e500_tlb.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428
  1. /*
  2. * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
  3. *
  4. * Author: Yu Liu, yu.liu@freescale.com
  5. * Scott Wood, scottwood@freescale.com
  6. * Ashish Kalra, ashish.kalra@freescale.com
  7. * Varun Sethi, varun.sethi@freescale.com
  8. *
  9. * Description:
  10. * This file is based on arch/powerpc/kvm/44x_tlb.c,
  11. * by Hollis Blanchard <hollisb@us.ibm.com>.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License, version 2, as
  15. * published by the Free Software Foundation.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/types.h>
  19. #include <linux/slab.h>
  20. #include <linux/string.h>
  21. #include <linux/kvm.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/highmem.h>
  24. #include <linux/log2.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/sched.h>
  27. #include <linux/rwsem.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hugetlb.h>
  30. #include <asm/kvm_ppc.h>
  31. #include "e500.h"
  32. #include "trace.h"
  33. #include "timing.h"
  34. #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
  35. static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
  36. static inline unsigned int gtlb0_get_next_victim(
  37. struct kvmppc_vcpu_e500 *vcpu_e500)
  38. {
  39. unsigned int victim;
  40. victim = vcpu_e500->gtlb_nv[0]++;
  41. if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
  42. vcpu_e500->gtlb_nv[0] = 0;
  43. return victim;
  44. }
  45. static inline unsigned int tlb1_max_shadow_size(void)
  46. {
  47. /* reserve one entry for magic page */
  48. return host_tlb_params[1].entries - tlbcam_index - 1;
  49. }
  50. static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
  51. {
  52. return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
  53. }
  54. static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
  55. {
  56. /* Mask off reserved bits. */
  57. mas3 &= MAS3_ATTRIB_MASK;
  58. #ifndef CONFIG_KVM_BOOKE_HV
  59. if (!usermode) {
  60. /* Guest is in supervisor mode,
  61. * so we need to translate guest
  62. * supervisor permissions into user permissions. */
  63. mas3 &= ~E500_TLB_USER_PERM_MASK;
  64. mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
  65. }
  66. mas3 |= E500_TLB_SUPER_PERM_MASK;
  67. #endif
  68. return mas3;
  69. }
  70. static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
  71. {
  72. #ifdef CONFIG_SMP
  73. return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
  74. #else
  75. return mas2 & MAS2_ATTRIB_MASK;
  76. #endif
  77. }
  78. /*
  79. * writing shadow tlb entry to host TLB
  80. */
  81. static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
  82. uint32_t mas0)
  83. {
  84. unsigned long flags;
  85. local_irq_save(flags);
  86. mtspr(SPRN_MAS0, mas0);
  87. mtspr(SPRN_MAS1, stlbe->mas1);
  88. mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
  89. mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
  90. mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
  91. #ifdef CONFIG_KVM_BOOKE_HV
  92. mtspr(SPRN_MAS8, stlbe->mas8);
  93. #endif
  94. asm volatile("isync; tlbwe" : : : "memory");
  95. #ifdef CONFIG_KVM_BOOKE_HV
  96. /* Must clear mas8 for other host tlbwe's */
  97. mtspr(SPRN_MAS8, 0);
  98. isync();
  99. #endif
  100. local_irq_restore(flags);
  101. trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
  102. stlbe->mas2, stlbe->mas7_3);
  103. }
  104. /*
  105. * Acquire a mas0 with victim hint, as if we just took a TLB miss.
  106. *
  107. * We don't care about the address we're searching for, other than that it's
  108. * in the right set and is not present in the TLB. Using a zero PID and a
  109. * userspace address means we don't have to set and then restore MAS5, or
  110. * calculate a proper MAS6 value.
  111. */
  112. static u32 get_host_mas0(unsigned long eaddr)
  113. {
  114. unsigned long flags;
  115. u32 mas0;
  116. local_irq_save(flags);
  117. mtspr(SPRN_MAS6, 0);
  118. asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
  119. mas0 = mfspr(SPRN_MAS0);
  120. local_irq_restore(flags);
  121. return mas0;
  122. }
  123. /* sesel is for tlb1 only */
  124. static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
  125. int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
  126. {
  127. u32 mas0;
  128. if (tlbsel == 0) {
  129. mas0 = get_host_mas0(stlbe->mas2);
  130. __write_host_tlbe(stlbe, mas0);
  131. } else {
  132. __write_host_tlbe(stlbe,
  133. MAS0_TLBSEL(1) |
  134. MAS0_ESEL(to_htlb1_esel(sesel)));
  135. }
  136. }
  137. #ifdef CONFIG_KVM_E500V2
  138. void kvmppc_map_magic(struct kvm_vcpu *vcpu)
  139. {
  140. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  141. struct kvm_book3e_206_tlb_entry magic;
  142. ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
  143. unsigned int stid;
  144. pfn_t pfn;
  145. pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
  146. get_page(pfn_to_page(pfn));
  147. preempt_disable();
  148. stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
  149. magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
  150. MAS1_TSIZE(BOOK3E_PAGESZ_4K);
  151. magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
  152. magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
  153. MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
  154. magic.mas8 = 0;
  155. __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
  156. preempt_enable();
  157. }
  158. #endif
  159. static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
  160. int tlbsel, int esel)
  161. {
  162. struct kvm_book3e_206_tlb_entry *gtlbe =
  163. get_entry(vcpu_e500, tlbsel, esel);
  164. if (tlbsel == 1 &&
  165. vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
  166. u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
  167. int hw_tlb_indx;
  168. unsigned long flags;
  169. local_irq_save(flags);
  170. while (tmp) {
  171. hw_tlb_indx = __ilog2_u64(tmp & -tmp);
  172. mtspr(SPRN_MAS0,
  173. MAS0_TLBSEL(1) |
  174. MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
  175. mtspr(SPRN_MAS1, 0);
  176. asm volatile("tlbwe");
  177. vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
  178. tmp &= tmp - 1;
  179. }
  180. mb();
  181. vcpu_e500->g2h_tlb1_map[esel] = 0;
  182. vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
  183. local_irq_restore(flags);
  184. return;
  185. }
  186. /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
  187. kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
  188. }
  189. static int tlb0_set_base(gva_t addr, int sets, int ways)
  190. {
  191. int set_base;
  192. set_base = (addr >> PAGE_SHIFT) & (sets - 1);
  193. set_base *= ways;
  194. return set_base;
  195. }
  196. static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
  197. {
  198. return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
  199. vcpu_e500->gtlb_params[0].ways);
  200. }
  201. static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
  202. {
  203. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  204. int esel = get_tlb_esel_bit(vcpu);
  205. if (tlbsel == 0) {
  206. esel &= vcpu_e500->gtlb_params[0].ways - 1;
  207. esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
  208. } else {
  209. esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
  210. }
  211. return esel;
  212. }
  213. /* Search the guest TLB for a matching entry. */
  214. static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
  215. gva_t eaddr, int tlbsel, unsigned int pid, int as)
  216. {
  217. int size = vcpu_e500->gtlb_params[tlbsel].entries;
  218. unsigned int set_base, offset;
  219. int i;
  220. if (tlbsel == 0) {
  221. set_base = gtlb0_set_base(vcpu_e500, eaddr);
  222. size = vcpu_e500->gtlb_params[0].ways;
  223. } else {
  224. if (eaddr < vcpu_e500->tlb1_min_eaddr ||
  225. eaddr > vcpu_e500->tlb1_max_eaddr)
  226. return -1;
  227. set_base = 0;
  228. }
  229. offset = vcpu_e500->gtlb_offset[tlbsel];
  230. for (i = 0; i < size; i++) {
  231. struct kvm_book3e_206_tlb_entry *tlbe =
  232. &vcpu_e500->gtlb_arch[offset + set_base + i];
  233. unsigned int tid;
  234. if (eaddr < get_tlb_eaddr(tlbe))
  235. continue;
  236. if (eaddr > get_tlb_end(tlbe))
  237. continue;
  238. tid = get_tlb_tid(tlbe);
  239. if (tid && (tid != pid))
  240. continue;
  241. if (!get_tlb_v(tlbe))
  242. continue;
  243. if (get_tlb_ts(tlbe) != as && as != -1)
  244. continue;
  245. return set_base + i;
  246. }
  247. return -1;
  248. }
  249. static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
  250. struct kvm_book3e_206_tlb_entry *gtlbe,
  251. pfn_t pfn)
  252. {
  253. ref->pfn = pfn;
  254. ref->flags = E500_TLB_VALID;
  255. if (tlbe_is_writable(gtlbe)) {
  256. ref->flags |= E500_TLB_DIRTY;
  257. kvm_set_pfn_dirty(pfn);
  258. }
  259. }
  260. static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
  261. {
  262. if (ref->flags & E500_TLB_VALID) {
  263. ref->flags = 0;
  264. }
  265. }
  266. static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
  267. {
  268. if (vcpu_e500->g2h_tlb1_map)
  269. memset(vcpu_e500->g2h_tlb1_map, 0,
  270. sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
  271. if (vcpu_e500->h2g_tlb1_rmap)
  272. memset(vcpu_e500->h2g_tlb1_rmap, 0,
  273. sizeof(unsigned int) * host_tlb_params[1].entries);
  274. }
  275. static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
  276. {
  277. int tlbsel = 0;
  278. int i;
  279. for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
  280. struct tlbe_ref *ref =
  281. &vcpu_e500->gtlb_priv[tlbsel][i].ref;
  282. kvmppc_e500_ref_release(ref);
  283. }
  284. }
  285. static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
  286. {
  287. int stlbsel = 1;
  288. int i;
  289. kvmppc_e500_tlbil_all(vcpu_e500);
  290. for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
  291. struct tlbe_ref *ref =
  292. &vcpu_e500->tlb_refs[stlbsel][i];
  293. kvmppc_e500_ref_release(ref);
  294. }
  295. clear_tlb_privs(vcpu_e500);
  296. }
  297. void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
  298. {
  299. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  300. clear_tlb_refs(vcpu_e500);
  301. clear_tlb1_bitmap(vcpu_e500);
  302. }
  303. static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
  304. unsigned int eaddr, int as)
  305. {
  306. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  307. unsigned int victim, tsized;
  308. int tlbsel;
  309. /* since we only have two TLBs, only lower bit is used. */
  310. tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
  311. victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
  312. tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
  313. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
  314. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  315. vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
  316. | MAS1_TID(get_tlbmiss_tid(vcpu))
  317. | MAS1_TSIZE(tsized);
  318. vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
  319. | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
  320. vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
  321. vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
  322. | (get_cur_pid(vcpu) << 16)
  323. | (as ? MAS6_SAS : 0);
  324. }
  325. /* TID must be supplied by the caller */
  326. static inline void kvmppc_e500_setup_stlbe(
  327. struct kvm_vcpu *vcpu,
  328. struct kvm_book3e_206_tlb_entry *gtlbe,
  329. int tsize, struct tlbe_ref *ref, u64 gvaddr,
  330. struct kvm_book3e_206_tlb_entry *stlbe)
  331. {
  332. pfn_t pfn = ref->pfn;
  333. u32 pr = vcpu->arch.shared->msr & MSR_PR;
  334. BUG_ON(!(ref->flags & E500_TLB_VALID));
  335. /* Force IPROT=0 for all guest mappings. */
  336. stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
  337. stlbe->mas2 = (gvaddr & MAS2_EPN) |
  338. e500_shadow_mas2_attrib(gtlbe->mas2, pr);
  339. stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
  340. e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
  341. #ifdef CONFIG_KVM_BOOKE_HV
  342. stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
  343. #endif
  344. }
  345. static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  346. u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
  347. int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
  348. struct tlbe_ref *ref)
  349. {
  350. struct kvm_memory_slot *slot;
  351. unsigned long pfn, hva;
  352. int pfnmap = 0;
  353. int tsize = BOOK3E_PAGESZ_4K;
  354. /*
  355. * Translate guest physical to true physical, acquiring
  356. * a page reference if it is normal, non-reserved memory.
  357. *
  358. * gfn_to_memslot() must succeed because otherwise we wouldn't
  359. * have gotten this far. Eventually we should just pass the slot
  360. * pointer through from the first lookup.
  361. */
  362. slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
  363. hva = gfn_to_hva_memslot(slot, gfn);
  364. if (tlbsel == 1) {
  365. struct vm_area_struct *vma;
  366. down_read(&current->mm->mmap_sem);
  367. vma = find_vma(current->mm, hva);
  368. if (vma && hva >= vma->vm_start &&
  369. (vma->vm_flags & VM_PFNMAP)) {
  370. /*
  371. * This VMA is a physically contiguous region (e.g.
  372. * /dev/mem) that bypasses normal Linux page
  373. * management. Find the overlap between the
  374. * vma and the memslot.
  375. */
  376. unsigned long start, end;
  377. unsigned long slot_start, slot_end;
  378. pfnmap = 1;
  379. start = vma->vm_pgoff;
  380. end = start +
  381. ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
  382. pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
  383. slot_start = pfn - (gfn - slot->base_gfn);
  384. slot_end = slot_start + slot->npages;
  385. if (start < slot_start)
  386. start = slot_start;
  387. if (end > slot_end)
  388. end = slot_end;
  389. tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
  390. MAS1_TSIZE_SHIFT;
  391. /*
  392. * e500 doesn't implement the lowest tsize bit,
  393. * or 1K pages.
  394. */
  395. tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
  396. /*
  397. * Now find the largest tsize (up to what the guest
  398. * requested) that will cover gfn, stay within the
  399. * range, and for which gfn and pfn are mutually
  400. * aligned.
  401. */
  402. for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
  403. unsigned long gfn_start, gfn_end, tsize_pages;
  404. tsize_pages = 1 << (tsize - 2);
  405. gfn_start = gfn & ~(tsize_pages - 1);
  406. gfn_end = gfn_start + tsize_pages;
  407. if (gfn_start + pfn - gfn < start)
  408. continue;
  409. if (gfn_end + pfn - gfn > end)
  410. continue;
  411. if ((gfn & (tsize_pages - 1)) !=
  412. (pfn & (tsize_pages - 1)))
  413. continue;
  414. gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
  415. pfn &= ~(tsize_pages - 1);
  416. break;
  417. }
  418. } else if (vma && hva >= vma->vm_start &&
  419. (vma->vm_flags & VM_HUGETLB)) {
  420. unsigned long psize = vma_kernel_pagesize(vma);
  421. tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
  422. MAS1_TSIZE_SHIFT;
  423. /*
  424. * Take the largest page size that satisfies both host
  425. * and guest mapping
  426. */
  427. tsize = min(__ilog2(psize) - 10, tsize);
  428. /*
  429. * e500 doesn't implement the lowest tsize bit,
  430. * or 1K pages.
  431. */
  432. tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
  433. }
  434. up_read(&current->mm->mmap_sem);
  435. }
  436. if (likely(!pfnmap)) {
  437. unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
  438. pfn = gfn_to_pfn_memslot(slot, gfn);
  439. if (is_error_pfn(pfn)) {
  440. printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
  441. (long)gfn);
  442. return;
  443. }
  444. /* Align guest and physical address to page map boundaries */
  445. pfn &= ~(tsize_pages - 1);
  446. gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
  447. }
  448. /* Drop old ref and setup new one. */
  449. kvmppc_e500_ref_release(ref);
  450. kvmppc_e500_ref_setup(ref, gtlbe, pfn);
  451. kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
  452. ref, gvaddr, stlbe);
  453. /* Clear i-cache for new pages */
  454. kvmppc_mmu_flush_icache(pfn);
  455. /* Drop refcount on page, so that mmu notifiers can clear it */
  456. kvm_release_pfn_clean(pfn);
  457. }
  458. /* XXX only map the one-one case, for now use TLB0 */
  459. static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  460. int esel,
  461. struct kvm_book3e_206_tlb_entry *stlbe)
  462. {
  463. struct kvm_book3e_206_tlb_entry *gtlbe;
  464. struct tlbe_ref *ref;
  465. gtlbe = get_entry(vcpu_e500, 0, esel);
  466. ref = &vcpu_e500->gtlb_priv[0][esel].ref;
  467. kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
  468. get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
  469. gtlbe, 0, stlbe, ref);
  470. }
  471. /* Caller must ensure that the specified guest TLB entry is safe to insert into
  472. * the shadow TLB. */
  473. /* XXX for both one-one and one-to-many , for now use TLB1 */
  474. static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  475. u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
  476. struct kvm_book3e_206_tlb_entry *stlbe, int esel)
  477. {
  478. struct tlbe_ref *ref;
  479. unsigned int victim;
  480. victim = vcpu_e500->host_tlb1_nv++;
  481. if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
  482. vcpu_e500->host_tlb1_nv = 0;
  483. ref = &vcpu_e500->tlb_refs[1][victim];
  484. kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
  485. vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
  486. vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
  487. if (vcpu_e500->h2g_tlb1_rmap[victim]) {
  488. unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
  489. vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
  490. }
  491. vcpu_e500->h2g_tlb1_rmap[victim] = esel;
  492. return victim;
  493. }
  494. static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
  495. {
  496. int size = vcpu_e500->gtlb_params[1].entries;
  497. unsigned int offset;
  498. gva_t eaddr;
  499. int i;
  500. vcpu_e500->tlb1_min_eaddr = ~0UL;
  501. vcpu_e500->tlb1_max_eaddr = 0;
  502. offset = vcpu_e500->gtlb_offset[1];
  503. for (i = 0; i < size; i++) {
  504. struct kvm_book3e_206_tlb_entry *tlbe =
  505. &vcpu_e500->gtlb_arch[offset + i];
  506. if (!get_tlb_v(tlbe))
  507. continue;
  508. eaddr = get_tlb_eaddr(tlbe);
  509. vcpu_e500->tlb1_min_eaddr =
  510. min(vcpu_e500->tlb1_min_eaddr, eaddr);
  511. eaddr = get_tlb_end(tlbe);
  512. vcpu_e500->tlb1_max_eaddr =
  513. max(vcpu_e500->tlb1_max_eaddr, eaddr);
  514. }
  515. }
  516. static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
  517. struct kvm_book3e_206_tlb_entry *gtlbe)
  518. {
  519. unsigned long start, end, size;
  520. size = get_tlb_bytes(gtlbe);
  521. start = get_tlb_eaddr(gtlbe) & ~(size - 1);
  522. end = start + size - 1;
  523. return vcpu_e500->tlb1_min_eaddr == start ||
  524. vcpu_e500->tlb1_max_eaddr == end;
  525. }
  526. /* This function is supposed to be called for a adding a new valid tlb entry */
  527. static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
  528. struct kvm_book3e_206_tlb_entry *gtlbe)
  529. {
  530. unsigned long start, end, size;
  531. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  532. if (!get_tlb_v(gtlbe))
  533. return;
  534. size = get_tlb_bytes(gtlbe);
  535. start = get_tlb_eaddr(gtlbe) & ~(size - 1);
  536. end = start + size - 1;
  537. vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
  538. vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
  539. }
  540. static inline int kvmppc_e500_gtlbe_invalidate(
  541. struct kvmppc_vcpu_e500 *vcpu_e500,
  542. int tlbsel, int esel)
  543. {
  544. struct kvm_book3e_206_tlb_entry *gtlbe =
  545. get_entry(vcpu_e500, tlbsel, esel);
  546. if (unlikely(get_tlb_iprot(gtlbe)))
  547. return -1;
  548. if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
  549. kvmppc_recalc_tlb1map_range(vcpu_e500);
  550. gtlbe->mas1 = 0;
  551. return 0;
  552. }
  553. int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
  554. {
  555. int esel;
  556. if (value & MMUCSR0_TLB0FI)
  557. for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
  558. kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
  559. if (value & MMUCSR0_TLB1FI)
  560. for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
  561. kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
  562. /* Invalidate all vcpu id mappings */
  563. kvmppc_e500_tlbil_all(vcpu_e500);
  564. return EMULATE_DONE;
  565. }
  566. int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
  567. {
  568. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  569. unsigned int ia;
  570. int esel, tlbsel;
  571. gva_t ea;
  572. ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
  573. ia = (ea >> 2) & 0x1;
  574. /* since we only have two TLBs, only lower bit is used. */
  575. tlbsel = (ea >> 3) & 0x1;
  576. if (ia) {
  577. /* invalidate all entries */
  578. for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
  579. esel++)
  580. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  581. } else {
  582. ea &= 0xfffff000;
  583. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
  584. get_cur_pid(vcpu), -1);
  585. if (esel >= 0)
  586. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  587. }
  588. /* Invalidate all vcpu id mappings */
  589. kvmppc_e500_tlbil_all(vcpu_e500);
  590. return EMULATE_DONE;
  591. }
  592. static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
  593. int pid, int rt)
  594. {
  595. struct kvm_book3e_206_tlb_entry *tlbe;
  596. int tid, esel;
  597. /* invalidate all entries */
  598. for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
  599. tlbe = get_entry(vcpu_e500, tlbsel, esel);
  600. tid = get_tlb_tid(tlbe);
  601. if (rt == 0 || tid == pid) {
  602. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  603. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  604. }
  605. }
  606. }
  607. static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
  608. int ra, int rb)
  609. {
  610. int tlbsel, esel;
  611. gva_t ea;
  612. ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb);
  613. if (ra)
  614. ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra);
  615. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  616. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
  617. if (esel >= 0) {
  618. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  619. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  620. break;
  621. }
  622. }
  623. }
  624. int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb)
  625. {
  626. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  627. int pid = get_cur_spid(vcpu);
  628. if (rt == 0 || rt == 1) {
  629. tlbilx_all(vcpu_e500, 0, pid, rt);
  630. tlbilx_all(vcpu_e500, 1, pid, rt);
  631. } else if (rt == 3) {
  632. tlbilx_one(vcpu_e500, pid, ra, rb);
  633. }
  634. return EMULATE_DONE;
  635. }
  636. int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
  637. {
  638. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  639. int tlbsel, esel;
  640. struct kvm_book3e_206_tlb_entry *gtlbe;
  641. tlbsel = get_tlb_tlbsel(vcpu);
  642. esel = get_tlb_esel(vcpu, tlbsel);
  643. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  644. vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
  645. vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  646. vcpu->arch.shared->mas1 = gtlbe->mas1;
  647. vcpu->arch.shared->mas2 = gtlbe->mas2;
  648. vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
  649. return EMULATE_DONE;
  650. }
  651. int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
  652. {
  653. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  654. int as = !!get_cur_sas(vcpu);
  655. unsigned int pid = get_cur_spid(vcpu);
  656. int esel, tlbsel;
  657. struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
  658. gva_t ea;
  659. ea = kvmppc_get_gpr(vcpu, rb);
  660. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  661. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
  662. if (esel >= 0) {
  663. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  664. break;
  665. }
  666. }
  667. if (gtlbe) {
  668. esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
  669. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
  670. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  671. vcpu->arch.shared->mas1 = gtlbe->mas1;
  672. vcpu->arch.shared->mas2 = gtlbe->mas2;
  673. vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
  674. } else {
  675. int victim;
  676. /* since we only have two TLBs, only lower bit is used. */
  677. tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
  678. victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
  679. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
  680. | MAS0_ESEL(victim)
  681. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  682. vcpu->arch.shared->mas1 =
  683. (vcpu->arch.shared->mas6 & MAS6_SPID0)
  684. | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
  685. | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
  686. vcpu->arch.shared->mas2 &= MAS2_EPN;
  687. vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
  688. MAS2_ATTRIB_MASK;
  689. vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
  690. MAS3_U2 | MAS3_U3;
  691. }
  692. kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
  693. return EMULATE_DONE;
  694. }
  695. /* sesel is for tlb1 only */
  696. static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
  697. struct kvm_book3e_206_tlb_entry *gtlbe,
  698. struct kvm_book3e_206_tlb_entry *stlbe,
  699. int stlbsel, int sesel)
  700. {
  701. int stid;
  702. preempt_disable();
  703. stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
  704. stlbe->mas1 |= MAS1_TID(stid);
  705. write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
  706. preempt_enable();
  707. }
  708. int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
  709. {
  710. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  711. struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
  712. int tlbsel, esel, stlbsel, sesel;
  713. int recal = 0;
  714. tlbsel = get_tlb_tlbsel(vcpu);
  715. esel = get_tlb_esel(vcpu, tlbsel);
  716. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  717. if (get_tlb_v(gtlbe)) {
  718. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  719. if ((tlbsel == 1) &&
  720. kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
  721. recal = 1;
  722. }
  723. gtlbe->mas1 = vcpu->arch.shared->mas1;
  724. gtlbe->mas2 = vcpu->arch.shared->mas2;
  725. gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
  726. trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
  727. gtlbe->mas2, gtlbe->mas7_3);
  728. if (tlbsel == 1) {
  729. /*
  730. * If a valid tlb1 entry is overwritten then recalculate the
  731. * min/max TLB1 map address range otherwise no need to look
  732. * in tlb1 array.
  733. */
  734. if (recal)
  735. kvmppc_recalc_tlb1map_range(vcpu_e500);
  736. else
  737. kvmppc_set_tlb1map_range(vcpu, gtlbe);
  738. }
  739. /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
  740. if (tlbe_is_host_safe(vcpu, gtlbe)) {
  741. u64 eaddr;
  742. u64 raddr;
  743. switch (tlbsel) {
  744. case 0:
  745. /* TLB0 */
  746. gtlbe->mas1 &= ~MAS1_TSIZE(~0);
  747. gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
  748. stlbsel = 0;
  749. kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
  750. sesel = 0; /* unused */
  751. break;
  752. case 1:
  753. /* TLB1 */
  754. eaddr = get_tlb_eaddr(gtlbe);
  755. raddr = get_tlb_raddr(gtlbe);
  756. /* Create a 4KB mapping on the host.
  757. * If the guest wanted a large page,
  758. * only the first 4KB is mapped here and the rest
  759. * are mapped on the fly. */
  760. stlbsel = 1;
  761. sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
  762. raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
  763. break;
  764. default:
  765. BUG();
  766. }
  767. write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
  768. }
  769. kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
  770. return EMULATE_DONE;
  771. }
  772. static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
  773. gva_t eaddr, unsigned int pid, int as)
  774. {
  775. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  776. int esel, tlbsel;
  777. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  778. esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
  779. if (esel >= 0)
  780. return index_of(tlbsel, esel);
  781. }
  782. return -1;
  783. }
  784. /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
  785. int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
  786. struct kvm_translation *tr)
  787. {
  788. int index;
  789. gva_t eaddr;
  790. u8 pid;
  791. u8 as;
  792. eaddr = tr->linear_address;
  793. pid = (tr->linear_address >> 32) & 0xff;
  794. as = (tr->linear_address >> 40) & 0x1;
  795. index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
  796. if (index < 0) {
  797. tr->valid = 0;
  798. return 0;
  799. }
  800. tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
  801. /* XXX what does "writeable" and "usermode" even mean? */
  802. tr->valid = 1;
  803. return 0;
  804. }
  805. int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
  806. {
  807. unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
  808. return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
  809. }
  810. int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
  811. {
  812. unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
  813. return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
  814. }
  815. void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
  816. {
  817. unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
  818. kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
  819. }
  820. void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
  821. {
  822. unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
  823. kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
  824. }
  825. gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
  826. gva_t eaddr)
  827. {
  828. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  829. struct kvm_book3e_206_tlb_entry *gtlbe;
  830. u64 pgmask;
  831. gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
  832. pgmask = get_tlb_bytes(gtlbe) - 1;
  833. return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
  834. }
  835. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  836. {
  837. }
  838. void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
  839. unsigned int index)
  840. {
  841. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  842. struct tlbe_priv *priv;
  843. struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
  844. int tlbsel = tlbsel_of(index);
  845. int esel = esel_of(index);
  846. int stlbsel, sesel;
  847. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  848. switch (tlbsel) {
  849. case 0:
  850. stlbsel = 0;
  851. sesel = 0; /* unused */
  852. priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
  853. /* Only triggers after clear_tlb_refs */
  854. if (unlikely(!(priv->ref.flags & E500_TLB_VALID)))
  855. kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
  856. else
  857. kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
  858. &priv->ref, eaddr, &stlbe);
  859. break;
  860. case 1: {
  861. gfn_t gfn = gpaddr >> PAGE_SHIFT;
  862. stlbsel = 1;
  863. sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
  864. gtlbe, &stlbe, esel);
  865. break;
  866. }
  867. default:
  868. BUG();
  869. break;
  870. }
  871. write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
  872. }
  873. /************* MMU Notifiers *************/
  874. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  875. {
  876. /*
  877. * Flush all shadow tlb entries everywhere. This is slow, but
  878. * we are 100% sure that we catch the to be unmapped page
  879. */
  880. kvm_flush_remote_tlbs(kvm);
  881. return 0;
  882. }
  883. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  884. {
  885. /* kvm_unmap_hva flushes everything anyways */
  886. kvm_unmap_hva(kvm, start);
  887. return 0;
  888. }
  889. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  890. {
  891. /* XXX could be more clever ;) */
  892. return 0;
  893. }
  894. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  895. {
  896. /* XXX could be more clever ;) */
  897. return 0;
  898. }
  899. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  900. {
  901. /* The page will get remapped properly on its next fault */
  902. kvm_unmap_hva(kvm, hva);
  903. }
  904. /*****************************************/
  905. static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
  906. {
  907. int i;
  908. clear_tlb1_bitmap(vcpu_e500);
  909. kfree(vcpu_e500->g2h_tlb1_map);
  910. clear_tlb_refs(vcpu_e500);
  911. kfree(vcpu_e500->gtlb_priv[0]);
  912. kfree(vcpu_e500->gtlb_priv[1]);
  913. if (vcpu_e500->shared_tlb_pages) {
  914. vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
  915. PAGE_SIZE)));
  916. for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
  917. set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
  918. put_page(vcpu_e500->shared_tlb_pages[i]);
  919. }
  920. vcpu_e500->num_shared_tlb_pages = 0;
  921. vcpu_e500->shared_tlb_pages = NULL;
  922. } else {
  923. kfree(vcpu_e500->gtlb_arch);
  924. }
  925. vcpu_e500->gtlb_arch = NULL;
  926. }
  927. void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  928. {
  929. sregs->u.e.mas0 = vcpu->arch.shared->mas0;
  930. sregs->u.e.mas1 = vcpu->arch.shared->mas1;
  931. sregs->u.e.mas2 = vcpu->arch.shared->mas2;
  932. sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
  933. sregs->u.e.mas4 = vcpu->arch.shared->mas4;
  934. sregs->u.e.mas6 = vcpu->arch.shared->mas6;
  935. sregs->u.e.mmucfg = vcpu->arch.mmucfg;
  936. sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
  937. sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
  938. sregs->u.e.tlbcfg[2] = 0;
  939. sregs->u.e.tlbcfg[3] = 0;
  940. }
  941. int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  942. {
  943. if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
  944. vcpu->arch.shared->mas0 = sregs->u.e.mas0;
  945. vcpu->arch.shared->mas1 = sregs->u.e.mas1;
  946. vcpu->arch.shared->mas2 = sregs->u.e.mas2;
  947. vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
  948. vcpu->arch.shared->mas4 = sregs->u.e.mas4;
  949. vcpu->arch.shared->mas6 = sregs->u.e.mas6;
  950. }
  951. return 0;
  952. }
  953. int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
  954. struct kvm_config_tlb *cfg)
  955. {
  956. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  957. struct kvm_book3e_206_tlb_params params;
  958. char *virt;
  959. struct page **pages;
  960. struct tlbe_priv *privs[2] = {};
  961. u64 *g2h_bitmap = NULL;
  962. size_t array_len;
  963. u32 sets;
  964. int num_pages, ret, i;
  965. if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
  966. return -EINVAL;
  967. if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
  968. sizeof(params)))
  969. return -EFAULT;
  970. if (params.tlb_sizes[1] > 64)
  971. return -EINVAL;
  972. if (params.tlb_ways[1] != params.tlb_sizes[1])
  973. return -EINVAL;
  974. if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
  975. return -EINVAL;
  976. if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
  977. return -EINVAL;
  978. if (!is_power_of_2(params.tlb_ways[0]))
  979. return -EINVAL;
  980. sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
  981. if (!is_power_of_2(sets))
  982. return -EINVAL;
  983. array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
  984. array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
  985. if (cfg->array_len < array_len)
  986. return -EINVAL;
  987. num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
  988. cfg->array / PAGE_SIZE;
  989. pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
  990. if (!pages)
  991. return -ENOMEM;
  992. ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
  993. if (ret < 0)
  994. goto err_pages;
  995. if (ret != num_pages) {
  996. num_pages = ret;
  997. ret = -EFAULT;
  998. goto err_put_page;
  999. }
  1000. virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
  1001. if (!virt)
  1002. goto err_put_page;
  1003. privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
  1004. GFP_KERNEL);
  1005. privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
  1006. GFP_KERNEL);
  1007. if (!privs[0] || !privs[1])
  1008. goto err_put_page;
  1009. g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
  1010. GFP_KERNEL);
  1011. if (!g2h_bitmap)
  1012. goto err_put_page;
  1013. free_gtlb(vcpu_e500);
  1014. vcpu_e500->gtlb_priv[0] = privs[0];
  1015. vcpu_e500->gtlb_priv[1] = privs[1];
  1016. vcpu_e500->g2h_tlb1_map = g2h_bitmap;
  1017. vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
  1018. (virt + (cfg->array & (PAGE_SIZE - 1)));
  1019. vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
  1020. vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
  1021. vcpu_e500->gtlb_offset[0] = 0;
  1022. vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
  1023. vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
  1024. vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1025. if (params.tlb_sizes[0] <= 2048)
  1026. vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
  1027. vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
  1028. vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1029. vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
  1030. vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
  1031. vcpu_e500->shared_tlb_pages = pages;
  1032. vcpu_e500->num_shared_tlb_pages = num_pages;
  1033. vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
  1034. vcpu_e500->gtlb_params[0].sets = sets;
  1035. vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
  1036. vcpu_e500->gtlb_params[1].sets = 1;
  1037. kvmppc_recalc_tlb1map_range(vcpu_e500);
  1038. return 0;
  1039. err_put_page:
  1040. kfree(privs[0]);
  1041. kfree(privs[1]);
  1042. for (i = 0; i < num_pages; i++)
  1043. put_page(pages[i]);
  1044. err_pages:
  1045. kfree(pages);
  1046. return ret;
  1047. }
  1048. int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
  1049. struct kvm_dirty_tlb *dirty)
  1050. {
  1051. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  1052. kvmppc_recalc_tlb1map_range(vcpu_e500);
  1053. clear_tlb_refs(vcpu_e500);
  1054. return 0;
  1055. }
  1056. int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
  1057. {
  1058. struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
  1059. int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
  1060. int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
  1061. host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
  1062. host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
  1063. /*
  1064. * This should never happen on real e500 hardware, but is
  1065. * architecturally possible -- e.g. in some weird nested
  1066. * virtualization case.
  1067. */
  1068. if (host_tlb_params[0].entries == 0 ||
  1069. host_tlb_params[1].entries == 0) {
  1070. pr_err("%s: need to know host tlb size\n", __func__);
  1071. return -ENODEV;
  1072. }
  1073. host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
  1074. TLBnCFG_ASSOC_SHIFT;
  1075. host_tlb_params[1].ways = host_tlb_params[1].entries;
  1076. if (!is_power_of_2(host_tlb_params[0].entries) ||
  1077. !is_power_of_2(host_tlb_params[0].ways) ||
  1078. host_tlb_params[0].entries < host_tlb_params[0].ways ||
  1079. host_tlb_params[0].ways == 0) {
  1080. pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
  1081. __func__, host_tlb_params[0].entries,
  1082. host_tlb_params[0].ways);
  1083. return -ENODEV;
  1084. }
  1085. host_tlb_params[0].sets =
  1086. host_tlb_params[0].entries / host_tlb_params[0].ways;
  1087. host_tlb_params[1].sets = 1;
  1088. vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
  1089. vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
  1090. vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
  1091. vcpu_e500->gtlb_params[0].sets =
  1092. KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
  1093. vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
  1094. vcpu_e500->gtlb_params[1].sets = 1;
  1095. vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
  1096. if (!vcpu_e500->gtlb_arch)
  1097. return -ENOMEM;
  1098. vcpu_e500->gtlb_offset[0] = 0;
  1099. vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
  1100. vcpu_e500->tlb_refs[0] =
  1101. kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
  1102. GFP_KERNEL);
  1103. if (!vcpu_e500->tlb_refs[0])
  1104. goto err;
  1105. vcpu_e500->tlb_refs[1] =
  1106. kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
  1107. GFP_KERNEL);
  1108. if (!vcpu_e500->tlb_refs[1])
  1109. goto err;
  1110. vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
  1111. vcpu_e500->gtlb_params[0].entries,
  1112. GFP_KERNEL);
  1113. if (!vcpu_e500->gtlb_priv[0])
  1114. goto err;
  1115. vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
  1116. vcpu_e500->gtlb_params[1].entries,
  1117. GFP_KERNEL);
  1118. if (!vcpu_e500->gtlb_priv[1])
  1119. goto err;
  1120. vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) *
  1121. vcpu_e500->gtlb_params[1].entries,
  1122. GFP_KERNEL);
  1123. if (!vcpu_e500->g2h_tlb1_map)
  1124. goto err;
  1125. vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
  1126. host_tlb_params[1].entries,
  1127. GFP_KERNEL);
  1128. if (!vcpu_e500->h2g_tlb1_rmap)
  1129. goto err;
  1130. /* Init TLB configuration register */
  1131. vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
  1132. ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1133. vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
  1134. vcpu->arch.tlbcfg[0] |=
  1135. vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
  1136. vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
  1137. ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1138. vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
  1139. vcpu->arch.tlbcfg[1] |=
  1140. vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
  1141. kvmppc_recalc_tlb1map_range(vcpu_e500);
  1142. return 0;
  1143. err:
  1144. free_gtlb(vcpu_e500);
  1145. kfree(vcpu_e500->tlb_refs[0]);
  1146. kfree(vcpu_e500->tlb_refs[1]);
  1147. return -1;
  1148. }
  1149. void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
  1150. {
  1151. free_gtlb(vcpu_e500);
  1152. kfree(vcpu_e500->h2g_tlb1_rmap);
  1153. kfree(vcpu_e500->tlb_refs[0]);
  1154. kfree(vcpu_e500->tlb_refs[1]);
  1155. }