sh_eth.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include "sh_eth.h"
  33. /* CPU <-> EDMAC endian convert */
  34. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  35. {
  36. switch (mdp->edmac_endian) {
  37. case EDMAC_LITTLE_ENDIAN:
  38. return cpu_to_le32(x);
  39. case EDMAC_BIG_ENDIAN:
  40. return cpu_to_be32(x);
  41. }
  42. return x;
  43. }
  44. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  45. {
  46. switch (mdp->edmac_endian) {
  47. case EDMAC_LITTLE_ENDIAN:
  48. return le32_to_cpu(x);
  49. case EDMAC_BIG_ENDIAN:
  50. return be32_to_cpu(x);
  51. }
  52. return x;
  53. }
  54. /*
  55. * Program the hardware MAC address from dev->dev_addr.
  56. */
  57. static void update_mac_address(struct net_device *ndev)
  58. {
  59. u32 ioaddr = ndev->base_addr;
  60. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  61. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  62. ioaddr + MAHR);
  63. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  64. ioaddr + MALR);
  65. }
  66. /*
  67. * Get MAC address from SuperH MAC address register
  68. *
  69. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  70. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  71. * When you want use this device, you must set MAC address in bootloader.
  72. *
  73. */
  74. static void read_mac_address(struct net_device *ndev)
  75. {
  76. u32 ioaddr = ndev->base_addr;
  77. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  78. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  79. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  80. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  81. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  82. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  83. }
  84. struct bb_info {
  85. struct mdiobb_ctrl ctrl;
  86. u32 addr;
  87. u32 mmd_msk;/* MMD */
  88. u32 mdo_msk;
  89. u32 mdi_msk;
  90. u32 mdc_msk;
  91. };
  92. /* PHY bit set */
  93. static void bb_set(u32 addr, u32 msk)
  94. {
  95. ctrl_outl(ctrl_inl(addr) | msk, addr);
  96. }
  97. /* PHY bit clear */
  98. static void bb_clr(u32 addr, u32 msk)
  99. {
  100. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  101. }
  102. /* PHY bit read */
  103. static int bb_read(u32 addr, u32 msk)
  104. {
  105. return (ctrl_inl(addr) & msk) != 0;
  106. }
  107. /* Data I/O pin control */
  108. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  109. {
  110. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  111. if (bit)
  112. bb_set(bitbang->addr, bitbang->mmd_msk);
  113. else
  114. bb_clr(bitbang->addr, bitbang->mmd_msk);
  115. }
  116. /* Set bit data*/
  117. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  118. {
  119. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  120. if (bit)
  121. bb_set(bitbang->addr, bitbang->mdo_msk);
  122. else
  123. bb_clr(bitbang->addr, bitbang->mdo_msk);
  124. }
  125. /* Get bit data*/
  126. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  127. {
  128. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  129. return bb_read(bitbang->addr, bitbang->mdi_msk);
  130. }
  131. /* MDC pin control */
  132. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  133. {
  134. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  135. if (bit)
  136. bb_set(bitbang->addr, bitbang->mdc_msk);
  137. else
  138. bb_clr(bitbang->addr, bitbang->mdc_msk);
  139. }
  140. /* mdio bus control struct */
  141. static struct mdiobb_ops bb_ops = {
  142. .owner = THIS_MODULE,
  143. .set_mdc = sh_mdc_ctrl,
  144. .set_mdio_dir = sh_mmd_ctrl,
  145. .set_mdio_data = sh_set_mdio,
  146. .get_mdio_data = sh_get_mdio,
  147. };
  148. /* Chip Reset */
  149. static void sh_eth_reset(struct net_device *ndev)
  150. {
  151. u32 ioaddr = ndev->base_addr;
  152. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  153. int cnt = 100;
  154. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  155. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  156. while (cnt > 0) {
  157. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  158. break;
  159. mdelay(1);
  160. cnt--;
  161. }
  162. if (cnt < 0)
  163. printk(KERN_ERR "Device reset fail\n");
  164. /* Table Init */
  165. ctrl_outl(0x0, ioaddr + TDLAR);
  166. ctrl_outl(0x0, ioaddr + TDFAR);
  167. ctrl_outl(0x0, ioaddr + TDFXR);
  168. ctrl_outl(0x0, ioaddr + TDFFR);
  169. ctrl_outl(0x0, ioaddr + RDLAR);
  170. ctrl_outl(0x0, ioaddr + RDFAR);
  171. ctrl_outl(0x0, ioaddr + RDFXR);
  172. ctrl_outl(0x0, ioaddr + RDFFR);
  173. #else
  174. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  175. mdelay(3);
  176. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  177. #endif
  178. }
  179. /* free skb and descriptor buffer */
  180. static void sh_eth_ring_free(struct net_device *ndev)
  181. {
  182. struct sh_eth_private *mdp = netdev_priv(ndev);
  183. int i;
  184. /* Free Rx skb ringbuffer */
  185. if (mdp->rx_skbuff) {
  186. for (i = 0; i < RX_RING_SIZE; i++) {
  187. if (mdp->rx_skbuff[i])
  188. dev_kfree_skb(mdp->rx_skbuff[i]);
  189. }
  190. }
  191. kfree(mdp->rx_skbuff);
  192. /* Free Tx skb ringbuffer */
  193. if (mdp->tx_skbuff) {
  194. for (i = 0; i < TX_RING_SIZE; i++) {
  195. if (mdp->tx_skbuff[i])
  196. dev_kfree_skb(mdp->tx_skbuff[i]);
  197. }
  198. }
  199. kfree(mdp->tx_skbuff);
  200. }
  201. /* format skb and descriptor buffer */
  202. static void sh_eth_ring_format(struct net_device *ndev)
  203. {
  204. u32 ioaddr = ndev->base_addr, reserve = 0;
  205. struct sh_eth_private *mdp = netdev_priv(ndev);
  206. int i;
  207. struct sk_buff *skb;
  208. struct sh_eth_rxdesc *rxdesc = NULL;
  209. struct sh_eth_txdesc *txdesc = NULL;
  210. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  211. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  212. mdp->cur_rx = mdp->cur_tx = 0;
  213. mdp->dirty_rx = mdp->dirty_tx = 0;
  214. memset(mdp->rx_ring, 0, rx_ringsize);
  215. /* build Rx ring buffer */
  216. for (i = 0; i < RX_RING_SIZE; i++) {
  217. /* skb */
  218. mdp->rx_skbuff[i] = NULL;
  219. skb = dev_alloc_skb(mdp->rx_buf_sz);
  220. mdp->rx_skbuff[i] = skb;
  221. if (skb == NULL)
  222. break;
  223. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  224. DMA_FROM_DEVICE);
  225. skb->dev = ndev; /* Mark as being used by this device. */
  226. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  227. reserve = SH7763_SKB_ALIGN
  228. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  229. if (reserve)
  230. skb_reserve(skb, reserve);
  231. #else
  232. skb_reserve(skb, RX_OFFSET);
  233. #endif
  234. /* RX descriptor */
  235. rxdesc = &mdp->rx_ring[i];
  236. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  237. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  238. /* The size of the buffer is 16 byte boundary. */
  239. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  240. /* Rx descriptor address set */
  241. if (i == 0) {
  242. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  243. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  244. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  245. #endif
  246. }
  247. }
  248. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  249. /* Mark the last entry as wrapping the ring. */
  250. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  251. memset(mdp->tx_ring, 0, tx_ringsize);
  252. /* build Tx ring buffer */
  253. for (i = 0; i < TX_RING_SIZE; i++) {
  254. mdp->tx_skbuff[i] = NULL;
  255. txdesc = &mdp->tx_ring[i];
  256. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  257. txdesc->buffer_length = 0;
  258. if (i == 0) {
  259. /* Tx descriptor address set */
  260. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  261. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  262. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  263. #endif
  264. }
  265. }
  266. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  267. }
  268. /* Get skb and descriptor buffer */
  269. static int sh_eth_ring_init(struct net_device *ndev)
  270. {
  271. struct sh_eth_private *mdp = netdev_priv(ndev);
  272. int rx_ringsize, tx_ringsize, ret = 0;
  273. /*
  274. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  275. * card needs room to do 8 byte alignment, +2 so we can reserve
  276. * the first 2 bytes, and +16 gets room for the status word from the
  277. * card.
  278. */
  279. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  280. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  281. /* Allocate RX and TX skb rings */
  282. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  283. GFP_KERNEL);
  284. if (!mdp->rx_skbuff) {
  285. printk(KERN_ERR "%s: Cannot allocate Rx skb\n", ndev->name);
  286. ret = -ENOMEM;
  287. return ret;
  288. }
  289. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  290. GFP_KERNEL);
  291. if (!mdp->tx_skbuff) {
  292. printk(KERN_ERR "%s: Cannot allocate Tx skb\n", ndev->name);
  293. ret = -ENOMEM;
  294. goto skb_ring_free;
  295. }
  296. /* Allocate all Rx descriptors. */
  297. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  298. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  299. GFP_KERNEL);
  300. if (!mdp->rx_ring) {
  301. printk(KERN_ERR "%s: Cannot allocate Rx Ring (size %d bytes)\n",
  302. ndev->name, rx_ringsize);
  303. ret = -ENOMEM;
  304. goto desc_ring_free;
  305. }
  306. mdp->dirty_rx = 0;
  307. /* Allocate all Tx descriptors. */
  308. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  309. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  310. GFP_KERNEL);
  311. if (!mdp->tx_ring) {
  312. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  313. ndev->name, tx_ringsize);
  314. ret = -ENOMEM;
  315. goto desc_ring_free;
  316. }
  317. return ret;
  318. desc_ring_free:
  319. /* free DMA buffer */
  320. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  321. skb_ring_free:
  322. /* Free Rx and Tx skb ring buffer */
  323. sh_eth_ring_free(ndev);
  324. return ret;
  325. }
  326. static int sh_eth_dev_init(struct net_device *ndev)
  327. {
  328. int ret = 0;
  329. struct sh_eth_private *mdp = netdev_priv(ndev);
  330. u32 ioaddr = ndev->base_addr;
  331. u_int32_t rx_int_var, tx_int_var;
  332. u32 val;
  333. /* Soft Reset */
  334. sh_eth_reset(ndev);
  335. /* Descriptor format */
  336. sh_eth_ring_format(ndev);
  337. ctrl_outl(RPADIR_INIT, ioaddr + RPADIR);
  338. /* all sh_eth int mask */
  339. ctrl_outl(0, ioaddr + EESIPR);
  340. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  341. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  342. #else
  343. ctrl_outl(0, ioaddr + EDMR); /* Endian change */
  344. #endif
  345. /* FIFO size set */
  346. ctrl_outl((FIFO_SIZE_T | FIFO_SIZE_R), ioaddr + FDR);
  347. ctrl_outl(0, ioaddr + TFTR);
  348. /* Frame recv control */
  349. ctrl_outl(0, ioaddr + RMCR);
  350. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  351. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  352. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  353. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  354. /* Burst sycle set */
  355. ctrl_outl(0x800, ioaddr + BCULR);
  356. #endif
  357. ctrl_outl((FIFO_F_D_RFF | FIFO_F_D_RFD), ioaddr + FCFTR);
  358. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  359. ctrl_outl(0, ioaddr + TRIMD);
  360. #endif
  361. /* Recv frame limit set register */
  362. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  363. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  364. ctrl_outl((DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff), ioaddr + EESIPR);
  365. /* PAUSE Prohibition */
  366. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  367. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  368. ctrl_outl(val, ioaddr + ECMR);
  369. /* E-MAC Status Register clear */
  370. ctrl_outl(ECSR_INIT, ioaddr + ECSR);
  371. /* E-MAC Interrupt Enable register */
  372. ctrl_outl(ECSIPR_INIT, ioaddr + ECSIPR);
  373. /* Set MAC address */
  374. update_mac_address(ndev);
  375. /* mask reset */
  376. #if defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  377. ctrl_outl(APR_AP, ioaddr + APR);
  378. ctrl_outl(MPR_MP, ioaddr + MPR);
  379. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  380. #endif
  381. #if defined(CONFIG_CPU_SUBTYPE_SH7710)
  382. ctrl_outl(BCFR_UNLIMITED, ioaddr + BCFR);
  383. #endif
  384. /* Setting the Rx mode will start the Rx process. */
  385. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  386. netif_start_queue(ndev);
  387. return ret;
  388. }
  389. /* free Tx skb function */
  390. static int sh_eth_txfree(struct net_device *ndev)
  391. {
  392. struct sh_eth_private *mdp = netdev_priv(ndev);
  393. struct sh_eth_txdesc *txdesc;
  394. int freeNum = 0;
  395. int entry = 0;
  396. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  397. entry = mdp->dirty_tx % TX_RING_SIZE;
  398. txdesc = &mdp->tx_ring[entry];
  399. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  400. break;
  401. /* Free the original skb. */
  402. if (mdp->tx_skbuff[entry]) {
  403. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  404. mdp->tx_skbuff[entry] = NULL;
  405. freeNum++;
  406. }
  407. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  408. if (entry >= TX_RING_SIZE - 1)
  409. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  410. mdp->stats.tx_packets++;
  411. mdp->stats.tx_bytes += txdesc->buffer_length;
  412. }
  413. return freeNum;
  414. }
  415. /* Packet receive function */
  416. static int sh_eth_rx(struct net_device *ndev)
  417. {
  418. struct sh_eth_private *mdp = netdev_priv(ndev);
  419. struct sh_eth_rxdesc *rxdesc;
  420. int entry = mdp->cur_rx % RX_RING_SIZE;
  421. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  422. struct sk_buff *skb;
  423. u16 pkt_len = 0;
  424. u32 desc_status, reserve = 0;
  425. rxdesc = &mdp->rx_ring[entry];
  426. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  427. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  428. pkt_len = rxdesc->frame_length;
  429. if (--boguscnt < 0)
  430. break;
  431. if (!(desc_status & RDFEND))
  432. mdp->stats.rx_length_errors++;
  433. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  434. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  435. mdp->stats.rx_errors++;
  436. if (desc_status & RD_RFS1)
  437. mdp->stats.rx_crc_errors++;
  438. if (desc_status & RD_RFS2)
  439. mdp->stats.rx_frame_errors++;
  440. if (desc_status & RD_RFS3)
  441. mdp->stats.rx_length_errors++;
  442. if (desc_status & RD_RFS4)
  443. mdp->stats.rx_length_errors++;
  444. if (desc_status & RD_RFS6)
  445. mdp->stats.rx_missed_errors++;
  446. if (desc_status & RD_RFS10)
  447. mdp->stats.rx_over_errors++;
  448. } else {
  449. swaps(phys_to_virt(ALIGN(rxdesc->addr, 4)),
  450. pkt_len + 2);
  451. skb = mdp->rx_skbuff[entry];
  452. mdp->rx_skbuff[entry] = NULL;
  453. skb_put(skb, pkt_len);
  454. skb->protocol = eth_type_trans(skb, ndev);
  455. netif_rx(skb);
  456. mdp->stats.rx_packets++;
  457. mdp->stats.rx_bytes += pkt_len;
  458. }
  459. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  460. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  461. rxdesc = &mdp->rx_ring[entry];
  462. }
  463. /* Refill the Rx ring buffers. */
  464. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  465. entry = mdp->dirty_rx % RX_RING_SIZE;
  466. rxdesc = &mdp->rx_ring[entry];
  467. /* The size of the buffer is 16 byte boundary. */
  468. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  469. if (mdp->rx_skbuff[entry] == NULL) {
  470. skb = dev_alloc_skb(mdp->rx_buf_sz);
  471. mdp->rx_skbuff[entry] = skb;
  472. if (skb == NULL)
  473. break; /* Better luck next round. */
  474. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  475. DMA_FROM_DEVICE);
  476. skb->dev = ndev;
  477. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  478. reserve = SH7763_SKB_ALIGN
  479. - ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
  480. if (reserve)
  481. skb_reserve(skb, reserve);
  482. #else
  483. skb_reserve(skb, RX_OFFSET);
  484. #endif
  485. skb->ip_summed = CHECKSUM_NONE;
  486. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  487. }
  488. if (entry >= RX_RING_SIZE - 1)
  489. rxdesc->status |=
  490. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  491. else
  492. rxdesc->status |=
  493. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  494. }
  495. /* Restart Rx engine if stopped. */
  496. /* If we don't need to check status, don't. -KDU */
  497. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  498. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  499. return 0;
  500. }
  501. /* error control function */
  502. static void sh_eth_error(struct net_device *ndev, int intr_status)
  503. {
  504. struct sh_eth_private *mdp = netdev_priv(ndev);
  505. u32 ioaddr = ndev->base_addr;
  506. u32 felic_stat;
  507. if (intr_status & EESR_ECI) {
  508. felic_stat = ctrl_inl(ioaddr + ECSR);
  509. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  510. if (felic_stat & ECSR_ICD)
  511. mdp->stats.tx_carrier_errors++;
  512. if (felic_stat & ECSR_LCHNG) {
  513. /* Link Changed */
  514. u32 link_stat = (ctrl_inl(ioaddr + PSR));
  515. if (!(link_stat & PHY_ST_LINK)) {
  516. /* Link Down : disable tx and rx */
  517. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  518. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  519. } else {
  520. /* Link Up */
  521. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  522. ~DMAC_M_ECI, ioaddr + EESIPR);
  523. /*clear int */
  524. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  525. ioaddr + ECSR);
  526. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  527. DMAC_M_ECI, ioaddr + EESIPR);
  528. /* enable tx and rx */
  529. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  530. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  531. }
  532. }
  533. }
  534. if (intr_status & EESR_TWB) {
  535. /* Write buck end. unused write back interrupt */
  536. if (intr_status & EESR_TABT) /* Transmit Abort int */
  537. mdp->stats.tx_aborted_errors++;
  538. }
  539. if (intr_status & EESR_RABT) {
  540. /* Receive Abort int */
  541. if (intr_status & EESR_RFRMER) {
  542. /* Receive Frame Overflow int */
  543. mdp->stats.rx_frame_errors++;
  544. printk(KERN_ERR "Receive Frame Overflow\n");
  545. }
  546. }
  547. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  548. if (intr_status & EESR_ADE) {
  549. if (intr_status & EESR_TDE) {
  550. if (intr_status & EESR_TFE)
  551. mdp->stats.tx_fifo_errors++;
  552. }
  553. }
  554. #endif
  555. if (intr_status & EESR_RDE) {
  556. /* Receive Descriptor Empty int */
  557. mdp->stats.rx_over_errors++;
  558. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  559. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  560. printk(KERN_ERR "Receive Descriptor Empty\n");
  561. }
  562. if (intr_status & EESR_RFE) {
  563. /* Receive FIFO Overflow int */
  564. mdp->stats.rx_fifo_errors++;
  565. printk(KERN_ERR "Receive FIFO Overflow\n");
  566. }
  567. if (intr_status & (EESR_TWB | EESR_TABT |
  568. #if !defined(CONFIG_CPU_SUBTYPE_SH7763)
  569. EESR_ADE |
  570. #endif
  571. EESR_TDE | EESR_TFE)) {
  572. /* Tx error */
  573. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  574. /* dmesg */
  575. printk(KERN_ERR "%s:TX error. status=%8.8x cur_tx=%8.8x ",
  576. ndev->name, intr_status, mdp->cur_tx);
  577. printk(KERN_ERR "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  578. mdp->dirty_tx, (u32) ndev->state, edtrr);
  579. /* dirty buffer free */
  580. sh_eth_txfree(ndev);
  581. /* SH7712 BUG */
  582. if (edtrr ^ EDTRR_TRNS) {
  583. /* tx dma start */
  584. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  585. }
  586. /* wakeup */
  587. netif_wake_queue(ndev);
  588. }
  589. }
  590. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  591. {
  592. struct net_device *ndev = netdev;
  593. struct sh_eth_private *mdp = netdev_priv(ndev);
  594. irqreturn_t ret = IRQ_NONE;
  595. u32 ioaddr, boguscnt = RX_RING_SIZE;
  596. u32 intr_status = 0;
  597. ioaddr = ndev->base_addr;
  598. spin_lock(&mdp->lock);
  599. /* Get interrpt stat */
  600. intr_status = ctrl_inl(ioaddr + EESR);
  601. /* Clear interrupt */
  602. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  603. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  604. TX_CHECK | EESR_ERR_CHECK)) {
  605. ctrl_outl(intr_status, ioaddr + EESR);
  606. ret = IRQ_HANDLED;
  607. } else
  608. goto other_irq;
  609. if (intr_status & (EESR_FRC | /* Frame recv*/
  610. EESR_RMAF | /* Multi cast address recv*/
  611. EESR_RRF | /* Bit frame recv */
  612. EESR_RTLF | /* Long frame recv*/
  613. EESR_RTSF | /* short frame recv */
  614. EESR_PRE | /* PHY-LSI recv error */
  615. EESR_CERF)){ /* recv frame CRC error */
  616. sh_eth_rx(ndev);
  617. }
  618. /* Tx Check */
  619. if (intr_status & TX_CHECK) {
  620. sh_eth_txfree(ndev);
  621. netif_wake_queue(ndev);
  622. }
  623. if (intr_status & EESR_ERR_CHECK)
  624. sh_eth_error(ndev, intr_status);
  625. if (--boguscnt < 0) {
  626. printk(KERN_WARNING
  627. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  628. ndev->name, intr_status);
  629. }
  630. other_irq:
  631. spin_unlock(&mdp->lock);
  632. return ret;
  633. }
  634. static void sh_eth_timer(unsigned long data)
  635. {
  636. struct net_device *ndev = (struct net_device *)data;
  637. struct sh_eth_private *mdp = netdev_priv(ndev);
  638. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  639. }
  640. /* PHY state control function */
  641. static void sh_eth_adjust_link(struct net_device *ndev)
  642. {
  643. struct sh_eth_private *mdp = netdev_priv(ndev);
  644. struct phy_device *phydev = mdp->phydev;
  645. u32 ioaddr = ndev->base_addr;
  646. int new_state = 0;
  647. if (phydev->link != PHY_DOWN) {
  648. if (phydev->duplex != mdp->duplex) {
  649. new_state = 1;
  650. mdp->duplex = phydev->duplex;
  651. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  652. if (mdp->duplex) { /* FULL */
  653. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM,
  654. ioaddr + ECMR);
  655. } else { /* Half */
  656. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM,
  657. ioaddr + ECMR);
  658. }
  659. #endif
  660. }
  661. if (phydev->speed != mdp->speed) {
  662. new_state = 1;
  663. mdp->speed = phydev->speed;
  664. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  665. switch (mdp->speed) {
  666. case 10: /* 10BASE */
  667. ctrl_outl(GECMR_10, ioaddr + GECMR); break;
  668. case 100:/* 100BASE */
  669. ctrl_outl(GECMR_100, ioaddr + GECMR); break;
  670. case 1000: /* 1000BASE */
  671. ctrl_outl(GECMR_1000, ioaddr + GECMR); break;
  672. default:
  673. break;
  674. }
  675. #endif
  676. }
  677. if (mdp->link == PHY_DOWN) {
  678. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  679. | ECMR_DM, ioaddr + ECMR);
  680. new_state = 1;
  681. mdp->link = phydev->link;
  682. }
  683. } else if (mdp->link) {
  684. new_state = 1;
  685. mdp->link = PHY_DOWN;
  686. mdp->speed = 0;
  687. mdp->duplex = -1;
  688. }
  689. if (new_state)
  690. phy_print_status(phydev);
  691. }
  692. /* PHY init function */
  693. static int sh_eth_phy_init(struct net_device *ndev)
  694. {
  695. struct sh_eth_private *mdp = netdev_priv(ndev);
  696. char phy_id[BUS_ID_SIZE];
  697. struct phy_device *phydev = NULL;
  698. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  699. mdp->mii_bus->id , mdp->phy_id);
  700. mdp->link = PHY_DOWN;
  701. mdp->speed = 0;
  702. mdp->duplex = -1;
  703. /* Try connect to PHY */
  704. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  705. 0, PHY_INTERFACE_MODE_MII);
  706. if (IS_ERR(phydev)) {
  707. dev_err(&ndev->dev, "phy_connect failed\n");
  708. return PTR_ERR(phydev);
  709. }
  710. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  711. phydev->addr, phydev->drv->name);
  712. mdp->phydev = phydev;
  713. return 0;
  714. }
  715. /* PHY control start function */
  716. static int sh_eth_phy_start(struct net_device *ndev)
  717. {
  718. struct sh_eth_private *mdp = netdev_priv(ndev);
  719. int ret;
  720. ret = sh_eth_phy_init(ndev);
  721. if (ret)
  722. return ret;
  723. /* reset phy - this also wakes it from PDOWN */
  724. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  725. phy_start(mdp->phydev);
  726. return 0;
  727. }
  728. /* network device open function */
  729. static int sh_eth_open(struct net_device *ndev)
  730. {
  731. int ret = 0;
  732. struct sh_eth_private *mdp = netdev_priv(ndev);
  733. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  734. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  735. IRQF_SHARED,
  736. #else
  737. 0,
  738. #endif
  739. ndev->name, ndev);
  740. if (ret) {
  741. printk(KERN_ERR "Can not assign IRQ number to %s\n", CARDNAME);
  742. return ret;
  743. }
  744. /* Descriptor set */
  745. ret = sh_eth_ring_init(ndev);
  746. if (ret)
  747. goto out_free_irq;
  748. /* device init */
  749. ret = sh_eth_dev_init(ndev);
  750. if (ret)
  751. goto out_free_irq;
  752. /* PHY control start*/
  753. ret = sh_eth_phy_start(ndev);
  754. if (ret)
  755. goto out_free_irq;
  756. /* Set the timer to check for link beat. */
  757. init_timer(&mdp->timer);
  758. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  759. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  760. return ret;
  761. out_free_irq:
  762. free_irq(ndev->irq, ndev);
  763. return ret;
  764. }
  765. /* Timeout function */
  766. static void sh_eth_tx_timeout(struct net_device *ndev)
  767. {
  768. struct sh_eth_private *mdp = netdev_priv(ndev);
  769. u32 ioaddr = ndev->base_addr;
  770. struct sh_eth_rxdesc *rxdesc;
  771. int i;
  772. netif_stop_queue(ndev);
  773. /* worning message out. */
  774. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  775. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  776. /* tx_errors count up */
  777. mdp->stats.tx_errors++;
  778. /* timer off */
  779. del_timer_sync(&mdp->timer);
  780. /* Free all the skbuffs in the Rx queue. */
  781. for (i = 0; i < RX_RING_SIZE; i++) {
  782. rxdesc = &mdp->rx_ring[i];
  783. rxdesc->status = 0;
  784. rxdesc->addr = 0xBADF00D0;
  785. if (mdp->rx_skbuff[i])
  786. dev_kfree_skb(mdp->rx_skbuff[i]);
  787. mdp->rx_skbuff[i] = NULL;
  788. }
  789. for (i = 0; i < TX_RING_SIZE; i++) {
  790. if (mdp->tx_skbuff[i])
  791. dev_kfree_skb(mdp->tx_skbuff[i]);
  792. mdp->tx_skbuff[i] = NULL;
  793. }
  794. /* device init */
  795. sh_eth_dev_init(ndev);
  796. /* timer on */
  797. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  798. add_timer(&mdp->timer);
  799. }
  800. /* Packet transmit function */
  801. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  802. {
  803. struct sh_eth_private *mdp = netdev_priv(ndev);
  804. struct sh_eth_txdesc *txdesc;
  805. u32 entry;
  806. unsigned long flags;
  807. spin_lock_irqsave(&mdp->lock, flags);
  808. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  809. if (!sh_eth_txfree(ndev)) {
  810. netif_stop_queue(ndev);
  811. spin_unlock_irqrestore(&mdp->lock, flags);
  812. return 1;
  813. }
  814. }
  815. spin_unlock_irqrestore(&mdp->lock, flags);
  816. entry = mdp->cur_tx % TX_RING_SIZE;
  817. mdp->tx_skbuff[entry] = skb;
  818. txdesc = &mdp->tx_ring[entry];
  819. txdesc->addr = virt_to_phys(skb->data);
  820. /* soft swap. */
  821. swaps(phys_to_virt(ALIGN(txdesc->addr, 4)), skb->len + 2);
  822. /* write back */
  823. __flush_purge_region(skb->data, skb->len);
  824. if (skb->len < ETHERSMALL)
  825. txdesc->buffer_length = ETHERSMALL;
  826. else
  827. txdesc->buffer_length = skb->len;
  828. if (entry >= TX_RING_SIZE - 1)
  829. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  830. else
  831. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  832. mdp->cur_tx++;
  833. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  834. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  835. ndev->trans_start = jiffies;
  836. return 0;
  837. }
  838. /* device close function */
  839. static int sh_eth_close(struct net_device *ndev)
  840. {
  841. struct sh_eth_private *mdp = netdev_priv(ndev);
  842. u32 ioaddr = ndev->base_addr;
  843. int ringsize;
  844. netif_stop_queue(ndev);
  845. /* Disable interrupts by clearing the interrupt mask. */
  846. ctrl_outl(0x0000, ioaddr + EESIPR);
  847. /* Stop the chip's Tx and Rx processes. */
  848. ctrl_outl(0, ioaddr + EDTRR);
  849. ctrl_outl(0, ioaddr + EDRRR);
  850. /* PHY Disconnect */
  851. if (mdp->phydev) {
  852. phy_stop(mdp->phydev);
  853. phy_disconnect(mdp->phydev);
  854. }
  855. free_irq(ndev->irq, ndev);
  856. del_timer_sync(&mdp->timer);
  857. /* Free all the skbuffs in the Rx queue. */
  858. sh_eth_ring_free(ndev);
  859. /* free DMA buffer */
  860. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  861. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  862. /* free DMA buffer */
  863. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  864. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  865. return 0;
  866. }
  867. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  868. {
  869. struct sh_eth_private *mdp = netdev_priv(ndev);
  870. u32 ioaddr = ndev->base_addr;
  871. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  872. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  873. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  874. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  875. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  876. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  877. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  878. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  879. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  880. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  881. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  882. #else
  883. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  884. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  885. #endif
  886. return &mdp->stats;
  887. }
  888. /* ioctl to device funciotn*/
  889. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  890. int cmd)
  891. {
  892. struct sh_eth_private *mdp = netdev_priv(ndev);
  893. struct phy_device *phydev = mdp->phydev;
  894. if (!netif_running(ndev))
  895. return -EINVAL;
  896. if (!phydev)
  897. return -ENODEV;
  898. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  899. }
  900. /* Multicast reception directions set */
  901. static void sh_eth_set_multicast_list(struct net_device *ndev)
  902. {
  903. u32 ioaddr = ndev->base_addr;
  904. if (ndev->flags & IFF_PROMISC) {
  905. /* Set promiscuous. */
  906. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  907. ioaddr + ECMR);
  908. } else {
  909. /* Normal, unicast/broadcast-only mode. */
  910. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  911. ioaddr + ECMR);
  912. }
  913. }
  914. /* SuperH's TSU register init function */
  915. static void sh_eth_tsu_init(u32 ioaddr)
  916. {
  917. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  918. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  919. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  920. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  921. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  922. ctrl_outl(0, ioaddr + TSU_PRISL0);
  923. ctrl_outl(0, ioaddr + TSU_PRISL1);
  924. ctrl_outl(0, ioaddr + TSU_FWSL0);
  925. ctrl_outl(0, ioaddr + TSU_FWSL1);
  926. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  927. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  928. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  929. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  930. #else
  931. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  932. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  933. #endif
  934. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  935. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  936. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  937. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  938. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  939. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  940. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  941. }
  942. /* MDIO bus release function */
  943. static int sh_mdio_release(struct net_device *ndev)
  944. {
  945. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  946. /* unregister mdio bus */
  947. mdiobus_unregister(bus);
  948. /* remove mdio bus info from net_device */
  949. dev_set_drvdata(&ndev->dev, NULL);
  950. /* free bitbang info */
  951. free_mdio_bitbang(bus);
  952. return 0;
  953. }
  954. /* MDIO bus init function */
  955. static int sh_mdio_init(struct net_device *ndev, int id)
  956. {
  957. int ret, i;
  958. struct bb_info *bitbang;
  959. struct sh_eth_private *mdp = netdev_priv(ndev);
  960. /* create bit control struct for PHY */
  961. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  962. if (!bitbang) {
  963. ret = -ENOMEM;
  964. goto out;
  965. }
  966. /* bitbang init */
  967. bitbang->addr = ndev->base_addr + PIR;
  968. bitbang->mdi_msk = 0x08;
  969. bitbang->mdo_msk = 0x04;
  970. bitbang->mmd_msk = 0x02;/* MMD */
  971. bitbang->mdc_msk = 0x01;
  972. bitbang->ctrl.ops = &bb_ops;
  973. /* MII contorller setting */
  974. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  975. if (!mdp->mii_bus) {
  976. ret = -ENOMEM;
  977. goto out_free_bitbang;
  978. }
  979. /* Hook up MII support for ethtool */
  980. mdp->mii_bus->name = "sh_mii";
  981. mdp->mii_bus->parent = &ndev->dev;
  982. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  983. /* PHY IRQ */
  984. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  985. if (!mdp->mii_bus->irq) {
  986. ret = -ENOMEM;
  987. goto out_free_bus;
  988. }
  989. for (i = 0; i < PHY_MAX_ADDR; i++)
  990. mdp->mii_bus->irq[i] = PHY_POLL;
  991. /* regist mdio bus */
  992. ret = mdiobus_register(mdp->mii_bus);
  993. if (ret)
  994. goto out_free_irq;
  995. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  996. return 0;
  997. out_free_irq:
  998. kfree(mdp->mii_bus->irq);
  999. out_free_bus:
  1000. free_mdio_bitbang(mdp->mii_bus);
  1001. out_free_bitbang:
  1002. kfree(bitbang);
  1003. out:
  1004. return ret;
  1005. }
  1006. static const struct net_device_ops sh_eth_netdev_ops = {
  1007. .ndo_open = sh_eth_open,
  1008. .ndo_stop = sh_eth_close,
  1009. .ndo_start_xmit = sh_eth_start_xmit,
  1010. .ndo_get_stats = sh_eth_get_stats,
  1011. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1012. .ndo_tx_timeout = sh_eth_tx_timeout,
  1013. .ndo_do_ioctl = sh_eth_do_ioctl,
  1014. .ndo_validate_addr = eth_validate_addr,
  1015. .ndo_set_mac_address = eth_mac_addr,
  1016. .ndo_change_mtu = eth_change_mtu,
  1017. };
  1018. static int sh_eth_drv_probe(struct platform_device *pdev)
  1019. {
  1020. int ret, i, devno = 0;
  1021. struct resource *res;
  1022. struct net_device *ndev = NULL;
  1023. struct sh_eth_private *mdp;
  1024. struct sh_eth_plat_data *pd;
  1025. /* get base addr */
  1026. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1027. if (unlikely(res == NULL)) {
  1028. dev_err(&pdev->dev, "invalid resource\n");
  1029. ret = -EINVAL;
  1030. goto out;
  1031. }
  1032. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1033. if (!ndev) {
  1034. printk(KERN_ERR "%s: could not allocate device.\n", CARDNAME);
  1035. ret = -ENOMEM;
  1036. goto out;
  1037. }
  1038. /* The sh Ether-specific entries in the device structure. */
  1039. ndev->base_addr = res->start;
  1040. devno = pdev->id;
  1041. if (devno < 0)
  1042. devno = 0;
  1043. ndev->dma = -1;
  1044. ret = platform_get_irq(pdev, 0);
  1045. if (ret < 0) {
  1046. ret = -ENODEV;
  1047. goto out_release;
  1048. }
  1049. ndev->irq = ret;
  1050. SET_NETDEV_DEV(ndev, &pdev->dev);
  1051. /* Fill in the fields of the device structure with ethernet values. */
  1052. ether_setup(ndev);
  1053. mdp = netdev_priv(ndev);
  1054. spin_lock_init(&mdp->lock);
  1055. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1056. /* get PHY ID */
  1057. mdp->phy_id = pd->phy;
  1058. /* EDMAC endian */
  1059. mdp->edmac_endian = pd->edmac_endian;
  1060. /* set function */
  1061. ndev->netdev_ops = &sh_eth_netdev_ops;
  1062. ndev->watchdog_timeo = TX_TIMEOUT;
  1063. mdp->post_rx = POST_RX >> (devno << 1);
  1064. mdp->post_fw = POST_FW >> (devno << 1);
  1065. /* read and set MAC address */
  1066. read_mac_address(ndev);
  1067. /* First device only init */
  1068. if (!devno) {
  1069. #if defined(ARSTR)
  1070. /* reset device */
  1071. ctrl_outl(ARSTR_ARSTR, ARSTR);
  1072. mdelay(1);
  1073. #endif
  1074. #if defined(SH_TSU_ADDR)
  1075. /* TSU init (Init only)*/
  1076. sh_eth_tsu_init(SH_TSU_ADDR);
  1077. #endif
  1078. }
  1079. /* network device register */
  1080. ret = register_netdev(ndev);
  1081. if (ret)
  1082. goto out_release;
  1083. /* mdio bus init */
  1084. ret = sh_mdio_init(ndev, pdev->id);
  1085. if (ret)
  1086. goto out_unregister;
  1087. /* pritnt device infomation */
  1088. printk(KERN_INFO "%s: %s at 0x%x, ",
  1089. ndev->name, CARDNAME, (u32) ndev->base_addr);
  1090. for (i = 0; i < 5; i++)
  1091. printk("%02X:", ndev->dev_addr[i]);
  1092. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1093. platform_set_drvdata(pdev, ndev);
  1094. return ret;
  1095. out_unregister:
  1096. unregister_netdev(ndev);
  1097. out_release:
  1098. /* net_dev free */
  1099. if (ndev)
  1100. free_netdev(ndev);
  1101. out:
  1102. return ret;
  1103. }
  1104. static int sh_eth_drv_remove(struct platform_device *pdev)
  1105. {
  1106. struct net_device *ndev = platform_get_drvdata(pdev);
  1107. sh_mdio_release(ndev);
  1108. unregister_netdev(ndev);
  1109. flush_scheduled_work();
  1110. free_netdev(ndev);
  1111. platform_set_drvdata(pdev, NULL);
  1112. return 0;
  1113. }
  1114. static struct platform_driver sh_eth_driver = {
  1115. .probe = sh_eth_drv_probe,
  1116. .remove = sh_eth_drv_remove,
  1117. .driver = {
  1118. .name = CARDNAME,
  1119. },
  1120. };
  1121. static int __init sh_eth_init(void)
  1122. {
  1123. return platform_driver_register(&sh_eth_driver);
  1124. }
  1125. static void __exit sh_eth_cleanup(void)
  1126. {
  1127. platform_driver_unregister(&sh_eth_driver);
  1128. }
  1129. module_init(sh_eth_init);
  1130. module_exit(sh_eth_cleanup);
  1131. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1132. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1133. MODULE_LICENSE("GPL v2");