdev = qdev->pdev;
  2588. struct intr_context *intr_context = &qdev->intr_context[0];
  2589. ql_resolve_queues_to_irqs(qdev);
  2590. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2591. atomic_set(&intr_context->irq_cnt, 0);
  2592. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2593. status = request_irq(qdev->msi_x_entry[i].vector,
  2594. intr_context->handler,
  2595. 0,
  2596. intr_context->name,
  2597. &qdev->rx_ring[i]);
  2598. if (status) {
  2599. QPRINTK(qdev, IFUP, ERR,
  2600. "Failed request for MSIX interrupt %d.\n",
  2601. i);
  2602. goto err_irq;
  2603. } else {
  2604. QPRINTK(qdev, IFUP, INFO,
  2605. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2606. i,
  2607. qdev->rx_ring[i].type ==
  2608. DEFAULT_Q ? "DEFAULT_Q" : "",
  2609. qdev->rx_ring[i].type ==
  2610. TX_Q ? "TX_Q" : "",
  2611. qdev->rx_ring[i].type ==
  2612. RX_Q ? "RX_Q" : "", intr_context->name);
  2613. }
  2614. } else {
  2615. QPRINTK(qdev, IFUP, DEBUG,
  2616. "trying msi or legacy interrupts.\n");
  2617. QPRINTK(qdev, IFUP, DEBUG,
  2618. "%s: irq = %d.\n", __func__, pdev->irq);
  2619. QPRINTK(qdev, IFUP, DEBUG,
  2620. "%s: context->name = %s.\n", __func__,
  2621. intr_context->name);
  2622. QPRINTK(qdev, IFUP, DEBUG,
  2623. "%s: dev_id = 0x%p.\n", __func__,
  2624. &qdev->rx_ring[0]);
  2625. status =
  2626. request_irq(pdev->irq, qlge_isr,
  2627. test_bit(QL_MSI_ENABLED,
  2628. &qdev->
  2629. flags) ? 0 : IRQF_SHARED,
  2630. intr_context->name, &qdev->rx_ring[0]);
  2631. if (status)
  2632. goto err_irq;
  2633. QPRINTK(qdev, IFUP, ERR,
  2634. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2635. i,
  2636. qdev->rx_ring[0].type ==
  2637. DEFAULT_Q ? "DEFAULT_Q" : "",
  2638. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2639. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2640. intr_context->name);
  2641. }
  2642. intr_context->hooked = 1;
  2643. }
  2644. return status;
  2645. err_irq:
  2646. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2647. ql_free_irq(qdev);
  2648. return status;
  2649. }
  2650. static int ql_start_rss(struct ql_adapter *qdev)
  2651. {
  2652. struct ricb *ricb = &qdev->ricb;
  2653. int status = 0;
  2654. int i;
  2655. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2656. memset((void *)ricb, 0, sizeof(ricb));
  2657. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2658. ricb->flags =
  2659. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2660. RSS_RT6);
  2661. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2662. /*
  2663. * Fill out the Indirection Table.
  2664. */
  2665. for (i = 0; i < 32; i++)
  2666. hash_id[i] = i & 1;
  2667. /*
  2668. * Random values for the IPv6 and IPv4 Hash Keys.
  2669. */
  2670. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2671. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2672. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2673. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2674. if (status) {
  2675. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2676. return status;
  2677. }
  2678. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2679. return status;
  2680. }
  2681. /* Initialize the frame-to-queue routing. */
  2682. static int ql_route_initialize(struct ql_adapter *qdev)
  2683. {
  2684. int status = 0;
  2685. int i;
  2686. /* Clear all the entries in the routing table. */
  2687. for (i = 0; i < 16; i++) {
  2688. status = ql_set_routing_reg(qdev, i, 0, 0);
  2689. if (status) {
  2690. QPRINTK(qdev, IFUP, ERR,
  2691. "Failed to init routing register for CAM packets.\n");
  2692. return status;
  2693. }
  2694. }
  2695. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2696. if (status) {
  2697. QPRINTK(qdev, IFUP, ERR,
  2698. "Failed to init routing register for error packets.\n");
  2699. return status;
  2700. }
  2701. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2702. if (status) {
  2703. QPRINTK(qdev, IFUP, ERR,
  2704. "Failed to init routing register for broadcast packets.\n");
  2705. return status;
  2706. }
  2707. /* If we have more than one inbound queue, then turn on RSS in the
  2708. * routing block.
  2709. */
  2710. if (qdev->rss_ring_count > 1) {
  2711. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2712. RT_IDX_RSS_MATCH, 1);
  2713. if (status) {
  2714. QPRINTK(qdev, IFUP, ERR,
  2715. "Failed to init routing register for MATCH RSS packets.\n");
  2716. return status;
  2717. }
  2718. }
  2719. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2720. RT_IDX_CAM_HIT, 1);
  2721. if (status) {
  2722. QPRINTK(qdev, IFUP, ERR,
  2723. "Failed to init routing register for CAM packets.\n");
  2724. return status;
  2725. }
  2726. return status;
  2727. }
  2728. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2729. {
  2730. u32 value, mask;
  2731. int i;
  2732. int status = 0;
  2733. /*
  2734. * Set up the System register to halt on errors.
  2735. */
  2736. value = SYS_EFE | SYS_FAE;
  2737. mask = value << 16;
  2738. ql_write32(qdev, SYS, mask | value);
  2739. /* Set the default queue. */
  2740. value = NIC_RCV_CFG_DFQ;
  2741. mask = NIC_RCV_CFG_DFQ_MASK;
  2742. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2743. /* Set the MPI interrupt to enabled. */
  2744. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2745. /* Enable the function, set pagesize, enable error checking. */
  2746. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2747. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2748. /* Set/clear header splitting. */
  2749. mask = FSC_VM_PAGESIZE_MASK |
  2750. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2751. ql_write32(qdev, FSC, mask | value);
  2752. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2753. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2754. /* Start up the rx queues. */
  2755. for (i = 0; i < qdev->rx_ring_count; i++) {
  2756. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2757. if (status) {
  2758. QPRINTK(qdev, IFUP, ERR,
  2759. "Failed to start rx ring[%d].\n", i);
  2760. return status;
  2761. }
  2762. }
  2763. /* If there is more than one inbound completion queue
  2764. * then download a RICB to configure RSS.
  2765. */
  2766. if (qdev->rss_ring_count > 1) {
  2767. status = ql_start_rss(qdev);
  2768. if (status) {
  2769. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2770. return status;
  2771. }
  2772. }
  2773. /* Start up the tx queues. */
  2774. for (i = 0; i < qdev->tx_ring_count; i++) {
  2775. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2776. if (status) {
  2777. QPRINTK(qdev, IFUP, ERR,
  2778. "Failed to start tx ring[%d].\n", i);
  2779. return status;
  2780. }
  2781. }
  2782. status = ql_port_initialize(qdev);
  2783. if (status) {
  2784. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2785. return status;
  2786. }
  2787. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2788. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2789. if (status) {
  2790. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2791. return status;
  2792. }
  2793. status = ql_route_initialize(qdev);
  2794. if (status) {
  2795. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2796. return status;
  2797. }
  2798. /* Start NAPI for the RSS queues. */
  2799. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2800. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2801. i);
  2802. napi_enable(&qdev->rx_ring[i].napi);
  2803. }
  2804. return status;
  2805. }
  2806. /* Issue soft reset to chip. */
  2807. static int ql_adapter_reset(struct ql_adapter *qdev)
  2808. {
  2809. u32 value;
  2810. int max_wait_time;
  2811. int status = 0;
  2812. int resetCnt = 0;
  2813. #define MAX_RESET_CNT 1
  2814. issueReset:
  2815. resetCnt++;
  2816. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2817. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2818. /* Wait for reset to complete. */
  2819. max_wait_time = 3;
  2820. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2821. max_wait_time);
  2822. do {
  2823. value = ql_read32(qdev, RST_FO);
  2824. if ((value & RST_FO_FR) == 0)
  2825. break;
  2826. ssleep(1);
  2827. } while ((--max_wait_time));
  2828. if (value & RST_FO_FR) {
  2829. QPRINTK(qdev, IFDOWN, ERR,
  2830. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2831. if (resetCnt < MAX_RESET_CNT)
  2832. goto issueReset;
  2833. }
  2834. if (max_wait_time == 0) {
  2835. status = -ETIMEDOUT;
  2836. QPRINTK(qdev, IFDOWN, ERR,
  2837. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2838. }
  2839. return status;
  2840. }
  2841. static void ql_display_dev_info(struct net_device *ndev)
  2842. {
  2843. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2844. QPRINTK(qdev, PROBE, INFO,
  2845. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2846. "XG Roll = %d, XG Rev = %d.\n",
  2847. qdev->func,
  2848. qdev->chip_rev_id & 0x0000000f,
  2849. qdev->chip_rev_id >> 4 & 0x0000000f,
  2850. qdev->chip_rev_id >> 8 & 0x0000000f,
  2851. qdev->chip_rev_id >> 12 & 0x0000000f);
  2852. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2853. }
  2854. static int ql_adapter_down(struct ql_adapter *qdev)
  2855. {
  2856. struct net_device *ndev = qdev->ndev;
  2857. int i, status = 0;
  2858. struct rx_ring *rx_ring;
  2859. netif_stop_queue(ndev);
  2860. netif_carrier_off(ndev);
  2861. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2862. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2863. cancel_delayed_work_sync(&qdev->mpi_work);
  2864. /* The default queue at index 0 is always processed in
  2865. * a workqueue.
  2866. */
  2867. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2868. /* The rest of the rx_rings are processed in
  2869. * a workqueue only if it's a single interrupt
  2870. * environment (MSI/Legacy).
  2871. */
  2872. for (i = 1; i > qdev->rx_ring_count; i++) {
  2873. rx_ring = &qdev->rx_ring[i];
  2874. /* Only the RSS rings use NAPI on multi irq
  2875. * environment. Outbound completion processing
  2876. * is done in interrupt context.
  2877. */
  2878. if (i >= qdev->rss_ring_first_cq_id) {
  2879. napi_disable(&rx_ring->napi);
  2880. } else {
  2881. cancel_delayed_work_sync(&rx_ring->rx_work);
  2882. }
  2883. }
  2884. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2885. ql_disable_interrupts(qdev);
  2886. ql_tx_ring_clean(qdev);
  2887. spin_lock(&qdev->hw_lock);
  2888. status = ql_adapter_reset(qdev);
  2889. if (status)
  2890. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2891. qdev->func);
  2892. spin_unlock(&qdev->hw_lock);
  2893. return status;
  2894. }
  2895. static int ql_adapter_up(struct ql_adapter *qdev)
  2896. {
  2897. int err = 0;
  2898. spin_lock(&qdev->hw_lock);
  2899. err = ql_adapter_initialize(qdev);
  2900. if (err) {
  2901. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2902. spin_unlock(&qdev->hw_lock);
  2903. goto err_init;
  2904. }
  2905. spin_unlock(&qdev->hw_lock);
  2906. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2907. ql_enable_interrupts(qdev);
  2908. ql_enable_all_completion_interrupts(qdev);
  2909. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2910. netif_carrier_on(qdev->ndev);
  2911. netif_start_queue(qdev->ndev);
  2912. }
  2913. return 0;
  2914. err_init:
  2915. ql_adapter_reset(qdev);
  2916. return err;
  2917. }
  2918. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2919. {
  2920. int status;
  2921. status = ql_adapter_down(qdev);
  2922. if (status)
  2923. goto error;
  2924. status = ql_adapter_up(qdev);
  2925. if (status)
  2926. goto error;
  2927. return status;
  2928. error:
  2929. QPRINTK(qdev, IFUP, ALERT,
  2930. "Driver up/down cycle failed, closing device\n");
  2931. rtnl_lock();
  2932. dev_close(qdev->ndev);
  2933. rtnl_unlock();
  2934. return status;
  2935. }
  2936. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2937. {
  2938. ql_free_mem_resources(qdev);
  2939. ql_free_irq(qdev);
  2940. }
  2941. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2942. {
  2943. int status = 0;
  2944. if (ql_alloc_mem_resources(qdev)) {
  2945. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2946. return -ENOMEM;
  2947. }
  2948. status = ql_request_irq(qdev);
  2949. if (status)
  2950. goto err_irq;
  2951. return status;
  2952. err_irq:
  2953. ql_free_mem_resources(qdev);
  2954. return status;
  2955. }
  2956. static int qlge_close(struct net_device *ndev)
  2957. {
  2958. struct ql_adapter *qdev = netdev_priv(ndev);
  2959. /*
  2960. * Wait for device to recover from a reset.
  2961. * (Rarely happens, but possible.)
  2962. */
  2963. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2964. msleep(1);
  2965. ql_adapter_down(qdev);
  2966. ql_release_adapter_resources(qdev);
  2967. ql_free_ring_cb(qdev);
  2968. return 0;
  2969. }
  2970. static int ql_configure_rings(struct ql_adapter *qdev)
  2971. {
  2972. int i;
  2973. struct rx_ring *rx_ring;
  2974. struct tx_ring *tx_ring;
  2975. int cpu_cnt = num_online_cpus();
  2976. /*
  2977. * For each processor present we allocate one
  2978. * rx_ring for outbound completions, and one
  2979. * rx_ring for inbound completions. Plus there is
  2980. * always the one default queue. For the CPU
  2981. * counts we end up with the following rx_rings:
  2982. * rx_ring count =
  2983. * one default queue +
  2984. * (CPU count * outbound completion rx_ring) +
  2985. * (CPU count * inbound (RSS) completion rx_ring)
  2986. * To keep it simple we limit the total number of
  2987. * queues to < 32, so we truncate CPU to 8.
  2988. * This limitation can be removed when requested.
  2989. */
  2990. if (cpu_cnt > 8)
  2991. cpu_cnt = 8;
  2992. /*
  2993. * rx_ring[0] is always the default queue.
  2994. */
  2995. /* Allocate outbound completion ring for each CPU. */
  2996. qdev->tx_ring_count = cpu_cnt;
  2997. /* Allocate inbound completion (RSS) ring for each CPU. */
  2998. qdev->rss_ring_count = cpu_cnt;
  2999. /* cq_id for the first inbound ring handler. */
  3000. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3001. /*
  3002. * qdev->rx_ring_count:
  3003. * Total number of rx_rings. This includes the one
  3004. * default queue, a number of outbound completion
  3005. * handler rx_rings, and the number of inbound
  3006. * completion handler rx_rings.
  3007. */
  3008. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3009. if (ql_alloc_ring_cb(qdev))
  3010. return -ENOMEM;
  3011. for (i = 0; i < qdev->tx_ring_count; i++) {
  3012. tx_ring = &qdev->tx_ring[i];
  3013. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3014. tx_ring->qdev = qdev;
  3015. tx_ring->wq_id = i;
  3016. tx_ring->wq_len = qdev->tx_ring_size;
  3017. tx_ring->wq_size =
  3018. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3019. /*
  3020. * The completion queue ID for the tx rings start
  3021. * immediately after the default Q ID, which is zero.
  3022. */
  3023. tx_ring->cq_id = i + 1;
  3024. }
  3025. for (i = 0; i < qdev->rx_ring_count; i++) {
  3026. rx_ring = &qdev->rx_ring[i];
  3027. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3028. rx_ring->qdev = qdev;
  3029. rx_ring->cq_id = i;
  3030. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3031. if (i == 0) { /* Default queue at index 0. */
  3032. /*
  3033. * Default queue handles bcast/mcast plus
  3034. * async events. Needs buffers.
  3035. */
  3036. rx_ring->cq_len = qdev->rx_ring_size;
  3037. rx_ring->cq_size =
  3038. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3039. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3040. rx_ring->lbq_size =
  3041. rx_ring->lbq_len * sizeof(struct bq_element);
  3042. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3043. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3044. rx_ring->sbq_size =
  3045. rx_ring->sbq_len * sizeof(struct bq_element);
  3046. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3047. rx_ring->type = DEFAULT_Q;
  3048. } else if (i < qdev->rss_ring_first_cq_id) {
  3049. /*
  3050. * Outbound queue handles outbound completions only.
  3051. */
  3052. /* outbound cq is same size as tx_ring it services. */
  3053. rx_ring->cq_len = qdev->tx_ring_size;
  3054. rx_ring->cq_size =
  3055. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3056. rx_ring->lbq_len = 0;
  3057. rx_ring->lbq_size = 0;
  3058. rx_ring->lbq_buf_size = 0;
  3059. rx_ring->sbq_len = 0;
  3060. rx_ring->sbq_size = 0;
  3061. rx_ring->sbq_buf_size = 0;
  3062. rx_ring->type = TX_Q;
  3063. } else { /* Inbound completions (RSS) queues */
  3064. /*
  3065. * Inbound queues handle unicast frames only.
  3066. */
  3067. rx_ring->cq_len = qdev->rx_ring_size;
  3068. rx_ring->cq_size =
  3069. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3070. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3071. rx_ring->lbq_size =
  3072. rx_ring->lbq_len * sizeof(struct bq_element);
  3073. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3074. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3075. rx_ring->sbq_size =
  3076. rx_ring->sbq_len * sizeof(struct bq_element);
  3077. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3078. rx_ring->type = RX_Q;
  3079. }
  3080. }
  3081. return 0;
  3082. }
  3083. static int qlge_open(struct net_device *ndev)
  3084. {
  3085. int err = 0;
  3086. struct ql_adapter *qdev = netdev_priv(ndev);
  3087. err = ql_configure_rings(qdev);
  3088. if (err)
  3089. return err;
  3090. err = ql_get_adapter_resources(qdev);
  3091. if (err)
  3092. goto error_up;
  3093. err = ql_adapter_up(qdev);
  3094. if (err)
  3095. goto error_up;
  3096. return err;
  3097. error_up:
  3098. ql_release_adapter_resources(qdev);
  3099. ql_free_ring_cb(qdev);
  3100. return err;
  3101. }
  3102. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3103. {
  3104. struct ql_adapter *qdev = netdev_priv(ndev);
  3105. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3106. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3107. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3108. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3109. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3110. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3111. return 0;
  3112. } else
  3113. return -EINVAL;
  3114. ndev->mtu = new_mtu;
  3115. return 0;
  3116. }
  3117. static struct net_device_stats *qlge_get_stats(struct net_device
  3118. *ndev)
  3119. {
  3120. struct ql_adapter *qdev = netdev_priv(ndev);
  3121. return &qdev->stats;
  3122. }
  3123. static void qlge_set_multicast_list(struct net_device *ndev)
  3124. {
  3125. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3126. struct dev_mc_list *mc_ptr;
  3127. int i;
  3128. spin_lock(&qdev->hw_lock);
  3129. /*
  3130. * Set or clear promiscuous mode if a
  3131. * transition is taking place.
  3132. */
  3133. if (ndev->flags & IFF_PROMISC) {
  3134. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3135. if (ql_set_routing_reg
  3136. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3137. QPRINTK(qdev, HW, ERR,
  3138. "Failed to set promiscous mode.\n");
  3139. } else {
  3140. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3141. }
  3142. }
  3143. } else {
  3144. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3145. if (ql_set_routing_reg
  3146. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3147. QPRINTK(qdev, HW, ERR,
  3148. "Failed to clear promiscous mode.\n");
  3149. } else {
  3150. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3151. }
  3152. }
  3153. }
  3154. /*
  3155. * Set or clear all multicast mode if a
  3156. * transition is taking place.
  3157. */
  3158. if ((ndev->flags & IFF_ALLMULTI) ||
  3159. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3160. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3161. if (ql_set_routing_reg
  3162. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3163. QPRINTK(qdev, HW, ERR,
  3164. "Failed to set all-multi mode.\n");
  3165. } else {
  3166. set_bit(QL_ALLMULTI, &qdev->flags);
  3167. }
  3168. }
  3169. } else {
  3170. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3171. if (ql_set_routing_reg
  3172. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3173. QPRINTK(qdev, HW, ERR,
  3174. "Failed to clear all-multi mode.\n");
  3175. } else {
  3176. clear_bit(QL_ALLMULTI, &qdev->flags);
  3177. }
  3178. }
  3179. }
  3180. if (ndev->mc_count) {
  3181. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3182. i++, mc_ptr = mc_ptr->next)
  3183. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3184. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3185. QPRINTK(qdev, HW, ERR,
  3186. "Failed to loadmulticast address.\n");
  3187. goto exit;
  3188. }
  3189. if (ql_set_routing_reg
  3190. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3191. QPRINTK(qdev, HW, ERR,
  3192. "Failed to set multicast match mode.\n");
  3193. } else {
  3194. set_bit(QL_ALLMULTI, &qdev->flags);
  3195. }
  3196. }
  3197. exit:
  3198. spin_unlock(&qdev->hw_lock);
  3199. }
  3200. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3201. {
  3202. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3203. struct sockaddr *addr = p;
  3204. int ret = 0;
  3205. if (netif_running(ndev))
  3206. return -EBUSY;
  3207. if (!is_valid_ether_addr(addr->sa_data))
  3208. return -EADDRNOTAVAIL;
  3209. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3210. spin_lock(&qdev->hw_lock);
  3211. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3212. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3213. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3214. ret = -1;
  3215. }
  3216. spin_unlock(&qdev->hw_lock);
  3217. return ret;
  3218. }
  3219. static void qlge_tx_timeout(struct net_device *ndev)
  3220. {
  3221. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3222. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3223. }
  3224. static void ql_asic_reset_work(struct work_struct *work)
  3225. {
  3226. struct ql_adapter *qdev =
  3227. container_of(work, struct ql_adapter, asic_reset_work.work);
  3228. ql_cycle_adapter(qdev);
  3229. }
  3230. static void ql_get_board_info(struct ql_adapter *qdev)
  3231. {
  3232. qdev->func =
  3233. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3234. if (qdev->func) {
  3235. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3236. qdev->port_link_up = STS_PL1;
  3237. qdev->port_init = STS_PI1;
  3238. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3239. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3240. } else {
  3241. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3242. qdev->port_link_up = STS_PL0;
  3243. qdev->port_init = STS_PI0;
  3244. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3245. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3246. }
  3247. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3248. }
  3249. static void ql_release_all(struct pci_dev *pdev)
  3250. {
  3251. struct net_device *ndev = pci_get_drvdata(pdev);
  3252. struct ql_adapter *qdev = netdev_priv(ndev);
  3253. if (qdev->workqueue) {
  3254. destroy_workqueue(qdev->workqueue);
  3255. qdev->workqueue = NULL;
  3256. }
  3257. if (qdev->q_workqueue) {
  3258. destroy_workqueue(qdev->q_workqueue);
  3259. qdev->q_workqueue = NULL;
  3260. }
  3261. if (qdev->reg_base)
  3262. iounmap(qdev->reg_base);
  3263. if (qdev->doorbell_area)
  3264. iounmap(qdev->doorbell_area);
  3265. pci_release_regions(pdev);
  3266. pci_set_drvdata(pdev, NULL);
  3267. }
  3268. static int __devinit ql_init_device(struct pci_dev *pdev,
  3269. struct net_device *ndev, int cards_found)
  3270. {
  3271. struct ql_adapter *qdev = netdev_priv(ndev);
  3272. int pos, err = 0;
  3273. u16 val16;
  3274. memset((void *)qdev, 0, sizeof(qdev));
  3275. err = pci_enable_device(pdev);
  3276. if (err) {
  3277. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3278. return err;
  3279. }
  3280. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3281. if (pos <= 0) {
  3282. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3283. "aborting.\n");
  3284. goto err_out;
  3285. } else {
  3286. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3287. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3288. val16 |= (PCI_EXP_DEVCTL_CERE |
  3289. PCI_EXP_DEVCTL_NFERE |
  3290. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3291. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3292. }
  3293. err = pci_request_regions(pdev, DRV_NAME);
  3294. if (err) {
  3295. dev_err(&pdev->dev, "PCI region request failed.\n");
  3296. goto err_out;
  3297. }
  3298. pci_set_master(pdev);
  3299. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3300. set_bit(QL_DMA64, &qdev->flags);
  3301. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3302. } else {
  3303. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3304. if (!err)
  3305. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3306. }
  3307. if (err) {
  3308. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3309. goto err_out;
  3310. }
  3311. pci_set_drvdata(pdev, ndev);
  3312. qdev->reg_base =
  3313. ioremap_nocache(pci_resource_start(pdev, 1),
  3314. pci_resource_len(pdev, 1));
  3315. if (!qdev->reg_base) {
  3316. dev_err(&pdev->dev, "Register mapping failed.\n");
  3317. err = -ENOMEM;
  3318. goto err_out;
  3319. }
  3320. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3321. qdev->doorbell_area =
  3322. ioremap_nocache(pci_resource_start(pdev, 3),
  3323. pci_resource_len(pdev, 3));
  3324. if (!qdev->doorbell_area) {
  3325. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3326. err = -ENOMEM;
  3327. goto err_out;
  3328. }
  3329. ql_get_board_info(qdev);
  3330. qdev->ndev = ndev;
  3331. qdev->pdev = pdev;
  3332. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3333. spin_lock_init(&qdev->hw_lock);
  3334. spin_lock_init(&qdev->stats_lock);
  3335. /* make sure the EEPROM is good */
  3336. err = ql_get_flash_params(qdev);
  3337. if (err) {
  3338. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3339. goto err_out;
  3340. }
  3341. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3342. goto err_out;
  3343. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3344. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3345. /* Set up the default ring sizes. */
  3346. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3347. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3348. /* Set up the coalescing parameters. */
  3349. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3350. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3351. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3352. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3353. /*
  3354. * Set up the operating parameters.
  3355. */
  3356. qdev->rx_csum = 1;
  3357. qdev->q_workqueue = create_workqueue(ndev->name);
  3358. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3359. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3360. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3361. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3362. if (!cards_found) {
  3363. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3364. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3365. DRV_NAME, DRV_VERSION);
  3366. }
  3367. return 0;
  3368. err_out:
  3369. ql_release_all(pdev);
  3370. pci_disable_device(pdev);
  3371. return err;
  3372. }
  3373. static const struct net_device_ops qlge_netdev_ops = {
  3374. .ndo_open = qlge_open,
  3375. .ndo_stop = qlge_close,
  3376. .ndo_start_xmit = qlge_send,
  3377. .ndo_change_mtu = qlge_change_mtu,
  3378. .ndo_get_stats = qlge_get_stats,
  3379. .ndo_set_multicast_list = qlge_set_multicast_list,
  3380. .ndo_set_mac_address = qlge_set_mac_address,
  3381. .ndo_validate_addr = eth_validate_addr,
  3382. .ndo_tx_timeout = qlge_tx_timeout,
  3383. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3384. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3385. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3386. };
  3387. static int __devinit qlge_probe(struct pci_dev *pdev,
  3388. const struct pci_device_id *pci_entry)
  3389. {
  3390. struct net_device *ndev = NULL;
  3391. struct ql_adapter *qdev = NULL;
  3392. static int cards_found = 0;
  3393. int err = 0;
  3394. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3395. if (!ndev)
  3396. return -ENOMEM;
  3397. err = ql_init_device(pdev, ndev, cards_found);
  3398. if (err < 0) {
  3399. free_netdev(ndev);
  3400. return err;
  3401. }
  3402. qdev = netdev_priv(ndev);
  3403. SET_NETDEV_DEV(ndev, &pdev->dev);
  3404. ndev->features = (0
  3405. | NETIF_F_IP_CSUM
  3406. | NETIF_F_SG
  3407. | NETIF_F_TSO
  3408. | NETIF_F_TSO6
  3409. | NETIF_F_TSO_ECN
  3410. | NETIF_F_HW_VLAN_TX
  3411. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3412. if (test_bit(QL_DMA64, &qdev->flags))
  3413. ndev->features |= NETIF_F_HIGHDMA;
  3414. /*
  3415. * Set up net_device structure.
  3416. */
  3417. ndev->tx_queue_len = qdev->tx_ring_size;
  3418. ndev->irq = pdev->irq;
  3419. ndev->netdev_ops = &qlge_netdev_ops;
  3420. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3421. ndev->watchdog_timeo = 10 * HZ;
  3422. err = register_netdev(ndev);
  3423. if (err) {
  3424. dev_err(&pdev->dev, "net device registration failed.\n");
  3425. ql_release_all(pdev);
  3426. pci_disable_device(pdev);
  3427. return err;
  3428. }
  3429. netif_carrier_off(ndev);
  3430. netif_stop_queue(ndev);
  3431. ql_display_dev_info(ndev);
  3432. cards_found++;
  3433. return 0;
  3434. }
  3435. static void __devexit qlge_remove(struct pci_dev *pdev)
  3436. {
  3437. struct net_device *ndev = pci_get_drvdata(pdev);
  3438. unregister_netdev(ndev);
  3439. ql_release_all(pdev);
  3440. pci_disable_device(pdev);
  3441. free_netdev(ndev);
  3442. }
  3443. /*
  3444. * This callback is called by the PCI subsystem whenever
  3445. * a PCI bus error is detected.
  3446. */
  3447. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3448. enum pci_channel_state state)
  3449. {
  3450. struct net_device *ndev = pci_get_drvdata(pdev);
  3451. struct ql_adapter *qdev = netdev_priv(ndev);
  3452. if (netif_running(ndev))
  3453. ql_adapter_down(qdev);
  3454. pci_disable_device(pdev);
  3455. /* Request a slot reset. */
  3456. return PCI_ERS_RESULT_NEED_RESET;
  3457. }
  3458. /*
  3459. * This callback is called after the PCI buss has been reset.
  3460. * Basically, this tries to restart the card from scratch.
  3461. * This is a shortened version of the device probe/discovery code,
  3462. * it resembles the first-half of the () routine.
  3463. */
  3464. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3465. {
  3466. struct net_device *ndev = pci_get_drvdata(pdev);
  3467. struct ql_adapter *qdev = netdev_priv(ndev);
  3468. if (pci_enable_device(pdev)) {
  3469. QPRINTK(qdev, IFUP, ERR,
  3470. "Cannot re-enable PCI device after reset.\n");
  3471. return PCI_ERS_RESULT_DISCONNECT;
  3472. }
  3473. pci_set_master(pdev);
  3474. netif_carrier_off(ndev);
  3475. netif_stop_queue(ndev);
  3476. ql_adapter_reset(qdev);
  3477. /* Make sure the EEPROM is good */
  3478. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3479. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3480. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3481. return PCI_ERS_RESULT_DISCONNECT;
  3482. }
  3483. return PCI_ERS_RESULT_RECOVERED;
  3484. }
  3485. static void qlge_io_resume(struct pci_dev *pdev)
  3486. {
  3487. struct net_device *ndev = pci_get_drvdata(pdev);
  3488. struct ql_adapter *qdev = netdev_priv(ndev);
  3489. pci_set_master(pdev);
  3490. if (netif_running(ndev)) {
  3491. if (ql_adapter_up(qdev)) {
  3492. QPRINTK(qdev, IFUP, ERR,
  3493. "Device initialization failed after reset.\n");
  3494. return;
  3495. }
  3496. }
  3497. netif_device_attach(ndev);
  3498. }
  3499. static struct pci_error_handlers qlge_err_handler = {
  3500. .error_detected = qlge_io_error_detected,
  3501. .slot_reset = qlge_io_slot_reset,
  3502. .resume = qlge_io_resume,
  3503. };
  3504. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3505. {
  3506. struct net_device *ndev = pci_get_drvdata(pdev);
  3507. struct ql_adapter *qdev = netdev_priv(ndev);
  3508. int err;
  3509. netif_device_detach(ndev);
  3510. if (netif_running(ndev)) {
  3511. err = ql_adapter_down(qdev);
  3512. if (!err)
  3513. return err;
  3514. }
  3515. err = pci_save_state(pdev);
  3516. if (err)
  3517. return err;
  3518. pci_disable_device(pdev);
  3519. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3520. return 0;
  3521. }
  3522. #ifdef CONFIG_PM
  3523. static int qlge_resume(struct pci_dev *pdev)
  3524. {
  3525. struct net_device *ndev = pci_get_drvdata(pdev);
  3526. struct ql_adapter *qdev = netdev_priv(ndev);
  3527. int err;
  3528. pci_set_power_state(pdev, PCI_D0);
  3529. pci_restore_state(pdev);
  3530. err = pci_enable_device(pdev);
  3531. if (err) {
  3532. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3533. return err;
  3534. }
  3535. pci_set_master(pdev);
  3536. pci_enable_wake(pdev, PCI_D3hot, 0);
  3537. pci_enable_wake(pdev, PCI_D3cold, 0);
  3538. if (netif_running(ndev)) {
  3539. err = ql_adapter_up(qdev);
  3540. if (err)
  3541. return err;
  3542. }
  3543. netif_device_attach(ndev);
  3544. return 0;
  3545. }
  3546. #endif /* CONFIG_PM */
  3547. static void qlge_shutdown(struct pci_dev *pdev)
  3548. {
  3549. qlge_suspend(pdev, PMSG_SUSPEND);
  3550. }
  3551. static struct pci_driver qlge_driver = {
  3552. .name = DRV_NAME,
  3553. .id_table = qlge_pci_tbl,
  3554. .probe = qlge_probe,
  3555. .remove = __devexit_p(qlge_remove),
  3556. #ifdef CONFIG_PM
  3557. .suspend = qlge_suspend,
  3558. .resume = qlge_resume,
  3559. #endif
  3560. .shutdown = qlge_shutdown,
  3561. .err_handler = &qlge_err_handler
  3562. };
  3563. static int __init qlge_init_module(void)
  3564. {
  3565. return pci_register_driver(&qlge_driver);
  3566. }
  3567. static void __exit qlge_exit(void)
  3568. {
  3569. pci_unregister_driver(&qlge_driver);
  3570. }
  3571. module_init(qlge_init_module);
  3572. module_exit(qlge_exit);