tehuti.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels betwean driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  63. #include "tehuti.h"
  64. static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
  65. {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  66. {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  67. {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  68. {0}
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. pr_info("%s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
  98. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  99. readl(nic->regs + FPGA_SEED),
  100. GET_LINK_STATUS_LANES(pci_link_status),
  101. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  102. }
  103. static void print_fw_id(struct pci_nic *nic)
  104. {
  105. pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
  106. }
  107. static void print_eth_id(struct net_device *ndev)
  108. {
  109. netdev_info(ndev, "%s, Port %c\n",
  110. BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
  111. }
  112. /*************************************************************************
  113. * Code *
  114. *************************************************************************/
  115. #define bdx_enable_interrupts(priv) \
  116. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  117. #define bdx_disable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, 0); } while (0)
  119. /* bdx_fifo_init
  120. * create TX/RX descriptor fifo for host-NIC communication.
  121. * 1K extra space is allocated at the end of the fifo to simplify
  122. * processing of descriptors that wraps around fifo's end
  123. * @priv - NIC private structure
  124. * @f - fifo to initialize
  125. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  126. * @reg_XXX - offsets of registers relative to base address
  127. *
  128. * Returns 0 on success, negative value on failure
  129. *
  130. */
  131. static int
  132. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  133. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  134. {
  135. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  136. memset(f, 0, sizeof(struct fifo));
  137. /* pci_alloc_consistent gives us 4k-aligned memory */
  138. f->va = pci_alloc_consistent(priv->pdev,
  139. memsz + FIFO_EXTRA_SPACE, &f->da);
  140. if (!f->va) {
  141. pr_err("pci_alloc_consistent failed\n");
  142. RET(-ENOMEM);
  143. }
  144. f->reg_CFG0 = reg_CFG0;
  145. f->reg_CFG1 = reg_CFG1;
  146. f->reg_RPTR = reg_RPTR;
  147. f->reg_WPTR = reg_WPTR;
  148. f->rptr = 0;
  149. f->wptr = 0;
  150. f->memsz = memsz;
  151. f->size_mask = memsz - 1;
  152. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  153. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  154. RET(0);
  155. }
  156. /* bdx_fifo_free - free all resources used by fifo
  157. * @priv - NIC private structure
  158. * @f - fifo to release
  159. */
  160. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  161. {
  162. ENTER;
  163. if (f->va) {
  164. pci_free_consistent(priv->pdev,
  165. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  166. f->va = NULL;
  167. }
  168. RET();
  169. }
  170. /*
  171. * bdx_link_changed - notifies OS about hw link state.
  172. * @bdx_priv - hw adapter structure
  173. */
  174. static void bdx_link_changed(struct bdx_priv *priv)
  175. {
  176. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  177. if (!link) {
  178. if (netif_carrier_ok(priv->ndev)) {
  179. netif_stop_queue(priv->ndev);
  180. netif_carrier_off(priv->ndev);
  181. netdev_err(priv->ndev, "Link Down\n");
  182. }
  183. } else {
  184. if (!netif_carrier_ok(priv->ndev)) {
  185. netif_wake_queue(priv->ndev);
  186. netif_carrier_on(priv->ndev);
  187. netdev_err(priv->ndev, "Link Up\n");
  188. }
  189. }
  190. }
  191. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  192. {
  193. if (isr & IR_RX_FREE_0) {
  194. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  195. DBG("RX_FREE_0\n");
  196. }
  197. if (isr & IR_LNKCHG0)
  198. bdx_link_changed(priv);
  199. if (isr & IR_PCIE_LINK)
  200. netdev_err(priv->ndev, "PCI-E Link Fault\n");
  201. if (isr & IR_PCIE_TOUT)
  202. netdev_err(priv->ndev, "PCI-E Time Out\n");
  203. }
  204. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  205. * @irq - interrupt number
  206. * @ndev - network device
  207. * @regs - CPU registers
  208. *
  209. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  210. *
  211. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  212. * Reasons of interest are:
  213. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  214. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  215. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  216. */
  217. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  218. {
  219. struct net_device *ndev = dev;
  220. struct bdx_priv *priv = netdev_priv(ndev);
  221. u32 isr;
  222. ENTER;
  223. isr = (READ_REG(priv, regISR) & IR_RUN);
  224. if (unlikely(!isr)) {
  225. bdx_enable_interrupts(priv);
  226. return IRQ_NONE; /* Not our interrupt */
  227. }
  228. if (isr & IR_EXTRA)
  229. bdx_isr_extra(priv, isr);
  230. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  231. if (likely(napi_schedule_prep(&priv->napi))) {
  232. __napi_schedule(&priv->napi);
  233. RET(IRQ_HANDLED);
  234. } else {
  235. /* NOTE: we get here if intr has slipped into window
  236. * between these lines in bdx_poll:
  237. * bdx_enable_interrupts(priv);
  238. * return 0;
  239. * currently intrs are disabled (since we read ISR),
  240. * and we have failed to register next poll.
  241. * so we read the regs to trigger chip
  242. * and allow further interupts. */
  243. READ_REG(priv, regTXF_WPTR_0);
  244. READ_REG(priv, regRXD_WPTR_0);
  245. }
  246. }
  247. bdx_enable_interrupts(priv);
  248. RET(IRQ_HANDLED);
  249. }
  250. static int bdx_poll(struct napi_struct *napi, int budget)
  251. {
  252. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  253. int work_done;
  254. ENTER;
  255. bdx_tx_cleanup(priv);
  256. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  257. if ((work_done < budget) ||
  258. (priv->napi_stop++ >= 30)) {
  259. DBG("rx poll is done. backing to isr-driven\n");
  260. /* from time to time we exit to let NAPI layer release
  261. * device lock and allow waiting tasks (eg rmmod) to advance) */
  262. priv->napi_stop = 0;
  263. napi_complete(napi);
  264. bdx_enable_interrupts(priv);
  265. }
  266. return work_done;
  267. }
  268. /* bdx_fw_load - loads firmware to NIC
  269. * @priv - NIC private structure
  270. * Firmware is loaded via TXD fifo, so it must be initialized first.
  271. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  272. * can have few of them). So all drivers use semaphore register to choose one
  273. * that will actually load FW to NIC.
  274. */
  275. static int bdx_fw_load(struct bdx_priv *priv)
  276. {
  277. const struct firmware *fw = NULL;
  278. int master, i;
  279. int rc;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. rc = request_firmware(&fw, "tehuti/firmware.bin", &priv->pdev->dev);
  284. if (rc)
  285. goto out;
  286. bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
  287. mdelay(100);
  288. }
  289. for (i = 0; i < 200; i++) {
  290. if (READ_REG(priv, regINIT_STATUS)) {
  291. rc = 0;
  292. goto out;
  293. }
  294. mdelay(2);
  295. }
  296. rc = -EIO;
  297. out:
  298. if (master)
  299. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  300. if (fw)
  301. release_firmware(fw);
  302. if (rc) {
  303. netdev_err(priv->ndev, "firmware loading failed\n");
  304. if (rc == -EIO)
  305. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  306. READ_REG(priv, regVPC),
  307. READ_REG(priv, regVIC),
  308. READ_REG(priv, regINIT_STATUS), i);
  309. RET(rc);
  310. } else {
  311. DBG("%s: firmware loading success\n", priv->ndev->name);
  312. RET(0);
  313. }
  314. }
  315. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  316. {
  317. u32 val;
  318. ENTER;
  319. DBG("mac0=%x mac1=%x mac2=%x\n",
  320. READ_REG(priv, regUNC_MAC0_A),
  321. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  322. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  323. WRITE_REG(priv, regUNC_MAC2_A, val);
  324. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  325. WRITE_REG(priv, regUNC_MAC1_A, val);
  326. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  327. WRITE_REG(priv, regUNC_MAC0_A, val);
  328. DBG("mac0=%x mac1=%x mac2=%x\n",
  329. READ_REG(priv, regUNC_MAC0_A),
  330. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  331. RET();
  332. }
  333. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  334. * @priv - NIC private structure
  335. */
  336. static int bdx_hw_start(struct bdx_priv *priv)
  337. {
  338. int rc = -EIO;
  339. struct net_device *ndev = priv->ndev;
  340. ENTER;
  341. bdx_link_changed(priv);
  342. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  343. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  344. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  345. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  346. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  347. WRITE_REG(priv, regRX_FULLNESS, 0);
  348. WRITE_REG(priv, regTX_FULLNESS, 0);
  349. WRITE_REG(priv, regCTRLST,
  350. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  351. WRITE_REG(priv, regVGLB, 0);
  352. WRITE_REG(priv, regMAX_FRAME_A,
  353. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  354. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  355. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  356. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  357. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  358. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  359. /* Enable timer interrupt once in 2 secs. */
  360. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  361. bdx_restore_mac(priv->ndev, priv);
  362. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  363. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  364. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
  365. if ((rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
  366. ndev->name, ndev)))
  367. goto err_irq;
  368. bdx_enable_interrupts(priv);
  369. RET(0);
  370. err_irq:
  371. RET(rc);
  372. }
  373. static void bdx_hw_stop(struct bdx_priv *priv)
  374. {
  375. ENTER;
  376. bdx_disable_interrupts(priv);
  377. free_irq(priv->pdev->irq, priv->ndev);
  378. netif_carrier_off(priv->ndev);
  379. netif_stop_queue(priv->ndev);
  380. RET();
  381. }
  382. static int bdx_hw_reset_direct(void __iomem *regs)
  383. {
  384. u32 val, i;
  385. ENTER;
  386. /* reset sequences: read, write 1, read, write 0 */
  387. val = readl(regs + regCLKPLL);
  388. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  389. udelay(50);
  390. val = readl(regs + regCLKPLL);
  391. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  392. /* check that the PLLs are locked and reset ended */
  393. for (i = 0; i < 70; i++, mdelay(10))
  394. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  395. /* do any PCI-E read transaction */
  396. readl(regs + regRXD_CFG0_0);
  397. return 0;
  398. }
  399. pr_err("HW reset failed\n");
  400. return 1; /* failure */
  401. }
  402. static int bdx_hw_reset(struct bdx_priv *priv)
  403. {
  404. u32 val, i;
  405. ENTER;
  406. if (priv->port == 0) {
  407. /* reset sequences: read, write 1, read, write 0 */
  408. val = READ_REG(priv, regCLKPLL);
  409. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  410. udelay(50);
  411. val = READ_REG(priv, regCLKPLL);
  412. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  413. }
  414. /* check that the PLLs are locked and reset ended */
  415. for (i = 0; i < 70; i++, mdelay(10))
  416. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  417. /* do any PCI-E read transaction */
  418. READ_REG(priv, regRXD_CFG0_0);
  419. return 0;
  420. }
  421. pr_err("HW reset failed\n");
  422. return 1; /* failure */
  423. }
  424. static int bdx_sw_reset(struct bdx_priv *priv)
  425. {
  426. int i;
  427. ENTER;
  428. /* 1. load MAC (obsolete) */
  429. /* 2. disable Rx (and Tx) */
  430. WRITE_REG(priv, regGMAC_RXF_A, 0);
  431. mdelay(100);
  432. /* 3. disable port */
  433. WRITE_REG(priv, regDIS_PORT, 1);
  434. /* 4. disable queue */
  435. WRITE_REG(priv, regDIS_QU, 1);
  436. /* 5. wait until hw is disabled */
  437. for (i = 0; i < 50; i++) {
  438. if (READ_REG(priv, regRST_PORT) & 1)
  439. break;
  440. mdelay(10);
  441. }
  442. if (i == 50)
  443. netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
  444. /* 6. disable intrs */
  445. WRITE_REG(priv, regRDINTCM0, 0);
  446. WRITE_REG(priv, regTDINTCM0, 0);
  447. WRITE_REG(priv, regIMR, 0);
  448. READ_REG(priv, regISR);
  449. /* 7. reset queue */
  450. WRITE_REG(priv, regRST_QU, 1);
  451. /* 8. reset port */
  452. WRITE_REG(priv, regRST_PORT, 1);
  453. /* 9. zero all read and write pointers */
  454. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  455. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  456. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  457. WRITE_REG(priv, i, 0);
  458. /* 10. unseet port disable */
  459. WRITE_REG(priv, regDIS_PORT, 0);
  460. /* 11. unset queue disable */
  461. WRITE_REG(priv, regDIS_QU, 0);
  462. /* 12. unset queue reset */
  463. WRITE_REG(priv, regRST_QU, 0);
  464. /* 13. unset port reset */
  465. WRITE_REG(priv, regRST_PORT, 0);
  466. /* 14. enable Rx */
  467. /* skiped. will be done later */
  468. /* 15. save MAC (obsolete) */
  469. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  470. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  471. RET(0);
  472. }
  473. /* bdx_reset - performs right type of reset depending on hw type */
  474. static int bdx_reset(struct bdx_priv *priv)
  475. {
  476. ENTER;
  477. RET((priv->pdev->device == 0x3009)
  478. ? bdx_hw_reset(priv)
  479. : bdx_sw_reset(priv));
  480. }
  481. /**
  482. * bdx_close - Disables a network interface
  483. * @netdev: network interface device structure
  484. *
  485. * Returns 0, this is not allowed to fail
  486. *
  487. * The close entry point is called when an interface is de-activated
  488. * by the OS. The hardware is still under the drivers control, but
  489. * needs to be disabled. A global MAC reset is issued to stop the
  490. * hardware, and all transmit and receive resources are freed.
  491. **/
  492. static int bdx_close(struct net_device *ndev)
  493. {
  494. struct bdx_priv *priv = NULL;
  495. ENTER;
  496. priv = netdev_priv(ndev);
  497. napi_disable(&priv->napi);
  498. bdx_reset(priv);
  499. bdx_hw_stop(priv);
  500. bdx_rx_free(priv);
  501. bdx_tx_free(priv);
  502. RET(0);
  503. }
  504. /**
  505. * bdx_open - Called when a network interface is made active
  506. * @netdev: network interface device structure
  507. *
  508. * Returns 0 on success, negative value on failure
  509. *
  510. * The open entry point is called when a network interface is made
  511. * active by the system (IFF_UP). At this point all resources needed
  512. * for transmit and receive operations are allocated, the interrupt
  513. * handler is registered with the OS, the watchdog timer is started,
  514. * and the stack is notified that the interface is ready.
  515. **/
  516. static int bdx_open(struct net_device *ndev)
  517. {
  518. struct bdx_priv *priv;
  519. int rc;
  520. ENTER;
  521. priv = netdev_priv(ndev);
  522. bdx_reset(priv);
  523. if (netif_running(ndev))
  524. netif_stop_queue(priv->ndev);
  525. if ((rc = bdx_tx_init(priv)))
  526. goto err;
  527. if ((rc = bdx_rx_init(priv)))
  528. goto err;
  529. if ((rc = bdx_fw_load(priv)))
  530. goto err;
  531. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  532. if ((rc = bdx_hw_start(priv)))
  533. goto err;
  534. napi_enable(&priv->napi);
  535. print_fw_id(priv->nic);
  536. RET(0);
  537. err:
  538. bdx_close(ndev);
  539. RET(rc);
  540. }
  541. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  542. {
  543. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  544. -EINVAL : 0;
  545. }
  546. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  547. {
  548. struct bdx_priv *priv = netdev_priv(ndev);
  549. u32 data[3];
  550. int error;
  551. ENTER;
  552. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  553. if (cmd != SIOCDEVPRIVATE) {
  554. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  555. if (error) {
  556. pr_err("cant copy from user\n");
  557. RET(error);
  558. }
  559. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  560. }
  561. if (!capable(CAP_SYS_RAWIO))
  562. return -EPERM;
  563. switch (data[0]) {
  564. case BDX_OP_READ:
  565. error = bdx_range_check(priv, data[1]);
  566. if (error < 0)
  567. return error;
  568. data[2] = READ_REG(priv, data[1]);
  569. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  570. data[2]);
  571. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  572. if (error)
  573. RET(error);
  574. break;
  575. case BDX_OP_WRITE:
  576. error = bdx_range_check(priv, data[1]);
  577. if (error < 0)
  578. return error;
  579. WRITE_REG(priv, data[1], data[2]);
  580. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  581. break;
  582. default:
  583. RET(-EOPNOTSUPP);
  584. }
  585. return 0;
  586. }
  587. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  588. {
  589. ENTER;
  590. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  591. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  592. else
  593. RET(-EOPNOTSUPP);
  594. }
  595. /*
  596. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  597. * by passing VLAN filter table to hardware
  598. * @ndev network device
  599. * @vid VLAN vid
  600. * @op add or kill operation
  601. */
  602. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  603. {
  604. struct bdx_priv *priv = netdev_priv(ndev);
  605. u32 reg, bit, val;
  606. ENTER;
  607. DBG2("vid=%d value=%d\n", (int)vid, enable);
  608. if (unlikely(vid >= 4096)) {
  609. pr_err("invalid VID: %u (> 4096)\n", vid);
  610. RET();
  611. }
  612. reg = regVLAN_0 + (vid / 32) * 4;
  613. bit = 1 << vid % 32;
  614. val = READ_REG(priv, reg);
  615. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  616. if (enable)
  617. val |= bit;
  618. else
  619. val &= ~bit;
  620. DBG2("new val %x\n", val);
  621. WRITE_REG(priv, reg, val);
  622. RET();
  623. }
  624. /*
  625. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  626. * @ndev network device
  627. * @vid VLAN vid to add
  628. */
  629. static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  630. {
  631. __bdx_vlan_rx_vid(ndev, vid, 1);
  632. }
  633. /*
  634. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  635. * @ndev network device
  636. * @vid VLAN vid to kill
  637. */
  638. static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  639. {
  640. __bdx_vlan_rx_vid(ndev, vid, 0);
  641. }
  642. /*
  643. * bdx_vlan_rx_register - kernel hook for adding VLAN group
  644. * @ndev network device
  645. * @grp VLAN group
  646. */
  647. static void
  648. bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  649. {
  650. struct bdx_priv *priv = netdev_priv(ndev);
  651. ENTER;
  652. DBG("device='%s', group='%p'\n", ndev->name, grp);
  653. priv->vlgrp = grp;
  654. RET();
  655. }
  656. /**
  657. * bdx_change_mtu - Change the Maximum Transfer Unit
  658. * @netdev: network interface device structure
  659. * @new_mtu: new value for maximum frame size
  660. *
  661. * Returns 0 on success, negative on failure
  662. */
  663. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  664. {
  665. ENTER;
  666. if (new_mtu == ndev->mtu)
  667. RET(0);
  668. /* enforce minimum frame size */
  669. if (new_mtu < ETH_ZLEN) {
  670. netdev_err(ndev, "mtu %d is less then minimal %d\n",
  671. new_mtu, ETH_ZLEN);
  672. RET(-EINVAL);
  673. }
  674. ndev->mtu = new_mtu;
  675. if (netif_running(ndev)) {
  676. bdx_close(ndev);
  677. bdx_open(ndev);
  678. }
  679. RET(0);
  680. }
  681. static void bdx_setmulti(struct net_device *ndev)
  682. {
  683. struct bdx_priv *priv = netdev_priv(ndev);
  684. u32 rxf_val =
  685. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  686. int i;
  687. ENTER;
  688. /* IMF - imperfect (hash) rx multicat filter */
  689. /* PMF - perfect rx multicat filter */
  690. /* FIXME: RXE(OFF) */
  691. if (ndev->flags & IFF_PROMISC) {
  692. rxf_val |= GMAC_RX_FILTER_PRM;
  693. } else if (ndev->flags & IFF_ALLMULTI) {
  694. /* set IMF to accept all multicast frmaes */
  695. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  696. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  697. } else if (!netdev_mc_empty(ndev)) {
  698. u8 hash;
  699. struct dev_mc_list *mclist;
  700. u32 reg, val;
  701. /* set IMF to deny all multicast frames */
  702. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  703. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  704. /* set PMF to deny all multicast frames */
  705. for (i = 0; i < MAC_MCST_NUM; i++) {
  706. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  707. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  708. }
  709. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  710. /* TBD: sort addreses and write them in ascending order
  711. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  712. * multicast frames throu IMF */
  713. mclist = ndev->mc_list;
  714. /* accept the rest of addresses throu IMF */
  715. for (; mclist; mclist = mclist->next) {
  716. hash = 0;
  717. for (i = 0; i < ETH_ALEN; i++)
  718. hash ^= mclist->dmi_addr[i];
  719. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  720. val = READ_REG(priv, reg);
  721. val |= (1 << (hash % 32));
  722. WRITE_REG(priv, reg, val);
  723. }
  724. } else {
  725. DBG("only own mac %d\n", netdev_mc_count(ndev));
  726. rxf_val |= GMAC_RX_FILTER_AB;
  727. }
  728. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  729. /* enable RX */
  730. /* FIXME: RXE(ON) */
  731. RET();
  732. }
  733. static int bdx_set_mac(struct net_device *ndev, void *p)
  734. {
  735. struct bdx_priv *priv = netdev_priv(ndev);
  736. struct sockaddr *addr = p;
  737. ENTER;
  738. /*
  739. if (netif_running(dev))
  740. return -EBUSY
  741. */
  742. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  743. bdx_restore_mac(ndev, priv);
  744. RET(0);
  745. }
  746. static int bdx_read_mac(struct bdx_priv *priv)
  747. {
  748. u16 macAddress[3], i;
  749. ENTER;
  750. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  751. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  752. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  753. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  754. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  755. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  756. for (i = 0; i < 3; i++) {
  757. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  758. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  759. }
  760. RET(0);
  761. }
  762. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  763. {
  764. u64 val;
  765. val = READ_REG(priv, reg);
  766. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  767. return val;
  768. }
  769. /*Do the statistics-update work*/
  770. static void bdx_update_stats(struct bdx_priv *priv)
  771. {
  772. struct bdx_stats *stats = &priv->hw_stats;
  773. u64 *stats_vector = (u64 *) stats;
  774. int i;
  775. int addr;
  776. /*Fill HW structure */
  777. addr = 0x7200;
  778. /*First 12 statistics - 0x7200 - 0x72B0 */
  779. for (i = 0; i < 12; i++) {
  780. stats_vector[i] = bdx_read_l2stat(priv, addr);
  781. addr += 0x10;
  782. }
  783. BDX_ASSERT(addr != 0x72C0);
  784. /* 0x72C0-0x72E0 RSRV */
  785. addr = 0x72F0;
  786. for (; i < 16; i++) {
  787. stats_vector[i] = bdx_read_l2stat(priv, addr);
  788. addr += 0x10;
  789. }
  790. BDX_ASSERT(addr != 0x7330);
  791. /* 0x7330-0x7360 RSRV */
  792. addr = 0x7370;
  793. for (; i < 19; i++) {
  794. stats_vector[i] = bdx_read_l2stat(priv, addr);
  795. addr += 0x10;
  796. }
  797. BDX_ASSERT(addr != 0x73A0);
  798. /* 0x73A0-0x73B0 RSRV */
  799. addr = 0x73C0;
  800. for (; i < 23; i++) {
  801. stats_vector[i] = bdx_read_l2stat(priv, addr);
  802. addr += 0x10;
  803. }
  804. BDX_ASSERT(addr != 0x7400);
  805. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  806. }
  807. static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
  808. {
  809. struct bdx_priv *priv = netdev_priv(ndev);
  810. struct net_device_stats *net_stat = &priv->net_stats;
  811. return net_stat;
  812. }
  813. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  814. u16 rxd_vlan);
  815. static void print_rxfd(struct rxf_desc *rxfd);
  816. /*************************************************************************
  817. * Rx DB *
  818. *************************************************************************/
  819. static void bdx_rxdb_destroy(struct rxdb *db)
  820. {
  821. vfree(db);
  822. }
  823. static struct rxdb *bdx_rxdb_create(int nelem)
  824. {
  825. struct rxdb *db;
  826. int i;
  827. db = vmalloc(sizeof(struct rxdb)
  828. + (nelem * sizeof(int))
  829. + (nelem * sizeof(struct rx_map)));
  830. if (likely(db != NULL)) {
  831. db->stack = (int *)(db + 1);
  832. db->elems = (void *)(db->stack + nelem);
  833. db->nelem = nelem;
  834. db->top = nelem;
  835. for (i = 0; i < nelem; i++)
  836. db->stack[i] = nelem - i - 1; /* to make first allocs
  837. close to db struct*/
  838. }
  839. return db;
  840. }
  841. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  842. {
  843. BDX_ASSERT(db->top <= 0);
  844. return db->stack[--(db->top)];
  845. }
  846. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  847. {
  848. BDX_ASSERT((n < 0) || (n >= db->nelem));
  849. return db->elems + n;
  850. }
  851. static inline int bdx_rxdb_available(struct rxdb *db)
  852. {
  853. return db->top;
  854. }
  855. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  856. {
  857. BDX_ASSERT((n >= db->nelem) || (n < 0));
  858. db->stack[(db->top)++] = n;
  859. }
  860. /*************************************************************************
  861. * Rx Init *
  862. *************************************************************************/
  863. /* bdx_rx_init - initialize RX all related HW and SW resources
  864. * @priv - NIC private structure
  865. *
  866. * Returns 0 on success, negative value on failure
  867. *
  868. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  869. * skb for rx. It assumes that Rx is desabled in HW
  870. * funcs are grouped for better cache usage
  871. *
  872. * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
  873. * filled and packets will be dropped by nic without getting into host or
  874. * cousing interrupt. Anyway, in that condition, host has no chance to proccess
  875. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  876. */
  877. /* TBD: ensure proper packet size */
  878. static int bdx_rx_init(struct bdx_priv *priv)
  879. {
  880. ENTER;
  881. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  882. regRXD_CFG0_0, regRXD_CFG1_0,
  883. regRXD_RPTR_0, regRXD_WPTR_0))
  884. goto err_mem;
  885. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  886. regRXF_CFG0_0, regRXF_CFG1_0,
  887. regRXF_RPTR_0, regRXF_WPTR_0))
  888. goto err_mem;
  889. if (!
  890. (priv->rxdb =
  891. bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  892. sizeof(struct rxf_desc))))
  893. goto err_mem;
  894. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  895. return 0;
  896. err_mem:
  897. netdev_err(priv->ndev, "Rx init failed\n");
  898. return -ENOMEM;
  899. }
  900. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  901. * @priv - NIC private structure
  902. * @f - RXF fifo
  903. */
  904. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  905. {
  906. struct rx_map *dm;
  907. struct rxdb *db = priv->rxdb;
  908. u16 i;
  909. ENTER;
  910. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  911. db->nelem - bdx_rxdb_available(db));
  912. while (bdx_rxdb_available(db) > 0) {
  913. i = bdx_rxdb_alloc_elem(db);
  914. dm = bdx_rxdb_addr_elem(db, i);
  915. dm->dma = 0;
  916. }
  917. for (i = 0; i < db->nelem; i++) {
  918. dm = bdx_rxdb_addr_elem(db, i);
  919. if (dm->dma) {
  920. pci_unmap_single(priv->pdev,
  921. dm->dma, f->m.pktsz,
  922. PCI_DMA_FROMDEVICE);
  923. dev_kfree_skb(dm->skb);
  924. }
  925. }
  926. }
  927. /* bdx_rx_free - release all Rx resources
  928. * @priv - NIC private structure
  929. * It assumes that Rx is desabled in HW
  930. */
  931. static void bdx_rx_free(struct bdx_priv *priv)
  932. {
  933. ENTER;
  934. if (priv->rxdb) {
  935. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  936. bdx_rxdb_destroy(priv->rxdb);
  937. priv->rxdb = NULL;
  938. }
  939. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  940. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  941. RET();
  942. }
  943. /*************************************************************************
  944. * Rx Engine *
  945. *************************************************************************/
  946. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  947. * @priv - nic's private structure
  948. * @f - RXF fifo that needs skbs
  949. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  950. * skb's virtual and physical addresses are stored in skb db.
  951. * To calculate free space, func uses cached values of RPTR and WPTR
  952. * When needed, it also updates RPTR and WPTR.
  953. */
  954. /* TBD: do not update WPTR if no desc were written */
  955. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  956. {
  957. struct sk_buff *skb;
  958. struct rxf_desc *rxfd;
  959. struct rx_map *dm;
  960. int dno, delta, idx;
  961. struct rxdb *db = priv->rxdb;
  962. ENTER;
  963. dno = bdx_rxdb_available(db) - 1;
  964. while (dno > 0) {
  965. if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
  966. pr_err("NO MEM: dev_alloc_skb failed\n");
  967. break;
  968. }
  969. skb->dev = priv->ndev;
  970. skb_reserve(skb, NET_IP_ALIGN);
  971. idx = bdx_rxdb_alloc_elem(db);
  972. dm = bdx_rxdb_addr_elem(db, idx);
  973. dm->dma = pci_map_single(priv->pdev,
  974. skb->data, f->m.pktsz,
  975. PCI_DMA_FROMDEVICE);
  976. dm->skb = skb;
  977. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  978. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  979. rxfd->va_lo = idx;
  980. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  981. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  982. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  983. print_rxfd(rxfd);
  984. f->m.wptr += sizeof(struct rxf_desc);
  985. delta = f->m.wptr - f->m.memsz;
  986. if (unlikely(delta >= 0)) {
  987. f->m.wptr = delta;
  988. if (delta > 0) {
  989. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  990. DBG("wrapped descriptor\n");
  991. }
  992. }
  993. dno--;
  994. }
  995. /*TBD: to do - delayed rxf wptr like in txd */
  996. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  997. RET();
  998. }
  999. static inline void
  1000. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  1001. struct sk_buff *skb)
  1002. {
  1003. ENTER;
  1004. DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
  1005. priv->vlgrp);
  1006. if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
  1007. DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
  1008. priv->ndev->name,
  1009. GET_RXD_VLAN_ID(rxd_vlan),
  1010. GET_RXD_VTAG(rxd_val1),
  1011. vlan_group_get_device(priv->vlgrp,
  1012. GET_RXD_VLAN_ID(rxd_vlan))->name);
  1013. /* NAPI variant of receive functions */
  1014. vlan_hwaccel_receive_skb(skb, priv->vlgrp,
  1015. GET_RXD_VLAN_TCI(rxd_vlan));
  1016. } else {
  1017. netif_receive_skb(skb);
  1018. }
  1019. }
  1020. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  1021. {
  1022. struct rxf_desc *rxfd;
  1023. struct rx_map *dm;
  1024. struct rxf_fifo *f;
  1025. struct rxdb *db;
  1026. struct sk_buff *skb;
  1027. int delta;
  1028. ENTER;
  1029. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1030. f = &priv->rxf_fifo0;
  1031. db = priv->rxdb;
  1032. DBG("db=%p f=%p\n", db, f);
  1033. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1034. DBG("dm=%p\n", dm);
  1035. skb = dm->skb;
  1036. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1037. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1038. rxfd->va_lo = rxdd->va_lo;
  1039. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1040. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1041. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1042. print_rxfd(rxfd);
  1043. f->m.wptr += sizeof(struct rxf_desc);
  1044. delta = f->m.wptr - f->m.memsz;
  1045. if (unlikely(delta >= 0)) {
  1046. f->m.wptr = delta;
  1047. if (delta > 0) {
  1048. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1049. DBG("wrapped descriptor\n");
  1050. }
  1051. }
  1052. RET();
  1053. }
  1054. /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
  1055. * NOTE: a special treatment is given to non-continous descriptors
  1056. * that start near the end, wraps around and continue at the beginning. a second
  1057. * part is copied right after the first, and then descriptor is interpreted as
  1058. * normal. fifo has an extra space to allow such operations
  1059. * @priv - nic's private structure
  1060. * @f - RXF fifo that needs skbs
  1061. */
  1062. /* TBD: replace memcpy func call by explicite inline asm */
  1063. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1064. {
  1065. struct sk_buff *skb, *skb2;
  1066. struct rxd_desc *rxdd;
  1067. struct rx_map *dm;
  1068. struct rxf_fifo *rxf_fifo;
  1069. int tmp_len, size;
  1070. int done = 0;
  1071. int max_done = BDX_MAX_RX_DONE;
  1072. struct rxdb *db = NULL;
  1073. /* Unmarshalled descriptor - copy of descriptor in host order */
  1074. u32 rxd_val1;
  1075. u16 len;
  1076. u16 rxd_vlan;
  1077. ENTER;
  1078. max_done = budget;
  1079. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1080. size = f->m.wptr - f->m.rptr;
  1081. if (size < 0)
  1082. size = f->m.memsz + size; /* size is negative :-) */
  1083. while (size > 0) {
  1084. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1085. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1086. len = CPU_CHIP_SWAP16(rxdd->len);
  1087. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1088. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1089. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1090. BDX_ASSERT(tmp_len <= 0);
  1091. size -= tmp_len;
  1092. if (size < 0) /* test for partially arrived descriptor */
  1093. break;
  1094. f->m.rptr += tmp_len;
  1095. tmp_len = f->m.rptr - f->m.memsz;
  1096. if (unlikely(tmp_len >= 0)) {
  1097. f->m.rptr = tmp_len;
  1098. if (tmp_len > 0) {
  1099. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1100. f->m.rptr, tmp_len);
  1101. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1102. }
  1103. }
  1104. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1105. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1106. priv->net_stats.rx_errors++;
  1107. bdx_recycle_skb(priv, rxdd);
  1108. continue;
  1109. }
  1110. rxf_fifo = &priv->rxf_fifo0;
  1111. db = priv->rxdb;
  1112. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1113. skb = dm->skb;
  1114. if (len < BDX_COPYBREAK &&
  1115. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1116. skb_reserve(skb2, NET_IP_ALIGN);
  1117. /*skb_put(skb2, len); */
  1118. pci_dma_sync_single_for_cpu(priv->pdev,
  1119. dm->dma, rxf_fifo->m.pktsz,
  1120. PCI_DMA_FROMDEVICE);
  1121. memcpy(skb2->data, skb->data, len);
  1122. bdx_recycle_skb(priv, rxdd);
  1123. skb = skb2;
  1124. } else {
  1125. pci_unmap_single(priv->pdev,
  1126. dm->dma, rxf_fifo->m.pktsz,
  1127. PCI_DMA_FROMDEVICE);
  1128. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1129. }
  1130. priv->net_stats.rx_bytes += len;
  1131. skb_put(skb, len);
  1132. skb->dev = priv->ndev;
  1133. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1134. skb->protocol = eth_type_trans(skb, priv->ndev);
  1135. /* Non-IP packets aren't checksum-offloaded */
  1136. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1137. skb->ip_summed = CHECKSUM_NONE;
  1138. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1139. if (++done >= max_done)
  1140. break;
  1141. }
  1142. priv->net_stats.rx_packets += done;
  1143. /* FIXME: do smth to minimize pci accesses */
  1144. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1145. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1146. RET(done);
  1147. }
  1148. /*************************************************************************
  1149. * Debug / Temprorary Code *
  1150. *************************************************************************/
  1151. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1152. u16 rxd_vlan)
  1153. {
  1154. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
  1155. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1156. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1157. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1158. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1159. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1160. rxdd->va_hi);
  1161. }
  1162. static void print_rxfd(struct rxf_desc *rxfd)
  1163. {
  1164. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1165. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1166. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1167. }
  1168. /*
  1169. * TX HW/SW interaction overview
  1170. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1171. * There are 2 types of TX communication channels betwean driver and NIC.
  1172. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1173. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1174. *
  1175. * Currently NIC supports TSO, checksuming and gather DMA
  1176. * UFO and IP fragmentation is on the way
  1177. *
  1178. * RX SW Data Structures
  1179. * ~~~~~~~~~~~~~~~~~~~~~
  1180. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1181. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1182. * acknowledges sent by TXF descriptors.
  1183. * Implemented as cyclic buffer.
  1184. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1185. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1186. * Implemented as simple struct.
  1187. *
  1188. * TX SW Execution Flow
  1189. * ~~~~~~~~~~~~~~~~~~~~
  1190. * OS calls driver's hard_xmit method with packet to sent.
  1191. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1192. * by updating TXD WPTR.
  1193. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1194. * To prevent TXD fifo overflow without reading HW registers every time,
  1195. * SW deploys "tx level" technique.
  1196. * Upon strart up, tx level is initialized to TXD fifo length.
  1197. * For every sent packet, SW gets its TXD descriptor sizei
  1198. * (from precalculated array) and substructs it from tx level.
  1199. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1200. * original TXD descriptor from txdb and adds it to tx level.
  1201. * When Tx level drops under some predefined treshhold, the driver
  1202. * stops the TX queue. When TX level rises above that level,
  1203. * the tx queue is enabled again.
  1204. *
  1205. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1206. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1207. */
  1208. /*************************************************************************
  1209. * Tx DB *
  1210. *************************************************************************/
  1211. static inline int bdx_tx_db_size(struct txdb *db)
  1212. {
  1213. int taken = db->wptr - db->rptr;
  1214. if (taken < 0)
  1215. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1216. return db->size - taken;
  1217. }
  1218. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1219. * @d - tx data base
  1220. * @ptr - read or write pointer
  1221. */
  1222. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1223. {
  1224. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1225. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1226. *pptr != db->wptr); /* or write pointer */
  1227. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1228. *pptr >= db->end); /* in range */
  1229. ++*pptr;
  1230. if (unlikely(*pptr == db->end))
  1231. *pptr = db->start;
  1232. }
  1233. /* bdx_tx_db_inc_rptr - increment read pointer
  1234. * @d - tx data base
  1235. */
  1236. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1237. {
  1238. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1239. __bdx_tx_db_ptr_next(db, &db->rptr);
  1240. }
  1241. /* bdx_tx_db_inc_rptr - increment write pointer
  1242. * @d - tx data base
  1243. */
  1244. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1245. {
  1246. __bdx_tx_db_ptr_next(db, &db->wptr);
  1247. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1248. a result of write */
  1249. }
  1250. /* bdx_tx_db_init - creates and initializes tx db
  1251. * @d - tx data base
  1252. * @sz_type - size of tx fifo
  1253. * Returns 0 on success, error code otherwise
  1254. */
  1255. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1256. {
  1257. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1258. d->start = vmalloc(memsz);
  1259. if (!d->start)
  1260. return -ENOMEM;
  1261. /*
  1262. * In order to differentiate between db is empty and db is full
  1263. * states at least one element should always be empty in order to
  1264. * avoid rptr == wptr which means db is empty
  1265. */
  1266. d->size = memsz / sizeof(struct tx_map) - 1;
  1267. d->end = d->start + d->size + 1; /* just after last element */
  1268. /* all dbs are created equally empty */
  1269. d->rptr = d->start;
  1270. d->wptr = d->start;
  1271. return 0;
  1272. }
  1273. /* bdx_tx_db_close - closes tx db and frees all memory
  1274. * @d - tx data base
  1275. */
  1276. static void bdx_tx_db_close(struct txdb *d)
  1277. {
  1278. BDX_ASSERT(d == NULL);
  1279. vfree(d->start);
  1280. d->start = NULL;
  1281. }
  1282. /*************************************************************************
  1283. * Tx Engine *
  1284. *************************************************************************/
  1285. /* sizes of tx desc (including padding if needed) as function
  1286. * of skb's frag number */
  1287. static struct {
  1288. u16 bytes;
  1289. u16 qwords; /* qword = 64 bit */
  1290. } txd_sizes[MAX_SKB_FRAGS + 1];
  1291. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1292. * @priv - NIC private structure
  1293. * @skb - socket buffer to map
  1294. *
  1295. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1296. * new tx descriptor. It also stores them in the tx db, so they could be
  1297. * unmaped after data was sent. It is reponsibility of a caller to make
  1298. * sure that there is enough space in the tx db. Last element holds pointer
  1299. * to skb itself and marked with zero length
  1300. */
  1301. static inline void
  1302. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1303. struct txd_desc *txdd)
  1304. {
  1305. struct txdb *db = &priv->txdb;
  1306. struct pbl *pbl = &txdd->pbl[0];
  1307. int nr_frags = skb_shinfo(skb)->nr_frags;
  1308. int i;
  1309. db->wptr->len = skb->len - skb->data_len;
  1310. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1311. db->wptr->len, PCI_DMA_TODEVICE);
  1312. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1313. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1314. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1315. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1316. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1317. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1318. bdx_tx_db_inc_wptr(db);
  1319. for (i = 0; i < nr_frags; i++) {
  1320. struct skb_frag_struct *frag;
  1321. frag = &skb_shinfo(skb)->frags[i];
  1322. db->wptr->len = frag->size;
  1323. db->wptr->addr.dma =
  1324. pci_map_page(priv->pdev, frag->page, frag->page_offset,
  1325. frag->size, PCI_DMA_TODEVICE);
  1326. pbl++;
  1327. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1328. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1329. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1330. bdx_tx_db_inc_wptr(db);
  1331. }
  1332. /* add skb clean up info. */
  1333. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1334. db->wptr->addr.skb = skb;
  1335. bdx_tx_db_inc_wptr(db);
  1336. }
  1337. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1338. * number of frags is used as index to fetch correct descriptors size,
  1339. * instead of calculating it each time */
  1340. static void __init init_txd_sizes(void)
  1341. {
  1342. int i, lwords;
  1343. /* 7 - is number of lwords in txd with one phys buffer
  1344. * 3 - is number of lwords used for every additional phys buffer */
  1345. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1346. lwords = 7 + (i * 3);
  1347. if (lwords & 1)
  1348. lwords++; /* pad it with 1 lword */
  1349. txd_sizes[i].qwords = lwords >> 1;
  1350. txd_sizes[i].bytes = lwords << 2;
  1351. }
  1352. }
  1353. /* bdx_tx_init - initialize all Tx related stuff.
  1354. * Namely, TXD and TXF fifos, database etc */
  1355. static int bdx_tx_init(struct bdx_priv *priv)
  1356. {
  1357. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1358. regTXD_CFG0_0,
  1359. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1360. goto err_mem;
  1361. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1362. regTXF_CFG0_0,
  1363. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1364. goto err_mem;
  1365. /* The TX db has to keep mappings for all packets sent (on TxD)
  1366. * and not yet reclaimed (on TxF) */
  1367. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1368. goto err_mem;
  1369. priv->tx_level = BDX_MAX_TX_LEVEL;
  1370. #ifdef BDX_DELAY_WPTR
  1371. priv->tx_update_mark = priv->tx_level - 1024;
  1372. #endif
  1373. return 0;
  1374. err_mem:
  1375. netdev_err(priv->ndev, "Tx init failed\n");
  1376. return -ENOMEM;
  1377. }
  1378. /*
  1379. * bdx_tx_space - calculates avalable space in TX fifo
  1380. * @priv - NIC private structure
  1381. * Returns avaliable space in TX fifo in bytes
  1382. */
  1383. static inline int bdx_tx_space(struct bdx_priv *priv)
  1384. {
  1385. struct txd_fifo *f = &priv->txd_fifo0;
  1386. int fsize;
  1387. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1388. fsize = f->m.rptr - f->m.wptr;
  1389. if (fsize <= 0)
  1390. fsize = f->m.memsz + fsize;
  1391. return (fsize);
  1392. }
  1393. /* bdx_tx_transmit - send packet to NIC
  1394. * @skb - packet to send
  1395. * ndev - network device assigned to NIC
  1396. * Return codes:
  1397. * o NETDEV_TX_OK everything ok.
  1398. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1399. * Usually a bug, means queue start/stop flow control is broken in
  1400. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1401. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1402. */
  1403. static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
  1404. struct net_device *ndev)
  1405. {
  1406. struct bdx_priv *priv = netdev_priv(ndev);
  1407. struct txd_fifo *f = &priv->txd_fifo0;
  1408. int txd_checksum = 7; /* full checksum */
  1409. int txd_lgsnd = 0;
  1410. int txd_vlan_id = 0;
  1411. int txd_vtag = 0;
  1412. int txd_mss = 0;
  1413. int nr_frags = skb_shinfo(skb)->nr_frags;
  1414. struct txd_desc *txdd;
  1415. int len;
  1416. unsigned long flags;
  1417. ENTER;
  1418. local_irq_save(flags);
  1419. if (!spin_trylock(&priv->tx_lock)) {
  1420. local_irq_restore(flags);
  1421. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1422. BDX_DRV_NAME, ndev->name);
  1423. return NETDEV_TX_LOCKED;
  1424. }
  1425. /* build tx descriptor */
  1426. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1427. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1428. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1429. txd_checksum = 0;
  1430. if (skb_shinfo(skb)->gso_size) {
  1431. txd_mss = skb_shinfo(skb)->gso_size;
  1432. txd_lgsnd = 1;
  1433. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1434. txd_mss);
  1435. }
  1436. if (vlan_tx_tag_present(skb)) {
  1437. /*Cut VLAN ID to 12 bits */
  1438. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1439. txd_vtag = 1;
  1440. }
  1441. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1442. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1443. txdd->txd_val1 =
  1444. CPU_CHIP_SWAP32(TXD_W1_VAL
  1445. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1446. txd_lgsnd, txd_vlan_id));
  1447. DBG("=== TxD desc =====================\n");
  1448. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1449. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1450. bdx_tx_map_skb(priv, skb, txdd);
  1451. /* increment TXD write pointer. In case of
  1452. fifo wrapping copy reminder of the descriptor
  1453. to the beginning */
  1454. f->m.wptr += txd_sizes[nr_frags].bytes;
  1455. len = f->m.wptr - f->m.memsz;
  1456. if (unlikely(len >= 0)) {
  1457. f->m.wptr = len;
  1458. if (len > 0) {
  1459. BDX_ASSERT(len > f->m.memsz);
  1460. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1461. }
  1462. }
  1463. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1464. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1465. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1466. #ifdef BDX_DELAY_WPTR
  1467. if (priv->tx_level > priv->tx_update_mark) {
  1468. /* Force memory writes to complete before letting h/w
  1469. know there are new descriptors to fetch.
  1470. (might be needed on platforms like IA64)
  1471. wmb(); */
  1472. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1473. } else {
  1474. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1475. priv->tx_noupd = 0;
  1476. WRITE_REG(priv, f->m.reg_WPTR,
  1477. f->m.wptr & TXF_WPTR_WR_PTR);
  1478. }
  1479. }
  1480. #else
  1481. /* Force memory writes to complete before letting h/w
  1482. know there are new descriptors to fetch.
  1483. (might be needed on platforms like IA64)
  1484. wmb(); */
  1485. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1486. #endif
  1487. #ifdef BDX_LLTX
  1488. ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  1489. #endif
  1490. priv->net_stats.tx_packets++;
  1491. priv->net_stats.tx_bytes += skb->len;
  1492. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1493. DBG("%s: %s: TX Q STOP level %d\n",
  1494. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1495. netif_stop_queue(ndev);
  1496. }
  1497. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1498. return NETDEV_TX_OK;
  1499. }
  1500. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1501. * @priv - bdx adapter
  1502. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1503. * that those packets were sent
  1504. */
  1505. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1506. {
  1507. struct txf_fifo *f = &priv->txf_fifo0;
  1508. struct txdb *db = &priv->txdb;
  1509. int tx_level = 0;
  1510. ENTER;
  1511. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1512. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1513. while (f->m.wptr != f->m.rptr) {
  1514. f->m.rptr += BDX_TXF_DESC_SZ;
  1515. f->m.rptr &= f->m.size_mask;
  1516. /* unmap all the fragments */
  1517. /* first has to come tx_maps containing dma */
  1518. BDX_ASSERT(db->rptr->len == 0);
  1519. do {
  1520. BDX_ASSERT(db->rptr->addr.dma == 0);
  1521. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1522. db->rptr->len, PCI_DMA_TODEVICE);
  1523. bdx_tx_db_inc_rptr(db);
  1524. } while (db->rptr->len > 0);
  1525. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1526. /* now should come skb pointer - free it */
  1527. dev_kfree_skb_irq(db->rptr->addr.skb);
  1528. bdx_tx_db_inc_rptr(db);
  1529. }
  1530. /* let h/w know which TXF descriptors were cleaned */
  1531. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1532. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1533. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1534. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1535. spin_lock(&priv->tx_lock);
  1536. priv->tx_level += tx_level;
  1537. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1538. #ifdef BDX_DELAY_WPTR
  1539. if (priv->tx_noupd) {
  1540. priv->tx_noupd = 0;
  1541. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1542. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1543. }
  1544. #endif
  1545. if (unlikely(netif_queue_stopped(priv->ndev) &&
  1546. netif_carrier_ok(priv->ndev) &&
  1547. (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1548. DBG("%s: %s: TX Q WAKE level %d\n",
  1549. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1550. netif_wake_queue(priv->ndev);
  1551. }
  1552. spin_unlock(&priv->tx_lock);
  1553. }
  1554. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1555. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1556. */
  1557. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1558. {
  1559. struct txdb *db = &priv->txdb;
  1560. ENTER;
  1561. while (db->rptr != db->wptr) {
  1562. if (likely(db->rptr->len))
  1563. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1564. db->rptr->len, PCI_DMA_TODEVICE);
  1565. else
  1566. dev_kfree_skb(db->rptr->addr.skb);
  1567. bdx_tx_db_inc_rptr(db);
  1568. }
  1569. RET();
  1570. }
  1571. /* bdx_tx_free - frees all Tx resources */
  1572. static void bdx_tx_free(struct bdx_priv *priv)
  1573. {
  1574. ENTER;
  1575. bdx_tx_free_skbs(priv);
  1576. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1577. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1578. bdx_tx_db_close(&priv->txdb);
  1579. }
  1580. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1581. * @priv - NIC private structure
  1582. * @data - desc's data
  1583. * @size - desc's size
  1584. *
  1585. * Pushes desc to TxD fifo and overlaps it if needed.
  1586. * NOTE: this func does not check for available space. this is responsibility
  1587. * of the caller. Neither does it check that data size is smaller than
  1588. * fifo size.
  1589. */
  1590. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1591. {
  1592. struct txd_fifo *f = &priv->txd_fifo0;
  1593. int i = f->m.memsz - f->m.wptr;
  1594. if (size == 0)
  1595. return;
  1596. if (i > size) {
  1597. memcpy(f->m.va + f->m.wptr, data, size);
  1598. f->m.wptr += size;
  1599. } else {
  1600. memcpy(f->m.va + f->m.wptr, data, i);
  1601. f->m.wptr = size - i;
  1602. memcpy(f->m.va, data + i, f->m.wptr);
  1603. }
  1604. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1605. }
  1606. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1607. * @priv - NIC private structure
  1608. * @data - desc's data
  1609. * @size - desc's size
  1610. *
  1611. * NOTE: this func does check for available space and, if neccessary, waits for
  1612. * NIC to read existing data before writing new one.
  1613. */
  1614. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1615. {
  1616. int timer = 0;
  1617. ENTER;
  1618. while (size > 0) {
  1619. /* we substruct 8 because when fifo is full rptr == wptr
  1620. which also means that fifo is empty, we can understand
  1621. the difference, but could hw do the same ??? :) */
  1622. int avail = bdx_tx_space(priv) - 8;
  1623. if (avail <= 0) {
  1624. if (timer++ > 300) { /* prevent endless loop */
  1625. DBG("timeout while writing desc to TxD fifo\n");
  1626. break;
  1627. }
  1628. udelay(50); /* give hw a chance to clean fifo */
  1629. continue;
  1630. }
  1631. avail = min(avail, size);
  1632. DBG("about to push %d bytes starting %p size %d\n", avail,
  1633. data, size);
  1634. bdx_tx_push_desc(priv, data, avail);
  1635. size -= avail;
  1636. data += avail;
  1637. }
  1638. RET();
  1639. }
  1640. static const struct net_device_ops bdx_netdev_ops = {
  1641. .ndo_open = bdx_open,
  1642. .ndo_stop = bdx_close,
  1643. .ndo_start_xmit = bdx_tx_transmit,
  1644. .ndo_validate_addr = eth_validate_addr,
  1645. .ndo_do_ioctl = bdx_ioctl,
  1646. .ndo_set_multicast_list = bdx_setmulti,
  1647. .ndo_get_stats = bdx_get_stats,
  1648. .ndo_change_mtu = bdx_change_mtu,
  1649. .ndo_set_mac_address = bdx_set_mac,
  1650. .ndo_vlan_rx_register = bdx_vlan_rx_register,
  1651. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1652. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1653. };
  1654. /**
  1655. * bdx_probe - Device Initialization Routine
  1656. * @pdev: PCI device information struct
  1657. * @ent: entry in bdx_pci_tbl
  1658. *
  1659. * Returns 0 on success, negative on failure
  1660. *
  1661. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1662. * The OS initialization, configuring of the adapter private structure,
  1663. * and a hardware reset occur.
  1664. *
  1665. * functions and their order used as explained in
  1666. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1667. *
  1668. */
  1669. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1670. static int __devinit
  1671. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1672. {
  1673. struct net_device *ndev;
  1674. struct bdx_priv *priv;
  1675. int err, pci_using_dac, port;
  1676. unsigned long pciaddr;
  1677. u32 regionSize;
  1678. struct pci_nic *nic;
  1679. ENTER;
  1680. nic = vmalloc(sizeof(*nic));
  1681. if (!nic)
  1682. RET(-ENOMEM);
  1683. /************** pci *****************/
  1684. if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
  1685. goto err_pci; /* it's not a problem though */
  1686. if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
  1687. !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
  1688. pci_using_dac = 1;
  1689. } else {
  1690. if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
  1691. (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  1692. pr_err("No usable DMA configuration, aborting\n");
  1693. goto err_dma;
  1694. }
  1695. pci_using_dac = 0;
  1696. }
  1697. if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
  1698. goto err_dma;
  1699. pci_set_master(pdev);
  1700. pciaddr = pci_resource_start(pdev, 0);
  1701. if (!pciaddr) {
  1702. err = -EIO;
  1703. pr_err("no MMIO resource\n");
  1704. goto err_out_res;
  1705. }
  1706. if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
  1707. err = -EIO;
  1708. pr_err("MMIO resource (%x) too small\n", regionSize);
  1709. goto err_out_res;
  1710. }
  1711. nic->regs = ioremap(pciaddr, regionSize);
  1712. if (!nic->regs) {
  1713. err = -EIO;
  1714. pr_err("ioremap failed\n");
  1715. goto err_out_res;
  1716. }
  1717. if (pdev->irq < 2) {
  1718. err = -EIO;
  1719. pr_err("invalid irq (%d)\n", pdev->irq);
  1720. goto err_out_iomap;
  1721. }
  1722. pci_set_drvdata(pdev, nic);
  1723. if (pdev->device == 0x3014)
  1724. nic->port_num = 2;
  1725. else
  1726. nic->port_num = 1;
  1727. print_hw_id(pdev);
  1728. bdx_hw_reset_direct(nic->regs);
  1729. nic->irq_type = IRQ_INTX;
  1730. #ifdef BDX_MSI
  1731. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1732. if ((err = pci_enable_msi(pdev)))
  1733. pr_err("Can't eneble msi. error is %d\n", err);
  1734. else
  1735. nic->irq_type = IRQ_MSI;
  1736. } else
  1737. DBG("HW does not support MSI\n");
  1738. #endif
  1739. /************** netdev **************/
  1740. for (port = 0; port < nic->port_num; port++) {
  1741. if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
  1742. err = -ENOMEM;
  1743. pr_err("alloc_etherdev failed\n");
  1744. goto err_out_iomap;
  1745. }
  1746. ndev->netdev_ops = &bdx_netdev_ops;
  1747. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1748. bdx_ethtool_ops(ndev); /* ethtool interface */
  1749. /* these fields are used for info purposes only
  1750. * so we can have them same for all ports of the board */
  1751. ndev->if_port = port;
  1752. ndev->base_addr = pciaddr;
  1753. ndev->mem_start = pciaddr;
  1754. ndev->mem_end = pciaddr + regionSize;
  1755. ndev->irq = pdev->irq;
  1756. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1757. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1758. NETIF_F_HW_VLAN_FILTER
  1759. /*| NETIF_F_FRAGLIST */
  1760. ;
  1761. if (pci_using_dac)
  1762. ndev->features |= NETIF_F_HIGHDMA;
  1763. /************** priv ****************/
  1764. priv = nic->priv[port] = netdev_priv(ndev);
  1765. memset(priv, 0, sizeof(struct bdx_priv));
  1766. priv->pBdxRegs = nic->regs + port * 0x8000;
  1767. priv->port = port;
  1768. priv->pdev = pdev;
  1769. priv->ndev = ndev;
  1770. priv->nic = nic;
  1771. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1772. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1773. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1774. DBG("HW statistics not supported\n");
  1775. priv->stats_flag = 0;
  1776. } else {
  1777. priv->stats_flag = 1;
  1778. }
  1779. /* Initialize fifo sizes. */
  1780. priv->txd_size = 2;
  1781. priv->txf_size = 2;
  1782. priv->rxd_size = 2;
  1783. priv->rxf_size = 3;
  1784. /* Initialize the initial coalescing registers. */
  1785. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1786. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1787. /* ndev->xmit_lock spinlock is not used.
  1788. * Private priv->tx_lock is used for synchronization
  1789. * between transmit and TX irq cleanup. In addition
  1790. * set multicast list callback has to use priv->tx_lock.
  1791. */
  1792. #ifdef BDX_LLTX
  1793. ndev->features |= NETIF_F_LLTX;
  1794. #endif
  1795. spin_lock_init(&priv->tx_lock);
  1796. /*bdx_hw_reset(priv); */
  1797. if (bdx_read_mac(priv)) {
  1798. pr_err("load MAC address failed\n");
  1799. goto err_out_iomap;
  1800. }
  1801. SET_NETDEV_DEV(ndev, &pdev->dev);
  1802. if ((err = register_netdev(ndev))) {
  1803. pr_err("register_netdev failed\n");
  1804. goto err_out_free;
  1805. }
  1806. netif_carrier_off(ndev);
  1807. netif_stop_queue(ndev);
  1808. print_eth_id(ndev);
  1809. }
  1810. RET(0);
  1811. err_out_free:
  1812. free_netdev(ndev);
  1813. err_out_iomap:
  1814. iounmap(nic->regs);
  1815. err_out_res:
  1816. pci_release_regions(pdev);
  1817. err_dma:
  1818. pci_disable_device(pdev);
  1819. err_pci:
  1820. vfree(nic);
  1821. RET(err);
  1822. }
  1823. /****************** Ethtool interface *********************/
  1824. /* get strings for statistics counters */
  1825. static const char
  1826. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1827. "InUCast", /* 0x7200 */
  1828. "InMCast", /* 0x7210 */
  1829. "InBCast", /* 0x7220 */
  1830. "InPkts", /* 0x7230 */
  1831. "InErrors", /* 0x7240 */
  1832. "InDropped", /* 0x7250 */
  1833. "FrameTooLong", /* 0x7260 */
  1834. "FrameSequenceErrors", /* 0x7270 */
  1835. "InVLAN", /* 0x7280 */
  1836. "InDroppedDFE", /* 0x7290 */
  1837. "InDroppedIntFull", /* 0x72A0 */
  1838. "InFrameAlignErrors", /* 0x72B0 */
  1839. /* 0x72C0-0x72E0 RSRV */
  1840. "OutUCast", /* 0x72F0 */
  1841. "OutMCast", /* 0x7300 */
  1842. "OutBCast", /* 0x7310 */
  1843. "OutPkts", /* 0x7320 */
  1844. /* 0x7330-0x7360 RSRV */
  1845. "OutVLAN", /* 0x7370 */
  1846. "InUCastOctects", /* 0x7380 */
  1847. "OutUCastOctects", /* 0x7390 */
  1848. /* 0x73A0-0x73B0 RSRV */
  1849. "InBCastOctects", /* 0x73C0 */
  1850. "OutBCastOctects", /* 0x73D0 */
  1851. "InOctects", /* 0x73E0 */
  1852. "OutOctects", /* 0x73F0 */
  1853. };
  1854. /*
  1855. * bdx_get_settings - get device-specific settings
  1856. * @netdev
  1857. * @ecmd
  1858. */
  1859. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1860. {
  1861. u32 rdintcm;
  1862. u32 tdintcm;
  1863. struct bdx_priv *priv = netdev_priv(netdev);
  1864. rdintcm = priv->rdintcm;
  1865. tdintcm = priv->tdintcm;
  1866. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1867. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1868. ecmd->speed = SPEED_10000;
  1869. ecmd->duplex = DUPLEX_FULL;
  1870. ecmd->port = PORT_FIBRE;
  1871. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1872. ecmd->autoneg = AUTONEG_DISABLE;
  1873. /* PCK_TH measures in multiples of FIFO bytes
  1874. We translate to packets */
  1875. ecmd->maxtxpkt =
  1876. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1877. ecmd->maxrxpkt =
  1878. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1879. return 0;
  1880. }
  1881. /*
  1882. * bdx_get_drvinfo - report driver information
  1883. * @netdev
  1884. * @drvinfo
  1885. */
  1886. static void
  1887. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1888. {
  1889. struct bdx_priv *priv = netdev_priv(netdev);
  1890. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1891. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1892. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1893. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1894. sizeof(drvinfo->bus_info));
  1895. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1896. drvinfo->testinfo_len = 0;
  1897. drvinfo->regdump_len = 0;
  1898. drvinfo->eedump_len = 0;
  1899. }
  1900. /*
  1901. * bdx_get_rx_csum - report whether receive checksums are turned on or off
  1902. * @netdev
  1903. */
  1904. static u32 bdx_get_rx_csum(struct net_device *netdev)
  1905. {
  1906. return 1; /* always on */
  1907. }
  1908. /*
  1909. * bdx_get_tx_csum - report whether transmit checksums are turned on or off
  1910. * @netdev
  1911. */
  1912. static u32 bdx_get_tx_csum(struct net_device *netdev)
  1913. {
  1914. return (netdev->features & NETIF_F_IP_CSUM) != 0;
  1915. }
  1916. /*
  1917. * bdx_get_coalesce - get interrupt coalescing parameters
  1918. * @netdev
  1919. * @ecoal
  1920. */
  1921. static int
  1922. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1923. {
  1924. u32 rdintcm;
  1925. u32 tdintcm;
  1926. struct bdx_priv *priv = netdev_priv(netdev);
  1927. rdintcm = priv->rdintcm;
  1928. tdintcm = priv->tdintcm;
  1929. /* PCK_TH measures in multiples of FIFO bytes
  1930. We translate to packets */
  1931. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1932. ecoal->rx_max_coalesced_frames =
  1933. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1934. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1935. ecoal->tx_max_coalesced_frames =
  1936. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1937. /* adaptive parameters ignored */
  1938. return 0;
  1939. }
  1940. /*
  1941. * bdx_set_coalesce - set interrupt coalescing parameters
  1942. * @netdev
  1943. * @ecoal
  1944. */
  1945. static int
  1946. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1947. {
  1948. u32 rdintcm;
  1949. u32 tdintcm;
  1950. struct bdx_priv *priv = netdev_priv(netdev);
  1951. int rx_coal;
  1952. int tx_coal;
  1953. int rx_max_coal;
  1954. int tx_max_coal;
  1955. /* Check for valid input */
  1956. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1957. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1958. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1959. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1960. /* Translate from packets to multiples of FIFO bytes */
  1961. rx_max_coal =
  1962. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1963. / PCK_TH_MULT);
  1964. tx_max_coal =
  1965. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1966. / PCK_TH_MULT);
  1967. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
  1968. (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1969. return -EINVAL;
  1970. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1971. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1972. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1973. tx_max_coal);
  1974. priv->rdintcm = rdintcm;
  1975. priv->tdintcm = tdintcm;
  1976. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1977. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1978. return 0;
  1979. }
  1980. /* Convert RX fifo size to number of pending packets */
  1981. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1982. {
  1983. return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
  1984. }
  1985. /* Convert TX fifo size to number of pending packets */
  1986. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1987. {
  1988. return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
  1989. }
  1990. /*
  1991. * bdx_get_ringparam - report ring sizes
  1992. * @netdev
  1993. * @ring
  1994. */
  1995. static void
  1996. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  1997. {
  1998. struct bdx_priv *priv = netdev_priv(netdev);
  1999. /*max_pending - the maximum-sized FIFO we allow */
  2000. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  2001. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  2002. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  2003. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  2004. }
  2005. /*
  2006. * bdx_set_ringparam - set ring sizes
  2007. * @netdev
  2008. * @ring
  2009. */
  2010. static int
  2011. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2012. {
  2013. struct bdx_priv *priv = netdev_priv(netdev);
  2014. int rx_size = 0;
  2015. int tx_size = 0;
  2016. for (; rx_size < 4; rx_size++) {
  2017. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  2018. break;
  2019. }
  2020. if (rx_size == 4)
  2021. rx_size = 3;
  2022. for (; tx_size < 4; tx_size++) {
  2023. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  2024. break;
  2025. }
  2026. if (tx_size == 4)
  2027. tx_size = 3;
  2028. /*Is there anything to do? */
  2029. if ((rx_size == priv->rxf_size) &&
  2030. (tx_size == priv->txd_size))
  2031. return 0;
  2032. priv->rxf_size = rx_size;
  2033. if (rx_size > 1)
  2034. priv->rxd_size = rx_size - 1;
  2035. else
  2036. priv->rxd_size = rx_size;
  2037. priv->txf_size = priv->txd_size = tx_size;
  2038. if (netif_running(netdev)) {
  2039. bdx_close(netdev);
  2040. bdx_open(netdev);
  2041. }
  2042. return 0;
  2043. }
  2044. /*
  2045. * bdx_get_strings - return a set of strings that describe the requested objects
  2046. * @netdev
  2047. * @data
  2048. */
  2049. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2050. {
  2051. switch (stringset) {
  2052. case ETH_SS_STATS:
  2053. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2054. break;
  2055. }
  2056. }
  2057. /*
  2058. * bdx_get_sset_count - return number of statistics or tests
  2059. * @netdev
  2060. */
  2061. static int bdx_get_sset_count(struct net_device *netdev, int stringset)
  2062. {
  2063. struct bdx_priv *priv = netdev_priv(netdev);
  2064. switch (stringset) {
  2065. case ETH_SS_STATS:
  2066. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2067. != sizeof(struct bdx_stats) / sizeof(u64));
  2068. return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  2069. default:
  2070. return -EINVAL;
  2071. }
  2072. }
  2073. /*
  2074. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2075. * @netdev
  2076. * @stats
  2077. * @data
  2078. */
  2079. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2080. struct ethtool_stats *stats, u64 *data)
  2081. {
  2082. struct bdx_priv *priv = netdev_priv(netdev);
  2083. if (priv->stats_flag) {
  2084. /* Update stats from HW */
  2085. bdx_update_stats(priv);
  2086. /* Copy data to user buffer */
  2087. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2088. }
  2089. }
  2090. /*
  2091. * bdx_ethtool_ops - ethtool interface implementation
  2092. * @netdev
  2093. */
  2094. static void bdx_ethtool_ops(struct net_device *netdev)
  2095. {
  2096. static const struct ethtool_ops bdx_ethtool_ops = {
  2097. .get_settings = bdx_get_settings,
  2098. .get_drvinfo = bdx_get_drvinfo,
  2099. .get_link = ethtool_op_get_link,
  2100. .get_coalesce = bdx_get_coalesce,
  2101. .set_coalesce = bdx_set_coalesce,
  2102. .get_ringparam = bdx_get_ringparam,
  2103. .set_ringparam = bdx_set_ringparam,
  2104. .get_rx_csum = bdx_get_rx_csum,
  2105. .get_tx_csum = bdx_get_tx_csum,
  2106. .get_sg = ethtool_op_get_sg,
  2107. .get_tso = ethtool_op_get_tso,
  2108. .get_strings = bdx_get_strings,
  2109. .get_sset_count = bdx_get_sset_count,
  2110. .get_ethtool_stats = bdx_get_ethtool_stats,
  2111. };
  2112. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2113. }
  2114. /**
  2115. * bdx_remove - Device Removal Routine
  2116. * @pdev: PCI device information struct
  2117. *
  2118. * bdx_remove is called by the PCI subsystem to alert the driver
  2119. * that it should release a PCI device. The could be caused by a
  2120. * Hot-Plug event, or because the driver is going to be removed from
  2121. * memory.
  2122. **/
  2123. static void __devexit bdx_remove(struct pci_dev *pdev)
  2124. {
  2125. struct pci_nic *nic = pci_get_drvdata(pdev);
  2126. struct net_device *ndev;
  2127. int port;
  2128. for (port = 0; port < nic->port_num; port++) {
  2129. ndev = nic->priv[port]->ndev;
  2130. unregister_netdev(ndev);
  2131. free_netdev(ndev);
  2132. }
  2133. /*bdx_hw_reset_direct(nic->regs); */
  2134. #ifdef BDX_MSI
  2135. if (nic->irq_type == IRQ_MSI)
  2136. pci_disable_msi(pdev);
  2137. #endif
  2138. iounmap(nic->regs);
  2139. pci_release_regions(pdev);
  2140. pci_disable_device(pdev);
  2141. pci_set_drvdata(pdev, NULL);
  2142. vfree(nic);
  2143. RET();
  2144. }
  2145. static struct pci_driver bdx_pci_driver = {
  2146. .name = BDX_DRV_NAME,
  2147. .id_table = bdx_pci_tbl,
  2148. .probe = bdx_probe,
  2149. .remove = __devexit_p(bdx_remove),
  2150. };
  2151. /*
  2152. * print_driver_id - print parameters of the driver build
  2153. */
  2154. static void __init print_driver_id(void)
  2155. {
  2156. pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
  2157. pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
  2158. }
  2159. static int __init bdx_module_init(void)
  2160. {
  2161. ENTER;
  2162. init_txd_sizes();
  2163. print_driver_id();
  2164. RET(pci_register_driver(&bdx_pci_driver));
  2165. }
  2166. module_init(bdx_module_init);
  2167. static void __exit bdx_module_exit(void)
  2168. {
  2169. ENTER;
  2170. pci_unregister_driver(&bdx_pci_driver);
  2171. RET();
  2172. }
  2173. module_exit(bdx_module_exit);
  2174. MODULE_LICENSE("GPL");
  2175. MODULE_AUTHOR(DRIVER_AUTHOR);
  2176. MODULE_DESCRIPTION(BDX_DRV_DESC);
  2177. MODULE_FIRMWARE("tehuti/firmware.bin");