ctree.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  22. *root, struct btrfs_path *path, int level);
  23. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_key *ins_key,
  25. struct btrfs_path *path, int data_size);
  26. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct buffer_head *dst, struct buffer_head
  28. *src);
  29. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  30. btrfs_root *root, struct buffer_head *dst_buf,
  31. struct buffer_head *src_buf);
  32. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  33. struct btrfs_path *path, int level, int slot);
  34. inline void btrfs_init_path(struct btrfs_path *p)
  35. {
  36. memset(p, 0, sizeof(*p));
  37. }
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path) {
  43. btrfs_init_path(path);
  44. path->reada = 1;
  45. }
  46. return path;
  47. }
  48. void btrfs_free_path(struct btrfs_path *p)
  49. {
  50. btrfs_release_path(NULL, p);
  51. kmem_cache_free(btrfs_path_cachep, p);
  52. }
  53. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  54. {
  55. int i;
  56. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  57. if (!p->nodes[i])
  58. break;
  59. btrfs_block_release(root, p->nodes[i]);
  60. }
  61. memset(p, 0, sizeof(*p));
  62. }
  63. static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  64. *root, struct buffer_head *buf, struct buffer_head
  65. *parent, int parent_slot, struct buffer_head
  66. **cow_ret, u64 search_start, u64 empty_size)
  67. {
  68. struct buffer_head *cow;
  69. struct btrfs_node *cow_node;
  70. int ret = 0;
  71. int different_trans = 0;
  72. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  73. WARN_ON(!buffer_uptodate(buf));
  74. cow = btrfs_alloc_free_block(trans, root, search_start, empty_size);
  75. if (IS_ERR(cow))
  76. return PTR_ERR(cow);
  77. cow_node = btrfs_buffer_node(cow);
  78. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  79. WARN_ON(1);
  80. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  81. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  82. btrfs_set_header_generation(&cow_node->header, trans->transid);
  83. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  84. WARN_ON(btrfs_header_generation(btrfs_buffer_header(buf)) >
  85. trans->transid);
  86. if (btrfs_header_generation(btrfs_buffer_header(buf)) !=
  87. trans->transid) {
  88. different_trans = 1;
  89. ret = btrfs_inc_ref(trans, root, buf);
  90. if (ret)
  91. return ret;
  92. } else {
  93. clean_tree_block(trans, root, buf);
  94. }
  95. if (buf == root->node) {
  96. root->node = cow;
  97. get_bh(cow);
  98. if (buf != root->commit_root) {
  99. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  100. }
  101. btrfs_block_release(root, buf);
  102. } else {
  103. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  104. bh_blocknr(cow));
  105. btrfs_mark_buffer_dirty(parent);
  106. WARN_ON(btrfs_header_generation(btrfs_buffer_header(parent)) !=
  107. trans->transid);
  108. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  109. }
  110. btrfs_block_release(root, buf);
  111. btrfs_mark_buffer_dirty(cow);
  112. *cow_ret = cow;
  113. return 0;
  114. }
  115. int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  116. *root, struct buffer_head *buf, struct buffer_head
  117. *parent, int parent_slot, struct buffer_head
  118. **cow_ret)
  119. {
  120. u64 search_start;
  121. if (trans->transaction != root->fs_info->running_transaction) {
  122. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  123. root->fs_info->running_transaction->transid);
  124. WARN_ON(1);
  125. }
  126. if (trans->transid != root->fs_info->generation) {
  127. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  128. root->fs_info->generation);
  129. WARN_ON(1);
  130. }
  131. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  132. trans->transid) {
  133. *cow_ret = buf;
  134. return 0;
  135. }
  136. search_start = bh_blocknr(buf) & ~((u64)65535);
  137. return __btrfs_cow_block(trans, root, buf, parent,
  138. parent_slot, cow_ret, search_start, 0);
  139. }
  140. static int close_blocks(u64 blocknr, u64 other)
  141. {
  142. if (blocknr < other && other - blocknr < 8)
  143. return 1;
  144. if (blocknr > other && blocknr - other < 8)
  145. return 1;
  146. return 0;
  147. }
  148. static int should_defrag_leaf(struct buffer_head *bh)
  149. {
  150. struct btrfs_leaf *leaf = btrfs_buffer_leaf(bh);
  151. struct btrfs_disk_key *key;
  152. u32 nritems;
  153. if (buffer_defrag(bh))
  154. return 1;
  155. nritems = btrfs_header_nritems(&leaf->header);
  156. if (nritems == 0)
  157. return 0;
  158. key = &leaf->items[0].key;
  159. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  160. return 1;
  161. key = &leaf->items[nritems-1].key;
  162. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  163. return 1;
  164. if (nritems > 4) {
  165. key = &leaf->items[nritems/2].key;
  166. if (btrfs_disk_key_type(key) == BTRFS_DIR_ITEM_KEY)
  167. return 1;
  168. }
  169. return 0;
  170. }
  171. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  172. struct btrfs_root *root, struct buffer_head *parent,
  173. int cache_only, u64 *last_ret)
  174. {
  175. struct btrfs_node *parent_node;
  176. struct buffer_head *cur_bh;
  177. struct buffer_head *tmp_bh;
  178. u64 blocknr;
  179. u64 search_start = *last_ret;
  180. u64 last_block = 0;
  181. u64 other;
  182. u32 parent_nritems;
  183. int start_slot;
  184. int end_slot;
  185. int i;
  186. int err = 0;
  187. int parent_level;
  188. if (trans->transaction != root->fs_info->running_transaction) {
  189. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  190. root->fs_info->running_transaction->transid);
  191. WARN_ON(1);
  192. }
  193. if (trans->transid != root->fs_info->generation) {
  194. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  195. root->fs_info->generation);
  196. WARN_ON(1);
  197. }
  198. if (buffer_defrag_done(parent))
  199. return 0;
  200. parent_node = btrfs_buffer_node(parent);
  201. parent_nritems = btrfs_header_nritems(&parent_node->header);
  202. parent_level = btrfs_header_level(&parent_node->header);
  203. start_slot = 0;
  204. end_slot = parent_nritems;
  205. if (parent_nritems == 1)
  206. return 0;
  207. for (i = start_slot; i < end_slot; i++) {
  208. int close = 1;
  209. blocknr = btrfs_node_blockptr(parent_node, i);
  210. if (last_block == 0)
  211. last_block = blocknr;
  212. if (i > 0) {
  213. other = btrfs_node_blockptr(parent_node, i - 1);
  214. close = close_blocks(blocknr, other);
  215. }
  216. if (close && i < end_slot - 1) {
  217. other = btrfs_node_blockptr(parent_node, i + 1);
  218. close = close_blocks(blocknr, other);
  219. }
  220. if (close) {
  221. last_block = blocknr;
  222. continue;
  223. }
  224. cur_bh = btrfs_find_tree_block(root, blocknr);
  225. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  226. buffer_locked(cur_bh) ||
  227. (parent_level != 1 && !buffer_defrag(cur_bh)) ||
  228. (parent_level == 1 && !should_defrag_leaf(cur_bh))) {
  229. if (cache_only) {
  230. brelse(cur_bh);
  231. continue;
  232. }
  233. if (!cur_bh || !buffer_uptodate(cur_bh) ||
  234. buffer_locked(cur_bh)) {
  235. brelse(cur_bh);
  236. cur_bh = read_tree_block(root, blocknr);
  237. }
  238. }
  239. if (search_start == 0)
  240. search_start = last_block & ~((u64)65535);
  241. err = __btrfs_cow_block(trans, root, cur_bh, parent, i,
  242. &tmp_bh, search_start,
  243. min(8, end_slot - i));
  244. if (err) {
  245. brelse(cur_bh);
  246. break;
  247. }
  248. search_start = bh_blocknr(tmp_bh);
  249. *last_ret = search_start;
  250. if (parent_level == 1)
  251. clear_buffer_defrag(tmp_bh);
  252. set_buffer_defrag_done(tmp_bh);
  253. brelse(tmp_bh);
  254. }
  255. return err;
  256. }
  257. /*
  258. * The leaf data grows from end-to-front in the node.
  259. * this returns the address of the start of the last item,
  260. * which is the stop of the leaf data stack
  261. */
  262. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  263. struct btrfs_leaf *leaf)
  264. {
  265. u32 nr = btrfs_header_nritems(&leaf->header);
  266. if (nr == 0)
  267. return BTRFS_LEAF_DATA_SIZE(root);
  268. return btrfs_item_offset(leaf->items + nr - 1);
  269. }
  270. /*
  271. * compare two keys in a memcmp fashion
  272. */
  273. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  274. {
  275. struct btrfs_key k1;
  276. btrfs_disk_key_to_cpu(&k1, disk);
  277. if (k1.objectid > k2->objectid)
  278. return 1;
  279. if (k1.objectid < k2->objectid)
  280. return -1;
  281. if (k1.flags > k2->flags)
  282. return 1;
  283. if (k1.flags < k2->flags)
  284. return -1;
  285. if (k1.offset > k2->offset)
  286. return 1;
  287. if (k1.offset < k2->offset)
  288. return -1;
  289. return 0;
  290. }
  291. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  292. int level)
  293. {
  294. struct btrfs_node *parent = NULL;
  295. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  296. int parent_slot;
  297. int slot;
  298. struct btrfs_key cpukey;
  299. u32 nritems = btrfs_header_nritems(&node->header);
  300. if (path->nodes[level + 1])
  301. parent = btrfs_buffer_node(path->nodes[level + 1]);
  302. slot = path->slots[level];
  303. BUG_ON(!buffer_uptodate(path->nodes[level]));
  304. BUG_ON(nritems == 0);
  305. if (parent) {
  306. struct btrfs_disk_key *parent_key;
  307. parent_slot = path->slots[level + 1];
  308. parent_key = &parent->ptrs[parent_slot].key;
  309. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  310. sizeof(struct btrfs_disk_key)));
  311. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  312. btrfs_header_blocknr(&node->header));
  313. }
  314. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  315. if (slot != 0) {
  316. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  317. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  318. }
  319. if (slot < nritems - 1) {
  320. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  321. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  322. }
  323. return 0;
  324. }
  325. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  326. int level)
  327. {
  328. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  329. struct btrfs_node *parent = NULL;
  330. int parent_slot;
  331. int slot = path->slots[0];
  332. struct btrfs_key cpukey;
  333. u32 nritems = btrfs_header_nritems(&leaf->header);
  334. if (path->nodes[level + 1])
  335. parent = btrfs_buffer_node(path->nodes[level + 1]);
  336. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  337. if (nritems == 0)
  338. return 0;
  339. if (parent) {
  340. struct btrfs_disk_key *parent_key;
  341. parent_slot = path->slots[level + 1];
  342. parent_key = &parent->ptrs[parent_slot].key;
  343. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  344. sizeof(struct btrfs_disk_key)));
  345. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  346. btrfs_header_blocknr(&leaf->header));
  347. }
  348. if (slot != 0) {
  349. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  350. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  351. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  352. btrfs_item_end(leaf->items + slot));
  353. }
  354. if (slot < nritems - 1) {
  355. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  356. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  357. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  358. btrfs_item_end(leaf->items + slot + 1));
  359. }
  360. BUG_ON(btrfs_item_offset(leaf->items) +
  361. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  362. return 0;
  363. }
  364. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  365. int level)
  366. {
  367. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  368. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  369. sizeof(node->header.fsid)))
  370. BUG();
  371. if (level == 0)
  372. return check_leaf(root, path, level);
  373. return check_node(root, path, level);
  374. }
  375. /*
  376. * search for key in the array p. items p are item_size apart
  377. * and there are 'max' items in p
  378. * the slot in the array is returned via slot, and it points to
  379. * the place where you would insert key if it is not found in
  380. * the array.
  381. *
  382. * slot may point to max if the key is bigger than all of the keys
  383. */
  384. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  385. int max, int *slot)
  386. {
  387. int low = 0;
  388. int high = max;
  389. int mid;
  390. int ret;
  391. struct btrfs_disk_key *tmp;
  392. while(low < high) {
  393. mid = (low + high) / 2;
  394. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  395. ret = comp_keys(tmp, key);
  396. if (ret < 0)
  397. low = mid + 1;
  398. else if (ret > 0)
  399. high = mid;
  400. else {
  401. *slot = mid;
  402. return 0;
  403. }
  404. }
  405. *slot = low;
  406. return 1;
  407. }
  408. /*
  409. * simple bin_search frontend that does the right thing for
  410. * leaves vs nodes
  411. */
  412. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  413. {
  414. if (btrfs_is_leaf(c)) {
  415. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  416. return generic_bin_search((void *)l->items,
  417. sizeof(struct btrfs_item),
  418. key, btrfs_header_nritems(&c->header),
  419. slot);
  420. } else {
  421. return generic_bin_search((void *)c->ptrs,
  422. sizeof(struct btrfs_key_ptr),
  423. key, btrfs_header_nritems(&c->header),
  424. slot);
  425. }
  426. return -1;
  427. }
  428. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  429. struct buffer_head *parent_buf,
  430. int slot)
  431. {
  432. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  433. if (slot < 0)
  434. return NULL;
  435. if (slot >= btrfs_header_nritems(&node->header))
  436. return NULL;
  437. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  438. }
  439. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  440. *root, struct btrfs_path *path, int level)
  441. {
  442. struct buffer_head *right_buf;
  443. struct buffer_head *mid_buf;
  444. struct buffer_head *left_buf;
  445. struct buffer_head *parent_buf = NULL;
  446. struct btrfs_node *right = NULL;
  447. struct btrfs_node *mid;
  448. struct btrfs_node *left = NULL;
  449. struct btrfs_node *parent = NULL;
  450. int ret = 0;
  451. int wret;
  452. int pslot;
  453. int orig_slot = path->slots[level];
  454. int err_on_enospc = 0;
  455. u64 orig_ptr;
  456. if (level == 0)
  457. return 0;
  458. mid_buf = path->nodes[level];
  459. mid = btrfs_buffer_node(mid_buf);
  460. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  461. if (level < BTRFS_MAX_LEVEL - 1)
  462. parent_buf = path->nodes[level + 1];
  463. pslot = path->slots[level + 1];
  464. /*
  465. * deal with the case where there is only one pointer in the root
  466. * by promoting the node below to a root
  467. */
  468. if (!parent_buf) {
  469. struct buffer_head *child;
  470. u64 blocknr = bh_blocknr(mid_buf);
  471. if (btrfs_header_nritems(&mid->header) != 1)
  472. return 0;
  473. /* promote the child to a root */
  474. child = read_node_slot(root, mid_buf, 0);
  475. BUG_ON(!child);
  476. root->node = child;
  477. path->nodes[level] = NULL;
  478. clean_tree_block(trans, root, mid_buf);
  479. wait_on_buffer(mid_buf);
  480. /* once for the path */
  481. btrfs_block_release(root, mid_buf);
  482. /* once for the root ptr */
  483. btrfs_block_release(root, mid_buf);
  484. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  485. }
  486. parent = btrfs_buffer_node(parent_buf);
  487. if (btrfs_header_nritems(&mid->header) >
  488. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  489. return 0;
  490. if (btrfs_header_nritems(&mid->header) < 2)
  491. err_on_enospc = 1;
  492. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  493. if (left_buf) {
  494. wret = btrfs_cow_block(trans, root, left_buf,
  495. parent_buf, pslot - 1, &left_buf);
  496. if (wret) {
  497. ret = wret;
  498. goto enospc;
  499. }
  500. }
  501. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  502. if (right_buf) {
  503. wret = btrfs_cow_block(trans, root, right_buf,
  504. parent_buf, pslot + 1, &right_buf);
  505. if (wret) {
  506. ret = wret;
  507. goto enospc;
  508. }
  509. }
  510. /* first, try to make some room in the middle buffer */
  511. if (left_buf) {
  512. left = btrfs_buffer_node(left_buf);
  513. orig_slot += btrfs_header_nritems(&left->header);
  514. wret = push_node_left(trans, root, left_buf, mid_buf);
  515. if (wret < 0)
  516. ret = wret;
  517. if (btrfs_header_nritems(&mid->header) < 2)
  518. err_on_enospc = 1;
  519. }
  520. /*
  521. * then try to empty the right most buffer into the middle
  522. */
  523. if (right_buf) {
  524. right = btrfs_buffer_node(right_buf);
  525. wret = push_node_left(trans, root, mid_buf, right_buf);
  526. if (wret < 0 && wret != -ENOSPC)
  527. ret = wret;
  528. if (btrfs_header_nritems(&right->header) == 0) {
  529. u64 blocknr = bh_blocknr(right_buf);
  530. clean_tree_block(trans, root, right_buf);
  531. wait_on_buffer(right_buf);
  532. btrfs_block_release(root, right_buf);
  533. right_buf = NULL;
  534. right = NULL;
  535. wret = del_ptr(trans, root, path, level + 1, pslot +
  536. 1);
  537. if (wret)
  538. ret = wret;
  539. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  540. if (wret)
  541. ret = wret;
  542. } else {
  543. btrfs_memcpy(root, parent,
  544. &parent->ptrs[pslot + 1].key,
  545. &right->ptrs[0].key,
  546. sizeof(struct btrfs_disk_key));
  547. btrfs_mark_buffer_dirty(parent_buf);
  548. }
  549. }
  550. if (btrfs_header_nritems(&mid->header) == 1) {
  551. /*
  552. * we're not allowed to leave a node with one item in the
  553. * tree during a delete. A deletion from lower in the tree
  554. * could try to delete the only pointer in this node.
  555. * So, pull some keys from the left.
  556. * There has to be a left pointer at this point because
  557. * otherwise we would have pulled some pointers from the
  558. * right
  559. */
  560. BUG_ON(!left_buf);
  561. wret = balance_node_right(trans, root, mid_buf, left_buf);
  562. if (wret < 0) {
  563. ret = wret;
  564. goto enospc;
  565. }
  566. BUG_ON(wret == 1);
  567. }
  568. if (btrfs_header_nritems(&mid->header) == 0) {
  569. /* we've managed to empty the middle node, drop it */
  570. u64 blocknr = bh_blocknr(mid_buf);
  571. clean_tree_block(trans, root, mid_buf);
  572. wait_on_buffer(mid_buf);
  573. btrfs_block_release(root, mid_buf);
  574. mid_buf = NULL;
  575. mid = NULL;
  576. wret = del_ptr(trans, root, path, level + 1, pslot);
  577. if (wret)
  578. ret = wret;
  579. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  580. if (wret)
  581. ret = wret;
  582. } else {
  583. /* update the parent key to reflect our changes */
  584. btrfs_memcpy(root, parent,
  585. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  586. sizeof(struct btrfs_disk_key));
  587. btrfs_mark_buffer_dirty(parent_buf);
  588. }
  589. /* update the path */
  590. if (left_buf) {
  591. if (btrfs_header_nritems(&left->header) > orig_slot) {
  592. get_bh(left_buf);
  593. path->nodes[level] = left_buf;
  594. path->slots[level + 1] -= 1;
  595. path->slots[level] = orig_slot;
  596. if (mid_buf)
  597. btrfs_block_release(root, mid_buf);
  598. } else {
  599. orig_slot -= btrfs_header_nritems(&left->header);
  600. path->slots[level] = orig_slot;
  601. }
  602. }
  603. /* double check we haven't messed things up */
  604. check_block(root, path, level);
  605. if (orig_ptr !=
  606. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  607. path->slots[level]))
  608. BUG();
  609. enospc:
  610. if (right_buf)
  611. btrfs_block_release(root, right_buf);
  612. if (left_buf)
  613. btrfs_block_release(root, left_buf);
  614. return ret;
  615. }
  616. /* returns zero if the push worked, non-zero otherwise */
  617. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  618. struct btrfs_root *root,
  619. struct btrfs_path *path, int level)
  620. {
  621. struct buffer_head *right_buf;
  622. struct buffer_head *mid_buf;
  623. struct buffer_head *left_buf;
  624. struct buffer_head *parent_buf = NULL;
  625. struct btrfs_node *right = NULL;
  626. struct btrfs_node *mid;
  627. struct btrfs_node *left = NULL;
  628. struct btrfs_node *parent = NULL;
  629. int ret = 0;
  630. int wret;
  631. int pslot;
  632. int orig_slot = path->slots[level];
  633. u64 orig_ptr;
  634. if (level == 0)
  635. return 1;
  636. mid_buf = path->nodes[level];
  637. mid = btrfs_buffer_node(mid_buf);
  638. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  639. if (level < BTRFS_MAX_LEVEL - 1)
  640. parent_buf = path->nodes[level + 1];
  641. pslot = path->slots[level + 1];
  642. if (!parent_buf)
  643. return 1;
  644. parent = btrfs_buffer_node(parent_buf);
  645. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  646. /* first, try to make some room in the middle buffer */
  647. if (left_buf) {
  648. u32 left_nr;
  649. left = btrfs_buffer_node(left_buf);
  650. left_nr = btrfs_header_nritems(&left->header);
  651. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  652. wret = 1;
  653. } else {
  654. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  655. pslot - 1, &left_buf);
  656. if (ret)
  657. wret = 1;
  658. else {
  659. left = btrfs_buffer_node(left_buf);
  660. wret = push_node_left(trans, root,
  661. left_buf, mid_buf);
  662. }
  663. }
  664. if (wret < 0)
  665. ret = wret;
  666. if (wret == 0) {
  667. orig_slot += left_nr;
  668. btrfs_memcpy(root, parent,
  669. &parent->ptrs[pslot].key,
  670. &mid->ptrs[0].key,
  671. sizeof(struct btrfs_disk_key));
  672. btrfs_mark_buffer_dirty(parent_buf);
  673. if (btrfs_header_nritems(&left->header) > orig_slot) {
  674. path->nodes[level] = left_buf;
  675. path->slots[level + 1] -= 1;
  676. path->slots[level] = orig_slot;
  677. btrfs_block_release(root, mid_buf);
  678. } else {
  679. orig_slot -=
  680. btrfs_header_nritems(&left->header);
  681. path->slots[level] = orig_slot;
  682. btrfs_block_release(root, left_buf);
  683. }
  684. check_node(root, path, level);
  685. return 0;
  686. }
  687. btrfs_block_release(root, left_buf);
  688. }
  689. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  690. /*
  691. * then try to empty the right most buffer into the middle
  692. */
  693. if (right_buf) {
  694. u32 right_nr;
  695. right = btrfs_buffer_node(right_buf);
  696. right_nr = btrfs_header_nritems(&right->header);
  697. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  698. wret = 1;
  699. } else {
  700. ret = btrfs_cow_block(trans, root, right_buf,
  701. parent_buf, pslot + 1,
  702. &right_buf);
  703. if (ret)
  704. wret = 1;
  705. else {
  706. right = btrfs_buffer_node(right_buf);
  707. wret = balance_node_right(trans, root,
  708. right_buf, mid_buf);
  709. }
  710. }
  711. if (wret < 0)
  712. ret = wret;
  713. if (wret == 0) {
  714. btrfs_memcpy(root, parent,
  715. &parent->ptrs[pslot + 1].key,
  716. &right->ptrs[0].key,
  717. sizeof(struct btrfs_disk_key));
  718. btrfs_mark_buffer_dirty(parent_buf);
  719. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  720. path->nodes[level] = right_buf;
  721. path->slots[level + 1] += 1;
  722. path->slots[level] = orig_slot -
  723. btrfs_header_nritems(&mid->header);
  724. btrfs_block_release(root, mid_buf);
  725. } else {
  726. btrfs_block_release(root, right_buf);
  727. }
  728. check_node(root, path, level);
  729. return 0;
  730. }
  731. btrfs_block_release(root, right_buf);
  732. }
  733. check_node(root, path, level);
  734. return 1;
  735. }
  736. /*
  737. * readahead one full node of leaves
  738. */
  739. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  740. int level, int slot)
  741. {
  742. struct btrfs_node *node;
  743. int i;
  744. u32 nritems;
  745. u64 item_objectid;
  746. u64 blocknr;
  747. u64 search;
  748. u64 cluster_start;
  749. int ret;
  750. int nread = 0;
  751. int direction = path->reada;
  752. struct radix_tree_root found;
  753. unsigned long gang[8];
  754. struct buffer_head *bh;
  755. if (level == 0)
  756. return;
  757. if (!path->nodes[level])
  758. return;
  759. node = btrfs_buffer_node(path->nodes[level]);
  760. search = btrfs_node_blockptr(node, slot);
  761. bh = btrfs_find_tree_block(root, search);
  762. if (bh) {
  763. brelse(bh);
  764. return;
  765. }
  766. init_bit_radix(&found);
  767. nritems = btrfs_header_nritems(&node->header);
  768. for (i = slot; i < nritems; i++) {
  769. item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
  770. blocknr = btrfs_node_blockptr(node, i);
  771. set_radix_bit(&found, blocknr);
  772. }
  773. if (direction > 0) {
  774. cluster_start = search - 4;
  775. if (cluster_start > search)
  776. cluster_start = 0;
  777. } else
  778. cluster_start = search + 4;
  779. while(1) {
  780. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  781. if (!ret)
  782. break;
  783. for (i = 0; i < ret; i++) {
  784. blocknr = gang[i];
  785. clear_radix_bit(&found, blocknr);
  786. if (path->reada == 1 && nread > 16)
  787. continue;
  788. if (close_blocks(cluster_start, blocknr)) {
  789. readahead_tree_block(root, blocknr);
  790. nread++;
  791. cluster_start = blocknr;
  792. }
  793. }
  794. }
  795. }
  796. /*
  797. * look for key in the tree. path is filled in with nodes along the way
  798. * if key is found, we return zero and you can find the item in the leaf
  799. * level of the path (level 0)
  800. *
  801. * If the key isn't found, the path points to the slot where it should
  802. * be inserted, and 1 is returned. If there are other errors during the
  803. * search a negative error number is returned.
  804. *
  805. * if ins_len > 0, nodes and leaves will be split as we walk down the
  806. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  807. * possible)
  808. */
  809. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  810. *root, struct btrfs_key *key, struct btrfs_path *p, int
  811. ins_len, int cow)
  812. {
  813. struct buffer_head *b;
  814. struct btrfs_node *c;
  815. u64 blocknr;
  816. int slot;
  817. int ret;
  818. int level;
  819. int should_reada = p->reada;
  820. u8 lowest_level = 0;
  821. lowest_level = p->lowest_level;
  822. WARN_ON(lowest_level && ins_len);
  823. WARN_ON(p->nodes[0] != NULL);
  824. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  825. again:
  826. b = root->node;
  827. get_bh(b);
  828. while (b) {
  829. c = btrfs_buffer_node(b);
  830. level = btrfs_header_level(&c->header);
  831. if (cow) {
  832. int wret;
  833. wret = btrfs_cow_block(trans, root, b,
  834. p->nodes[level + 1],
  835. p->slots[level + 1],
  836. &b);
  837. if (wret) {
  838. btrfs_block_release(root, b);
  839. return wret;
  840. }
  841. c = btrfs_buffer_node(b);
  842. }
  843. BUG_ON(!cow && ins_len);
  844. if (level != btrfs_header_level(&c->header))
  845. WARN_ON(1);
  846. level = btrfs_header_level(&c->header);
  847. p->nodes[level] = b;
  848. ret = check_block(root, p, level);
  849. if (ret)
  850. return -1;
  851. ret = bin_search(c, key, &slot);
  852. if (!btrfs_is_leaf(c)) {
  853. if (ret && slot > 0)
  854. slot -= 1;
  855. p->slots[level] = slot;
  856. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  857. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  858. int sret = split_node(trans, root, p, level);
  859. BUG_ON(sret > 0);
  860. if (sret)
  861. return sret;
  862. b = p->nodes[level];
  863. c = btrfs_buffer_node(b);
  864. slot = p->slots[level];
  865. } else if (ins_len < 0) {
  866. int sret = balance_level(trans, root, p,
  867. level);
  868. if (sret)
  869. return sret;
  870. b = p->nodes[level];
  871. if (!b)
  872. goto again;
  873. c = btrfs_buffer_node(b);
  874. slot = p->slots[level];
  875. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  876. }
  877. /* this is only true while dropping a snapshot */
  878. if (level == lowest_level)
  879. break;
  880. blocknr = btrfs_node_blockptr(c, slot);
  881. if (should_reada)
  882. reada_for_search(root, p, level, slot);
  883. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  884. } else {
  885. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  886. p->slots[level] = slot;
  887. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  888. sizeof(struct btrfs_item) + ins_len) {
  889. int sret = split_leaf(trans, root, key,
  890. p, ins_len);
  891. BUG_ON(sret > 0);
  892. if (sret)
  893. return sret;
  894. }
  895. return ret;
  896. }
  897. }
  898. return 1;
  899. }
  900. /*
  901. * adjust the pointers going up the tree, starting at level
  902. * making sure the right key of each node is points to 'key'.
  903. * This is used after shifting pointers to the left, so it stops
  904. * fixing up pointers when a given leaf/node is not in slot 0 of the
  905. * higher levels
  906. *
  907. * If this fails to write a tree block, it returns -1, but continues
  908. * fixing up the blocks in ram so the tree is consistent.
  909. */
  910. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  911. *root, struct btrfs_path *path, struct btrfs_disk_key
  912. *key, int level)
  913. {
  914. int i;
  915. int ret = 0;
  916. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  917. struct btrfs_node *t;
  918. int tslot = path->slots[i];
  919. if (!path->nodes[i])
  920. break;
  921. t = btrfs_buffer_node(path->nodes[i]);
  922. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  923. btrfs_mark_buffer_dirty(path->nodes[i]);
  924. if (tslot != 0)
  925. break;
  926. }
  927. return ret;
  928. }
  929. /*
  930. * try to push data from one node into the next node left in the
  931. * tree.
  932. *
  933. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  934. * error, and > 0 if there was no room in the left hand block.
  935. */
  936. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  937. *root, struct buffer_head *dst_buf, struct
  938. buffer_head *src_buf)
  939. {
  940. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  941. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  942. int push_items = 0;
  943. int src_nritems;
  944. int dst_nritems;
  945. int ret = 0;
  946. src_nritems = btrfs_header_nritems(&src->header);
  947. dst_nritems = btrfs_header_nritems(&dst->header);
  948. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  949. if (push_items <= 0) {
  950. return 1;
  951. }
  952. if (src_nritems < push_items)
  953. push_items = src_nritems;
  954. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  955. push_items * sizeof(struct btrfs_key_ptr));
  956. if (push_items < src_nritems) {
  957. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  958. (src_nritems - push_items) *
  959. sizeof(struct btrfs_key_ptr));
  960. }
  961. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  962. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  963. btrfs_mark_buffer_dirty(src_buf);
  964. btrfs_mark_buffer_dirty(dst_buf);
  965. return ret;
  966. }
  967. /*
  968. * try to push data from one node into the next node right in the
  969. * tree.
  970. *
  971. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  972. * error, and > 0 if there was no room in the right hand block.
  973. *
  974. * this will only push up to 1/2 the contents of the left node over
  975. */
  976. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  977. btrfs_root *root, struct buffer_head *dst_buf,
  978. struct buffer_head *src_buf)
  979. {
  980. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  981. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  982. int push_items = 0;
  983. int max_push;
  984. int src_nritems;
  985. int dst_nritems;
  986. int ret = 0;
  987. src_nritems = btrfs_header_nritems(&src->header);
  988. dst_nritems = btrfs_header_nritems(&dst->header);
  989. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  990. if (push_items <= 0) {
  991. return 1;
  992. }
  993. max_push = src_nritems / 2 + 1;
  994. /* don't try to empty the node */
  995. if (max_push >= src_nritems)
  996. return 1;
  997. if (max_push < push_items)
  998. push_items = max_push;
  999. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  1000. dst_nritems * sizeof(struct btrfs_key_ptr));
  1001. btrfs_memcpy(root, dst, dst->ptrs,
  1002. src->ptrs + src_nritems - push_items,
  1003. push_items * sizeof(struct btrfs_key_ptr));
  1004. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  1005. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  1006. btrfs_mark_buffer_dirty(src_buf);
  1007. btrfs_mark_buffer_dirty(dst_buf);
  1008. return ret;
  1009. }
  1010. /*
  1011. * helper function to insert a new root level in the tree.
  1012. * A new node is allocated, and a single item is inserted to
  1013. * point to the existing root
  1014. *
  1015. * returns zero on success or < 0 on failure.
  1016. */
  1017. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  1018. *root, struct btrfs_path *path, int level)
  1019. {
  1020. struct buffer_head *t;
  1021. struct btrfs_node *lower;
  1022. struct btrfs_node *c;
  1023. struct btrfs_disk_key *lower_key;
  1024. BUG_ON(path->nodes[level]);
  1025. BUG_ON(path->nodes[level-1] != root->node);
  1026. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr, 0);
  1027. if (IS_ERR(t))
  1028. return PTR_ERR(t);
  1029. c = btrfs_buffer_node(t);
  1030. memset(c, 0, root->blocksize);
  1031. btrfs_set_header_nritems(&c->header, 1);
  1032. btrfs_set_header_level(&c->header, level);
  1033. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  1034. btrfs_set_header_generation(&c->header, trans->transid);
  1035. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  1036. lower = btrfs_buffer_node(path->nodes[level-1]);
  1037. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  1038. sizeof(c->header.fsid));
  1039. if (btrfs_is_leaf(lower))
  1040. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  1041. else
  1042. lower_key = &lower->ptrs[0].key;
  1043. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  1044. sizeof(struct btrfs_disk_key));
  1045. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  1046. btrfs_mark_buffer_dirty(t);
  1047. /* the super has an extra ref to root->node */
  1048. btrfs_block_release(root, root->node);
  1049. root->node = t;
  1050. get_bh(t);
  1051. path->nodes[level] = t;
  1052. path->slots[level] = 0;
  1053. return 0;
  1054. }
  1055. /*
  1056. * worker function to insert a single pointer in a node.
  1057. * the node should have enough room for the pointer already
  1058. *
  1059. * slot and level indicate where you want the key to go, and
  1060. * blocknr is the block the key points to.
  1061. *
  1062. * returns zero on success and < 0 on any error
  1063. */
  1064. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1065. *root, struct btrfs_path *path, struct btrfs_disk_key
  1066. *key, u64 blocknr, int slot, int level)
  1067. {
  1068. struct btrfs_node *lower;
  1069. int nritems;
  1070. BUG_ON(!path->nodes[level]);
  1071. lower = btrfs_buffer_node(path->nodes[level]);
  1072. nritems = btrfs_header_nritems(&lower->header);
  1073. if (slot > nritems)
  1074. BUG();
  1075. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1076. BUG();
  1077. if (slot != nritems) {
  1078. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  1079. lower->ptrs + slot,
  1080. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1081. }
  1082. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  1083. key, sizeof(struct btrfs_disk_key));
  1084. btrfs_set_node_blockptr(lower, slot, blocknr);
  1085. btrfs_set_header_nritems(&lower->header, nritems + 1);
  1086. btrfs_mark_buffer_dirty(path->nodes[level]);
  1087. check_node(root, path, level);
  1088. return 0;
  1089. }
  1090. /*
  1091. * split the node at the specified level in path in two.
  1092. * The path is corrected to point to the appropriate node after the split
  1093. *
  1094. * Before splitting this tries to make some room in the node by pushing
  1095. * left and right, if either one works, it returns right away.
  1096. *
  1097. * returns 0 on success and < 0 on failure
  1098. */
  1099. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1100. *root, struct btrfs_path *path, int level)
  1101. {
  1102. struct buffer_head *t;
  1103. struct btrfs_node *c;
  1104. struct buffer_head *split_buffer;
  1105. struct btrfs_node *split;
  1106. int mid;
  1107. int ret;
  1108. int wret;
  1109. u32 c_nritems;
  1110. t = path->nodes[level];
  1111. c = btrfs_buffer_node(t);
  1112. if (t == root->node) {
  1113. /* trying to split the root, lets make a new one */
  1114. ret = insert_new_root(trans, root, path, level + 1);
  1115. if (ret)
  1116. return ret;
  1117. } else {
  1118. ret = push_nodes_for_insert(trans, root, path, level);
  1119. t = path->nodes[level];
  1120. c = btrfs_buffer_node(t);
  1121. if (!ret &&
  1122. btrfs_header_nritems(&c->header) <
  1123. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1124. return 0;
  1125. if (ret < 0)
  1126. return ret;
  1127. }
  1128. c_nritems = btrfs_header_nritems(&c->header);
  1129. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr, 0);
  1130. if (IS_ERR(split_buffer))
  1131. return PTR_ERR(split_buffer);
  1132. split = btrfs_buffer_node(split_buffer);
  1133. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  1134. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  1135. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  1136. btrfs_set_header_generation(&split->header, trans->transid);
  1137. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  1138. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  1139. sizeof(split->header.fsid));
  1140. mid = (c_nritems + 1) / 2;
  1141. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  1142. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1143. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  1144. btrfs_set_header_nritems(&c->header, mid);
  1145. ret = 0;
  1146. btrfs_mark_buffer_dirty(t);
  1147. btrfs_mark_buffer_dirty(split_buffer);
  1148. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  1149. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  1150. level + 1);
  1151. if (wret)
  1152. ret = wret;
  1153. if (path->slots[level] >= mid) {
  1154. path->slots[level] -= mid;
  1155. btrfs_block_release(root, t);
  1156. path->nodes[level] = split_buffer;
  1157. path->slots[level + 1] += 1;
  1158. } else {
  1159. btrfs_block_release(root, split_buffer);
  1160. }
  1161. return ret;
  1162. }
  1163. /*
  1164. * how many bytes are required to store the items in a leaf. start
  1165. * and nr indicate which items in the leaf to check. This totals up the
  1166. * space used both by the item structs and the item data
  1167. */
  1168. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  1169. {
  1170. int data_len;
  1171. int nritems = btrfs_header_nritems(&l->header);
  1172. int end = min(nritems, start + nr) - 1;
  1173. if (!nr)
  1174. return 0;
  1175. data_len = btrfs_item_end(l->items + start);
  1176. data_len = data_len - btrfs_item_offset(l->items + end);
  1177. data_len += sizeof(struct btrfs_item) * nr;
  1178. WARN_ON(data_len < 0);
  1179. return data_len;
  1180. }
  1181. /*
  1182. * The space between the end of the leaf items and
  1183. * the start of the leaf data. IOW, how much room
  1184. * the leaf has left for both items and data
  1185. */
  1186. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  1187. {
  1188. int nritems = btrfs_header_nritems(&leaf->header);
  1189. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1190. }
  1191. /*
  1192. * push some data in the path leaf to the right, trying to free up at
  1193. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1194. *
  1195. * returns 1 if the push failed because the other node didn't have enough
  1196. * room, 0 if everything worked out and < 0 if there were major errors.
  1197. */
  1198. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1199. *root, struct btrfs_path *path, int data_size)
  1200. {
  1201. struct buffer_head *left_buf = path->nodes[0];
  1202. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  1203. struct btrfs_leaf *right;
  1204. struct buffer_head *right_buf;
  1205. struct buffer_head *upper;
  1206. struct btrfs_node *upper_node;
  1207. int slot;
  1208. int i;
  1209. int free_space;
  1210. int push_space = 0;
  1211. int push_items = 0;
  1212. struct btrfs_item *item;
  1213. u32 left_nritems;
  1214. u32 right_nritems;
  1215. int ret;
  1216. slot = path->slots[1];
  1217. if (!path->nodes[1]) {
  1218. return 1;
  1219. }
  1220. upper = path->nodes[1];
  1221. upper_node = btrfs_buffer_node(upper);
  1222. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1223. return 1;
  1224. }
  1225. right_buf = read_tree_block(root,
  1226. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1227. right = btrfs_buffer_leaf(right_buf);
  1228. free_space = btrfs_leaf_free_space(root, right);
  1229. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1230. btrfs_block_release(root, right_buf);
  1231. return 1;
  1232. }
  1233. /* cow and double check */
  1234. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1235. slot + 1, &right_buf);
  1236. if (ret) {
  1237. btrfs_block_release(root, right_buf);
  1238. return 1;
  1239. }
  1240. right = btrfs_buffer_leaf(right_buf);
  1241. free_space = btrfs_leaf_free_space(root, right);
  1242. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1243. btrfs_block_release(root, right_buf);
  1244. return 1;
  1245. }
  1246. left_nritems = btrfs_header_nritems(&left->header);
  1247. if (left_nritems == 0) {
  1248. btrfs_block_release(root, right_buf);
  1249. return 1;
  1250. }
  1251. for (i = left_nritems - 1; i >= 1; i--) {
  1252. item = left->items + i;
  1253. if (path->slots[0] == i)
  1254. push_space += data_size + sizeof(*item);
  1255. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1256. free_space)
  1257. break;
  1258. push_items++;
  1259. push_space += btrfs_item_size(item) + sizeof(*item);
  1260. }
  1261. if (push_items == 0) {
  1262. btrfs_block_release(root, right_buf);
  1263. return 1;
  1264. }
  1265. if (push_items == left_nritems)
  1266. WARN_ON(1);
  1267. right_nritems = btrfs_header_nritems(&right->header);
  1268. /* push left to right */
  1269. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1270. push_space -= leaf_data_end(root, left);
  1271. /* make room in the right data area */
  1272. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1273. leaf_data_end(root, right) - push_space,
  1274. btrfs_leaf_data(right) +
  1275. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1276. leaf_data_end(root, right));
  1277. /* copy from the left data area */
  1278. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1279. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1280. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1281. push_space);
  1282. btrfs_memmove(root, right, right->items + push_items, right->items,
  1283. right_nritems * sizeof(struct btrfs_item));
  1284. /* copy the items from left to right */
  1285. btrfs_memcpy(root, right, right->items, left->items +
  1286. left_nritems - push_items,
  1287. push_items * sizeof(struct btrfs_item));
  1288. /* update the item pointers */
  1289. right_nritems += push_items;
  1290. btrfs_set_header_nritems(&right->header, right_nritems);
  1291. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1292. for (i = 0; i < right_nritems; i++) {
  1293. btrfs_set_item_offset(right->items + i, push_space -
  1294. btrfs_item_size(right->items + i));
  1295. push_space = btrfs_item_offset(right->items + i);
  1296. }
  1297. left_nritems -= push_items;
  1298. btrfs_set_header_nritems(&left->header, left_nritems);
  1299. btrfs_mark_buffer_dirty(left_buf);
  1300. btrfs_mark_buffer_dirty(right_buf);
  1301. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1302. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1303. btrfs_mark_buffer_dirty(upper);
  1304. /* then fixup the leaf pointer in the path */
  1305. if (path->slots[0] >= left_nritems) {
  1306. path->slots[0] -= left_nritems;
  1307. btrfs_block_release(root, path->nodes[0]);
  1308. path->nodes[0] = right_buf;
  1309. path->slots[1] += 1;
  1310. } else {
  1311. btrfs_block_release(root, right_buf);
  1312. }
  1313. if (path->nodes[1])
  1314. check_node(root, path, 1);
  1315. return 0;
  1316. }
  1317. /*
  1318. * push some data in the path leaf to the left, trying to free up at
  1319. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1320. */
  1321. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1322. *root, struct btrfs_path *path, int data_size)
  1323. {
  1324. struct buffer_head *right_buf = path->nodes[0];
  1325. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1326. struct buffer_head *t;
  1327. struct btrfs_leaf *left;
  1328. int slot;
  1329. int i;
  1330. int free_space;
  1331. int push_space = 0;
  1332. int push_items = 0;
  1333. struct btrfs_item *item;
  1334. u32 old_left_nritems;
  1335. int ret = 0;
  1336. int wret;
  1337. slot = path->slots[1];
  1338. if (slot == 0) {
  1339. return 1;
  1340. }
  1341. if (!path->nodes[1]) {
  1342. return 1;
  1343. }
  1344. t = read_tree_block(root,
  1345. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1346. left = btrfs_buffer_leaf(t);
  1347. free_space = btrfs_leaf_free_space(root, left);
  1348. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1349. btrfs_block_release(root, t);
  1350. return 1;
  1351. }
  1352. /* cow and double check */
  1353. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1354. if (ret) {
  1355. /* we hit -ENOSPC, but it isn't fatal here */
  1356. btrfs_block_release(root, t);
  1357. return 1;
  1358. }
  1359. left = btrfs_buffer_leaf(t);
  1360. free_space = btrfs_leaf_free_space(root, left);
  1361. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1362. btrfs_block_release(root, t);
  1363. return 1;
  1364. }
  1365. if (btrfs_header_nritems(&right->header) == 0) {
  1366. btrfs_block_release(root, t);
  1367. return 1;
  1368. }
  1369. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1370. item = right->items + i;
  1371. if (path->slots[0] == i)
  1372. push_space += data_size + sizeof(*item);
  1373. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1374. free_space)
  1375. break;
  1376. push_items++;
  1377. push_space += btrfs_item_size(item) + sizeof(*item);
  1378. }
  1379. if (push_items == 0) {
  1380. btrfs_block_release(root, t);
  1381. return 1;
  1382. }
  1383. if (push_items == btrfs_header_nritems(&right->header))
  1384. WARN_ON(1);
  1385. /* push data from right to left */
  1386. btrfs_memcpy(root, left, left->items +
  1387. btrfs_header_nritems(&left->header),
  1388. right->items, push_items * sizeof(struct btrfs_item));
  1389. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1390. btrfs_item_offset(right->items + push_items -1);
  1391. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1392. leaf_data_end(root, left) - push_space,
  1393. btrfs_leaf_data(right) +
  1394. btrfs_item_offset(right->items + push_items - 1),
  1395. push_space);
  1396. old_left_nritems = btrfs_header_nritems(&left->header);
  1397. BUG_ON(old_left_nritems < 0);
  1398. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1399. u32 ioff = btrfs_item_offset(left->items + i);
  1400. btrfs_set_item_offset(left->items + i, ioff -
  1401. (BTRFS_LEAF_DATA_SIZE(root) -
  1402. btrfs_item_offset(left->items +
  1403. old_left_nritems - 1)));
  1404. }
  1405. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1406. /* fixup right node */
  1407. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1408. leaf_data_end(root, right);
  1409. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1410. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1411. btrfs_leaf_data(right) +
  1412. leaf_data_end(root, right), push_space);
  1413. btrfs_memmove(root, right, right->items, right->items + push_items,
  1414. (btrfs_header_nritems(&right->header) - push_items) *
  1415. sizeof(struct btrfs_item));
  1416. btrfs_set_header_nritems(&right->header,
  1417. btrfs_header_nritems(&right->header) -
  1418. push_items);
  1419. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1420. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1421. btrfs_set_item_offset(right->items + i, push_space -
  1422. btrfs_item_size(right->items + i));
  1423. push_space = btrfs_item_offset(right->items + i);
  1424. }
  1425. btrfs_mark_buffer_dirty(t);
  1426. btrfs_mark_buffer_dirty(right_buf);
  1427. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1428. if (wret)
  1429. ret = wret;
  1430. /* then fixup the leaf pointer in the path */
  1431. if (path->slots[0] < push_items) {
  1432. path->slots[0] += old_left_nritems;
  1433. btrfs_block_release(root, path->nodes[0]);
  1434. path->nodes[0] = t;
  1435. path->slots[1] -= 1;
  1436. } else {
  1437. btrfs_block_release(root, t);
  1438. path->slots[0] -= push_items;
  1439. }
  1440. BUG_ON(path->slots[0] < 0);
  1441. if (path->nodes[1])
  1442. check_node(root, path, 1);
  1443. return ret;
  1444. }
  1445. /*
  1446. * split the path's leaf in two, making sure there is at least data_size
  1447. * available for the resulting leaf level of the path.
  1448. *
  1449. * returns 0 if all went well and < 0 on failure.
  1450. */
  1451. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1452. *root, struct btrfs_key *ins_key,
  1453. struct btrfs_path *path, int data_size)
  1454. {
  1455. struct buffer_head *l_buf;
  1456. struct btrfs_leaf *l;
  1457. u32 nritems;
  1458. int mid;
  1459. int slot;
  1460. struct btrfs_leaf *right;
  1461. struct buffer_head *right_buffer;
  1462. int space_needed = data_size + sizeof(struct btrfs_item);
  1463. int data_copy_size;
  1464. int rt_data_off;
  1465. int i;
  1466. int ret = 0;
  1467. int wret;
  1468. int double_split = 0;
  1469. struct btrfs_disk_key disk_key;
  1470. /* first try to make some room by pushing left and right */
  1471. wret = push_leaf_left(trans, root, path, data_size);
  1472. if (wret < 0)
  1473. return wret;
  1474. if (wret) {
  1475. wret = push_leaf_right(trans, root, path, data_size);
  1476. if (wret < 0)
  1477. return wret;
  1478. }
  1479. l_buf = path->nodes[0];
  1480. l = btrfs_buffer_leaf(l_buf);
  1481. /* did the pushes work? */
  1482. if (btrfs_leaf_free_space(root, l) >=
  1483. sizeof(struct btrfs_item) + data_size)
  1484. return 0;
  1485. if (!path->nodes[1]) {
  1486. ret = insert_new_root(trans, root, path, 1);
  1487. if (ret)
  1488. return ret;
  1489. }
  1490. slot = path->slots[0];
  1491. nritems = btrfs_header_nritems(&l->header);
  1492. mid = (nritems + 1)/ 2;
  1493. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1494. if (IS_ERR(right_buffer))
  1495. return PTR_ERR(right_buffer);
  1496. right = btrfs_buffer_leaf(right_buffer);
  1497. memset(&right->header, 0, sizeof(right->header));
  1498. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1499. btrfs_set_header_generation(&right->header, trans->transid);
  1500. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1501. btrfs_set_header_level(&right->header, 0);
  1502. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1503. sizeof(right->header.fsid));
  1504. if (mid <= slot) {
  1505. if (nritems == 1 ||
  1506. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1507. BTRFS_LEAF_DATA_SIZE(root)) {
  1508. if (slot >= nritems) {
  1509. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1510. btrfs_set_header_nritems(&right->header, 0);
  1511. wret = insert_ptr(trans, root, path,
  1512. &disk_key,
  1513. bh_blocknr(right_buffer),
  1514. path->slots[1] + 1, 1);
  1515. if (wret)
  1516. ret = wret;
  1517. btrfs_block_release(root, path->nodes[0]);
  1518. path->nodes[0] = right_buffer;
  1519. path->slots[0] = 0;
  1520. path->slots[1] += 1;
  1521. return ret;
  1522. }
  1523. mid = slot;
  1524. double_split = 1;
  1525. }
  1526. } else {
  1527. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1528. BTRFS_LEAF_DATA_SIZE(root)) {
  1529. if (slot == 0) {
  1530. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1531. btrfs_set_header_nritems(&right->header, 0);
  1532. wret = insert_ptr(trans, root, path,
  1533. &disk_key,
  1534. bh_blocknr(right_buffer),
  1535. path->slots[1], 1);
  1536. if (wret)
  1537. ret = wret;
  1538. btrfs_block_release(root, path->nodes[0]);
  1539. path->nodes[0] = right_buffer;
  1540. path->slots[0] = 0;
  1541. if (path->slots[1] == 0) {
  1542. wret = fixup_low_keys(trans, root,
  1543. path, &disk_key, 1);
  1544. if (wret)
  1545. ret = wret;
  1546. }
  1547. return ret;
  1548. }
  1549. mid = slot;
  1550. double_split = 1;
  1551. }
  1552. }
  1553. btrfs_set_header_nritems(&right->header, nritems - mid);
  1554. data_copy_size = btrfs_item_end(l->items + mid) -
  1555. leaf_data_end(root, l);
  1556. btrfs_memcpy(root, right, right->items, l->items + mid,
  1557. (nritems - mid) * sizeof(struct btrfs_item));
  1558. btrfs_memcpy(root, right,
  1559. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1560. data_copy_size, btrfs_leaf_data(l) +
  1561. leaf_data_end(root, l), data_copy_size);
  1562. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1563. btrfs_item_end(l->items + mid);
  1564. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1565. u32 ioff = btrfs_item_offset(right->items + i);
  1566. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1567. }
  1568. btrfs_set_header_nritems(&l->header, mid);
  1569. ret = 0;
  1570. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1571. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1572. if (wret)
  1573. ret = wret;
  1574. btrfs_mark_buffer_dirty(right_buffer);
  1575. btrfs_mark_buffer_dirty(l_buf);
  1576. BUG_ON(path->slots[0] != slot);
  1577. if (mid <= slot) {
  1578. btrfs_block_release(root, path->nodes[0]);
  1579. path->nodes[0] = right_buffer;
  1580. path->slots[0] -= mid;
  1581. path->slots[1] += 1;
  1582. } else
  1583. btrfs_block_release(root, right_buffer);
  1584. BUG_ON(path->slots[0] < 0);
  1585. check_node(root, path, 1);
  1586. if (!double_split)
  1587. return ret;
  1588. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr, 0);
  1589. if (IS_ERR(right_buffer))
  1590. return PTR_ERR(right_buffer);
  1591. right = btrfs_buffer_leaf(right_buffer);
  1592. memset(&right->header, 0, sizeof(right->header));
  1593. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1594. btrfs_set_header_generation(&right->header, trans->transid);
  1595. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1596. btrfs_set_header_level(&right->header, 0);
  1597. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1598. sizeof(right->header.fsid));
  1599. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1600. btrfs_set_header_nritems(&right->header, 0);
  1601. wret = insert_ptr(trans, root, path,
  1602. &disk_key,
  1603. bh_blocknr(right_buffer),
  1604. path->slots[1], 1);
  1605. if (wret)
  1606. ret = wret;
  1607. if (path->slots[1] == 0) {
  1608. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1609. if (wret)
  1610. ret = wret;
  1611. }
  1612. btrfs_block_release(root, path->nodes[0]);
  1613. path->nodes[0] = right_buffer;
  1614. path->slots[0] = 0;
  1615. check_node(root, path, 1);
  1616. check_leaf(root, path, 0);
  1617. return ret;
  1618. }
  1619. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1620. struct btrfs_root *root,
  1621. struct btrfs_path *path,
  1622. u32 new_size)
  1623. {
  1624. int ret = 0;
  1625. int slot;
  1626. int slot_orig;
  1627. struct btrfs_leaf *leaf;
  1628. struct buffer_head *leaf_buf;
  1629. u32 nritems;
  1630. unsigned int data_end;
  1631. unsigned int old_data_start;
  1632. unsigned int old_size;
  1633. unsigned int size_diff;
  1634. int i;
  1635. slot_orig = path->slots[0];
  1636. leaf_buf = path->nodes[0];
  1637. leaf = btrfs_buffer_leaf(leaf_buf);
  1638. nritems = btrfs_header_nritems(&leaf->header);
  1639. data_end = leaf_data_end(root, leaf);
  1640. slot = path->slots[0];
  1641. old_data_start = btrfs_item_offset(leaf->items + slot);
  1642. old_size = btrfs_item_size(leaf->items + slot);
  1643. BUG_ON(old_size <= new_size);
  1644. size_diff = old_size - new_size;
  1645. BUG_ON(slot < 0);
  1646. BUG_ON(slot >= nritems);
  1647. /*
  1648. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1649. */
  1650. /* first correct the data pointers */
  1651. for (i = slot; i < nritems; i++) {
  1652. u32 ioff = btrfs_item_offset(leaf->items + i);
  1653. btrfs_set_item_offset(leaf->items + i,
  1654. ioff + size_diff);
  1655. }
  1656. /* shift the data */
  1657. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1658. data_end + size_diff, btrfs_leaf_data(leaf) +
  1659. data_end, old_data_start + new_size - data_end);
  1660. btrfs_set_item_size(leaf->items + slot, new_size);
  1661. btrfs_mark_buffer_dirty(leaf_buf);
  1662. ret = 0;
  1663. if (btrfs_leaf_free_space(root, leaf) < 0)
  1664. BUG();
  1665. check_leaf(root, path, 0);
  1666. return ret;
  1667. }
  1668. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1669. *root, struct btrfs_path *path, u32 data_size)
  1670. {
  1671. int ret = 0;
  1672. int slot;
  1673. int slot_orig;
  1674. struct btrfs_leaf *leaf;
  1675. struct buffer_head *leaf_buf;
  1676. u32 nritems;
  1677. unsigned int data_end;
  1678. unsigned int old_data;
  1679. unsigned int old_size;
  1680. int i;
  1681. slot_orig = path->slots[0];
  1682. leaf_buf = path->nodes[0];
  1683. leaf = btrfs_buffer_leaf(leaf_buf);
  1684. nritems = btrfs_header_nritems(&leaf->header);
  1685. data_end = leaf_data_end(root, leaf);
  1686. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1687. BUG();
  1688. slot = path->slots[0];
  1689. old_data = btrfs_item_end(leaf->items + slot);
  1690. BUG_ON(slot < 0);
  1691. BUG_ON(slot >= nritems);
  1692. /*
  1693. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1694. */
  1695. /* first correct the data pointers */
  1696. for (i = slot; i < nritems; i++) {
  1697. u32 ioff = btrfs_item_offset(leaf->items + i);
  1698. btrfs_set_item_offset(leaf->items + i,
  1699. ioff - data_size);
  1700. }
  1701. /* shift the data */
  1702. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1703. data_end - data_size, btrfs_leaf_data(leaf) +
  1704. data_end, old_data - data_end);
  1705. data_end = old_data;
  1706. old_size = btrfs_item_size(leaf->items + slot);
  1707. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1708. btrfs_mark_buffer_dirty(leaf_buf);
  1709. ret = 0;
  1710. if (btrfs_leaf_free_space(root, leaf) < 0)
  1711. BUG();
  1712. check_leaf(root, path, 0);
  1713. return ret;
  1714. }
  1715. /*
  1716. * Given a key and some data, insert an item into the tree.
  1717. * This does all the path init required, making room in the tree if needed.
  1718. */
  1719. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1720. *root, struct btrfs_path *path, struct btrfs_key
  1721. *cpu_key, u32 data_size)
  1722. {
  1723. int ret = 0;
  1724. int slot;
  1725. int slot_orig;
  1726. struct btrfs_leaf *leaf;
  1727. struct buffer_head *leaf_buf;
  1728. u32 nritems;
  1729. unsigned int data_end;
  1730. struct btrfs_disk_key disk_key;
  1731. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1732. /* create a root if there isn't one */
  1733. if (!root->node)
  1734. BUG();
  1735. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1736. if (ret == 0) {
  1737. return -EEXIST;
  1738. }
  1739. if (ret < 0)
  1740. goto out;
  1741. slot_orig = path->slots[0];
  1742. leaf_buf = path->nodes[0];
  1743. leaf = btrfs_buffer_leaf(leaf_buf);
  1744. nritems = btrfs_header_nritems(&leaf->header);
  1745. data_end = leaf_data_end(root, leaf);
  1746. if (btrfs_leaf_free_space(root, leaf) <
  1747. sizeof(struct btrfs_item) + data_size) {
  1748. BUG();
  1749. }
  1750. slot = path->slots[0];
  1751. BUG_ON(slot < 0);
  1752. if (slot != nritems) {
  1753. int i;
  1754. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1755. /*
  1756. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1757. */
  1758. /* first correct the data pointers */
  1759. for (i = slot; i < nritems; i++) {
  1760. u32 ioff = btrfs_item_offset(leaf->items + i);
  1761. btrfs_set_item_offset(leaf->items + i,
  1762. ioff - data_size);
  1763. }
  1764. /* shift the items */
  1765. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1766. leaf->items + slot,
  1767. (nritems - slot) * sizeof(struct btrfs_item));
  1768. /* shift the data */
  1769. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1770. data_end - data_size, btrfs_leaf_data(leaf) +
  1771. data_end, old_data - data_end);
  1772. data_end = old_data;
  1773. }
  1774. /* setup the item for the new data */
  1775. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1776. sizeof(struct btrfs_disk_key));
  1777. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1778. btrfs_set_item_size(leaf->items + slot, data_size);
  1779. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1780. btrfs_mark_buffer_dirty(leaf_buf);
  1781. ret = 0;
  1782. if (slot == 0)
  1783. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1784. if (btrfs_leaf_free_space(root, leaf) < 0)
  1785. BUG();
  1786. check_leaf(root, path, 0);
  1787. out:
  1788. return ret;
  1789. }
  1790. /*
  1791. * Given a key and some data, insert an item into the tree.
  1792. * This does all the path init required, making room in the tree if needed.
  1793. */
  1794. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1795. *root, struct btrfs_key *cpu_key, void *data, u32
  1796. data_size)
  1797. {
  1798. int ret = 0;
  1799. struct btrfs_path *path;
  1800. u8 *ptr;
  1801. path = btrfs_alloc_path();
  1802. BUG_ON(!path);
  1803. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1804. if (!ret) {
  1805. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1806. path->slots[0], u8);
  1807. btrfs_memcpy(root, path->nodes[0]->b_data,
  1808. ptr, data, data_size);
  1809. btrfs_mark_buffer_dirty(path->nodes[0]);
  1810. }
  1811. btrfs_free_path(path);
  1812. return ret;
  1813. }
  1814. /*
  1815. * delete the pointer from a given node.
  1816. *
  1817. * If the delete empties a node, the node is removed from the tree,
  1818. * continuing all the way the root if required. The root is converted into
  1819. * a leaf if all the nodes are emptied.
  1820. */
  1821. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1822. struct btrfs_path *path, int level, int slot)
  1823. {
  1824. struct btrfs_node *node;
  1825. struct buffer_head *parent = path->nodes[level];
  1826. u32 nritems;
  1827. int ret = 0;
  1828. int wret;
  1829. node = btrfs_buffer_node(parent);
  1830. nritems = btrfs_header_nritems(&node->header);
  1831. if (slot != nritems -1) {
  1832. btrfs_memmove(root, node, node->ptrs + slot,
  1833. node->ptrs + slot + 1,
  1834. sizeof(struct btrfs_key_ptr) *
  1835. (nritems - slot - 1));
  1836. }
  1837. nritems--;
  1838. btrfs_set_header_nritems(&node->header, nritems);
  1839. if (nritems == 0 && parent == root->node) {
  1840. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1841. BUG_ON(btrfs_header_level(header) != 1);
  1842. /* just turn the root into a leaf and break */
  1843. btrfs_set_header_level(header, 0);
  1844. } else if (slot == 0) {
  1845. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1846. level + 1);
  1847. if (wret)
  1848. ret = wret;
  1849. }
  1850. btrfs_mark_buffer_dirty(parent);
  1851. return ret;
  1852. }
  1853. /*
  1854. * delete the item at the leaf level in path. If that empties
  1855. * the leaf, remove it from the tree
  1856. */
  1857. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1858. struct btrfs_path *path)
  1859. {
  1860. int slot;
  1861. struct btrfs_leaf *leaf;
  1862. struct buffer_head *leaf_buf;
  1863. int doff;
  1864. int dsize;
  1865. int ret = 0;
  1866. int wret;
  1867. u32 nritems;
  1868. leaf_buf = path->nodes[0];
  1869. leaf = btrfs_buffer_leaf(leaf_buf);
  1870. slot = path->slots[0];
  1871. doff = btrfs_item_offset(leaf->items + slot);
  1872. dsize = btrfs_item_size(leaf->items + slot);
  1873. nritems = btrfs_header_nritems(&leaf->header);
  1874. if (slot != nritems - 1) {
  1875. int i;
  1876. int data_end = leaf_data_end(root, leaf);
  1877. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1878. data_end + dsize,
  1879. btrfs_leaf_data(leaf) + data_end,
  1880. doff - data_end);
  1881. for (i = slot + 1; i < nritems; i++) {
  1882. u32 ioff = btrfs_item_offset(leaf->items + i);
  1883. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1884. }
  1885. btrfs_memmove(root, leaf, leaf->items + slot,
  1886. leaf->items + slot + 1,
  1887. sizeof(struct btrfs_item) *
  1888. (nritems - slot - 1));
  1889. }
  1890. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1891. nritems--;
  1892. /* delete the leaf if we've emptied it */
  1893. if (nritems == 0) {
  1894. if (leaf_buf == root->node) {
  1895. btrfs_set_header_level(&leaf->header, 0);
  1896. } else {
  1897. clean_tree_block(trans, root, leaf_buf);
  1898. wait_on_buffer(leaf_buf);
  1899. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1900. if (wret)
  1901. ret = wret;
  1902. wret = btrfs_free_extent(trans, root,
  1903. bh_blocknr(leaf_buf), 1, 1);
  1904. if (wret)
  1905. ret = wret;
  1906. }
  1907. } else {
  1908. int used = leaf_space_used(leaf, 0, nritems);
  1909. if (slot == 0) {
  1910. wret = fixup_low_keys(trans, root, path,
  1911. &leaf->items[0].key, 1);
  1912. if (wret)
  1913. ret = wret;
  1914. }
  1915. /* delete the leaf if it is mostly empty */
  1916. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1917. /* push_leaf_left fixes the path.
  1918. * make sure the path still points to our leaf
  1919. * for possible call to del_ptr below
  1920. */
  1921. slot = path->slots[1];
  1922. get_bh(leaf_buf);
  1923. wret = push_leaf_left(trans, root, path, 1);
  1924. if (wret < 0 && wret != -ENOSPC)
  1925. ret = wret;
  1926. if (path->nodes[0] == leaf_buf &&
  1927. btrfs_header_nritems(&leaf->header)) {
  1928. wret = push_leaf_right(trans, root, path, 1);
  1929. if (wret < 0 && wret != -ENOSPC)
  1930. ret = wret;
  1931. }
  1932. if (btrfs_header_nritems(&leaf->header) == 0) {
  1933. u64 blocknr = bh_blocknr(leaf_buf);
  1934. clean_tree_block(trans, root, leaf_buf);
  1935. wait_on_buffer(leaf_buf);
  1936. wret = del_ptr(trans, root, path, 1, slot);
  1937. if (wret)
  1938. ret = wret;
  1939. btrfs_block_release(root, leaf_buf);
  1940. wret = btrfs_free_extent(trans, root, blocknr,
  1941. 1, 1);
  1942. if (wret)
  1943. ret = wret;
  1944. } else {
  1945. btrfs_mark_buffer_dirty(leaf_buf);
  1946. btrfs_block_release(root, leaf_buf);
  1947. }
  1948. } else {
  1949. btrfs_mark_buffer_dirty(leaf_buf);
  1950. }
  1951. }
  1952. return ret;
  1953. }
  1954. /*
  1955. * walk up the tree as far as required to find the next leaf.
  1956. * returns 0 if it found something or 1 if there are no greater leaves.
  1957. * returns < 0 on io errors.
  1958. */
  1959. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1960. {
  1961. int slot;
  1962. int level = 1;
  1963. u64 blocknr;
  1964. struct buffer_head *c;
  1965. struct btrfs_node *c_node;
  1966. struct buffer_head *next = NULL;
  1967. while(level < BTRFS_MAX_LEVEL) {
  1968. if (!path->nodes[level])
  1969. return 1;
  1970. slot = path->slots[level] + 1;
  1971. c = path->nodes[level];
  1972. c_node = btrfs_buffer_node(c);
  1973. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1974. level++;
  1975. continue;
  1976. }
  1977. blocknr = btrfs_node_blockptr(c_node, slot);
  1978. if (next)
  1979. btrfs_block_release(root, next);
  1980. if (path->reada)
  1981. reada_for_search(root, path, level, slot);
  1982. next = read_tree_block(root, blocknr);
  1983. break;
  1984. }
  1985. path->slots[level] = slot;
  1986. while(1) {
  1987. level--;
  1988. c = path->nodes[level];
  1989. btrfs_block_release(root, c);
  1990. path->nodes[level] = next;
  1991. path->slots[level] = 0;
  1992. if (!level)
  1993. break;
  1994. if (path->reada)
  1995. reada_for_search(root, path, level, 0);
  1996. next = read_tree_block(root,
  1997. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1998. }
  1999. return 0;
  2000. }