sched.c 257 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. struct cfs_rq cfs;
  494. struct rt_rq rt;
  495. #ifdef CONFIG_FAIR_GROUP_SCHED
  496. /* list of leaf cfs_rq on this cpu: */
  497. struct list_head leaf_cfs_rq_list;
  498. #endif
  499. #ifdef CONFIG_RT_GROUP_SCHED
  500. struct list_head leaf_rt_rq_list;
  501. #endif
  502. /*
  503. * This is part of a global counter where only the total sum
  504. * over all CPUs matters. A task can increase this counter on
  505. * one CPU and if it got migrated afterwards it may decrease
  506. * it on another CPU. Always updated under the runqueue lock:
  507. */
  508. unsigned long nr_uninterruptible;
  509. struct task_struct *curr, *idle;
  510. unsigned long next_balance;
  511. struct mm_struct *prev_mm;
  512. u64 clock;
  513. atomic_t nr_iowait;
  514. #ifdef CONFIG_SMP
  515. struct root_domain *rd;
  516. struct sched_domain *sd;
  517. unsigned char idle_at_tick;
  518. /* For active balancing */
  519. int active_balance;
  520. int push_cpu;
  521. /* cpu of this runqueue: */
  522. int cpu;
  523. int online;
  524. unsigned long avg_load_per_task;
  525. struct task_struct *migration_thread;
  526. struct list_head migration_queue;
  527. #endif
  528. /* calc_load related fields */
  529. unsigned long calc_load_update;
  530. long calc_load_active;
  531. #ifdef CONFIG_SCHED_HRTICK
  532. #ifdef CONFIG_SMP
  533. int hrtick_csd_pending;
  534. struct call_single_data hrtick_csd;
  535. #endif
  536. struct hrtimer hrtick_timer;
  537. #endif
  538. #ifdef CONFIG_SCHEDSTATS
  539. /* latency stats */
  540. struct sched_info rq_sched_info;
  541. unsigned long long rq_cpu_time;
  542. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  543. /* sys_sched_yield() stats */
  544. unsigned int yld_count;
  545. /* schedule() stats */
  546. unsigned int sched_switch;
  547. unsigned int sched_count;
  548. unsigned int sched_goidle;
  549. /* try_to_wake_up() stats */
  550. unsigned int ttwu_count;
  551. unsigned int ttwu_local;
  552. /* BKL stats */
  553. unsigned int bkl_count;
  554. #endif
  555. };
  556. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  557. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  558. {
  559. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  560. }
  561. static inline int cpu_of(struct rq *rq)
  562. {
  563. #ifdef CONFIG_SMP
  564. return rq->cpu;
  565. #else
  566. return 0;
  567. #endif
  568. }
  569. /*
  570. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  571. * See detach_destroy_domains: synchronize_sched for details.
  572. *
  573. * The domain tree of any CPU may only be accessed from within
  574. * preempt-disabled sections.
  575. */
  576. #define for_each_domain(cpu, __sd) \
  577. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  578. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  579. #define this_rq() (&__get_cpu_var(runqueues))
  580. #define task_rq(p) cpu_rq(task_cpu(p))
  581. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  582. static inline void update_rq_clock(struct rq *rq)
  583. {
  584. rq->clock = sched_clock_cpu(cpu_of(rq));
  585. }
  586. /*
  587. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  588. */
  589. #ifdef CONFIG_SCHED_DEBUG
  590. # define const_debug __read_mostly
  591. #else
  592. # define const_debug static const
  593. #endif
  594. /**
  595. * runqueue_is_locked
  596. *
  597. * Returns true if the current cpu runqueue is locked.
  598. * This interface allows printk to be called with the runqueue lock
  599. * held and know whether or not it is OK to wake up the klogd.
  600. */
  601. int runqueue_is_locked(void)
  602. {
  603. int cpu = get_cpu();
  604. struct rq *rq = cpu_rq(cpu);
  605. int ret;
  606. ret = spin_is_locked(&rq->lock);
  607. put_cpu();
  608. return ret;
  609. }
  610. /*
  611. * Debugging: various feature bits
  612. */
  613. #define SCHED_FEAT(name, enabled) \
  614. __SCHED_FEAT_##name ,
  615. enum {
  616. #include "sched_features.h"
  617. };
  618. #undef SCHED_FEAT
  619. #define SCHED_FEAT(name, enabled) \
  620. (1UL << __SCHED_FEAT_##name) * enabled |
  621. const_debug unsigned int sysctl_sched_features =
  622. #include "sched_features.h"
  623. 0;
  624. #undef SCHED_FEAT
  625. #ifdef CONFIG_SCHED_DEBUG
  626. #define SCHED_FEAT(name, enabled) \
  627. #name ,
  628. static __read_mostly char *sched_feat_names[] = {
  629. #include "sched_features.h"
  630. NULL
  631. };
  632. #undef SCHED_FEAT
  633. static int sched_feat_show(struct seq_file *m, void *v)
  634. {
  635. int i;
  636. for (i = 0; sched_feat_names[i]; i++) {
  637. if (!(sysctl_sched_features & (1UL << i)))
  638. seq_puts(m, "NO_");
  639. seq_printf(m, "%s ", sched_feat_names[i]);
  640. }
  641. seq_puts(m, "\n");
  642. return 0;
  643. }
  644. static ssize_t
  645. sched_feat_write(struct file *filp, const char __user *ubuf,
  646. size_t cnt, loff_t *ppos)
  647. {
  648. char buf[64];
  649. char *cmp = buf;
  650. int neg = 0;
  651. int i;
  652. if (cnt > 63)
  653. cnt = 63;
  654. if (copy_from_user(&buf, ubuf, cnt))
  655. return -EFAULT;
  656. buf[cnt] = 0;
  657. if (strncmp(buf, "NO_", 3) == 0) {
  658. neg = 1;
  659. cmp += 3;
  660. }
  661. for (i = 0; sched_feat_names[i]; i++) {
  662. int len = strlen(sched_feat_names[i]);
  663. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  664. if (neg)
  665. sysctl_sched_features &= ~(1UL << i);
  666. else
  667. sysctl_sched_features |= (1UL << i);
  668. break;
  669. }
  670. }
  671. if (!sched_feat_names[i])
  672. return -EINVAL;
  673. filp->f_pos += cnt;
  674. return cnt;
  675. }
  676. static int sched_feat_open(struct inode *inode, struct file *filp)
  677. {
  678. return single_open(filp, sched_feat_show, NULL);
  679. }
  680. static struct file_operations sched_feat_fops = {
  681. .open = sched_feat_open,
  682. .write = sched_feat_write,
  683. .read = seq_read,
  684. .llseek = seq_lseek,
  685. .release = single_release,
  686. };
  687. static __init int sched_init_debug(void)
  688. {
  689. debugfs_create_file("sched_features", 0644, NULL, NULL,
  690. &sched_feat_fops);
  691. return 0;
  692. }
  693. late_initcall(sched_init_debug);
  694. #endif
  695. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  696. /*
  697. * Number of tasks to iterate in a single balance run.
  698. * Limited because this is done with IRQs disabled.
  699. */
  700. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  701. /*
  702. * ratelimit for updating the group shares.
  703. * default: 0.25ms
  704. */
  705. unsigned int sysctl_sched_shares_ratelimit = 250000;
  706. /*
  707. * Inject some fuzzyness into changing the per-cpu group shares
  708. * this avoids remote rq-locks at the expense of fairness.
  709. * default: 4
  710. */
  711. unsigned int sysctl_sched_shares_thresh = 4;
  712. /*
  713. * period over which we measure -rt task cpu usage in us.
  714. * default: 1s
  715. */
  716. unsigned int sysctl_sched_rt_period = 1000000;
  717. static __read_mostly int scheduler_running;
  718. /*
  719. * part of the period that we allow rt tasks to run in us.
  720. * default: 0.95s
  721. */
  722. int sysctl_sched_rt_runtime = 950000;
  723. static inline u64 global_rt_period(void)
  724. {
  725. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  726. }
  727. static inline u64 global_rt_runtime(void)
  728. {
  729. if (sysctl_sched_rt_runtime < 0)
  730. return RUNTIME_INF;
  731. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  732. }
  733. #ifndef prepare_arch_switch
  734. # define prepare_arch_switch(next) do { } while (0)
  735. #endif
  736. #ifndef finish_arch_switch
  737. # define finish_arch_switch(prev) do { } while (0)
  738. #endif
  739. static inline int task_current(struct rq *rq, struct task_struct *p)
  740. {
  741. return rq->curr == p;
  742. }
  743. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  744. static inline int task_running(struct rq *rq, struct task_struct *p)
  745. {
  746. return task_current(rq, p);
  747. }
  748. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  749. {
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_DEBUG_SPINLOCK
  754. /* this is a valid case when another task releases the spinlock */
  755. rq->lock.owner = current;
  756. #endif
  757. /*
  758. * If we are tracking spinlock dependencies then we have to
  759. * fix up the runqueue lock - which gets 'carried over' from
  760. * prev into current:
  761. */
  762. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  763. spin_unlock_irq(&rq->lock);
  764. }
  765. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. static inline int task_running(struct rq *rq, struct task_struct *p)
  767. {
  768. #ifdef CONFIG_SMP
  769. return p->oncpu;
  770. #else
  771. return task_current(rq, p);
  772. #endif
  773. }
  774. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  775. {
  776. #ifdef CONFIG_SMP
  777. /*
  778. * We can optimise this out completely for !SMP, because the
  779. * SMP rebalancing from interrupt is the only thing that cares
  780. * here.
  781. */
  782. next->oncpu = 1;
  783. #endif
  784. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  785. spin_unlock_irq(&rq->lock);
  786. #else
  787. spin_unlock(&rq->lock);
  788. #endif
  789. }
  790. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  791. {
  792. #ifdef CONFIG_SMP
  793. /*
  794. * After ->oncpu is cleared, the task can be moved to a different CPU.
  795. * We must ensure this doesn't happen until the switch is completely
  796. * finished.
  797. */
  798. smp_wmb();
  799. prev->oncpu = 0;
  800. #endif
  801. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  802. local_irq_enable();
  803. #endif
  804. }
  805. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  806. /*
  807. * __task_rq_lock - lock the runqueue a given task resides on.
  808. * Must be called interrupts disabled.
  809. */
  810. static inline struct rq *__task_rq_lock(struct task_struct *p)
  811. __acquires(rq->lock)
  812. {
  813. for (;;) {
  814. struct rq *rq = task_rq(p);
  815. spin_lock(&rq->lock);
  816. if (likely(rq == task_rq(p)))
  817. return rq;
  818. spin_unlock(&rq->lock);
  819. }
  820. }
  821. /*
  822. * task_rq_lock - lock the runqueue a given task resides on and disable
  823. * interrupts. Note the ordering: we can safely lookup the task_rq without
  824. * explicitly disabling preemption.
  825. */
  826. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  827. __acquires(rq->lock)
  828. {
  829. struct rq *rq;
  830. for (;;) {
  831. local_irq_save(*flags);
  832. rq = task_rq(p);
  833. spin_lock(&rq->lock);
  834. if (likely(rq == task_rq(p)))
  835. return rq;
  836. spin_unlock_irqrestore(&rq->lock, *flags);
  837. }
  838. }
  839. void task_rq_unlock_wait(struct task_struct *p)
  840. {
  841. struct rq *rq = task_rq(p);
  842. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  843. spin_unlock_wait(&rq->lock);
  844. }
  845. static void __task_rq_unlock(struct rq *rq)
  846. __releases(rq->lock)
  847. {
  848. spin_unlock(&rq->lock);
  849. }
  850. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  851. __releases(rq->lock)
  852. {
  853. spin_unlock_irqrestore(&rq->lock, *flags);
  854. }
  855. /*
  856. * this_rq_lock - lock this runqueue and disable interrupts.
  857. */
  858. static struct rq *this_rq_lock(void)
  859. __acquires(rq->lock)
  860. {
  861. struct rq *rq;
  862. local_irq_disable();
  863. rq = this_rq();
  864. spin_lock(&rq->lock);
  865. return rq;
  866. }
  867. #ifdef CONFIG_SCHED_HRTICK
  868. /*
  869. * Use HR-timers to deliver accurate preemption points.
  870. *
  871. * Its all a bit involved since we cannot program an hrt while holding the
  872. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  873. * reschedule event.
  874. *
  875. * When we get rescheduled we reprogram the hrtick_timer outside of the
  876. * rq->lock.
  877. */
  878. /*
  879. * Use hrtick when:
  880. * - enabled by features
  881. * - hrtimer is actually high res
  882. */
  883. static inline int hrtick_enabled(struct rq *rq)
  884. {
  885. if (!sched_feat(HRTICK))
  886. return 0;
  887. if (!cpu_active(cpu_of(rq)))
  888. return 0;
  889. return hrtimer_is_hres_active(&rq->hrtick_timer);
  890. }
  891. static void hrtick_clear(struct rq *rq)
  892. {
  893. if (hrtimer_active(&rq->hrtick_timer))
  894. hrtimer_cancel(&rq->hrtick_timer);
  895. }
  896. /*
  897. * High-resolution timer tick.
  898. * Runs from hardirq context with interrupts disabled.
  899. */
  900. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  901. {
  902. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  903. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  904. spin_lock(&rq->lock);
  905. update_rq_clock(rq);
  906. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  907. spin_unlock(&rq->lock);
  908. return HRTIMER_NORESTART;
  909. }
  910. #ifdef CONFIG_SMP
  911. /*
  912. * called from hardirq (IPI) context
  913. */
  914. static void __hrtick_start(void *arg)
  915. {
  916. struct rq *rq = arg;
  917. spin_lock(&rq->lock);
  918. hrtimer_restart(&rq->hrtick_timer);
  919. rq->hrtick_csd_pending = 0;
  920. spin_unlock(&rq->lock);
  921. }
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. struct hrtimer *timer = &rq->hrtick_timer;
  930. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  931. hrtimer_set_expires(timer, time);
  932. if (rq == this_rq()) {
  933. hrtimer_restart(timer);
  934. } else if (!rq->hrtick_csd_pending) {
  935. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  936. rq->hrtick_csd_pending = 1;
  937. }
  938. }
  939. static int
  940. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  941. {
  942. int cpu = (int)(long)hcpu;
  943. switch (action) {
  944. case CPU_UP_CANCELED:
  945. case CPU_UP_CANCELED_FROZEN:
  946. case CPU_DOWN_PREPARE:
  947. case CPU_DOWN_PREPARE_FROZEN:
  948. case CPU_DEAD:
  949. case CPU_DEAD_FROZEN:
  950. hrtick_clear(cpu_rq(cpu));
  951. return NOTIFY_OK;
  952. }
  953. return NOTIFY_DONE;
  954. }
  955. static __init void init_hrtick(void)
  956. {
  957. hotcpu_notifier(hotplug_hrtick, 0);
  958. }
  959. #else
  960. /*
  961. * Called to set the hrtick timer state.
  962. *
  963. * called with rq->lock held and irqs disabled
  964. */
  965. static void hrtick_start(struct rq *rq, u64 delay)
  966. {
  967. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  968. HRTIMER_MODE_REL, 0);
  969. }
  970. static inline void init_hrtick(void)
  971. {
  972. }
  973. #endif /* CONFIG_SMP */
  974. static void init_rq_hrtick(struct rq *rq)
  975. {
  976. #ifdef CONFIG_SMP
  977. rq->hrtick_csd_pending = 0;
  978. rq->hrtick_csd.flags = 0;
  979. rq->hrtick_csd.func = __hrtick_start;
  980. rq->hrtick_csd.info = rq;
  981. #endif
  982. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  983. rq->hrtick_timer.function = hrtick;
  984. }
  985. #else /* CONFIG_SCHED_HRTICK */
  986. static inline void hrtick_clear(struct rq *rq)
  987. {
  988. }
  989. static inline void init_rq_hrtick(struct rq *rq)
  990. {
  991. }
  992. static inline void init_hrtick(void)
  993. {
  994. }
  995. #endif /* CONFIG_SCHED_HRTICK */
  996. /*
  997. * resched_task - mark a task 'to be rescheduled now'.
  998. *
  999. * On UP this means the setting of the need_resched flag, on SMP it
  1000. * might also involve a cross-CPU call to trigger the scheduler on
  1001. * the target CPU.
  1002. */
  1003. #ifdef CONFIG_SMP
  1004. #ifndef tsk_is_polling
  1005. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1006. #endif
  1007. static void resched_task(struct task_struct *p)
  1008. {
  1009. int cpu;
  1010. assert_spin_locked(&task_rq(p)->lock);
  1011. if (test_tsk_need_resched(p))
  1012. return;
  1013. set_tsk_need_resched(p);
  1014. cpu = task_cpu(p);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /* NEED_RESCHED must be visible before we test polling */
  1018. smp_mb();
  1019. if (!tsk_is_polling(p))
  1020. smp_send_reschedule(cpu);
  1021. }
  1022. static void resched_cpu(int cpu)
  1023. {
  1024. struct rq *rq = cpu_rq(cpu);
  1025. unsigned long flags;
  1026. if (!spin_trylock_irqsave(&rq->lock, flags))
  1027. return;
  1028. resched_task(cpu_curr(cpu));
  1029. spin_unlock_irqrestore(&rq->lock, flags);
  1030. }
  1031. #ifdef CONFIG_NO_HZ
  1032. /*
  1033. * When add_timer_on() enqueues a timer into the timer wheel of an
  1034. * idle CPU then this timer might expire before the next timer event
  1035. * which is scheduled to wake up that CPU. In case of a completely
  1036. * idle system the next event might even be infinite time into the
  1037. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1038. * leaves the inner idle loop so the newly added timer is taken into
  1039. * account when the CPU goes back to idle and evaluates the timer
  1040. * wheel for the next timer event.
  1041. */
  1042. void wake_up_idle_cpu(int cpu)
  1043. {
  1044. struct rq *rq = cpu_rq(cpu);
  1045. if (cpu == smp_processor_id())
  1046. return;
  1047. /*
  1048. * This is safe, as this function is called with the timer
  1049. * wheel base lock of (cpu) held. When the CPU is on the way
  1050. * to idle and has not yet set rq->curr to idle then it will
  1051. * be serialized on the timer wheel base lock and take the new
  1052. * timer into account automatically.
  1053. */
  1054. if (rq->curr != rq->idle)
  1055. return;
  1056. /*
  1057. * We can set TIF_RESCHED on the idle task of the other CPU
  1058. * lockless. The worst case is that the other CPU runs the
  1059. * idle task through an additional NOOP schedule()
  1060. */
  1061. set_tsk_need_resched(rq->idle);
  1062. /* NEED_RESCHED must be visible before we test polling */
  1063. smp_mb();
  1064. if (!tsk_is_polling(rq->idle))
  1065. smp_send_reschedule(cpu);
  1066. }
  1067. #endif /* CONFIG_NO_HZ */
  1068. #else /* !CONFIG_SMP */
  1069. static void resched_task(struct task_struct *p)
  1070. {
  1071. assert_spin_locked(&task_rq(p)->lock);
  1072. set_tsk_need_resched(p);
  1073. }
  1074. #endif /* CONFIG_SMP */
  1075. #if BITS_PER_LONG == 32
  1076. # define WMULT_CONST (~0UL)
  1077. #else
  1078. # define WMULT_CONST (1UL << 32)
  1079. #endif
  1080. #define WMULT_SHIFT 32
  1081. /*
  1082. * Shift right and round:
  1083. */
  1084. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1085. /*
  1086. * delta *= weight / lw
  1087. */
  1088. static unsigned long
  1089. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1090. struct load_weight *lw)
  1091. {
  1092. u64 tmp;
  1093. if (!lw->inv_weight) {
  1094. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1095. lw->inv_weight = 1;
  1096. else
  1097. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1098. / (lw->weight+1);
  1099. }
  1100. tmp = (u64)delta_exec * weight;
  1101. /*
  1102. * Check whether we'd overflow the 64-bit multiplication:
  1103. */
  1104. if (unlikely(tmp > WMULT_CONST))
  1105. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1106. WMULT_SHIFT/2);
  1107. else
  1108. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1109. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1110. }
  1111. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1112. {
  1113. lw->weight += inc;
  1114. lw->inv_weight = 0;
  1115. }
  1116. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1117. {
  1118. lw->weight -= dec;
  1119. lw->inv_weight = 0;
  1120. }
  1121. /*
  1122. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1123. * of tasks with abnormal "nice" values across CPUs the contribution that
  1124. * each task makes to its run queue's load is weighted according to its
  1125. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1126. * scaled version of the new time slice allocation that they receive on time
  1127. * slice expiry etc.
  1128. */
  1129. #define WEIGHT_IDLEPRIO 3
  1130. #define WMULT_IDLEPRIO 1431655765
  1131. /*
  1132. * Nice levels are multiplicative, with a gentle 10% change for every
  1133. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1134. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1135. * that remained on nice 0.
  1136. *
  1137. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1138. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1139. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1140. * If a task goes up by ~10% and another task goes down by ~10% then
  1141. * the relative distance between them is ~25%.)
  1142. */
  1143. static const int prio_to_weight[40] = {
  1144. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1145. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1146. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1147. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1148. /* 0 */ 1024, 820, 655, 526, 423,
  1149. /* 5 */ 335, 272, 215, 172, 137,
  1150. /* 10 */ 110, 87, 70, 56, 45,
  1151. /* 15 */ 36, 29, 23, 18, 15,
  1152. };
  1153. /*
  1154. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1155. *
  1156. * In cases where the weight does not change often, we can use the
  1157. * precalculated inverse to speed up arithmetics by turning divisions
  1158. * into multiplications:
  1159. */
  1160. static const u32 prio_to_wmult[40] = {
  1161. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1162. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1163. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1164. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1165. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1166. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1167. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1168. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1169. };
  1170. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1171. /*
  1172. * runqueue iterator, to support SMP load-balancing between different
  1173. * scheduling classes, without having to expose their internal data
  1174. * structures to the load-balancing proper:
  1175. */
  1176. struct rq_iterator {
  1177. void *arg;
  1178. struct task_struct *(*start)(void *);
  1179. struct task_struct *(*next)(void *);
  1180. };
  1181. #ifdef CONFIG_SMP
  1182. static unsigned long
  1183. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. unsigned long max_load_move, struct sched_domain *sd,
  1185. enum cpu_idle_type idle, int *all_pinned,
  1186. int *this_best_prio, struct rq_iterator *iterator);
  1187. static int
  1188. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1189. struct sched_domain *sd, enum cpu_idle_type idle,
  1190. struct rq_iterator *iterator);
  1191. #endif
  1192. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1193. enum cpuacct_stat_index {
  1194. CPUACCT_STAT_USER, /* ... user mode */
  1195. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1196. CPUACCT_STAT_NSTATS,
  1197. };
  1198. #ifdef CONFIG_CGROUP_CPUACCT
  1199. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1200. static void cpuacct_update_stats(struct task_struct *tsk,
  1201. enum cpuacct_stat_index idx, cputime_t val);
  1202. #else
  1203. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1204. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val) {}
  1206. #endif
  1207. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1208. {
  1209. update_load_add(&rq->load, load);
  1210. }
  1211. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_sub(&rq->load, load);
  1214. }
  1215. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1216. typedef int (*tg_visitor)(struct task_group *, void *);
  1217. /*
  1218. * Iterate the full tree, calling @down when first entering a node and @up when
  1219. * leaving it for the final time.
  1220. */
  1221. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1222. {
  1223. struct task_group *parent, *child;
  1224. int ret;
  1225. rcu_read_lock();
  1226. parent = &root_task_group;
  1227. down:
  1228. ret = (*down)(parent, data);
  1229. if (ret)
  1230. goto out_unlock;
  1231. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1232. parent = child;
  1233. goto down;
  1234. up:
  1235. continue;
  1236. }
  1237. ret = (*up)(parent, data);
  1238. if (ret)
  1239. goto out_unlock;
  1240. child = parent;
  1241. parent = parent->parent;
  1242. if (parent)
  1243. goto up;
  1244. out_unlock:
  1245. rcu_read_unlock();
  1246. return ret;
  1247. }
  1248. static int tg_nop(struct task_group *tg, void *data)
  1249. {
  1250. return 0;
  1251. }
  1252. #endif
  1253. #ifdef CONFIG_SMP
  1254. static unsigned long source_load(int cpu, int type);
  1255. static unsigned long target_load(int cpu, int type);
  1256. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1257. static unsigned long cpu_avg_load_per_task(int cpu)
  1258. {
  1259. struct rq *rq = cpu_rq(cpu);
  1260. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1261. if (nr_running)
  1262. rq->avg_load_per_task = rq->load.weight / nr_running;
  1263. else
  1264. rq->avg_load_per_task = 0;
  1265. return rq->avg_load_per_task;
  1266. }
  1267. #ifdef CONFIG_FAIR_GROUP_SCHED
  1268. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1269. /*
  1270. * Calculate and set the cpu's group shares.
  1271. */
  1272. static void
  1273. update_group_shares_cpu(struct task_group *tg, int cpu,
  1274. unsigned long sd_shares, unsigned long sd_rq_weight)
  1275. {
  1276. unsigned long shares;
  1277. unsigned long rq_weight;
  1278. if (!tg->se[cpu])
  1279. return;
  1280. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1281. /*
  1282. * \Sum shares * rq_weight
  1283. * shares = -----------------------
  1284. * \Sum rq_weight
  1285. *
  1286. */
  1287. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1288. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1289. if (abs(shares - tg->se[cpu]->load.weight) >
  1290. sysctl_sched_shares_thresh) {
  1291. struct rq *rq = cpu_rq(cpu);
  1292. unsigned long flags;
  1293. spin_lock_irqsave(&rq->lock, flags);
  1294. tg->cfs_rq[cpu]->shares = shares;
  1295. __set_se_shares(tg->se[cpu], shares);
  1296. spin_unlock_irqrestore(&rq->lock, flags);
  1297. }
  1298. }
  1299. /*
  1300. * Re-compute the task group their per cpu shares over the given domain.
  1301. * This needs to be done in a bottom-up fashion because the rq weight of a
  1302. * parent group depends on the shares of its child groups.
  1303. */
  1304. static int tg_shares_up(struct task_group *tg, void *data)
  1305. {
  1306. unsigned long weight, rq_weight = 0;
  1307. unsigned long shares = 0;
  1308. struct sched_domain *sd = data;
  1309. int i;
  1310. for_each_cpu(i, sched_domain_span(sd)) {
  1311. /*
  1312. * If there are currently no tasks on the cpu pretend there
  1313. * is one of average load so that when a new task gets to
  1314. * run here it will not get delayed by group starvation.
  1315. */
  1316. weight = tg->cfs_rq[i]->load.weight;
  1317. if (!weight)
  1318. weight = NICE_0_LOAD;
  1319. tg->cfs_rq[i]->rq_weight = weight;
  1320. rq_weight += weight;
  1321. shares += tg->cfs_rq[i]->shares;
  1322. }
  1323. if ((!shares && rq_weight) || shares > tg->shares)
  1324. shares = tg->shares;
  1325. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1326. shares = tg->shares;
  1327. for_each_cpu(i, sched_domain_span(sd))
  1328. update_group_shares_cpu(tg, i, shares, rq_weight);
  1329. return 0;
  1330. }
  1331. /*
  1332. * Compute the cpu's hierarchical load factor for each task group.
  1333. * This needs to be done in a top-down fashion because the load of a child
  1334. * group is a fraction of its parents load.
  1335. */
  1336. static int tg_load_down(struct task_group *tg, void *data)
  1337. {
  1338. unsigned long load;
  1339. long cpu = (long)data;
  1340. if (!tg->parent) {
  1341. load = cpu_rq(cpu)->load.weight;
  1342. } else {
  1343. load = tg->parent->cfs_rq[cpu]->h_load;
  1344. load *= tg->cfs_rq[cpu]->shares;
  1345. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1346. }
  1347. tg->cfs_rq[cpu]->h_load = load;
  1348. return 0;
  1349. }
  1350. static void update_shares(struct sched_domain *sd)
  1351. {
  1352. u64 now = cpu_clock(raw_smp_processor_id());
  1353. s64 elapsed = now - sd->last_update;
  1354. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1355. sd->last_update = now;
  1356. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1357. }
  1358. }
  1359. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1360. {
  1361. spin_unlock(&rq->lock);
  1362. update_shares(sd);
  1363. spin_lock(&rq->lock);
  1364. }
  1365. static void update_h_load(long cpu)
  1366. {
  1367. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1368. }
  1369. #else
  1370. static inline void update_shares(struct sched_domain *sd)
  1371. {
  1372. }
  1373. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1374. {
  1375. }
  1376. #endif
  1377. #ifdef CONFIG_PREEMPT
  1378. /*
  1379. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1380. * way at the expense of forcing extra atomic operations in all
  1381. * invocations. This assures that the double_lock is acquired using the
  1382. * same underlying policy as the spinlock_t on this architecture, which
  1383. * reduces latency compared to the unfair variant below. However, it
  1384. * also adds more overhead and therefore may reduce throughput.
  1385. */
  1386. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1387. __releases(this_rq->lock)
  1388. __acquires(busiest->lock)
  1389. __acquires(this_rq->lock)
  1390. {
  1391. spin_unlock(&this_rq->lock);
  1392. double_rq_lock(this_rq, busiest);
  1393. return 1;
  1394. }
  1395. #else
  1396. /*
  1397. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1398. * latency by eliminating extra atomic operations when the locks are
  1399. * already in proper order on entry. This favors lower cpu-ids and will
  1400. * grant the double lock to lower cpus over higher ids under contention,
  1401. * regardless of entry order into the function.
  1402. */
  1403. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1404. __releases(this_rq->lock)
  1405. __acquires(busiest->lock)
  1406. __acquires(this_rq->lock)
  1407. {
  1408. int ret = 0;
  1409. if (unlikely(!spin_trylock(&busiest->lock))) {
  1410. if (busiest < this_rq) {
  1411. spin_unlock(&this_rq->lock);
  1412. spin_lock(&busiest->lock);
  1413. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1414. ret = 1;
  1415. } else
  1416. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1417. }
  1418. return ret;
  1419. }
  1420. #endif /* CONFIG_PREEMPT */
  1421. /*
  1422. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1423. */
  1424. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1425. {
  1426. if (unlikely(!irqs_disabled())) {
  1427. /* printk() doesn't work good under rq->lock */
  1428. spin_unlock(&this_rq->lock);
  1429. BUG_ON(1);
  1430. }
  1431. return _double_lock_balance(this_rq, busiest);
  1432. }
  1433. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1434. __releases(busiest->lock)
  1435. {
  1436. spin_unlock(&busiest->lock);
  1437. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1438. }
  1439. #endif
  1440. #ifdef CONFIG_FAIR_GROUP_SCHED
  1441. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1442. {
  1443. #ifdef CONFIG_SMP
  1444. cfs_rq->shares = shares;
  1445. #endif
  1446. }
  1447. #endif
  1448. static void calc_load_account_active(struct rq *this_rq);
  1449. #include "sched_stats.h"
  1450. #include "sched_idletask.c"
  1451. #include "sched_fair.c"
  1452. #include "sched_rt.c"
  1453. #ifdef CONFIG_SCHED_DEBUG
  1454. # include "sched_debug.c"
  1455. #endif
  1456. #define sched_class_highest (&rt_sched_class)
  1457. #define for_each_class(class) \
  1458. for (class = sched_class_highest; class; class = class->next)
  1459. static void inc_nr_running(struct rq *rq)
  1460. {
  1461. rq->nr_running++;
  1462. }
  1463. static void dec_nr_running(struct rq *rq)
  1464. {
  1465. rq->nr_running--;
  1466. }
  1467. static void set_load_weight(struct task_struct *p)
  1468. {
  1469. if (task_has_rt_policy(p)) {
  1470. p->se.load.weight = prio_to_weight[0] * 2;
  1471. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1472. return;
  1473. }
  1474. /*
  1475. * SCHED_IDLE tasks get minimal weight:
  1476. */
  1477. if (p->policy == SCHED_IDLE) {
  1478. p->se.load.weight = WEIGHT_IDLEPRIO;
  1479. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1480. return;
  1481. }
  1482. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1483. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1484. }
  1485. static void update_avg(u64 *avg, u64 sample)
  1486. {
  1487. s64 diff = sample - *avg;
  1488. *avg += diff >> 3;
  1489. }
  1490. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1491. {
  1492. if (wakeup)
  1493. p->se.start_runtime = p->se.sum_exec_runtime;
  1494. sched_info_queued(p);
  1495. p->sched_class->enqueue_task(rq, p, wakeup);
  1496. p->se.on_rq = 1;
  1497. }
  1498. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1499. {
  1500. if (sleep) {
  1501. if (p->se.last_wakeup) {
  1502. update_avg(&p->se.avg_overlap,
  1503. p->se.sum_exec_runtime - p->se.last_wakeup);
  1504. p->se.last_wakeup = 0;
  1505. } else {
  1506. update_avg(&p->se.avg_wakeup,
  1507. sysctl_sched_wakeup_granularity);
  1508. }
  1509. }
  1510. sched_info_dequeued(p);
  1511. p->sched_class->dequeue_task(rq, p, sleep);
  1512. p->se.on_rq = 0;
  1513. }
  1514. /*
  1515. * __normal_prio - return the priority that is based on the static prio
  1516. */
  1517. static inline int __normal_prio(struct task_struct *p)
  1518. {
  1519. return p->static_prio;
  1520. }
  1521. /*
  1522. * Calculate the expected normal priority: i.e. priority
  1523. * without taking RT-inheritance into account. Might be
  1524. * boosted by interactivity modifiers. Changes upon fork,
  1525. * setprio syscalls, and whenever the interactivity
  1526. * estimator recalculates.
  1527. */
  1528. static inline int normal_prio(struct task_struct *p)
  1529. {
  1530. int prio;
  1531. if (task_has_rt_policy(p))
  1532. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1533. else
  1534. prio = __normal_prio(p);
  1535. return prio;
  1536. }
  1537. /*
  1538. * Calculate the current priority, i.e. the priority
  1539. * taken into account by the scheduler. This value might
  1540. * be boosted by RT tasks, or might be boosted by
  1541. * interactivity modifiers. Will be RT if the task got
  1542. * RT-boosted. If not then it returns p->normal_prio.
  1543. */
  1544. static int effective_prio(struct task_struct *p)
  1545. {
  1546. p->normal_prio = normal_prio(p);
  1547. /*
  1548. * If we are RT tasks or we were boosted to RT priority,
  1549. * keep the priority unchanged. Otherwise, update priority
  1550. * to the normal priority:
  1551. */
  1552. if (!rt_prio(p->prio))
  1553. return p->normal_prio;
  1554. return p->prio;
  1555. }
  1556. /*
  1557. * activate_task - move a task to the runqueue.
  1558. */
  1559. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1560. {
  1561. if (task_contributes_to_load(p))
  1562. rq->nr_uninterruptible--;
  1563. enqueue_task(rq, p, wakeup);
  1564. inc_nr_running(rq);
  1565. }
  1566. /*
  1567. * deactivate_task - remove a task from the runqueue.
  1568. */
  1569. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1570. {
  1571. if (task_contributes_to_load(p))
  1572. rq->nr_uninterruptible++;
  1573. dequeue_task(rq, p, sleep);
  1574. dec_nr_running(rq);
  1575. }
  1576. /**
  1577. * task_curr - is this task currently executing on a CPU?
  1578. * @p: the task in question.
  1579. */
  1580. inline int task_curr(const struct task_struct *p)
  1581. {
  1582. return cpu_curr(task_cpu(p)) == p;
  1583. }
  1584. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1585. {
  1586. set_task_rq(p, cpu);
  1587. #ifdef CONFIG_SMP
  1588. /*
  1589. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1590. * successfuly executed on another CPU. We must ensure that updates of
  1591. * per-task data have been completed by this moment.
  1592. */
  1593. smp_wmb();
  1594. task_thread_info(p)->cpu = cpu;
  1595. #endif
  1596. }
  1597. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1598. const struct sched_class *prev_class,
  1599. int oldprio, int running)
  1600. {
  1601. if (prev_class != p->sched_class) {
  1602. if (prev_class->switched_from)
  1603. prev_class->switched_from(rq, p, running);
  1604. p->sched_class->switched_to(rq, p, running);
  1605. } else
  1606. p->sched_class->prio_changed(rq, p, oldprio, running);
  1607. }
  1608. #ifdef CONFIG_SMP
  1609. /* Used instead of source_load when we know the type == 0 */
  1610. static unsigned long weighted_cpuload(const int cpu)
  1611. {
  1612. return cpu_rq(cpu)->load.weight;
  1613. }
  1614. /*
  1615. * Is this task likely cache-hot:
  1616. */
  1617. static int
  1618. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1619. {
  1620. s64 delta;
  1621. /*
  1622. * Buddy candidates are cache hot:
  1623. */
  1624. if (sched_feat(CACHE_HOT_BUDDY) &&
  1625. (&p->se == cfs_rq_of(&p->se)->next ||
  1626. &p->se == cfs_rq_of(&p->se)->last))
  1627. return 1;
  1628. if (p->sched_class != &fair_sched_class)
  1629. return 0;
  1630. if (sysctl_sched_migration_cost == -1)
  1631. return 1;
  1632. if (sysctl_sched_migration_cost == 0)
  1633. return 0;
  1634. delta = now - p->se.exec_start;
  1635. return delta < (s64)sysctl_sched_migration_cost;
  1636. }
  1637. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1638. {
  1639. int old_cpu = task_cpu(p);
  1640. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1641. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1642. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1643. u64 clock_offset;
  1644. clock_offset = old_rq->clock - new_rq->clock;
  1645. trace_sched_migrate_task(p, new_cpu);
  1646. #ifdef CONFIG_SCHEDSTATS
  1647. if (p->se.wait_start)
  1648. p->se.wait_start -= clock_offset;
  1649. if (p->se.sleep_start)
  1650. p->se.sleep_start -= clock_offset;
  1651. if (p->se.block_start)
  1652. p->se.block_start -= clock_offset;
  1653. if (old_cpu != new_cpu) {
  1654. schedstat_inc(p, se.nr_migrations);
  1655. if (task_hot(p, old_rq->clock, NULL))
  1656. schedstat_inc(p, se.nr_forced2_migrations);
  1657. }
  1658. #endif
  1659. p->se.vruntime -= old_cfsrq->min_vruntime -
  1660. new_cfsrq->min_vruntime;
  1661. __set_task_cpu(p, new_cpu);
  1662. }
  1663. struct migration_req {
  1664. struct list_head list;
  1665. struct task_struct *task;
  1666. int dest_cpu;
  1667. struct completion done;
  1668. };
  1669. /*
  1670. * The task's runqueue lock must be held.
  1671. * Returns true if you have to wait for migration thread.
  1672. */
  1673. static int
  1674. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1675. {
  1676. struct rq *rq = task_rq(p);
  1677. /*
  1678. * If the task is not on a runqueue (and not running), then
  1679. * it is sufficient to simply update the task's cpu field.
  1680. */
  1681. if (!p->se.on_rq && !task_running(rq, p)) {
  1682. set_task_cpu(p, dest_cpu);
  1683. return 0;
  1684. }
  1685. init_completion(&req->done);
  1686. req->task = p;
  1687. req->dest_cpu = dest_cpu;
  1688. list_add(&req->list, &rq->migration_queue);
  1689. return 1;
  1690. }
  1691. /*
  1692. * wait_task_context_switch - wait for a thread to complete at least one
  1693. * context switch.
  1694. *
  1695. * @p must not be current.
  1696. */
  1697. void wait_task_context_switch(struct task_struct *p)
  1698. {
  1699. unsigned long nvcsw, nivcsw, flags;
  1700. int running;
  1701. struct rq *rq;
  1702. nvcsw = p->nvcsw;
  1703. nivcsw = p->nivcsw;
  1704. for (;;) {
  1705. /*
  1706. * The runqueue is assigned before the actual context
  1707. * switch. We need to take the runqueue lock.
  1708. *
  1709. * We could check initially without the lock but it is
  1710. * very likely that we need to take the lock in every
  1711. * iteration.
  1712. */
  1713. rq = task_rq_lock(p, &flags);
  1714. running = task_running(rq, p);
  1715. task_rq_unlock(rq, &flags);
  1716. if (likely(!running))
  1717. break;
  1718. /*
  1719. * The switch count is incremented before the actual
  1720. * context switch. We thus wait for two switches to be
  1721. * sure at least one completed.
  1722. */
  1723. if ((p->nvcsw - nvcsw) > 1)
  1724. break;
  1725. if ((p->nivcsw - nivcsw) > 1)
  1726. break;
  1727. cpu_relax();
  1728. }
  1729. }
  1730. /*
  1731. * wait_task_inactive - wait for a thread to unschedule.
  1732. *
  1733. * If @match_state is nonzero, it's the @p->state value just checked and
  1734. * not expected to change. If it changes, i.e. @p might have woken up,
  1735. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1736. * we return a positive number (its total switch count). If a second call
  1737. * a short while later returns the same number, the caller can be sure that
  1738. * @p has remained unscheduled the whole time.
  1739. *
  1740. * The caller must ensure that the task *will* unschedule sometime soon,
  1741. * else this function might spin for a *long* time. This function can't
  1742. * be called with interrupts off, or it may introduce deadlock with
  1743. * smp_call_function() if an IPI is sent by the same process we are
  1744. * waiting to become inactive.
  1745. */
  1746. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1747. {
  1748. unsigned long flags;
  1749. int running, on_rq;
  1750. unsigned long ncsw;
  1751. struct rq *rq;
  1752. for (;;) {
  1753. /*
  1754. * We do the initial early heuristics without holding
  1755. * any task-queue locks at all. We'll only try to get
  1756. * the runqueue lock when things look like they will
  1757. * work out!
  1758. */
  1759. rq = task_rq(p);
  1760. /*
  1761. * If the task is actively running on another CPU
  1762. * still, just relax and busy-wait without holding
  1763. * any locks.
  1764. *
  1765. * NOTE! Since we don't hold any locks, it's not
  1766. * even sure that "rq" stays as the right runqueue!
  1767. * But we don't care, since "task_running()" will
  1768. * return false if the runqueue has changed and p
  1769. * is actually now running somewhere else!
  1770. */
  1771. while (task_running(rq, p)) {
  1772. if (match_state && unlikely(p->state != match_state))
  1773. return 0;
  1774. cpu_relax();
  1775. }
  1776. /*
  1777. * Ok, time to look more closely! We need the rq
  1778. * lock now, to be *sure*. If we're wrong, we'll
  1779. * just go back and repeat.
  1780. */
  1781. rq = task_rq_lock(p, &flags);
  1782. trace_sched_wait_task(rq, p);
  1783. running = task_running(rq, p);
  1784. on_rq = p->se.on_rq;
  1785. ncsw = 0;
  1786. if (!match_state || p->state == match_state)
  1787. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1788. task_rq_unlock(rq, &flags);
  1789. /*
  1790. * If it changed from the expected state, bail out now.
  1791. */
  1792. if (unlikely(!ncsw))
  1793. break;
  1794. /*
  1795. * Was it really running after all now that we
  1796. * checked with the proper locks actually held?
  1797. *
  1798. * Oops. Go back and try again..
  1799. */
  1800. if (unlikely(running)) {
  1801. cpu_relax();
  1802. continue;
  1803. }
  1804. /*
  1805. * It's not enough that it's not actively running,
  1806. * it must be off the runqueue _entirely_, and not
  1807. * preempted!
  1808. *
  1809. * So if it was still runnable (but just not actively
  1810. * running right now), it's preempted, and we should
  1811. * yield - it could be a while.
  1812. */
  1813. if (unlikely(on_rq)) {
  1814. schedule_timeout_uninterruptible(1);
  1815. continue;
  1816. }
  1817. /*
  1818. * Ahh, all good. It wasn't running, and it wasn't
  1819. * runnable, which means that it will never become
  1820. * running in the future either. We're all done!
  1821. */
  1822. break;
  1823. }
  1824. return ncsw;
  1825. }
  1826. /***
  1827. * kick_process - kick a running thread to enter/exit the kernel
  1828. * @p: the to-be-kicked thread
  1829. *
  1830. * Cause a process which is running on another CPU to enter
  1831. * kernel-mode, without any delay. (to get signals handled.)
  1832. *
  1833. * NOTE: this function doesnt have to take the runqueue lock,
  1834. * because all it wants to ensure is that the remote task enters
  1835. * the kernel. If the IPI races and the task has been migrated
  1836. * to another CPU then no harm is done and the purpose has been
  1837. * achieved as well.
  1838. */
  1839. void kick_process(struct task_struct *p)
  1840. {
  1841. int cpu;
  1842. preempt_disable();
  1843. cpu = task_cpu(p);
  1844. if ((cpu != smp_processor_id()) && task_curr(p))
  1845. smp_send_reschedule(cpu);
  1846. preempt_enable();
  1847. }
  1848. /*
  1849. * Return a low guess at the load of a migration-source cpu weighted
  1850. * according to the scheduling class and "nice" value.
  1851. *
  1852. * We want to under-estimate the load of migration sources, to
  1853. * balance conservatively.
  1854. */
  1855. static unsigned long source_load(int cpu, int type)
  1856. {
  1857. struct rq *rq = cpu_rq(cpu);
  1858. unsigned long total = weighted_cpuload(cpu);
  1859. if (type == 0 || !sched_feat(LB_BIAS))
  1860. return total;
  1861. return min(rq->cpu_load[type-1], total);
  1862. }
  1863. /*
  1864. * Return a high guess at the load of a migration-target cpu weighted
  1865. * according to the scheduling class and "nice" value.
  1866. */
  1867. static unsigned long target_load(int cpu, int type)
  1868. {
  1869. struct rq *rq = cpu_rq(cpu);
  1870. unsigned long total = weighted_cpuload(cpu);
  1871. if (type == 0 || !sched_feat(LB_BIAS))
  1872. return total;
  1873. return max(rq->cpu_load[type-1], total);
  1874. }
  1875. /*
  1876. * find_idlest_group finds and returns the least busy CPU group within the
  1877. * domain.
  1878. */
  1879. static struct sched_group *
  1880. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1881. {
  1882. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1883. unsigned long min_load = ULONG_MAX, this_load = 0;
  1884. int load_idx = sd->forkexec_idx;
  1885. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1886. do {
  1887. unsigned long load, avg_load;
  1888. int local_group;
  1889. int i;
  1890. /* Skip over this group if it has no CPUs allowed */
  1891. if (!cpumask_intersects(sched_group_cpus(group),
  1892. &p->cpus_allowed))
  1893. continue;
  1894. local_group = cpumask_test_cpu(this_cpu,
  1895. sched_group_cpus(group));
  1896. /* Tally up the load of all CPUs in the group */
  1897. avg_load = 0;
  1898. for_each_cpu(i, sched_group_cpus(group)) {
  1899. /* Bias balancing toward cpus of our domain */
  1900. if (local_group)
  1901. load = source_load(i, load_idx);
  1902. else
  1903. load = target_load(i, load_idx);
  1904. avg_load += load;
  1905. }
  1906. /* Adjust by relative CPU power of the group */
  1907. avg_load = sg_div_cpu_power(group,
  1908. avg_load * SCHED_LOAD_SCALE);
  1909. if (local_group) {
  1910. this_load = avg_load;
  1911. this = group;
  1912. } else if (avg_load < min_load) {
  1913. min_load = avg_load;
  1914. idlest = group;
  1915. }
  1916. } while (group = group->next, group != sd->groups);
  1917. if (!idlest || 100*this_load < imbalance*min_load)
  1918. return NULL;
  1919. return idlest;
  1920. }
  1921. /*
  1922. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1923. */
  1924. static int
  1925. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1926. {
  1927. unsigned long load, min_load = ULONG_MAX;
  1928. int idlest = -1;
  1929. int i;
  1930. /* Traverse only the allowed CPUs */
  1931. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1932. load = weighted_cpuload(i);
  1933. if (load < min_load || (load == min_load && i == this_cpu)) {
  1934. min_load = load;
  1935. idlest = i;
  1936. }
  1937. }
  1938. return idlest;
  1939. }
  1940. /*
  1941. * sched_balance_self: balance the current task (running on cpu) in domains
  1942. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1943. * SD_BALANCE_EXEC.
  1944. *
  1945. * Balance, ie. select the least loaded group.
  1946. *
  1947. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1948. *
  1949. * preempt must be disabled.
  1950. */
  1951. static int sched_balance_self(int cpu, int flag)
  1952. {
  1953. struct task_struct *t = current;
  1954. struct sched_domain *tmp, *sd = NULL;
  1955. for_each_domain(cpu, tmp) {
  1956. /*
  1957. * If power savings logic is enabled for a domain, stop there.
  1958. */
  1959. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1960. break;
  1961. if (tmp->flags & flag)
  1962. sd = tmp;
  1963. }
  1964. if (sd)
  1965. update_shares(sd);
  1966. while (sd) {
  1967. struct sched_group *group;
  1968. int new_cpu, weight;
  1969. if (!(sd->flags & flag)) {
  1970. sd = sd->child;
  1971. continue;
  1972. }
  1973. group = find_idlest_group(sd, t, cpu);
  1974. if (!group) {
  1975. sd = sd->child;
  1976. continue;
  1977. }
  1978. new_cpu = find_idlest_cpu(group, t, cpu);
  1979. if (new_cpu == -1 || new_cpu == cpu) {
  1980. /* Now try balancing at a lower domain level of cpu */
  1981. sd = sd->child;
  1982. continue;
  1983. }
  1984. /* Now try balancing at a lower domain level of new_cpu */
  1985. cpu = new_cpu;
  1986. weight = cpumask_weight(sched_domain_span(sd));
  1987. sd = NULL;
  1988. for_each_domain(cpu, tmp) {
  1989. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1990. break;
  1991. if (tmp->flags & flag)
  1992. sd = tmp;
  1993. }
  1994. /* while loop will break here if sd == NULL */
  1995. }
  1996. return cpu;
  1997. }
  1998. #endif /* CONFIG_SMP */
  1999. /***
  2000. * try_to_wake_up - wake up a thread
  2001. * @p: the to-be-woken-up thread
  2002. * @state: the mask of task states that can be woken
  2003. * @sync: do a synchronous wakeup?
  2004. *
  2005. * Put it on the run-queue if it's not already there. The "current"
  2006. * thread is always on the run-queue (except when the actual
  2007. * re-schedule is in progress), and as such you're allowed to do
  2008. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2009. * runnable without the overhead of this.
  2010. *
  2011. * returns failure only if the task is already active.
  2012. */
  2013. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2014. {
  2015. int cpu, orig_cpu, this_cpu, success = 0;
  2016. unsigned long flags;
  2017. long old_state;
  2018. struct rq *rq;
  2019. if (!sched_feat(SYNC_WAKEUPS))
  2020. sync = 0;
  2021. #ifdef CONFIG_SMP
  2022. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2023. struct sched_domain *sd;
  2024. this_cpu = raw_smp_processor_id();
  2025. cpu = task_cpu(p);
  2026. for_each_domain(this_cpu, sd) {
  2027. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2028. update_shares(sd);
  2029. break;
  2030. }
  2031. }
  2032. }
  2033. #endif
  2034. smp_wmb();
  2035. rq = task_rq_lock(p, &flags);
  2036. update_rq_clock(rq);
  2037. old_state = p->state;
  2038. if (!(old_state & state))
  2039. goto out;
  2040. if (p->se.on_rq)
  2041. goto out_running;
  2042. cpu = task_cpu(p);
  2043. orig_cpu = cpu;
  2044. this_cpu = smp_processor_id();
  2045. #ifdef CONFIG_SMP
  2046. if (unlikely(task_running(rq, p)))
  2047. goto out_activate;
  2048. cpu = p->sched_class->select_task_rq(p, sync);
  2049. if (cpu != orig_cpu) {
  2050. set_task_cpu(p, cpu);
  2051. task_rq_unlock(rq, &flags);
  2052. /* might preempt at this point */
  2053. rq = task_rq_lock(p, &flags);
  2054. old_state = p->state;
  2055. if (!(old_state & state))
  2056. goto out;
  2057. if (p->se.on_rq)
  2058. goto out_running;
  2059. this_cpu = smp_processor_id();
  2060. cpu = task_cpu(p);
  2061. }
  2062. #ifdef CONFIG_SCHEDSTATS
  2063. schedstat_inc(rq, ttwu_count);
  2064. if (cpu == this_cpu)
  2065. schedstat_inc(rq, ttwu_local);
  2066. else {
  2067. struct sched_domain *sd;
  2068. for_each_domain(this_cpu, sd) {
  2069. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2070. schedstat_inc(sd, ttwu_wake_remote);
  2071. break;
  2072. }
  2073. }
  2074. }
  2075. #endif /* CONFIG_SCHEDSTATS */
  2076. out_activate:
  2077. #endif /* CONFIG_SMP */
  2078. schedstat_inc(p, se.nr_wakeups);
  2079. if (sync)
  2080. schedstat_inc(p, se.nr_wakeups_sync);
  2081. if (orig_cpu != cpu)
  2082. schedstat_inc(p, se.nr_wakeups_migrate);
  2083. if (cpu == this_cpu)
  2084. schedstat_inc(p, se.nr_wakeups_local);
  2085. else
  2086. schedstat_inc(p, se.nr_wakeups_remote);
  2087. activate_task(rq, p, 1);
  2088. success = 1;
  2089. /*
  2090. * Only attribute actual wakeups done by this task.
  2091. */
  2092. if (!in_interrupt()) {
  2093. struct sched_entity *se = &current->se;
  2094. u64 sample = se->sum_exec_runtime;
  2095. if (se->last_wakeup)
  2096. sample -= se->last_wakeup;
  2097. else
  2098. sample -= se->start_runtime;
  2099. update_avg(&se->avg_wakeup, sample);
  2100. se->last_wakeup = se->sum_exec_runtime;
  2101. }
  2102. out_running:
  2103. trace_sched_wakeup(rq, p, success);
  2104. check_preempt_curr(rq, p, sync);
  2105. p->state = TASK_RUNNING;
  2106. #ifdef CONFIG_SMP
  2107. if (p->sched_class->task_wake_up)
  2108. p->sched_class->task_wake_up(rq, p);
  2109. #endif
  2110. out:
  2111. task_rq_unlock(rq, &flags);
  2112. return success;
  2113. }
  2114. /**
  2115. * wake_up_process - Wake up a specific process
  2116. * @p: The process to be woken up.
  2117. *
  2118. * Attempt to wake up the nominated process and move it to the set of runnable
  2119. * processes. Returns 1 if the process was woken up, 0 if it was already
  2120. * running.
  2121. *
  2122. * It may be assumed that this function implies a write memory barrier before
  2123. * changing the task state if and only if any tasks are woken up.
  2124. */
  2125. int wake_up_process(struct task_struct *p)
  2126. {
  2127. return try_to_wake_up(p, TASK_ALL, 0);
  2128. }
  2129. EXPORT_SYMBOL(wake_up_process);
  2130. int wake_up_state(struct task_struct *p, unsigned int state)
  2131. {
  2132. return try_to_wake_up(p, state, 0);
  2133. }
  2134. /*
  2135. * Perform scheduler related setup for a newly forked process p.
  2136. * p is forked by current.
  2137. *
  2138. * __sched_fork() is basic setup used by init_idle() too:
  2139. */
  2140. static void __sched_fork(struct task_struct *p)
  2141. {
  2142. p->se.exec_start = 0;
  2143. p->se.sum_exec_runtime = 0;
  2144. p->se.prev_sum_exec_runtime = 0;
  2145. p->se.last_wakeup = 0;
  2146. p->se.avg_overlap = 0;
  2147. p->se.start_runtime = 0;
  2148. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2149. #ifdef CONFIG_SCHEDSTATS
  2150. p->se.wait_start = 0;
  2151. p->se.sum_sleep_runtime = 0;
  2152. p->se.sleep_start = 0;
  2153. p->se.block_start = 0;
  2154. p->se.sleep_max = 0;
  2155. p->se.block_max = 0;
  2156. p->se.exec_max = 0;
  2157. p->se.slice_max = 0;
  2158. p->se.wait_max = 0;
  2159. #endif
  2160. INIT_LIST_HEAD(&p->rt.run_list);
  2161. p->se.on_rq = 0;
  2162. INIT_LIST_HEAD(&p->se.group_node);
  2163. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2164. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2165. #endif
  2166. /*
  2167. * We mark the process as running here, but have not actually
  2168. * inserted it onto the runqueue yet. This guarantees that
  2169. * nobody will actually run it, and a signal or other external
  2170. * event cannot wake it up and insert it on the runqueue either.
  2171. */
  2172. p->state = TASK_RUNNING;
  2173. }
  2174. /*
  2175. * fork()/clone()-time setup:
  2176. */
  2177. void sched_fork(struct task_struct *p, int clone_flags)
  2178. {
  2179. int cpu = get_cpu();
  2180. __sched_fork(p);
  2181. #ifdef CONFIG_SMP
  2182. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2183. #endif
  2184. set_task_cpu(p, cpu);
  2185. /*
  2186. * Make sure we do not leak PI boosting priority to the child:
  2187. */
  2188. p->prio = current->normal_prio;
  2189. if (!rt_prio(p->prio))
  2190. p->sched_class = &fair_sched_class;
  2191. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2192. if (likely(sched_info_on()))
  2193. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2194. #endif
  2195. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2196. p->oncpu = 0;
  2197. #endif
  2198. #ifdef CONFIG_PREEMPT
  2199. /* Want to start with kernel preemption disabled. */
  2200. task_thread_info(p)->preempt_count = 1;
  2201. #endif
  2202. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2203. put_cpu();
  2204. }
  2205. /*
  2206. * wake_up_new_task - wake up a newly created task for the first time.
  2207. *
  2208. * This function will do some initial scheduler statistics housekeeping
  2209. * that must be done for every newly created context, then puts the task
  2210. * on the runqueue and wakes it.
  2211. */
  2212. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2213. {
  2214. unsigned long flags;
  2215. struct rq *rq;
  2216. rq = task_rq_lock(p, &flags);
  2217. BUG_ON(p->state != TASK_RUNNING);
  2218. update_rq_clock(rq);
  2219. p->prio = effective_prio(p);
  2220. if (!p->sched_class->task_new || !current->se.on_rq) {
  2221. activate_task(rq, p, 0);
  2222. } else {
  2223. /*
  2224. * Let the scheduling class do new task startup
  2225. * management (if any):
  2226. */
  2227. p->sched_class->task_new(rq, p);
  2228. inc_nr_running(rq);
  2229. }
  2230. trace_sched_wakeup_new(rq, p, 1);
  2231. check_preempt_curr(rq, p, 0);
  2232. #ifdef CONFIG_SMP
  2233. if (p->sched_class->task_wake_up)
  2234. p->sched_class->task_wake_up(rq, p);
  2235. #endif
  2236. task_rq_unlock(rq, &flags);
  2237. }
  2238. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2239. /**
  2240. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2241. * @notifier: notifier struct to register
  2242. */
  2243. void preempt_notifier_register(struct preempt_notifier *notifier)
  2244. {
  2245. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2246. }
  2247. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2248. /**
  2249. * preempt_notifier_unregister - no longer interested in preemption notifications
  2250. * @notifier: notifier struct to unregister
  2251. *
  2252. * This is safe to call from within a preemption notifier.
  2253. */
  2254. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2255. {
  2256. hlist_del(&notifier->link);
  2257. }
  2258. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2259. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2260. {
  2261. struct preempt_notifier *notifier;
  2262. struct hlist_node *node;
  2263. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2264. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2265. }
  2266. static void
  2267. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2268. struct task_struct *next)
  2269. {
  2270. struct preempt_notifier *notifier;
  2271. struct hlist_node *node;
  2272. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2273. notifier->ops->sched_out(notifier, next);
  2274. }
  2275. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2276. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2277. {
  2278. }
  2279. static void
  2280. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2281. struct task_struct *next)
  2282. {
  2283. }
  2284. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2285. /**
  2286. * prepare_task_switch - prepare to switch tasks
  2287. * @rq: the runqueue preparing to switch
  2288. * @prev: the current task that is being switched out
  2289. * @next: the task we are going to switch to.
  2290. *
  2291. * This is called with the rq lock held and interrupts off. It must
  2292. * be paired with a subsequent finish_task_switch after the context
  2293. * switch.
  2294. *
  2295. * prepare_task_switch sets up locking and calls architecture specific
  2296. * hooks.
  2297. */
  2298. static inline void
  2299. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2300. struct task_struct *next)
  2301. {
  2302. fire_sched_out_preempt_notifiers(prev, next);
  2303. prepare_lock_switch(rq, next);
  2304. prepare_arch_switch(next);
  2305. }
  2306. /**
  2307. * finish_task_switch - clean up after a task-switch
  2308. * @rq: runqueue associated with task-switch
  2309. * @prev: the thread we just switched away from.
  2310. *
  2311. * finish_task_switch must be called after the context switch, paired
  2312. * with a prepare_task_switch call before the context switch.
  2313. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2314. * and do any other architecture-specific cleanup actions.
  2315. *
  2316. * Note that we may have delayed dropping an mm in context_switch(). If
  2317. * so, we finish that here outside of the runqueue lock. (Doing it
  2318. * with the lock held can cause deadlocks; see schedule() for
  2319. * details.)
  2320. */
  2321. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2322. __releases(rq->lock)
  2323. {
  2324. struct mm_struct *mm = rq->prev_mm;
  2325. long prev_state;
  2326. #ifdef CONFIG_SMP
  2327. int post_schedule = 0;
  2328. if (current->sched_class->needs_post_schedule)
  2329. post_schedule = current->sched_class->needs_post_schedule(rq);
  2330. #endif
  2331. rq->prev_mm = NULL;
  2332. /*
  2333. * A task struct has one reference for the use as "current".
  2334. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2335. * schedule one last time. The schedule call will never return, and
  2336. * the scheduled task must drop that reference.
  2337. * The test for TASK_DEAD must occur while the runqueue locks are
  2338. * still held, otherwise prev could be scheduled on another cpu, die
  2339. * there before we look at prev->state, and then the reference would
  2340. * be dropped twice.
  2341. * Manfred Spraul <manfred@colorfullife.com>
  2342. */
  2343. prev_state = prev->state;
  2344. finish_arch_switch(prev);
  2345. finish_lock_switch(rq, prev);
  2346. #ifdef CONFIG_SMP
  2347. if (post_schedule)
  2348. current->sched_class->post_schedule(rq);
  2349. #endif
  2350. fire_sched_in_preempt_notifiers(current);
  2351. if (mm)
  2352. mmdrop(mm);
  2353. if (unlikely(prev_state == TASK_DEAD)) {
  2354. /*
  2355. * Remove function-return probe instances associated with this
  2356. * task and put them back on the free list.
  2357. */
  2358. kprobe_flush_task(prev);
  2359. put_task_struct(prev);
  2360. }
  2361. }
  2362. /**
  2363. * schedule_tail - first thing a freshly forked thread must call.
  2364. * @prev: the thread we just switched away from.
  2365. */
  2366. asmlinkage void schedule_tail(struct task_struct *prev)
  2367. __releases(rq->lock)
  2368. {
  2369. struct rq *rq = this_rq();
  2370. finish_task_switch(rq, prev);
  2371. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2372. /* In this case, finish_task_switch does not reenable preemption */
  2373. preempt_enable();
  2374. #endif
  2375. if (current->set_child_tid)
  2376. put_user(task_pid_vnr(current), current->set_child_tid);
  2377. }
  2378. /*
  2379. * context_switch - switch to the new MM and the new
  2380. * thread's register state.
  2381. */
  2382. static inline void
  2383. context_switch(struct rq *rq, struct task_struct *prev,
  2384. struct task_struct *next)
  2385. {
  2386. struct mm_struct *mm, *oldmm;
  2387. prepare_task_switch(rq, prev, next);
  2388. trace_sched_switch(rq, prev, next);
  2389. mm = next->mm;
  2390. oldmm = prev->active_mm;
  2391. /*
  2392. * For paravirt, this is coupled with an exit in switch_to to
  2393. * combine the page table reload and the switch backend into
  2394. * one hypercall.
  2395. */
  2396. arch_start_context_switch(prev);
  2397. if (unlikely(!mm)) {
  2398. next->active_mm = oldmm;
  2399. atomic_inc(&oldmm->mm_count);
  2400. enter_lazy_tlb(oldmm, next);
  2401. } else
  2402. switch_mm(oldmm, mm, next);
  2403. if (unlikely(!prev->mm)) {
  2404. prev->active_mm = NULL;
  2405. rq->prev_mm = oldmm;
  2406. }
  2407. /*
  2408. * Since the runqueue lock will be released by the next
  2409. * task (which is an invalid locking op but in the case
  2410. * of the scheduler it's an obvious special-case), so we
  2411. * do an early lockdep release here:
  2412. */
  2413. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2414. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2415. #endif
  2416. /* Here we just switch the register state and the stack. */
  2417. switch_to(prev, next, prev);
  2418. barrier();
  2419. /*
  2420. * this_rq must be evaluated again because prev may have moved
  2421. * CPUs since it called schedule(), thus the 'rq' on its stack
  2422. * frame will be invalid.
  2423. */
  2424. finish_task_switch(this_rq(), prev);
  2425. }
  2426. /*
  2427. * nr_running, nr_uninterruptible and nr_context_switches:
  2428. *
  2429. * externally visible scheduler statistics: current number of runnable
  2430. * threads, current number of uninterruptible-sleeping threads, total
  2431. * number of context switches performed since bootup.
  2432. */
  2433. unsigned long nr_running(void)
  2434. {
  2435. unsigned long i, sum = 0;
  2436. for_each_online_cpu(i)
  2437. sum += cpu_rq(i)->nr_running;
  2438. return sum;
  2439. }
  2440. unsigned long nr_uninterruptible(void)
  2441. {
  2442. unsigned long i, sum = 0;
  2443. for_each_possible_cpu(i)
  2444. sum += cpu_rq(i)->nr_uninterruptible;
  2445. /*
  2446. * Since we read the counters lockless, it might be slightly
  2447. * inaccurate. Do not allow it to go below zero though:
  2448. */
  2449. if (unlikely((long)sum < 0))
  2450. sum = 0;
  2451. return sum;
  2452. }
  2453. unsigned long long nr_context_switches(void)
  2454. {
  2455. int i;
  2456. unsigned long long sum = 0;
  2457. for_each_possible_cpu(i)
  2458. sum += cpu_rq(i)->nr_switches;
  2459. return sum;
  2460. }
  2461. unsigned long nr_iowait(void)
  2462. {
  2463. unsigned long i, sum = 0;
  2464. for_each_possible_cpu(i)
  2465. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2466. return sum;
  2467. }
  2468. /* Variables and functions for calc_load */
  2469. static atomic_long_t calc_load_tasks;
  2470. static unsigned long calc_load_update;
  2471. unsigned long avenrun[3];
  2472. EXPORT_SYMBOL(avenrun);
  2473. /**
  2474. * get_avenrun - get the load average array
  2475. * @loads: pointer to dest load array
  2476. * @offset: offset to add
  2477. * @shift: shift count to shift the result left
  2478. *
  2479. * These values are estimates at best, so no need for locking.
  2480. */
  2481. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2482. {
  2483. loads[0] = (avenrun[0] + offset) << shift;
  2484. loads[1] = (avenrun[1] + offset) << shift;
  2485. loads[2] = (avenrun[2] + offset) << shift;
  2486. }
  2487. static unsigned long
  2488. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2489. {
  2490. load *= exp;
  2491. load += active * (FIXED_1 - exp);
  2492. return load >> FSHIFT;
  2493. }
  2494. /*
  2495. * calc_load - update the avenrun load estimates 10 ticks after the
  2496. * CPUs have updated calc_load_tasks.
  2497. */
  2498. void calc_global_load(void)
  2499. {
  2500. unsigned long upd = calc_load_update + 10;
  2501. long active;
  2502. if (time_before(jiffies, upd))
  2503. return;
  2504. active = atomic_long_read(&calc_load_tasks);
  2505. active = active > 0 ? active * FIXED_1 : 0;
  2506. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2507. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2508. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2509. calc_load_update += LOAD_FREQ;
  2510. }
  2511. /*
  2512. * Either called from update_cpu_load() or from a cpu going idle
  2513. */
  2514. static void calc_load_account_active(struct rq *this_rq)
  2515. {
  2516. long nr_active, delta;
  2517. nr_active = this_rq->nr_running;
  2518. nr_active += (long) this_rq->nr_uninterruptible;
  2519. if (nr_active != this_rq->calc_load_active) {
  2520. delta = nr_active - this_rq->calc_load_active;
  2521. this_rq->calc_load_active = nr_active;
  2522. atomic_long_add(delta, &calc_load_tasks);
  2523. }
  2524. }
  2525. /*
  2526. * Update rq->cpu_load[] statistics. This function is usually called every
  2527. * scheduler tick (TICK_NSEC).
  2528. */
  2529. static void update_cpu_load(struct rq *this_rq)
  2530. {
  2531. unsigned long this_load = this_rq->load.weight;
  2532. int i, scale;
  2533. this_rq->nr_load_updates++;
  2534. /* Update our load: */
  2535. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2536. unsigned long old_load, new_load;
  2537. /* scale is effectively 1 << i now, and >> i divides by scale */
  2538. old_load = this_rq->cpu_load[i];
  2539. new_load = this_load;
  2540. /*
  2541. * Round up the averaging division if load is increasing. This
  2542. * prevents us from getting stuck on 9 if the load is 10, for
  2543. * example.
  2544. */
  2545. if (new_load > old_load)
  2546. new_load += scale-1;
  2547. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2548. }
  2549. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2550. this_rq->calc_load_update += LOAD_FREQ;
  2551. calc_load_account_active(this_rq);
  2552. }
  2553. }
  2554. #ifdef CONFIG_SMP
  2555. /*
  2556. * double_rq_lock - safely lock two runqueues
  2557. *
  2558. * Note this does not disable interrupts like task_rq_lock,
  2559. * you need to do so manually before calling.
  2560. */
  2561. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2562. __acquires(rq1->lock)
  2563. __acquires(rq2->lock)
  2564. {
  2565. BUG_ON(!irqs_disabled());
  2566. if (rq1 == rq2) {
  2567. spin_lock(&rq1->lock);
  2568. __acquire(rq2->lock); /* Fake it out ;) */
  2569. } else {
  2570. if (rq1 < rq2) {
  2571. spin_lock(&rq1->lock);
  2572. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2573. } else {
  2574. spin_lock(&rq2->lock);
  2575. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2576. }
  2577. }
  2578. update_rq_clock(rq1);
  2579. update_rq_clock(rq2);
  2580. }
  2581. /*
  2582. * double_rq_unlock - safely unlock two runqueues
  2583. *
  2584. * Note this does not restore interrupts like task_rq_unlock,
  2585. * you need to do so manually after calling.
  2586. */
  2587. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2588. __releases(rq1->lock)
  2589. __releases(rq2->lock)
  2590. {
  2591. spin_unlock(&rq1->lock);
  2592. if (rq1 != rq2)
  2593. spin_unlock(&rq2->lock);
  2594. else
  2595. __release(rq2->lock);
  2596. }
  2597. /*
  2598. * If dest_cpu is allowed for this process, migrate the task to it.
  2599. * This is accomplished by forcing the cpu_allowed mask to only
  2600. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2601. * the cpu_allowed mask is restored.
  2602. */
  2603. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2604. {
  2605. struct migration_req req;
  2606. unsigned long flags;
  2607. struct rq *rq;
  2608. rq = task_rq_lock(p, &flags);
  2609. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2610. || unlikely(!cpu_active(dest_cpu)))
  2611. goto out;
  2612. /* force the process onto the specified CPU */
  2613. if (migrate_task(p, dest_cpu, &req)) {
  2614. /* Need to wait for migration thread (might exit: take ref). */
  2615. struct task_struct *mt = rq->migration_thread;
  2616. get_task_struct(mt);
  2617. task_rq_unlock(rq, &flags);
  2618. wake_up_process(mt);
  2619. put_task_struct(mt);
  2620. wait_for_completion(&req.done);
  2621. return;
  2622. }
  2623. out:
  2624. task_rq_unlock(rq, &flags);
  2625. }
  2626. /*
  2627. * sched_exec - execve() is a valuable balancing opportunity, because at
  2628. * this point the task has the smallest effective memory and cache footprint.
  2629. */
  2630. void sched_exec(void)
  2631. {
  2632. int new_cpu, this_cpu = get_cpu();
  2633. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2634. put_cpu();
  2635. if (new_cpu != this_cpu)
  2636. sched_migrate_task(current, new_cpu);
  2637. }
  2638. /*
  2639. * pull_task - move a task from a remote runqueue to the local runqueue.
  2640. * Both runqueues must be locked.
  2641. */
  2642. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2643. struct rq *this_rq, int this_cpu)
  2644. {
  2645. deactivate_task(src_rq, p, 0);
  2646. set_task_cpu(p, this_cpu);
  2647. activate_task(this_rq, p, 0);
  2648. /*
  2649. * Note that idle threads have a prio of MAX_PRIO, for this test
  2650. * to be always true for them.
  2651. */
  2652. check_preempt_curr(this_rq, p, 0);
  2653. }
  2654. /*
  2655. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2656. */
  2657. static
  2658. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2659. struct sched_domain *sd, enum cpu_idle_type idle,
  2660. int *all_pinned)
  2661. {
  2662. int tsk_cache_hot = 0;
  2663. /*
  2664. * We do not migrate tasks that are:
  2665. * 1) running (obviously), or
  2666. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2667. * 3) are cache-hot on their current CPU.
  2668. */
  2669. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2670. schedstat_inc(p, se.nr_failed_migrations_affine);
  2671. return 0;
  2672. }
  2673. *all_pinned = 0;
  2674. if (task_running(rq, p)) {
  2675. schedstat_inc(p, se.nr_failed_migrations_running);
  2676. return 0;
  2677. }
  2678. /*
  2679. * Aggressive migration if:
  2680. * 1) task is cache cold, or
  2681. * 2) too many balance attempts have failed.
  2682. */
  2683. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2684. if (!tsk_cache_hot ||
  2685. sd->nr_balance_failed > sd->cache_nice_tries) {
  2686. #ifdef CONFIG_SCHEDSTATS
  2687. if (tsk_cache_hot) {
  2688. schedstat_inc(sd, lb_hot_gained[idle]);
  2689. schedstat_inc(p, se.nr_forced_migrations);
  2690. }
  2691. #endif
  2692. return 1;
  2693. }
  2694. if (tsk_cache_hot) {
  2695. schedstat_inc(p, se.nr_failed_migrations_hot);
  2696. return 0;
  2697. }
  2698. return 1;
  2699. }
  2700. static unsigned long
  2701. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2702. unsigned long max_load_move, struct sched_domain *sd,
  2703. enum cpu_idle_type idle, int *all_pinned,
  2704. int *this_best_prio, struct rq_iterator *iterator)
  2705. {
  2706. int loops = 0, pulled = 0, pinned = 0;
  2707. struct task_struct *p;
  2708. long rem_load_move = max_load_move;
  2709. if (max_load_move == 0)
  2710. goto out;
  2711. pinned = 1;
  2712. /*
  2713. * Start the load-balancing iterator:
  2714. */
  2715. p = iterator->start(iterator->arg);
  2716. next:
  2717. if (!p || loops++ > sysctl_sched_nr_migrate)
  2718. goto out;
  2719. if ((p->se.load.weight >> 1) > rem_load_move ||
  2720. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2721. p = iterator->next(iterator->arg);
  2722. goto next;
  2723. }
  2724. pull_task(busiest, p, this_rq, this_cpu);
  2725. pulled++;
  2726. rem_load_move -= p->se.load.weight;
  2727. #ifdef CONFIG_PREEMPT
  2728. /*
  2729. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2730. * will stop after the first task is pulled to minimize the critical
  2731. * section.
  2732. */
  2733. if (idle == CPU_NEWLY_IDLE)
  2734. goto out;
  2735. #endif
  2736. /*
  2737. * We only want to steal up to the prescribed amount of weighted load.
  2738. */
  2739. if (rem_load_move > 0) {
  2740. if (p->prio < *this_best_prio)
  2741. *this_best_prio = p->prio;
  2742. p = iterator->next(iterator->arg);
  2743. goto next;
  2744. }
  2745. out:
  2746. /*
  2747. * Right now, this is one of only two places pull_task() is called,
  2748. * so we can safely collect pull_task() stats here rather than
  2749. * inside pull_task().
  2750. */
  2751. schedstat_add(sd, lb_gained[idle], pulled);
  2752. if (all_pinned)
  2753. *all_pinned = pinned;
  2754. return max_load_move - rem_load_move;
  2755. }
  2756. /*
  2757. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2758. * this_rq, as part of a balancing operation within domain "sd".
  2759. * Returns 1 if successful and 0 otherwise.
  2760. *
  2761. * Called with both runqueues locked.
  2762. */
  2763. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2764. unsigned long max_load_move,
  2765. struct sched_domain *sd, enum cpu_idle_type idle,
  2766. int *all_pinned)
  2767. {
  2768. const struct sched_class *class = sched_class_highest;
  2769. unsigned long total_load_moved = 0;
  2770. int this_best_prio = this_rq->curr->prio;
  2771. do {
  2772. total_load_moved +=
  2773. class->load_balance(this_rq, this_cpu, busiest,
  2774. max_load_move - total_load_moved,
  2775. sd, idle, all_pinned, &this_best_prio);
  2776. class = class->next;
  2777. #ifdef CONFIG_PREEMPT
  2778. /*
  2779. * NEWIDLE balancing is a source of latency, so preemptible
  2780. * kernels will stop after the first task is pulled to minimize
  2781. * the critical section.
  2782. */
  2783. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2784. break;
  2785. #endif
  2786. } while (class && max_load_move > total_load_moved);
  2787. return total_load_moved > 0;
  2788. }
  2789. static int
  2790. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2791. struct sched_domain *sd, enum cpu_idle_type idle,
  2792. struct rq_iterator *iterator)
  2793. {
  2794. struct task_struct *p = iterator->start(iterator->arg);
  2795. int pinned = 0;
  2796. while (p) {
  2797. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2798. pull_task(busiest, p, this_rq, this_cpu);
  2799. /*
  2800. * Right now, this is only the second place pull_task()
  2801. * is called, so we can safely collect pull_task()
  2802. * stats here rather than inside pull_task().
  2803. */
  2804. schedstat_inc(sd, lb_gained[idle]);
  2805. return 1;
  2806. }
  2807. p = iterator->next(iterator->arg);
  2808. }
  2809. return 0;
  2810. }
  2811. /*
  2812. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2813. * part of active balancing operations within "domain".
  2814. * Returns 1 if successful and 0 otherwise.
  2815. *
  2816. * Called with both runqueues locked.
  2817. */
  2818. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2819. struct sched_domain *sd, enum cpu_idle_type idle)
  2820. {
  2821. const struct sched_class *class;
  2822. for (class = sched_class_highest; class; class = class->next)
  2823. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2824. return 1;
  2825. return 0;
  2826. }
  2827. /********** Helpers for find_busiest_group ************************/
  2828. /*
  2829. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2830. * during load balancing.
  2831. */
  2832. struct sd_lb_stats {
  2833. struct sched_group *busiest; /* Busiest group in this sd */
  2834. struct sched_group *this; /* Local group in this sd */
  2835. unsigned long total_load; /* Total load of all groups in sd */
  2836. unsigned long total_pwr; /* Total power of all groups in sd */
  2837. unsigned long avg_load; /* Average load across all groups in sd */
  2838. /** Statistics of this group */
  2839. unsigned long this_load;
  2840. unsigned long this_load_per_task;
  2841. unsigned long this_nr_running;
  2842. /* Statistics of the busiest group */
  2843. unsigned long max_load;
  2844. unsigned long busiest_load_per_task;
  2845. unsigned long busiest_nr_running;
  2846. int group_imb; /* Is there imbalance in this sd */
  2847. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2848. int power_savings_balance; /* Is powersave balance needed for this sd */
  2849. struct sched_group *group_min; /* Least loaded group in sd */
  2850. struct sched_group *group_leader; /* Group which relieves group_min */
  2851. unsigned long min_load_per_task; /* load_per_task in group_min */
  2852. unsigned long leader_nr_running; /* Nr running of group_leader */
  2853. unsigned long min_nr_running; /* Nr running of group_min */
  2854. #endif
  2855. };
  2856. /*
  2857. * sg_lb_stats - stats of a sched_group required for load_balancing
  2858. */
  2859. struct sg_lb_stats {
  2860. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2861. unsigned long group_load; /* Total load over the CPUs of the group */
  2862. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2863. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2864. unsigned long group_capacity;
  2865. int group_imb; /* Is there an imbalance in the group ? */
  2866. };
  2867. /**
  2868. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2869. * @group: The group whose first cpu is to be returned.
  2870. */
  2871. static inline unsigned int group_first_cpu(struct sched_group *group)
  2872. {
  2873. return cpumask_first(sched_group_cpus(group));
  2874. }
  2875. /**
  2876. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2877. * @sd: The sched_domain whose load_idx is to be obtained.
  2878. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2879. */
  2880. static inline int get_sd_load_idx(struct sched_domain *sd,
  2881. enum cpu_idle_type idle)
  2882. {
  2883. int load_idx;
  2884. switch (idle) {
  2885. case CPU_NOT_IDLE:
  2886. load_idx = sd->busy_idx;
  2887. break;
  2888. case CPU_NEWLY_IDLE:
  2889. load_idx = sd->newidle_idx;
  2890. break;
  2891. default:
  2892. load_idx = sd->idle_idx;
  2893. break;
  2894. }
  2895. return load_idx;
  2896. }
  2897. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2898. /**
  2899. * init_sd_power_savings_stats - Initialize power savings statistics for
  2900. * the given sched_domain, during load balancing.
  2901. *
  2902. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2903. * @sds: Variable containing the statistics for sd.
  2904. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2905. */
  2906. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2907. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2908. {
  2909. /*
  2910. * Busy processors will not participate in power savings
  2911. * balance.
  2912. */
  2913. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2914. sds->power_savings_balance = 0;
  2915. else {
  2916. sds->power_savings_balance = 1;
  2917. sds->min_nr_running = ULONG_MAX;
  2918. sds->leader_nr_running = 0;
  2919. }
  2920. }
  2921. /**
  2922. * update_sd_power_savings_stats - Update the power saving stats for a
  2923. * sched_domain while performing load balancing.
  2924. *
  2925. * @group: sched_group belonging to the sched_domain under consideration.
  2926. * @sds: Variable containing the statistics of the sched_domain
  2927. * @local_group: Does group contain the CPU for which we're performing
  2928. * load balancing ?
  2929. * @sgs: Variable containing the statistics of the group.
  2930. */
  2931. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2932. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2933. {
  2934. if (!sds->power_savings_balance)
  2935. return;
  2936. /*
  2937. * If the local group is idle or completely loaded
  2938. * no need to do power savings balance at this domain
  2939. */
  2940. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2941. !sds->this_nr_running))
  2942. sds->power_savings_balance = 0;
  2943. /*
  2944. * If a group is already running at full capacity or idle,
  2945. * don't include that group in power savings calculations
  2946. */
  2947. if (!sds->power_savings_balance ||
  2948. sgs->sum_nr_running >= sgs->group_capacity ||
  2949. !sgs->sum_nr_running)
  2950. return;
  2951. /*
  2952. * Calculate the group which has the least non-idle load.
  2953. * This is the group from where we need to pick up the load
  2954. * for saving power
  2955. */
  2956. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2957. (sgs->sum_nr_running == sds->min_nr_running &&
  2958. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2959. sds->group_min = group;
  2960. sds->min_nr_running = sgs->sum_nr_running;
  2961. sds->min_load_per_task = sgs->sum_weighted_load /
  2962. sgs->sum_nr_running;
  2963. }
  2964. /*
  2965. * Calculate the group which is almost near its
  2966. * capacity but still has some space to pick up some load
  2967. * from other group and save more power
  2968. */
  2969. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2970. return;
  2971. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2972. (sgs->sum_nr_running == sds->leader_nr_running &&
  2973. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2974. sds->group_leader = group;
  2975. sds->leader_nr_running = sgs->sum_nr_running;
  2976. }
  2977. }
  2978. /**
  2979. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2980. * @sds: Variable containing the statistics of the sched_domain
  2981. * under consideration.
  2982. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2983. * @imbalance: Variable to store the imbalance.
  2984. *
  2985. * Description:
  2986. * Check if we have potential to perform some power-savings balance.
  2987. * If yes, set the busiest group to be the least loaded group in the
  2988. * sched_domain, so that it's CPUs can be put to idle.
  2989. *
  2990. * Returns 1 if there is potential to perform power-savings balance.
  2991. * Else returns 0.
  2992. */
  2993. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2994. int this_cpu, unsigned long *imbalance)
  2995. {
  2996. if (!sds->power_savings_balance)
  2997. return 0;
  2998. if (sds->this != sds->group_leader ||
  2999. sds->group_leader == sds->group_min)
  3000. return 0;
  3001. *imbalance = sds->min_load_per_task;
  3002. sds->busiest = sds->group_min;
  3003. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3004. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3005. group_first_cpu(sds->group_leader);
  3006. }
  3007. return 1;
  3008. }
  3009. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3010. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3011. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3012. {
  3013. return;
  3014. }
  3015. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3016. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3017. {
  3018. return;
  3019. }
  3020. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3021. int this_cpu, unsigned long *imbalance)
  3022. {
  3023. return 0;
  3024. }
  3025. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3026. /**
  3027. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3028. * @group: sched_group whose statistics are to be updated.
  3029. * @this_cpu: Cpu for which load balance is currently performed.
  3030. * @idle: Idle status of this_cpu
  3031. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3032. * @sd_idle: Idle status of the sched_domain containing group.
  3033. * @local_group: Does group contain this_cpu.
  3034. * @cpus: Set of cpus considered for load balancing.
  3035. * @balance: Should we balance.
  3036. * @sgs: variable to hold the statistics for this group.
  3037. */
  3038. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3039. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3040. int local_group, const struct cpumask *cpus,
  3041. int *balance, struct sg_lb_stats *sgs)
  3042. {
  3043. unsigned long load, max_cpu_load, min_cpu_load;
  3044. int i;
  3045. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3046. unsigned long sum_avg_load_per_task;
  3047. unsigned long avg_load_per_task;
  3048. if (local_group)
  3049. balance_cpu = group_first_cpu(group);
  3050. /* Tally up the load of all CPUs in the group */
  3051. sum_avg_load_per_task = avg_load_per_task = 0;
  3052. max_cpu_load = 0;
  3053. min_cpu_load = ~0UL;
  3054. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3055. struct rq *rq = cpu_rq(i);
  3056. if (*sd_idle && rq->nr_running)
  3057. *sd_idle = 0;
  3058. /* Bias balancing toward cpus of our domain */
  3059. if (local_group) {
  3060. if (idle_cpu(i) && !first_idle_cpu) {
  3061. first_idle_cpu = 1;
  3062. balance_cpu = i;
  3063. }
  3064. load = target_load(i, load_idx);
  3065. } else {
  3066. load = source_load(i, load_idx);
  3067. if (load > max_cpu_load)
  3068. max_cpu_load = load;
  3069. if (min_cpu_load > load)
  3070. min_cpu_load = load;
  3071. }
  3072. sgs->group_load += load;
  3073. sgs->sum_nr_running += rq->nr_running;
  3074. sgs->sum_weighted_load += weighted_cpuload(i);
  3075. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3076. }
  3077. /*
  3078. * First idle cpu or the first cpu(busiest) in this sched group
  3079. * is eligible for doing load balancing at this and above
  3080. * domains. In the newly idle case, we will allow all the cpu's
  3081. * to do the newly idle load balance.
  3082. */
  3083. if (idle != CPU_NEWLY_IDLE && local_group &&
  3084. balance_cpu != this_cpu && balance) {
  3085. *balance = 0;
  3086. return;
  3087. }
  3088. /* Adjust by relative CPU power of the group */
  3089. sgs->avg_load = sg_div_cpu_power(group,
  3090. sgs->group_load * SCHED_LOAD_SCALE);
  3091. /*
  3092. * Consider the group unbalanced when the imbalance is larger
  3093. * than the average weight of two tasks.
  3094. *
  3095. * APZ: with cgroup the avg task weight can vary wildly and
  3096. * might not be a suitable number - should we keep a
  3097. * normalized nr_running number somewhere that negates
  3098. * the hierarchy?
  3099. */
  3100. avg_load_per_task = sg_div_cpu_power(group,
  3101. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3102. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3103. sgs->group_imb = 1;
  3104. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3105. }
  3106. /**
  3107. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3108. * @sd: sched_domain whose statistics are to be updated.
  3109. * @this_cpu: Cpu for which load balance is currently performed.
  3110. * @idle: Idle status of this_cpu
  3111. * @sd_idle: Idle status of the sched_domain containing group.
  3112. * @cpus: Set of cpus considered for load balancing.
  3113. * @balance: Should we balance.
  3114. * @sds: variable to hold the statistics for this sched_domain.
  3115. */
  3116. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3117. enum cpu_idle_type idle, int *sd_idle,
  3118. const struct cpumask *cpus, int *balance,
  3119. struct sd_lb_stats *sds)
  3120. {
  3121. struct sched_group *group = sd->groups;
  3122. struct sg_lb_stats sgs;
  3123. int load_idx;
  3124. init_sd_power_savings_stats(sd, sds, idle);
  3125. load_idx = get_sd_load_idx(sd, idle);
  3126. do {
  3127. int local_group;
  3128. local_group = cpumask_test_cpu(this_cpu,
  3129. sched_group_cpus(group));
  3130. memset(&sgs, 0, sizeof(sgs));
  3131. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3132. local_group, cpus, balance, &sgs);
  3133. if (local_group && balance && !(*balance))
  3134. return;
  3135. sds->total_load += sgs.group_load;
  3136. sds->total_pwr += group->__cpu_power;
  3137. if (local_group) {
  3138. sds->this_load = sgs.avg_load;
  3139. sds->this = group;
  3140. sds->this_nr_running = sgs.sum_nr_running;
  3141. sds->this_load_per_task = sgs.sum_weighted_load;
  3142. } else if (sgs.avg_load > sds->max_load &&
  3143. (sgs.sum_nr_running > sgs.group_capacity ||
  3144. sgs.group_imb)) {
  3145. sds->max_load = sgs.avg_load;
  3146. sds->busiest = group;
  3147. sds->busiest_nr_running = sgs.sum_nr_running;
  3148. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3149. sds->group_imb = sgs.group_imb;
  3150. }
  3151. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3152. group = group->next;
  3153. } while (group != sd->groups);
  3154. }
  3155. /**
  3156. * fix_small_imbalance - Calculate the minor imbalance that exists
  3157. * amongst the groups of a sched_domain, during
  3158. * load balancing.
  3159. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3160. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3161. * @imbalance: Variable to store the imbalance.
  3162. */
  3163. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3164. int this_cpu, unsigned long *imbalance)
  3165. {
  3166. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3167. unsigned int imbn = 2;
  3168. if (sds->this_nr_running) {
  3169. sds->this_load_per_task /= sds->this_nr_running;
  3170. if (sds->busiest_load_per_task >
  3171. sds->this_load_per_task)
  3172. imbn = 1;
  3173. } else
  3174. sds->this_load_per_task =
  3175. cpu_avg_load_per_task(this_cpu);
  3176. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3177. sds->busiest_load_per_task * imbn) {
  3178. *imbalance = sds->busiest_load_per_task;
  3179. return;
  3180. }
  3181. /*
  3182. * OK, we don't have enough imbalance to justify moving tasks,
  3183. * however we may be able to increase total CPU power used by
  3184. * moving them.
  3185. */
  3186. pwr_now += sds->busiest->__cpu_power *
  3187. min(sds->busiest_load_per_task, sds->max_load);
  3188. pwr_now += sds->this->__cpu_power *
  3189. min(sds->this_load_per_task, sds->this_load);
  3190. pwr_now /= SCHED_LOAD_SCALE;
  3191. /* Amount of load we'd subtract */
  3192. tmp = sg_div_cpu_power(sds->busiest,
  3193. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3194. if (sds->max_load > tmp)
  3195. pwr_move += sds->busiest->__cpu_power *
  3196. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3197. /* Amount of load we'd add */
  3198. if (sds->max_load * sds->busiest->__cpu_power <
  3199. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3200. tmp = sg_div_cpu_power(sds->this,
  3201. sds->max_load * sds->busiest->__cpu_power);
  3202. else
  3203. tmp = sg_div_cpu_power(sds->this,
  3204. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3205. pwr_move += sds->this->__cpu_power *
  3206. min(sds->this_load_per_task, sds->this_load + tmp);
  3207. pwr_move /= SCHED_LOAD_SCALE;
  3208. /* Move if we gain throughput */
  3209. if (pwr_move > pwr_now)
  3210. *imbalance = sds->busiest_load_per_task;
  3211. }
  3212. /**
  3213. * calculate_imbalance - Calculate the amount of imbalance present within the
  3214. * groups of a given sched_domain during load balance.
  3215. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3216. * @this_cpu: Cpu for which currently load balance is being performed.
  3217. * @imbalance: The variable to store the imbalance.
  3218. */
  3219. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3220. unsigned long *imbalance)
  3221. {
  3222. unsigned long max_pull;
  3223. /*
  3224. * In the presence of smp nice balancing, certain scenarios can have
  3225. * max load less than avg load(as we skip the groups at or below
  3226. * its cpu_power, while calculating max_load..)
  3227. */
  3228. if (sds->max_load < sds->avg_load) {
  3229. *imbalance = 0;
  3230. return fix_small_imbalance(sds, this_cpu, imbalance);
  3231. }
  3232. /* Don't want to pull so many tasks that a group would go idle */
  3233. max_pull = min(sds->max_load - sds->avg_load,
  3234. sds->max_load - sds->busiest_load_per_task);
  3235. /* How much load to actually move to equalise the imbalance */
  3236. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3237. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3238. / SCHED_LOAD_SCALE;
  3239. /*
  3240. * if *imbalance is less than the average load per runnable task
  3241. * there is no gaurantee that any tasks will be moved so we'll have
  3242. * a think about bumping its value to force at least one task to be
  3243. * moved
  3244. */
  3245. if (*imbalance < sds->busiest_load_per_task)
  3246. return fix_small_imbalance(sds, this_cpu, imbalance);
  3247. }
  3248. /******* find_busiest_group() helpers end here *********************/
  3249. /**
  3250. * find_busiest_group - Returns the busiest group within the sched_domain
  3251. * if there is an imbalance. If there isn't an imbalance, and
  3252. * the user has opted for power-savings, it returns a group whose
  3253. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3254. * such a group exists.
  3255. *
  3256. * Also calculates the amount of weighted load which should be moved
  3257. * to restore balance.
  3258. *
  3259. * @sd: The sched_domain whose busiest group is to be returned.
  3260. * @this_cpu: The cpu for which load balancing is currently being performed.
  3261. * @imbalance: Variable which stores amount of weighted load which should
  3262. * be moved to restore balance/put a group to idle.
  3263. * @idle: The idle status of this_cpu.
  3264. * @sd_idle: The idleness of sd
  3265. * @cpus: The set of CPUs under consideration for load-balancing.
  3266. * @balance: Pointer to a variable indicating if this_cpu
  3267. * is the appropriate cpu to perform load balancing at this_level.
  3268. *
  3269. * Returns: - the busiest group if imbalance exists.
  3270. * - If no imbalance and user has opted for power-savings balance,
  3271. * return the least loaded group whose CPUs can be
  3272. * put to idle by rebalancing its tasks onto our group.
  3273. */
  3274. static struct sched_group *
  3275. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3276. unsigned long *imbalance, enum cpu_idle_type idle,
  3277. int *sd_idle, const struct cpumask *cpus, int *balance)
  3278. {
  3279. struct sd_lb_stats sds;
  3280. memset(&sds, 0, sizeof(sds));
  3281. /*
  3282. * Compute the various statistics relavent for load balancing at
  3283. * this level.
  3284. */
  3285. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3286. balance, &sds);
  3287. /* Cases where imbalance does not exist from POV of this_cpu */
  3288. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3289. * at this level.
  3290. * 2) There is no busy sibling group to pull from.
  3291. * 3) This group is the busiest group.
  3292. * 4) This group is more busy than the avg busieness at this
  3293. * sched_domain.
  3294. * 5) The imbalance is within the specified limit.
  3295. * 6) Any rebalance would lead to ping-pong
  3296. */
  3297. if (balance && !(*balance))
  3298. goto ret;
  3299. if (!sds.busiest || sds.busiest_nr_running == 0)
  3300. goto out_balanced;
  3301. if (sds.this_load >= sds.max_load)
  3302. goto out_balanced;
  3303. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3304. if (sds.this_load >= sds.avg_load)
  3305. goto out_balanced;
  3306. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3307. goto out_balanced;
  3308. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3309. if (sds.group_imb)
  3310. sds.busiest_load_per_task =
  3311. min(sds.busiest_load_per_task, sds.avg_load);
  3312. /*
  3313. * We're trying to get all the cpus to the average_load, so we don't
  3314. * want to push ourselves above the average load, nor do we wish to
  3315. * reduce the max loaded cpu below the average load, as either of these
  3316. * actions would just result in more rebalancing later, and ping-pong
  3317. * tasks around. Thus we look for the minimum possible imbalance.
  3318. * Negative imbalances (*we* are more loaded than anyone else) will
  3319. * be counted as no imbalance for these purposes -- we can't fix that
  3320. * by pulling tasks to us. Be careful of negative numbers as they'll
  3321. * appear as very large values with unsigned longs.
  3322. */
  3323. if (sds.max_load <= sds.busiest_load_per_task)
  3324. goto out_balanced;
  3325. /* Looks like there is an imbalance. Compute it */
  3326. calculate_imbalance(&sds, this_cpu, imbalance);
  3327. return sds.busiest;
  3328. out_balanced:
  3329. /*
  3330. * There is no obvious imbalance. But check if we can do some balancing
  3331. * to save power.
  3332. */
  3333. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3334. return sds.busiest;
  3335. ret:
  3336. *imbalance = 0;
  3337. return NULL;
  3338. }
  3339. /*
  3340. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3341. */
  3342. static struct rq *
  3343. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3344. unsigned long imbalance, const struct cpumask *cpus)
  3345. {
  3346. struct rq *busiest = NULL, *rq;
  3347. unsigned long max_load = 0;
  3348. int i;
  3349. for_each_cpu(i, sched_group_cpus(group)) {
  3350. unsigned long wl;
  3351. if (!cpumask_test_cpu(i, cpus))
  3352. continue;
  3353. rq = cpu_rq(i);
  3354. wl = weighted_cpuload(i);
  3355. if (rq->nr_running == 1 && wl > imbalance)
  3356. continue;
  3357. if (wl > max_load) {
  3358. max_load = wl;
  3359. busiest = rq;
  3360. }
  3361. }
  3362. return busiest;
  3363. }
  3364. /*
  3365. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3366. * so long as it is large enough.
  3367. */
  3368. #define MAX_PINNED_INTERVAL 512
  3369. /* Working cpumask for load_balance and load_balance_newidle. */
  3370. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3371. /*
  3372. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3373. * tasks if there is an imbalance.
  3374. */
  3375. static int load_balance(int this_cpu, struct rq *this_rq,
  3376. struct sched_domain *sd, enum cpu_idle_type idle,
  3377. int *balance)
  3378. {
  3379. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3380. struct sched_group *group;
  3381. unsigned long imbalance;
  3382. struct rq *busiest;
  3383. unsigned long flags;
  3384. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3385. cpumask_setall(cpus);
  3386. /*
  3387. * When power savings policy is enabled for the parent domain, idle
  3388. * sibling can pick up load irrespective of busy siblings. In this case,
  3389. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3390. * portraying it as CPU_NOT_IDLE.
  3391. */
  3392. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3393. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3394. sd_idle = 1;
  3395. schedstat_inc(sd, lb_count[idle]);
  3396. redo:
  3397. update_shares(sd);
  3398. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3399. cpus, balance);
  3400. if (*balance == 0)
  3401. goto out_balanced;
  3402. if (!group) {
  3403. schedstat_inc(sd, lb_nobusyg[idle]);
  3404. goto out_balanced;
  3405. }
  3406. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3407. if (!busiest) {
  3408. schedstat_inc(sd, lb_nobusyq[idle]);
  3409. goto out_balanced;
  3410. }
  3411. BUG_ON(busiest == this_rq);
  3412. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3413. ld_moved = 0;
  3414. if (busiest->nr_running > 1) {
  3415. /*
  3416. * Attempt to move tasks. If find_busiest_group has found
  3417. * an imbalance but busiest->nr_running <= 1, the group is
  3418. * still unbalanced. ld_moved simply stays zero, so it is
  3419. * correctly treated as an imbalance.
  3420. */
  3421. local_irq_save(flags);
  3422. double_rq_lock(this_rq, busiest);
  3423. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3424. imbalance, sd, idle, &all_pinned);
  3425. double_rq_unlock(this_rq, busiest);
  3426. local_irq_restore(flags);
  3427. /*
  3428. * some other cpu did the load balance for us.
  3429. */
  3430. if (ld_moved && this_cpu != smp_processor_id())
  3431. resched_cpu(this_cpu);
  3432. /* All tasks on this runqueue were pinned by CPU affinity */
  3433. if (unlikely(all_pinned)) {
  3434. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3435. if (!cpumask_empty(cpus))
  3436. goto redo;
  3437. goto out_balanced;
  3438. }
  3439. }
  3440. if (!ld_moved) {
  3441. schedstat_inc(sd, lb_failed[idle]);
  3442. sd->nr_balance_failed++;
  3443. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3444. spin_lock_irqsave(&busiest->lock, flags);
  3445. /* don't kick the migration_thread, if the curr
  3446. * task on busiest cpu can't be moved to this_cpu
  3447. */
  3448. if (!cpumask_test_cpu(this_cpu,
  3449. &busiest->curr->cpus_allowed)) {
  3450. spin_unlock_irqrestore(&busiest->lock, flags);
  3451. all_pinned = 1;
  3452. goto out_one_pinned;
  3453. }
  3454. if (!busiest->active_balance) {
  3455. busiest->active_balance = 1;
  3456. busiest->push_cpu = this_cpu;
  3457. active_balance = 1;
  3458. }
  3459. spin_unlock_irqrestore(&busiest->lock, flags);
  3460. if (active_balance)
  3461. wake_up_process(busiest->migration_thread);
  3462. /*
  3463. * We've kicked active balancing, reset the failure
  3464. * counter.
  3465. */
  3466. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3467. }
  3468. } else
  3469. sd->nr_balance_failed = 0;
  3470. if (likely(!active_balance)) {
  3471. /* We were unbalanced, so reset the balancing interval */
  3472. sd->balance_interval = sd->min_interval;
  3473. } else {
  3474. /*
  3475. * If we've begun active balancing, start to back off. This
  3476. * case may not be covered by the all_pinned logic if there
  3477. * is only 1 task on the busy runqueue (because we don't call
  3478. * move_tasks).
  3479. */
  3480. if (sd->balance_interval < sd->max_interval)
  3481. sd->balance_interval *= 2;
  3482. }
  3483. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3484. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3485. ld_moved = -1;
  3486. goto out;
  3487. out_balanced:
  3488. schedstat_inc(sd, lb_balanced[idle]);
  3489. sd->nr_balance_failed = 0;
  3490. out_one_pinned:
  3491. /* tune up the balancing interval */
  3492. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3493. (sd->balance_interval < sd->max_interval))
  3494. sd->balance_interval *= 2;
  3495. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3496. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3497. ld_moved = -1;
  3498. else
  3499. ld_moved = 0;
  3500. out:
  3501. if (ld_moved)
  3502. update_shares(sd);
  3503. return ld_moved;
  3504. }
  3505. /*
  3506. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3507. * tasks if there is an imbalance.
  3508. *
  3509. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3510. * this_rq is locked.
  3511. */
  3512. static int
  3513. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3514. {
  3515. struct sched_group *group;
  3516. struct rq *busiest = NULL;
  3517. unsigned long imbalance;
  3518. int ld_moved = 0;
  3519. int sd_idle = 0;
  3520. int all_pinned = 0;
  3521. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3522. cpumask_setall(cpus);
  3523. /*
  3524. * When power savings policy is enabled for the parent domain, idle
  3525. * sibling can pick up load irrespective of busy siblings. In this case,
  3526. * let the state of idle sibling percolate up as IDLE, instead of
  3527. * portraying it as CPU_NOT_IDLE.
  3528. */
  3529. if (sd->flags & SD_SHARE_CPUPOWER &&
  3530. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3531. sd_idle = 1;
  3532. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3533. redo:
  3534. update_shares_locked(this_rq, sd);
  3535. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3536. &sd_idle, cpus, NULL);
  3537. if (!group) {
  3538. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3539. goto out_balanced;
  3540. }
  3541. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3542. if (!busiest) {
  3543. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3544. goto out_balanced;
  3545. }
  3546. BUG_ON(busiest == this_rq);
  3547. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3548. ld_moved = 0;
  3549. if (busiest->nr_running > 1) {
  3550. /* Attempt to move tasks */
  3551. double_lock_balance(this_rq, busiest);
  3552. /* this_rq->clock is already updated */
  3553. update_rq_clock(busiest);
  3554. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3555. imbalance, sd, CPU_NEWLY_IDLE,
  3556. &all_pinned);
  3557. double_unlock_balance(this_rq, busiest);
  3558. if (unlikely(all_pinned)) {
  3559. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3560. if (!cpumask_empty(cpus))
  3561. goto redo;
  3562. }
  3563. }
  3564. if (!ld_moved) {
  3565. int active_balance = 0;
  3566. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3567. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3568. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3569. return -1;
  3570. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3571. return -1;
  3572. if (sd->nr_balance_failed++ < 2)
  3573. return -1;
  3574. /*
  3575. * The only task running in a non-idle cpu can be moved to this
  3576. * cpu in an attempt to completely freeup the other CPU
  3577. * package. The same method used to move task in load_balance()
  3578. * have been extended for load_balance_newidle() to speedup
  3579. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3580. *
  3581. * The package power saving logic comes from
  3582. * find_busiest_group(). If there are no imbalance, then
  3583. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3584. * f_b_g() will select a group from which a running task may be
  3585. * pulled to this cpu in order to make the other package idle.
  3586. * If there is no opportunity to make a package idle and if
  3587. * there are no imbalance, then f_b_g() will return NULL and no
  3588. * action will be taken in load_balance_newidle().
  3589. *
  3590. * Under normal task pull operation due to imbalance, there
  3591. * will be more than one task in the source run queue and
  3592. * move_tasks() will succeed. ld_moved will be true and this
  3593. * active balance code will not be triggered.
  3594. */
  3595. /* Lock busiest in correct order while this_rq is held */
  3596. double_lock_balance(this_rq, busiest);
  3597. /*
  3598. * don't kick the migration_thread, if the curr
  3599. * task on busiest cpu can't be moved to this_cpu
  3600. */
  3601. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3602. double_unlock_balance(this_rq, busiest);
  3603. all_pinned = 1;
  3604. return ld_moved;
  3605. }
  3606. if (!busiest->active_balance) {
  3607. busiest->active_balance = 1;
  3608. busiest->push_cpu = this_cpu;
  3609. active_balance = 1;
  3610. }
  3611. double_unlock_balance(this_rq, busiest);
  3612. /*
  3613. * Should not call ttwu while holding a rq->lock
  3614. */
  3615. spin_unlock(&this_rq->lock);
  3616. if (active_balance)
  3617. wake_up_process(busiest->migration_thread);
  3618. spin_lock(&this_rq->lock);
  3619. } else
  3620. sd->nr_balance_failed = 0;
  3621. update_shares_locked(this_rq, sd);
  3622. return ld_moved;
  3623. out_balanced:
  3624. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3625. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3626. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3627. return -1;
  3628. sd->nr_balance_failed = 0;
  3629. return 0;
  3630. }
  3631. /*
  3632. * idle_balance is called by schedule() if this_cpu is about to become
  3633. * idle. Attempts to pull tasks from other CPUs.
  3634. */
  3635. static void idle_balance(int this_cpu, struct rq *this_rq)
  3636. {
  3637. struct sched_domain *sd;
  3638. int pulled_task = 0;
  3639. unsigned long next_balance = jiffies + HZ;
  3640. for_each_domain(this_cpu, sd) {
  3641. unsigned long interval;
  3642. if (!(sd->flags & SD_LOAD_BALANCE))
  3643. continue;
  3644. if (sd->flags & SD_BALANCE_NEWIDLE)
  3645. /* If we've pulled tasks over stop searching: */
  3646. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3647. sd);
  3648. interval = msecs_to_jiffies(sd->balance_interval);
  3649. if (time_after(next_balance, sd->last_balance + interval))
  3650. next_balance = sd->last_balance + interval;
  3651. if (pulled_task)
  3652. break;
  3653. }
  3654. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3655. /*
  3656. * We are going idle. next_balance may be set based on
  3657. * a busy processor. So reset next_balance.
  3658. */
  3659. this_rq->next_balance = next_balance;
  3660. }
  3661. }
  3662. /*
  3663. * active_load_balance is run by migration threads. It pushes running tasks
  3664. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3665. * running on each physical CPU where possible, and avoids physical /
  3666. * logical imbalances.
  3667. *
  3668. * Called with busiest_rq locked.
  3669. */
  3670. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3671. {
  3672. int target_cpu = busiest_rq->push_cpu;
  3673. struct sched_domain *sd;
  3674. struct rq *target_rq;
  3675. /* Is there any task to move? */
  3676. if (busiest_rq->nr_running <= 1)
  3677. return;
  3678. target_rq = cpu_rq(target_cpu);
  3679. /*
  3680. * This condition is "impossible", if it occurs
  3681. * we need to fix it. Originally reported by
  3682. * Bjorn Helgaas on a 128-cpu setup.
  3683. */
  3684. BUG_ON(busiest_rq == target_rq);
  3685. /* move a task from busiest_rq to target_rq */
  3686. double_lock_balance(busiest_rq, target_rq);
  3687. update_rq_clock(busiest_rq);
  3688. update_rq_clock(target_rq);
  3689. /* Search for an sd spanning us and the target CPU. */
  3690. for_each_domain(target_cpu, sd) {
  3691. if ((sd->flags & SD_LOAD_BALANCE) &&
  3692. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3693. break;
  3694. }
  3695. if (likely(sd)) {
  3696. schedstat_inc(sd, alb_count);
  3697. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3698. sd, CPU_IDLE))
  3699. schedstat_inc(sd, alb_pushed);
  3700. else
  3701. schedstat_inc(sd, alb_failed);
  3702. }
  3703. double_unlock_balance(busiest_rq, target_rq);
  3704. }
  3705. #ifdef CONFIG_NO_HZ
  3706. static struct {
  3707. atomic_t load_balancer;
  3708. cpumask_var_t cpu_mask;
  3709. cpumask_var_t ilb_grp_nohz_mask;
  3710. } nohz ____cacheline_aligned = {
  3711. .load_balancer = ATOMIC_INIT(-1),
  3712. };
  3713. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3714. /**
  3715. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3716. * @cpu: The cpu whose lowest level of sched domain is to
  3717. * be returned.
  3718. * @flag: The flag to check for the lowest sched_domain
  3719. * for the given cpu.
  3720. *
  3721. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3722. */
  3723. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3724. {
  3725. struct sched_domain *sd;
  3726. for_each_domain(cpu, sd)
  3727. if (sd && (sd->flags & flag))
  3728. break;
  3729. return sd;
  3730. }
  3731. /**
  3732. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3733. * @cpu: The cpu whose domains we're iterating over.
  3734. * @sd: variable holding the value of the power_savings_sd
  3735. * for cpu.
  3736. * @flag: The flag to filter the sched_domains to be iterated.
  3737. *
  3738. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3739. * set, starting from the lowest sched_domain to the highest.
  3740. */
  3741. #define for_each_flag_domain(cpu, sd, flag) \
  3742. for (sd = lowest_flag_domain(cpu, flag); \
  3743. (sd && (sd->flags & flag)); sd = sd->parent)
  3744. /**
  3745. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3746. * @ilb_group: group to be checked for semi-idleness
  3747. *
  3748. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3749. *
  3750. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3751. * and atleast one non-idle CPU. This helper function checks if the given
  3752. * sched_group is semi-idle or not.
  3753. */
  3754. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3755. {
  3756. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3757. sched_group_cpus(ilb_group));
  3758. /*
  3759. * A sched_group is semi-idle when it has atleast one busy cpu
  3760. * and atleast one idle cpu.
  3761. */
  3762. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3763. return 0;
  3764. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3765. return 0;
  3766. return 1;
  3767. }
  3768. /**
  3769. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3770. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3771. *
  3772. * Returns: Returns the id of the idle load balancer if it exists,
  3773. * Else, returns >= nr_cpu_ids.
  3774. *
  3775. * This algorithm picks the idle load balancer such that it belongs to a
  3776. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3777. * completely idle packages/cores just for the purpose of idle load balancing
  3778. * when there are other idle cpu's which are better suited for that job.
  3779. */
  3780. static int find_new_ilb(int cpu)
  3781. {
  3782. struct sched_domain *sd;
  3783. struct sched_group *ilb_group;
  3784. /*
  3785. * Have idle load balancer selection from semi-idle packages only
  3786. * when power-aware load balancing is enabled
  3787. */
  3788. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3789. goto out_done;
  3790. /*
  3791. * Optimize for the case when we have no idle CPUs or only one
  3792. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3793. */
  3794. if (cpumask_weight(nohz.cpu_mask) < 2)
  3795. goto out_done;
  3796. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3797. ilb_group = sd->groups;
  3798. do {
  3799. if (is_semi_idle_group(ilb_group))
  3800. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3801. ilb_group = ilb_group->next;
  3802. } while (ilb_group != sd->groups);
  3803. }
  3804. out_done:
  3805. return cpumask_first(nohz.cpu_mask);
  3806. }
  3807. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3808. static inline int find_new_ilb(int call_cpu)
  3809. {
  3810. return cpumask_first(nohz.cpu_mask);
  3811. }
  3812. #endif
  3813. /*
  3814. * This routine will try to nominate the ilb (idle load balancing)
  3815. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3816. * load balancing on behalf of all those cpus. If all the cpus in the system
  3817. * go into this tickless mode, then there will be no ilb owner (as there is
  3818. * no need for one) and all the cpus will sleep till the next wakeup event
  3819. * arrives...
  3820. *
  3821. * For the ilb owner, tick is not stopped. And this tick will be used
  3822. * for idle load balancing. ilb owner will still be part of
  3823. * nohz.cpu_mask..
  3824. *
  3825. * While stopping the tick, this cpu will become the ilb owner if there
  3826. * is no other owner. And will be the owner till that cpu becomes busy
  3827. * or if all cpus in the system stop their ticks at which point
  3828. * there is no need for ilb owner.
  3829. *
  3830. * When the ilb owner becomes busy, it nominates another owner, during the
  3831. * next busy scheduler_tick()
  3832. */
  3833. int select_nohz_load_balancer(int stop_tick)
  3834. {
  3835. int cpu = smp_processor_id();
  3836. if (stop_tick) {
  3837. cpu_rq(cpu)->in_nohz_recently = 1;
  3838. if (!cpu_active(cpu)) {
  3839. if (atomic_read(&nohz.load_balancer) != cpu)
  3840. return 0;
  3841. /*
  3842. * If we are going offline and still the leader,
  3843. * give up!
  3844. */
  3845. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3846. BUG();
  3847. return 0;
  3848. }
  3849. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3850. /* time for ilb owner also to sleep */
  3851. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3852. if (atomic_read(&nohz.load_balancer) == cpu)
  3853. atomic_set(&nohz.load_balancer, -1);
  3854. return 0;
  3855. }
  3856. if (atomic_read(&nohz.load_balancer) == -1) {
  3857. /* make me the ilb owner */
  3858. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3859. return 1;
  3860. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3861. int new_ilb;
  3862. if (!(sched_smt_power_savings ||
  3863. sched_mc_power_savings))
  3864. return 1;
  3865. /*
  3866. * Check to see if there is a more power-efficient
  3867. * ilb.
  3868. */
  3869. new_ilb = find_new_ilb(cpu);
  3870. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3871. atomic_set(&nohz.load_balancer, -1);
  3872. resched_cpu(new_ilb);
  3873. return 0;
  3874. }
  3875. return 1;
  3876. }
  3877. } else {
  3878. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3879. return 0;
  3880. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3881. if (atomic_read(&nohz.load_balancer) == cpu)
  3882. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3883. BUG();
  3884. }
  3885. return 0;
  3886. }
  3887. #endif
  3888. static DEFINE_SPINLOCK(balancing);
  3889. /*
  3890. * It checks each scheduling domain to see if it is due to be balanced,
  3891. * and initiates a balancing operation if so.
  3892. *
  3893. * Balancing parameters are set up in arch_init_sched_domains.
  3894. */
  3895. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3896. {
  3897. int balance = 1;
  3898. struct rq *rq = cpu_rq(cpu);
  3899. unsigned long interval;
  3900. struct sched_domain *sd;
  3901. /* Earliest time when we have to do rebalance again */
  3902. unsigned long next_balance = jiffies + 60*HZ;
  3903. int update_next_balance = 0;
  3904. int need_serialize;
  3905. for_each_domain(cpu, sd) {
  3906. if (!(sd->flags & SD_LOAD_BALANCE))
  3907. continue;
  3908. interval = sd->balance_interval;
  3909. if (idle != CPU_IDLE)
  3910. interval *= sd->busy_factor;
  3911. /* scale ms to jiffies */
  3912. interval = msecs_to_jiffies(interval);
  3913. if (unlikely(!interval))
  3914. interval = 1;
  3915. if (interval > HZ*NR_CPUS/10)
  3916. interval = HZ*NR_CPUS/10;
  3917. need_serialize = sd->flags & SD_SERIALIZE;
  3918. if (need_serialize) {
  3919. if (!spin_trylock(&balancing))
  3920. goto out;
  3921. }
  3922. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3923. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3924. /*
  3925. * We've pulled tasks over so either we're no
  3926. * longer idle, or one of our SMT siblings is
  3927. * not idle.
  3928. */
  3929. idle = CPU_NOT_IDLE;
  3930. }
  3931. sd->last_balance = jiffies;
  3932. }
  3933. if (need_serialize)
  3934. spin_unlock(&balancing);
  3935. out:
  3936. if (time_after(next_balance, sd->last_balance + interval)) {
  3937. next_balance = sd->last_balance + interval;
  3938. update_next_balance = 1;
  3939. }
  3940. /*
  3941. * Stop the load balance at this level. There is another
  3942. * CPU in our sched group which is doing load balancing more
  3943. * actively.
  3944. */
  3945. if (!balance)
  3946. break;
  3947. }
  3948. /*
  3949. * next_balance will be updated only when there is a need.
  3950. * When the cpu is attached to null domain for ex, it will not be
  3951. * updated.
  3952. */
  3953. if (likely(update_next_balance))
  3954. rq->next_balance = next_balance;
  3955. }
  3956. /*
  3957. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3958. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3959. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3960. */
  3961. static void run_rebalance_domains(struct softirq_action *h)
  3962. {
  3963. int this_cpu = smp_processor_id();
  3964. struct rq *this_rq = cpu_rq(this_cpu);
  3965. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3966. CPU_IDLE : CPU_NOT_IDLE;
  3967. rebalance_domains(this_cpu, idle);
  3968. #ifdef CONFIG_NO_HZ
  3969. /*
  3970. * If this cpu is the owner for idle load balancing, then do the
  3971. * balancing on behalf of the other idle cpus whose ticks are
  3972. * stopped.
  3973. */
  3974. if (this_rq->idle_at_tick &&
  3975. atomic_read(&nohz.load_balancer) == this_cpu) {
  3976. struct rq *rq;
  3977. int balance_cpu;
  3978. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3979. if (balance_cpu == this_cpu)
  3980. continue;
  3981. /*
  3982. * If this cpu gets work to do, stop the load balancing
  3983. * work being done for other cpus. Next load
  3984. * balancing owner will pick it up.
  3985. */
  3986. if (need_resched())
  3987. break;
  3988. rebalance_domains(balance_cpu, CPU_IDLE);
  3989. rq = cpu_rq(balance_cpu);
  3990. if (time_after(this_rq->next_balance, rq->next_balance))
  3991. this_rq->next_balance = rq->next_balance;
  3992. }
  3993. }
  3994. #endif
  3995. }
  3996. static inline int on_null_domain(int cpu)
  3997. {
  3998. return !rcu_dereference(cpu_rq(cpu)->sd);
  3999. }
  4000. /*
  4001. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4002. *
  4003. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4004. * idle load balancing owner or decide to stop the periodic load balancing,
  4005. * if the whole system is idle.
  4006. */
  4007. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4008. {
  4009. #ifdef CONFIG_NO_HZ
  4010. /*
  4011. * If we were in the nohz mode recently and busy at the current
  4012. * scheduler tick, then check if we need to nominate new idle
  4013. * load balancer.
  4014. */
  4015. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4016. rq->in_nohz_recently = 0;
  4017. if (atomic_read(&nohz.load_balancer) == cpu) {
  4018. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4019. atomic_set(&nohz.load_balancer, -1);
  4020. }
  4021. if (atomic_read(&nohz.load_balancer) == -1) {
  4022. int ilb = find_new_ilb(cpu);
  4023. if (ilb < nr_cpu_ids)
  4024. resched_cpu(ilb);
  4025. }
  4026. }
  4027. /*
  4028. * If this cpu is idle and doing idle load balancing for all the
  4029. * cpus with ticks stopped, is it time for that to stop?
  4030. */
  4031. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4032. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4033. resched_cpu(cpu);
  4034. return;
  4035. }
  4036. /*
  4037. * If this cpu is idle and the idle load balancing is done by
  4038. * someone else, then no need raise the SCHED_SOFTIRQ
  4039. */
  4040. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4041. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4042. return;
  4043. #endif
  4044. /* Don't need to rebalance while attached to NULL domain */
  4045. if (time_after_eq(jiffies, rq->next_balance) &&
  4046. likely(!on_null_domain(cpu)))
  4047. raise_softirq(SCHED_SOFTIRQ);
  4048. }
  4049. #else /* CONFIG_SMP */
  4050. /*
  4051. * on UP we do not need to balance between CPUs:
  4052. */
  4053. static inline void idle_balance(int cpu, struct rq *rq)
  4054. {
  4055. }
  4056. #endif
  4057. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4058. EXPORT_PER_CPU_SYMBOL(kstat);
  4059. /*
  4060. * Return any ns on the sched_clock that have not yet been accounted in
  4061. * @p in case that task is currently running.
  4062. *
  4063. * Called with task_rq_lock() held on @rq.
  4064. */
  4065. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4066. {
  4067. u64 ns = 0;
  4068. if (task_current(rq, p)) {
  4069. update_rq_clock(rq);
  4070. ns = rq->clock - p->se.exec_start;
  4071. if ((s64)ns < 0)
  4072. ns = 0;
  4073. }
  4074. return ns;
  4075. }
  4076. unsigned long long task_delta_exec(struct task_struct *p)
  4077. {
  4078. unsigned long flags;
  4079. struct rq *rq;
  4080. u64 ns = 0;
  4081. rq = task_rq_lock(p, &flags);
  4082. ns = do_task_delta_exec(p, rq);
  4083. task_rq_unlock(rq, &flags);
  4084. return ns;
  4085. }
  4086. /*
  4087. * Return accounted runtime for the task.
  4088. * In case the task is currently running, return the runtime plus current's
  4089. * pending runtime that have not been accounted yet.
  4090. */
  4091. unsigned long long task_sched_runtime(struct task_struct *p)
  4092. {
  4093. unsigned long flags;
  4094. struct rq *rq;
  4095. u64 ns = 0;
  4096. rq = task_rq_lock(p, &flags);
  4097. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4098. task_rq_unlock(rq, &flags);
  4099. return ns;
  4100. }
  4101. /*
  4102. * Return sum_exec_runtime for the thread group.
  4103. * In case the task is currently running, return the sum plus current's
  4104. * pending runtime that have not been accounted yet.
  4105. *
  4106. * Note that the thread group might have other running tasks as well,
  4107. * so the return value not includes other pending runtime that other
  4108. * running tasks might have.
  4109. */
  4110. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4111. {
  4112. struct task_cputime totals;
  4113. unsigned long flags;
  4114. struct rq *rq;
  4115. u64 ns;
  4116. rq = task_rq_lock(p, &flags);
  4117. thread_group_cputime(p, &totals);
  4118. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4119. task_rq_unlock(rq, &flags);
  4120. return ns;
  4121. }
  4122. /*
  4123. * Account user cpu time to a process.
  4124. * @p: the process that the cpu time gets accounted to
  4125. * @cputime: the cpu time spent in user space since the last update
  4126. * @cputime_scaled: cputime scaled by cpu frequency
  4127. */
  4128. void account_user_time(struct task_struct *p, cputime_t cputime,
  4129. cputime_t cputime_scaled)
  4130. {
  4131. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4132. cputime64_t tmp;
  4133. /* Add user time to process. */
  4134. p->utime = cputime_add(p->utime, cputime);
  4135. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4136. account_group_user_time(p, cputime);
  4137. /* Add user time to cpustat. */
  4138. tmp = cputime_to_cputime64(cputime);
  4139. if (TASK_NICE(p) > 0)
  4140. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4141. else
  4142. cpustat->user = cputime64_add(cpustat->user, tmp);
  4143. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4144. /* Account for user time used */
  4145. acct_update_integrals(p);
  4146. }
  4147. /*
  4148. * Account guest cpu time to a process.
  4149. * @p: the process that the cpu time gets accounted to
  4150. * @cputime: the cpu time spent in virtual machine since the last update
  4151. * @cputime_scaled: cputime scaled by cpu frequency
  4152. */
  4153. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4154. cputime_t cputime_scaled)
  4155. {
  4156. cputime64_t tmp;
  4157. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4158. tmp = cputime_to_cputime64(cputime);
  4159. /* Add guest time to process. */
  4160. p->utime = cputime_add(p->utime, cputime);
  4161. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4162. account_group_user_time(p, cputime);
  4163. p->gtime = cputime_add(p->gtime, cputime);
  4164. /* Add guest time to cpustat. */
  4165. cpustat->user = cputime64_add(cpustat->user, tmp);
  4166. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4167. }
  4168. /*
  4169. * Account system cpu time to a process.
  4170. * @p: the process that the cpu time gets accounted to
  4171. * @hardirq_offset: the offset to subtract from hardirq_count()
  4172. * @cputime: the cpu time spent in kernel space since the last update
  4173. * @cputime_scaled: cputime scaled by cpu frequency
  4174. */
  4175. void account_system_time(struct task_struct *p, int hardirq_offset,
  4176. cputime_t cputime, cputime_t cputime_scaled)
  4177. {
  4178. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4179. cputime64_t tmp;
  4180. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4181. account_guest_time(p, cputime, cputime_scaled);
  4182. return;
  4183. }
  4184. /* Add system time to process. */
  4185. p->stime = cputime_add(p->stime, cputime);
  4186. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4187. account_group_system_time(p, cputime);
  4188. /* Add system time to cpustat. */
  4189. tmp = cputime_to_cputime64(cputime);
  4190. if (hardirq_count() - hardirq_offset)
  4191. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4192. else if (softirq_count())
  4193. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4194. else
  4195. cpustat->system = cputime64_add(cpustat->system, tmp);
  4196. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4197. /* Account for system time used */
  4198. acct_update_integrals(p);
  4199. }
  4200. /*
  4201. * Account for involuntary wait time.
  4202. * @steal: the cpu time spent in involuntary wait
  4203. */
  4204. void account_steal_time(cputime_t cputime)
  4205. {
  4206. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4207. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4208. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4209. }
  4210. /*
  4211. * Account for idle time.
  4212. * @cputime: the cpu time spent in idle wait
  4213. */
  4214. void account_idle_time(cputime_t cputime)
  4215. {
  4216. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4217. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4218. struct rq *rq = this_rq();
  4219. if (atomic_read(&rq->nr_iowait) > 0)
  4220. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4221. else
  4222. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4223. }
  4224. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4225. /*
  4226. * Account a single tick of cpu time.
  4227. * @p: the process that the cpu time gets accounted to
  4228. * @user_tick: indicates if the tick is a user or a system tick
  4229. */
  4230. void account_process_tick(struct task_struct *p, int user_tick)
  4231. {
  4232. cputime_t one_jiffy = jiffies_to_cputime(1);
  4233. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4234. struct rq *rq = this_rq();
  4235. if (user_tick)
  4236. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4237. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4238. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4239. one_jiffy_scaled);
  4240. else
  4241. account_idle_time(one_jiffy);
  4242. }
  4243. /*
  4244. * Account multiple ticks of steal time.
  4245. * @p: the process from which the cpu time has been stolen
  4246. * @ticks: number of stolen ticks
  4247. */
  4248. void account_steal_ticks(unsigned long ticks)
  4249. {
  4250. account_steal_time(jiffies_to_cputime(ticks));
  4251. }
  4252. /*
  4253. * Account multiple ticks of idle time.
  4254. * @ticks: number of stolen ticks
  4255. */
  4256. void account_idle_ticks(unsigned long ticks)
  4257. {
  4258. account_idle_time(jiffies_to_cputime(ticks));
  4259. }
  4260. #endif
  4261. /*
  4262. * Use precise platform statistics if available:
  4263. */
  4264. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4265. cputime_t task_utime(struct task_struct *p)
  4266. {
  4267. return p->utime;
  4268. }
  4269. cputime_t task_stime(struct task_struct *p)
  4270. {
  4271. return p->stime;
  4272. }
  4273. #else
  4274. cputime_t task_utime(struct task_struct *p)
  4275. {
  4276. clock_t utime = cputime_to_clock_t(p->utime),
  4277. total = utime + cputime_to_clock_t(p->stime);
  4278. u64 temp;
  4279. /*
  4280. * Use CFS's precise accounting:
  4281. */
  4282. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4283. if (total) {
  4284. temp *= utime;
  4285. do_div(temp, total);
  4286. }
  4287. utime = (clock_t)temp;
  4288. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4289. return p->prev_utime;
  4290. }
  4291. cputime_t task_stime(struct task_struct *p)
  4292. {
  4293. clock_t stime;
  4294. /*
  4295. * Use CFS's precise accounting. (we subtract utime from
  4296. * the total, to make sure the total observed by userspace
  4297. * grows monotonically - apps rely on that):
  4298. */
  4299. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4300. cputime_to_clock_t(task_utime(p));
  4301. if (stime >= 0)
  4302. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4303. return p->prev_stime;
  4304. }
  4305. #endif
  4306. inline cputime_t task_gtime(struct task_struct *p)
  4307. {
  4308. return p->gtime;
  4309. }
  4310. /*
  4311. * This function gets called by the timer code, with HZ frequency.
  4312. * We call it with interrupts disabled.
  4313. *
  4314. * It also gets called by the fork code, when changing the parent's
  4315. * timeslices.
  4316. */
  4317. void scheduler_tick(void)
  4318. {
  4319. int cpu = smp_processor_id();
  4320. struct rq *rq = cpu_rq(cpu);
  4321. struct task_struct *curr = rq->curr;
  4322. sched_clock_tick();
  4323. spin_lock(&rq->lock);
  4324. update_rq_clock(rq);
  4325. update_cpu_load(rq);
  4326. curr->sched_class->task_tick(rq, curr, 0);
  4327. spin_unlock(&rq->lock);
  4328. #ifdef CONFIG_SMP
  4329. rq->idle_at_tick = idle_cpu(cpu);
  4330. trigger_load_balance(rq, cpu);
  4331. #endif
  4332. }
  4333. notrace unsigned long get_parent_ip(unsigned long addr)
  4334. {
  4335. if (in_lock_functions(addr)) {
  4336. addr = CALLER_ADDR2;
  4337. if (in_lock_functions(addr))
  4338. addr = CALLER_ADDR3;
  4339. }
  4340. return addr;
  4341. }
  4342. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4343. defined(CONFIG_PREEMPT_TRACER))
  4344. void __kprobes add_preempt_count(int val)
  4345. {
  4346. #ifdef CONFIG_DEBUG_PREEMPT
  4347. /*
  4348. * Underflow?
  4349. */
  4350. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4351. return;
  4352. #endif
  4353. preempt_count() += val;
  4354. #ifdef CONFIG_DEBUG_PREEMPT
  4355. /*
  4356. * Spinlock count overflowing soon?
  4357. */
  4358. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4359. PREEMPT_MASK - 10);
  4360. #endif
  4361. if (preempt_count() == val)
  4362. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4363. }
  4364. EXPORT_SYMBOL(add_preempt_count);
  4365. void __kprobes sub_preempt_count(int val)
  4366. {
  4367. #ifdef CONFIG_DEBUG_PREEMPT
  4368. /*
  4369. * Underflow?
  4370. */
  4371. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4372. return;
  4373. /*
  4374. * Is the spinlock portion underflowing?
  4375. */
  4376. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4377. !(preempt_count() & PREEMPT_MASK)))
  4378. return;
  4379. #endif
  4380. if (preempt_count() == val)
  4381. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4382. preempt_count() -= val;
  4383. }
  4384. EXPORT_SYMBOL(sub_preempt_count);
  4385. #endif
  4386. /*
  4387. * Print scheduling while atomic bug:
  4388. */
  4389. static noinline void __schedule_bug(struct task_struct *prev)
  4390. {
  4391. struct pt_regs *regs = get_irq_regs();
  4392. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4393. prev->comm, prev->pid, preempt_count());
  4394. debug_show_held_locks(prev);
  4395. print_modules();
  4396. if (irqs_disabled())
  4397. print_irqtrace_events(prev);
  4398. if (regs)
  4399. show_regs(regs);
  4400. else
  4401. dump_stack();
  4402. }
  4403. /*
  4404. * Various schedule()-time debugging checks and statistics:
  4405. */
  4406. static inline void schedule_debug(struct task_struct *prev)
  4407. {
  4408. /*
  4409. * Test if we are atomic. Since do_exit() needs to call into
  4410. * schedule() atomically, we ignore that path for now.
  4411. * Otherwise, whine if we are scheduling when we should not be.
  4412. */
  4413. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4414. __schedule_bug(prev);
  4415. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4416. schedstat_inc(this_rq(), sched_count);
  4417. #ifdef CONFIG_SCHEDSTATS
  4418. if (unlikely(prev->lock_depth >= 0)) {
  4419. schedstat_inc(this_rq(), bkl_count);
  4420. schedstat_inc(prev, sched_info.bkl_count);
  4421. }
  4422. #endif
  4423. }
  4424. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4425. {
  4426. if (prev->state == TASK_RUNNING) {
  4427. u64 runtime = prev->se.sum_exec_runtime;
  4428. runtime -= prev->se.prev_sum_exec_runtime;
  4429. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4430. /*
  4431. * In order to avoid avg_overlap growing stale when we are
  4432. * indeed overlapping and hence not getting put to sleep, grow
  4433. * the avg_overlap on preemption.
  4434. *
  4435. * We use the average preemption runtime because that
  4436. * correlates to the amount of cache footprint a task can
  4437. * build up.
  4438. */
  4439. update_avg(&prev->se.avg_overlap, runtime);
  4440. }
  4441. prev->sched_class->put_prev_task(rq, prev);
  4442. }
  4443. /*
  4444. * Pick up the highest-prio task:
  4445. */
  4446. static inline struct task_struct *
  4447. pick_next_task(struct rq *rq)
  4448. {
  4449. const struct sched_class *class;
  4450. struct task_struct *p;
  4451. /*
  4452. * Optimization: we know that if all tasks are in
  4453. * the fair class we can call that function directly:
  4454. */
  4455. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4456. p = fair_sched_class.pick_next_task(rq);
  4457. if (likely(p))
  4458. return p;
  4459. }
  4460. class = sched_class_highest;
  4461. for ( ; ; ) {
  4462. p = class->pick_next_task(rq);
  4463. if (p)
  4464. return p;
  4465. /*
  4466. * Will never be NULL as the idle class always
  4467. * returns a non-NULL p:
  4468. */
  4469. class = class->next;
  4470. }
  4471. }
  4472. /*
  4473. * schedule() is the main scheduler function.
  4474. */
  4475. asmlinkage void __sched schedule(void)
  4476. {
  4477. struct task_struct *prev, *next;
  4478. unsigned long *switch_count;
  4479. struct rq *rq;
  4480. int cpu;
  4481. need_resched:
  4482. preempt_disable();
  4483. cpu = smp_processor_id();
  4484. rq = cpu_rq(cpu);
  4485. rcu_qsctr_inc(cpu);
  4486. prev = rq->curr;
  4487. switch_count = &prev->nivcsw;
  4488. release_kernel_lock(prev);
  4489. need_resched_nonpreemptible:
  4490. schedule_debug(prev);
  4491. if (sched_feat(HRTICK))
  4492. hrtick_clear(rq);
  4493. spin_lock_irq(&rq->lock);
  4494. update_rq_clock(rq);
  4495. clear_tsk_need_resched(prev);
  4496. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4497. if (unlikely(signal_pending_state(prev->state, prev)))
  4498. prev->state = TASK_RUNNING;
  4499. else
  4500. deactivate_task(rq, prev, 1);
  4501. switch_count = &prev->nvcsw;
  4502. }
  4503. #ifdef CONFIG_SMP
  4504. if (prev->sched_class->pre_schedule)
  4505. prev->sched_class->pre_schedule(rq, prev);
  4506. #endif
  4507. if (unlikely(!rq->nr_running))
  4508. idle_balance(cpu, rq);
  4509. put_prev_task(rq, prev);
  4510. next = pick_next_task(rq);
  4511. if (likely(prev != next)) {
  4512. sched_info_switch(prev, next);
  4513. rq->nr_switches++;
  4514. rq->curr = next;
  4515. ++*switch_count;
  4516. context_switch(rq, prev, next); /* unlocks the rq */
  4517. /*
  4518. * the context switch might have flipped the stack from under
  4519. * us, hence refresh the local variables.
  4520. */
  4521. cpu = smp_processor_id();
  4522. rq = cpu_rq(cpu);
  4523. } else
  4524. spin_unlock_irq(&rq->lock);
  4525. if (unlikely(reacquire_kernel_lock(current) < 0))
  4526. goto need_resched_nonpreemptible;
  4527. preempt_enable_no_resched();
  4528. if (need_resched())
  4529. goto need_resched;
  4530. }
  4531. EXPORT_SYMBOL(schedule);
  4532. #ifdef CONFIG_SMP
  4533. /*
  4534. * Look out! "owner" is an entirely speculative pointer
  4535. * access and not reliable.
  4536. */
  4537. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4538. {
  4539. unsigned int cpu;
  4540. struct rq *rq;
  4541. if (!sched_feat(OWNER_SPIN))
  4542. return 0;
  4543. #ifdef CONFIG_DEBUG_PAGEALLOC
  4544. /*
  4545. * Need to access the cpu field knowing that
  4546. * DEBUG_PAGEALLOC could have unmapped it if
  4547. * the mutex owner just released it and exited.
  4548. */
  4549. if (probe_kernel_address(&owner->cpu, cpu))
  4550. goto out;
  4551. #else
  4552. cpu = owner->cpu;
  4553. #endif
  4554. /*
  4555. * Even if the access succeeded (likely case),
  4556. * the cpu field may no longer be valid.
  4557. */
  4558. if (cpu >= nr_cpumask_bits)
  4559. goto out;
  4560. /*
  4561. * We need to validate that we can do a
  4562. * get_cpu() and that we have the percpu area.
  4563. */
  4564. if (!cpu_online(cpu))
  4565. goto out;
  4566. rq = cpu_rq(cpu);
  4567. for (;;) {
  4568. /*
  4569. * Owner changed, break to re-assess state.
  4570. */
  4571. if (lock->owner != owner)
  4572. break;
  4573. /*
  4574. * Is that owner really running on that cpu?
  4575. */
  4576. if (task_thread_info(rq->curr) != owner || need_resched())
  4577. return 0;
  4578. cpu_relax();
  4579. }
  4580. out:
  4581. return 1;
  4582. }
  4583. #endif
  4584. #ifdef CONFIG_PREEMPT
  4585. /*
  4586. * this is the entry point to schedule() from in-kernel preemption
  4587. * off of preempt_enable. Kernel preemptions off return from interrupt
  4588. * occur there and call schedule directly.
  4589. */
  4590. asmlinkage void __sched preempt_schedule(void)
  4591. {
  4592. struct thread_info *ti = current_thread_info();
  4593. /*
  4594. * If there is a non-zero preempt_count or interrupts are disabled,
  4595. * we do not want to preempt the current task. Just return..
  4596. */
  4597. if (likely(ti->preempt_count || irqs_disabled()))
  4598. return;
  4599. do {
  4600. add_preempt_count(PREEMPT_ACTIVE);
  4601. schedule();
  4602. sub_preempt_count(PREEMPT_ACTIVE);
  4603. /*
  4604. * Check again in case we missed a preemption opportunity
  4605. * between schedule and now.
  4606. */
  4607. barrier();
  4608. } while (need_resched());
  4609. }
  4610. EXPORT_SYMBOL(preempt_schedule);
  4611. /*
  4612. * this is the entry point to schedule() from kernel preemption
  4613. * off of irq context.
  4614. * Note, that this is called and return with irqs disabled. This will
  4615. * protect us against recursive calling from irq.
  4616. */
  4617. asmlinkage void __sched preempt_schedule_irq(void)
  4618. {
  4619. struct thread_info *ti = current_thread_info();
  4620. /* Catch callers which need to be fixed */
  4621. BUG_ON(ti->preempt_count || !irqs_disabled());
  4622. do {
  4623. add_preempt_count(PREEMPT_ACTIVE);
  4624. local_irq_enable();
  4625. schedule();
  4626. local_irq_disable();
  4627. sub_preempt_count(PREEMPT_ACTIVE);
  4628. /*
  4629. * Check again in case we missed a preemption opportunity
  4630. * between schedule and now.
  4631. */
  4632. barrier();
  4633. } while (need_resched());
  4634. }
  4635. #endif /* CONFIG_PREEMPT */
  4636. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4637. void *key)
  4638. {
  4639. return try_to_wake_up(curr->private, mode, sync);
  4640. }
  4641. EXPORT_SYMBOL(default_wake_function);
  4642. /*
  4643. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4644. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4645. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4646. *
  4647. * There are circumstances in which we can try to wake a task which has already
  4648. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4649. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4650. */
  4651. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4652. int nr_exclusive, int sync, void *key)
  4653. {
  4654. wait_queue_t *curr, *next;
  4655. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4656. unsigned flags = curr->flags;
  4657. if (curr->func(curr, mode, sync, key) &&
  4658. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4659. break;
  4660. }
  4661. }
  4662. /**
  4663. * __wake_up - wake up threads blocked on a waitqueue.
  4664. * @q: the waitqueue
  4665. * @mode: which threads
  4666. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4667. * @key: is directly passed to the wakeup function
  4668. *
  4669. * It may be assumed that this function implies a write memory barrier before
  4670. * changing the task state if and only if any tasks are woken up.
  4671. */
  4672. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4673. int nr_exclusive, void *key)
  4674. {
  4675. unsigned long flags;
  4676. spin_lock_irqsave(&q->lock, flags);
  4677. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4678. spin_unlock_irqrestore(&q->lock, flags);
  4679. }
  4680. EXPORT_SYMBOL(__wake_up);
  4681. /*
  4682. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4683. */
  4684. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4685. {
  4686. __wake_up_common(q, mode, 1, 0, NULL);
  4687. }
  4688. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4689. {
  4690. __wake_up_common(q, mode, 1, 0, key);
  4691. }
  4692. /**
  4693. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4694. * @q: the waitqueue
  4695. * @mode: which threads
  4696. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4697. * @key: opaque value to be passed to wakeup targets
  4698. *
  4699. * The sync wakeup differs that the waker knows that it will schedule
  4700. * away soon, so while the target thread will be woken up, it will not
  4701. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4702. * with each other. This can prevent needless bouncing between CPUs.
  4703. *
  4704. * On UP it can prevent extra preemption.
  4705. *
  4706. * It may be assumed that this function implies a write memory barrier before
  4707. * changing the task state if and only if any tasks are woken up.
  4708. */
  4709. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4710. int nr_exclusive, void *key)
  4711. {
  4712. unsigned long flags;
  4713. int sync = 1;
  4714. if (unlikely(!q))
  4715. return;
  4716. if (unlikely(!nr_exclusive))
  4717. sync = 0;
  4718. spin_lock_irqsave(&q->lock, flags);
  4719. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4720. spin_unlock_irqrestore(&q->lock, flags);
  4721. }
  4722. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4723. /*
  4724. * __wake_up_sync - see __wake_up_sync_key()
  4725. */
  4726. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4727. {
  4728. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4729. }
  4730. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4731. /**
  4732. * complete: - signals a single thread waiting on this completion
  4733. * @x: holds the state of this particular completion
  4734. *
  4735. * This will wake up a single thread waiting on this completion. Threads will be
  4736. * awakened in the same order in which they were queued.
  4737. *
  4738. * See also complete_all(), wait_for_completion() and related routines.
  4739. *
  4740. * It may be assumed that this function implies a write memory barrier before
  4741. * changing the task state if and only if any tasks are woken up.
  4742. */
  4743. void complete(struct completion *x)
  4744. {
  4745. unsigned long flags;
  4746. spin_lock_irqsave(&x->wait.lock, flags);
  4747. x->done++;
  4748. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4749. spin_unlock_irqrestore(&x->wait.lock, flags);
  4750. }
  4751. EXPORT_SYMBOL(complete);
  4752. /**
  4753. * complete_all: - signals all threads waiting on this completion
  4754. * @x: holds the state of this particular completion
  4755. *
  4756. * This will wake up all threads waiting on this particular completion event.
  4757. *
  4758. * It may be assumed that this function implies a write memory barrier before
  4759. * changing the task state if and only if any tasks are woken up.
  4760. */
  4761. void complete_all(struct completion *x)
  4762. {
  4763. unsigned long flags;
  4764. spin_lock_irqsave(&x->wait.lock, flags);
  4765. x->done += UINT_MAX/2;
  4766. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4767. spin_unlock_irqrestore(&x->wait.lock, flags);
  4768. }
  4769. EXPORT_SYMBOL(complete_all);
  4770. static inline long __sched
  4771. do_wait_for_common(struct completion *x, long timeout, int state)
  4772. {
  4773. if (!x->done) {
  4774. DECLARE_WAITQUEUE(wait, current);
  4775. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4776. __add_wait_queue_tail(&x->wait, &wait);
  4777. do {
  4778. if (signal_pending_state(state, current)) {
  4779. timeout = -ERESTARTSYS;
  4780. break;
  4781. }
  4782. __set_current_state(state);
  4783. spin_unlock_irq(&x->wait.lock);
  4784. timeout = schedule_timeout(timeout);
  4785. spin_lock_irq(&x->wait.lock);
  4786. } while (!x->done && timeout);
  4787. __remove_wait_queue(&x->wait, &wait);
  4788. if (!x->done)
  4789. return timeout;
  4790. }
  4791. x->done--;
  4792. return timeout ?: 1;
  4793. }
  4794. static long __sched
  4795. wait_for_common(struct completion *x, long timeout, int state)
  4796. {
  4797. might_sleep();
  4798. spin_lock_irq(&x->wait.lock);
  4799. timeout = do_wait_for_common(x, timeout, state);
  4800. spin_unlock_irq(&x->wait.lock);
  4801. return timeout;
  4802. }
  4803. /**
  4804. * wait_for_completion: - waits for completion of a task
  4805. * @x: holds the state of this particular completion
  4806. *
  4807. * This waits to be signaled for completion of a specific task. It is NOT
  4808. * interruptible and there is no timeout.
  4809. *
  4810. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4811. * and interrupt capability. Also see complete().
  4812. */
  4813. void __sched wait_for_completion(struct completion *x)
  4814. {
  4815. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4816. }
  4817. EXPORT_SYMBOL(wait_for_completion);
  4818. /**
  4819. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4820. * @x: holds the state of this particular completion
  4821. * @timeout: timeout value in jiffies
  4822. *
  4823. * This waits for either a completion of a specific task to be signaled or for a
  4824. * specified timeout to expire. The timeout is in jiffies. It is not
  4825. * interruptible.
  4826. */
  4827. unsigned long __sched
  4828. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4829. {
  4830. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4831. }
  4832. EXPORT_SYMBOL(wait_for_completion_timeout);
  4833. /**
  4834. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4835. * @x: holds the state of this particular completion
  4836. *
  4837. * This waits for completion of a specific task to be signaled. It is
  4838. * interruptible.
  4839. */
  4840. int __sched wait_for_completion_interruptible(struct completion *x)
  4841. {
  4842. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4843. if (t == -ERESTARTSYS)
  4844. return t;
  4845. return 0;
  4846. }
  4847. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4848. /**
  4849. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4850. * @x: holds the state of this particular completion
  4851. * @timeout: timeout value in jiffies
  4852. *
  4853. * This waits for either a completion of a specific task to be signaled or for a
  4854. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4855. */
  4856. unsigned long __sched
  4857. wait_for_completion_interruptible_timeout(struct completion *x,
  4858. unsigned long timeout)
  4859. {
  4860. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4861. }
  4862. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4863. /**
  4864. * wait_for_completion_killable: - waits for completion of a task (killable)
  4865. * @x: holds the state of this particular completion
  4866. *
  4867. * This waits to be signaled for completion of a specific task. It can be
  4868. * interrupted by a kill signal.
  4869. */
  4870. int __sched wait_for_completion_killable(struct completion *x)
  4871. {
  4872. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4873. if (t == -ERESTARTSYS)
  4874. return t;
  4875. return 0;
  4876. }
  4877. EXPORT_SYMBOL(wait_for_completion_killable);
  4878. /**
  4879. * try_wait_for_completion - try to decrement a completion without blocking
  4880. * @x: completion structure
  4881. *
  4882. * Returns: 0 if a decrement cannot be done without blocking
  4883. * 1 if a decrement succeeded.
  4884. *
  4885. * If a completion is being used as a counting completion,
  4886. * attempt to decrement the counter without blocking. This
  4887. * enables us to avoid waiting if the resource the completion
  4888. * is protecting is not available.
  4889. */
  4890. bool try_wait_for_completion(struct completion *x)
  4891. {
  4892. int ret = 1;
  4893. spin_lock_irq(&x->wait.lock);
  4894. if (!x->done)
  4895. ret = 0;
  4896. else
  4897. x->done--;
  4898. spin_unlock_irq(&x->wait.lock);
  4899. return ret;
  4900. }
  4901. EXPORT_SYMBOL(try_wait_for_completion);
  4902. /**
  4903. * completion_done - Test to see if a completion has any waiters
  4904. * @x: completion structure
  4905. *
  4906. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4907. * 1 if there are no waiters.
  4908. *
  4909. */
  4910. bool completion_done(struct completion *x)
  4911. {
  4912. int ret = 1;
  4913. spin_lock_irq(&x->wait.lock);
  4914. if (!x->done)
  4915. ret = 0;
  4916. spin_unlock_irq(&x->wait.lock);
  4917. return ret;
  4918. }
  4919. EXPORT_SYMBOL(completion_done);
  4920. static long __sched
  4921. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4922. {
  4923. unsigned long flags;
  4924. wait_queue_t wait;
  4925. init_waitqueue_entry(&wait, current);
  4926. __set_current_state(state);
  4927. spin_lock_irqsave(&q->lock, flags);
  4928. __add_wait_queue(q, &wait);
  4929. spin_unlock(&q->lock);
  4930. timeout = schedule_timeout(timeout);
  4931. spin_lock_irq(&q->lock);
  4932. __remove_wait_queue(q, &wait);
  4933. spin_unlock_irqrestore(&q->lock, flags);
  4934. return timeout;
  4935. }
  4936. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4937. {
  4938. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4939. }
  4940. EXPORT_SYMBOL(interruptible_sleep_on);
  4941. long __sched
  4942. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4943. {
  4944. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4945. }
  4946. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4947. void __sched sleep_on(wait_queue_head_t *q)
  4948. {
  4949. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4950. }
  4951. EXPORT_SYMBOL(sleep_on);
  4952. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4953. {
  4954. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4955. }
  4956. EXPORT_SYMBOL(sleep_on_timeout);
  4957. #ifdef CONFIG_RT_MUTEXES
  4958. /*
  4959. * rt_mutex_setprio - set the current priority of a task
  4960. * @p: task
  4961. * @prio: prio value (kernel-internal form)
  4962. *
  4963. * This function changes the 'effective' priority of a task. It does
  4964. * not touch ->normal_prio like __setscheduler().
  4965. *
  4966. * Used by the rt_mutex code to implement priority inheritance logic.
  4967. */
  4968. void rt_mutex_setprio(struct task_struct *p, int prio)
  4969. {
  4970. unsigned long flags;
  4971. int oldprio, on_rq, running;
  4972. struct rq *rq;
  4973. const struct sched_class *prev_class = p->sched_class;
  4974. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4975. rq = task_rq_lock(p, &flags);
  4976. update_rq_clock(rq);
  4977. oldprio = p->prio;
  4978. on_rq = p->se.on_rq;
  4979. running = task_current(rq, p);
  4980. if (on_rq)
  4981. dequeue_task(rq, p, 0);
  4982. if (running)
  4983. p->sched_class->put_prev_task(rq, p);
  4984. if (rt_prio(prio))
  4985. p->sched_class = &rt_sched_class;
  4986. else
  4987. p->sched_class = &fair_sched_class;
  4988. p->prio = prio;
  4989. if (running)
  4990. p->sched_class->set_curr_task(rq);
  4991. if (on_rq) {
  4992. enqueue_task(rq, p, 0);
  4993. check_class_changed(rq, p, prev_class, oldprio, running);
  4994. }
  4995. task_rq_unlock(rq, &flags);
  4996. }
  4997. #endif
  4998. void set_user_nice(struct task_struct *p, long nice)
  4999. {
  5000. int old_prio, delta, on_rq;
  5001. unsigned long flags;
  5002. struct rq *rq;
  5003. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5004. return;
  5005. /*
  5006. * We have to be careful, if called from sys_setpriority(),
  5007. * the task might be in the middle of scheduling on another CPU.
  5008. */
  5009. rq = task_rq_lock(p, &flags);
  5010. update_rq_clock(rq);
  5011. /*
  5012. * The RT priorities are set via sched_setscheduler(), but we still
  5013. * allow the 'normal' nice value to be set - but as expected
  5014. * it wont have any effect on scheduling until the task is
  5015. * SCHED_FIFO/SCHED_RR:
  5016. */
  5017. if (task_has_rt_policy(p)) {
  5018. p->static_prio = NICE_TO_PRIO(nice);
  5019. goto out_unlock;
  5020. }
  5021. on_rq = p->se.on_rq;
  5022. if (on_rq)
  5023. dequeue_task(rq, p, 0);
  5024. p->static_prio = NICE_TO_PRIO(nice);
  5025. set_load_weight(p);
  5026. old_prio = p->prio;
  5027. p->prio = effective_prio(p);
  5028. delta = p->prio - old_prio;
  5029. if (on_rq) {
  5030. enqueue_task(rq, p, 0);
  5031. /*
  5032. * If the task increased its priority or is running and
  5033. * lowered its priority, then reschedule its CPU:
  5034. */
  5035. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5036. resched_task(rq->curr);
  5037. }
  5038. out_unlock:
  5039. task_rq_unlock(rq, &flags);
  5040. }
  5041. EXPORT_SYMBOL(set_user_nice);
  5042. /*
  5043. * can_nice - check if a task can reduce its nice value
  5044. * @p: task
  5045. * @nice: nice value
  5046. */
  5047. int can_nice(const struct task_struct *p, const int nice)
  5048. {
  5049. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5050. int nice_rlim = 20 - nice;
  5051. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5052. capable(CAP_SYS_NICE));
  5053. }
  5054. #ifdef __ARCH_WANT_SYS_NICE
  5055. /*
  5056. * sys_nice - change the priority of the current process.
  5057. * @increment: priority increment
  5058. *
  5059. * sys_setpriority is a more generic, but much slower function that
  5060. * does similar things.
  5061. */
  5062. SYSCALL_DEFINE1(nice, int, increment)
  5063. {
  5064. long nice, retval;
  5065. /*
  5066. * Setpriority might change our priority at the same moment.
  5067. * We don't have to worry. Conceptually one call occurs first
  5068. * and we have a single winner.
  5069. */
  5070. if (increment < -40)
  5071. increment = -40;
  5072. if (increment > 40)
  5073. increment = 40;
  5074. nice = TASK_NICE(current) + increment;
  5075. if (nice < -20)
  5076. nice = -20;
  5077. if (nice > 19)
  5078. nice = 19;
  5079. if (increment < 0 && !can_nice(current, nice))
  5080. return -EPERM;
  5081. retval = security_task_setnice(current, nice);
  5082. if (retval)
  5083. return retval;
  5084. set_user_nice(current, nice);
  5085. return 0;
  5086. }
  5087. #endif
  5088. /**
  5089. * task_prio - return the priority value of a given task.
  5090. * @p: the task in question.
  5091. *
  5092. * This is the priority value as seen by users in /proc.
  5093. * RT tasks are offset by -200. Normal tasks are centered
  5094. * around 0, value goes from -16 to +15.
  5095. */
  5096. int task_prio(const struct task_struct *p)
  5097. {
  5098. return p->prio - MAX_RT_PRIO;
  5099. }
  5100. /**
  5101. * task_nice - return the nice value of a given task.
  5102. * @p: the task in question.
  5103. */
  5104. int task_nice(const struct task_struct *p)
  5105. {
  5106. return TASK_NICE(p);
  5107. }
  5108. EXPORT_SYMBOL(task_nice);
  5109. /**
  5110. * idle_cpu - is a given cpu idle currently?
  5111. * @cpu: the processor in question.
  5112. */
  5113. int idle_cpu(int cpu)
  5114. {
  5115. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5116. }
  5117. /**
  5118. * idle_task - return the idle task for a given cpu.
  5119. * @cpu: the processor in question.
  5120. */
  5121. struct task_struct *idle_task(int cpu)
  5122. {
  5123. return cpu_rq(cpu)->idle;
  5124. }
  5125. /**
  5126. * find_process_by_pid - find a process with a matching PID value.
  5127. * @pid: the pid in question.
  5128. */
  5129. static struct task_struct *find_process_by_pid(pid_t pid)
  5130. {
  5131. return pid ? find_task_by_vpid(pid) : current;
  5132. }
  5133. /* Actually do priority change: must hold rq lock. */
  5134. static void
  5135. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5136. {
  5137. BUG_ON(p->se.on_rq);
  5138. p->policy = policy;
  5139. switch (p->policy) {
  5140. case SCHED_NORMAL:
  5141. case SCHED_BATCH:
  5142. case SCHED_IDLE:
  5143. p->sched_class = &fair_sched_class;
  5144. break;
  5145. case SCHED_FIFO:
  5146. case SCHED_RR:
  5147. p->sched_class = &rt_sched_class;
  5148. break;
  5149. }
  5150. p->rt_priority = prio;
  5151. p->normal_prio = normal_prio(p);
  5152. /* we are holding p->pi_lock already */
  5153. p->prio = rt_mutex_getprio(p);
  5154. set_load_weight(p);
  5155. }
  5156. /*
  5157. * check the target process has a UID that matches the current process's
  5158. */
  5159. static bool check_same_owner(struct task_struct *p)
  5160. {
  5161. const struct cred *cred = current_cred(), *pcred;
  5162. bool match;
  5163. rcu_read_lock();
  5164. pcred = __task_cred(p);
  5165. match = (cred->euid == pcred->euid ||
  5166. cred->euid == pcred->uid);
  5167. rcu_read_unlock();
  5168. return match;
  5169. }
  5170. static int __sched_setscheduler(struct task_struct *p, int policy,
  5171. struct sched_param *param, bool user)
  5172. {
  5173. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5174. unsigned long flags;
  5175. const struct sched_class *prev_class = p->sched_class;
  5176. struct rq *rq;
  5177. /* may grab non-irq protected spin_locks */
  5178. BUG_ON(in_interrupt());
  5179. recheck:
  5180. /* double check policy once rq lock held */
  5181. if (policy < 0)
  5182. policy = oldpolicy = p->policy;
  5183. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5184. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5185. policy != SCHED_IDLE)
  5186. return -EINVAL;
  5187. /*
  5188. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5189. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5190. * SCHED_BATCH and SCHED_IDLE is 0.
  5191. */
  5192. if (param->sched_priority < 0 ||
  5193. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5194. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5195. return -EINVAL;
  5196. if (rt_policy(policy) != (param->sched_priority != 0))
  5197. return -EINVAL;
  5198. /*
  5199. * Allow unprivileged RT tasks to decrease priority:
  5200. */
  5201. if (user && !capable(CAP_SYS_NICE)) {
  5202. if (rt_policy(policy)) {
  5203. unsigned long rlim_rtprio;
  5204. if (!lock_task_sighand(p, &flags))
  5205. return -ESRCH;
  5206. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5207. unlock_task_sighand(p, &flags);
  5208. /* can't set/change the rt policy */
  5209. if (policy != p->policy && !rlim_rtprio)
  5210. return -EPERM;
  5211. /* can't increase priority */
  5212. if (param->sched_priority > p->rt_priority &&
  5213. param->sched_priority > rlim_rtprio)
  5214. return -EPERM;
  5215. }
  5216. /*
  5217. * Like positive nice levels, dont allow tasks to
  5218. * move out of SCHED_IDLE either:
  5219. */
  5220. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5221. return -EPERM;
  5222. /* can't change other user's priorities */
  5223. if (!check_same_owner(p))
  5224. return -EPERM;
  5225. }
  5226. if (user) {
  5227. #ifdef CONFIG_RT_GROUP_SCHED
  5228. /*
  5229. * Do not allow realtime tasks into groups that have no runtime
  5230. * assigned.
  5231. */
  5232. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5233. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5234. return -EPERM;
  5235. #endif
  5236. retval = security_task_setscheduler(p, policy, param);
  5237. if (retval)
  5238. return retval;
  5239. }
  5240. /*
  5241. * make sure no PI-waiters arrive (or leave) while we are
  5242. * changing the priority of the task:
  5243. */
  5244. spin_lock_irqsave(&p->pi_lock, flags);
  5245. /*
  5246. * To be able to change p->policy safely, the apropriate
  5247. * runqueue lock must be held.
  5248. */
  5249. rq = __task_rq_lock(p);
  5250. /* recheck policy now with rq lock held */
  5251. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5252. policy = oldpolicy = -1;
  5253. __task_rq_unlock(rq);
  5254. spin_unlock_irqrestore(&p->pi_lock, flags);
  5255. goto recheck;
  5256. }
  5257. update_rq_clock(rq);
  5258. on_rq = p->se.on_rq;
  5259. running = task_current(rq, p);
  5260. if (on_rq)
  5261. deactivate_task(rq, p, 0);
  5262. if (running)
  5263. p->sched_class->put_prev_task(rq, p);
  5264. oldprio = p->prio;
  5265. __setscheduler(rq, p, policy, param->sched_priority);
  5266. if (running)
  5267. p->sched_class->set_curr_task(rq);
  5268. if (on_rq) {
  5269. activate_task(rq, p, 0);
  5270. check_class_changed(rq, p, prev_class, oldprio, running);
  5271. }
  5272. __task_rq_unlock(rq);
  5273. spin_unlock_irqrestore(&p->pi_lock, flags);
  5274. rt_mutex_adjust_pi(p);
  5275. return 0;
  5276. }
  5277. /**
  5278. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5279. * @p: the task in question.
  5280. * @policy: new policy.
  5281. * @param: structure containing the new RT priority.
  5282. *
  5283. * NOTE that the task may be already dead.
  5284. */
  5285. int sched_setscheduler(struct task_struct *p, int policy,
  5286. struct sched_param *param)
  5287. {
  5288. return __sched_setscheduler(p, policy, param, true);
  5289. }
  5290. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5291. /**
  5292. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5293. * @p: the task in question.
  5294. * @policy: new policy.
  5295. * @param: structure containing the new RT priority.
  5296. *
  5297. * Just like sched_setscheduler, only don't bother checking if the
  5298. * current context has permission. For example, this is needed in
  5299. * stop_machine(): we create temporary high priority worker threads,
  5300. * but our caller might not have that capability.
  5301. */
  5302. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5303. struct sched_param *param)
  5304. {
  5305. return __sched_setscheduler(p, policy, param, false);
  5306. }
  5307. static int
  5308. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5309. {
  5310. struct sched_param lparam;
  5311. struct task_struct *p;
  5312. int retval;
  5313. if (!param || pid < 0)
  5314. return -EINVAL;
  5315. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5316. return -EFAULT;
  5317. rcu_read_lock();
  5318. retval = -ESRCH;
  5319. p = find_process_by_pid(pid);
  5320. if (p != NULL)
  5321. retval = sched_setscheduler(p, policy, &lparam);
  5322. rcu_read_unlock();
  5323. return retval;
  5324. }
  5325. /**
  5326. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5327. * @pid: the pid in question.
  5328. * @policy: new policy.
  5329. * @param: structure containing the new RT priority.
  5330. */
  5331. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5332. struct sched_param __user *, param)
  5333. {
  5334. /* negative values for policy are not valid */
  5335. if (policy < 0)
  5336. return -EINVAL;
  5337. return do_sched_setscheduler(pid, policy, param);
  5338. }
  5339. /**
  5340. * sys_sched_setparam - set/change the RT priority of a thread
  5341. * @pid: the pid in question.
  5342. * @param: structure containing the new RT priority.
  5343. */
  5344. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5345. {
  5346. return do_sched_setscheduler(pid, -1, param);
  5347. }
  5348. /**
  5349. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5350. * @pid: the pid in question.
  5351. */
  5352. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5353. {
  5354. struct task_struct *p;
  5355. int retval;
  5356. if (pid < 0)
  5357. return -EINVAL;
  5358. retval = -ESRCH;
  5359. read_lock(&tasklist_lock);
  5360. p = find_process_by_pid(pid);
  5361. if (p) {
  5362. retval = security_task_getscheduler(p);
  5363. if (!retval)
  5364. retval = p->policy;
  5365. }
  5366. read_unlock(&tasklist_lock);
  5367. return retval;
  5368. }
  5369. /**
  5370. * sys_sched_getscheduler - get the RT priority of a thread
  5371. * @pid: the pid in question.
  5372. * @param: structure containing the RT priority.
  5373. */
  5374. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5375. {
  5376. struct sched_param lp;
  5377. struct task_struct *p;
  5378. int retval;
  5379. if (!param || pid < 0)
  5380. return -EINVAL;
  5381. read_lock(&tasklist_lock);
  5382. p = find_process_by_pid(pid);
  5383. retval = -ESRCH;
  5384. if (!p)
  5385. goto out_unlock;
  5386. retval = security_task_getscheduler(p);
  5387. if (retval)
  5388. goto out_unlock;
  5389. lp.sched_priority = p->rt_priority;
  5390. read_unlock(&tasklist_lock);
  5391. /*
  5392. * This one might sleep, we cannot do it with a spinlock held ...
  5393. */
  5394. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5395. return retval;
  5396. out_unlock:
  5397. read_unlock(&tasklist_lock);
  5398. return retval;
  5399. }
  5400. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5401. {
  5402. cpumask_var_t cpus_allowed, new_mask;
  5403. struct task_struct *p;
  5404. int retval;
  5405. get_online_cpus();
  5406. read_lock(&tasklist_lock);
  5407. p = find_process_by_pid(pid);
  5408. if (!p) {
  5409. read_unlock(&tasklist_lock);
  5410. put_online_cpus();
  5411. return -ESRCH;
  5412. }
  5413. /*
  5414. * It is not safe to call set_cpus_allowed with the
  5415. * tasklist_lock held. We will bump the task_struct's
  5416. * usage count and then drop tasklist_lock.
  5417. */
  5418. get_task_struct(p);
  5419. read_unlock(&tasklist_lock);
  5420. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5421. retval = -ENOMEM;
  5422. goto out_put_task;
  5423. }
  5424. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5425. retval = -ENOMEM;
  5426. goto out_free_cpus_allowed;
  5427. }
  5428. retval = -EPERM;
  5429. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5430. goto out_unlock;
  5431. retval = security_task_setscheduler(p, 0, NULL);
  5432. if (retval)
  5433. goto out_unlock;
  5434. cpuset_cpus_allowed(p, cpus_allowed);
  5435. cpumask_and(new_mask, in_mask, cpus_allowed);
  5436. again:
  5437. retval = set_cpus_allowed_ptr(p, new_mask);
  5438. if (!retval) {
  5439. cpuset_cpus_allowed(p, cpus_allowed);
  5440. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5441. /*
  5442. * We must have raced with a concurrent cpuset
  5443. * update. Just reset the cpus_allowed to the
  5444. * cpuset's cpus_allowed
  5445. */
  5446. cpumask_copy(new_mask, cpus_allowed);
  5447. goto again;
  5448. }
  5449. }
  5450. out_unlock:
  5451. free_cpumask_var(new_mask);
  5452. out_free_cpus_allowed:
  5453. free_cpumask_var(cpus_allowed);
  5454. out_put_task:
  5455. put_task_struct(p);
  5456. put_online_cpus();
  5457. return retval;
  5458. }
  5459. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5460. struct cpumask *new_mask)
  5461. {
  5462. if (len < cpumask_size())
  5463. cpumask_clear(new_mask);
  5464. else if (len > cpumask_size())
  5465. len = cpumask_size();
  5466. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5467. }
  5468. /**
  5469. * sys_sched_setaffinity - set the cpu affinity of a process
  5470. * @pid: pid of the process
  5471. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5472. * @user_mask_ptr: user-space pointer to the new cpu mask
  5473. */
  5474. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5475. unsigned long __user *, user_mask_ptr)
  5476. {
  5477. cpumask_var_t new_mask;
  5478. int retval;
  5479. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5480. return -ENOMEM;
  5481. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5482. if (retval == 0)
  5483. retval = sched_setaffinity(pid, new_mask);
  5484. free_cpumask_var(new_mask);
  5485. return retval;
  5486. }
  5487. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5488. {
  5489. struct task_struct *p;
  5490. int retval;
  5491. get_online_cpus();
  5492. read_lock(&tasklist_lock);
  5493. retval = -ESRCH;
  5494. p = find_process_by_pid(pid);
  5495. if (!p)
  5496. goto out_unlock;
  5497. retval = security_task_getscheduler(p);
  5498. if (retval)
  5499. goto out_unlock;
  5500. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5501. out_unlock:
  5502. read_unlock(&tasklist_lock);
  5503. put_online_cpus();
  5504. return retval;
  5505. }
  5506. /**
  5507. * sys_sched_getaffinity - get the cpu affinity of a process
  5508. * @pid: pid of the process
  5509. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5510. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5511. */
  5512. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5513. unsigned long __user *, user_mask_ptr)
  5514. {
  5515. int ret;
  5516. cpumask_var_t mask;
  5517. if (len < cpumask_size())
  5518. return -EINVAL;
  5519. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5520. return -ENOMEM;
  5521. ret = sched_getaffinity(pid, mask);
  5522. if (ret == 0) {
  5523. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5524. ret = -EFAULT;
  5525. else
  5526. ret = cpumask_size();
  5527. }
  5528. free_cpumask_var(mask);
  5529. return ret;
  5530. }
  5531. /**
  5532. * sys_sched_yield - yield the current processor to other threads.
  5533. *
  5534. * This function yields the current CPU to other tasks. If there are no
  5535. * other threads running on this CPU then this function will return.
  5536. */
  5537. SYSCALL_DEFINE0(sched_yield)
  5538. {
  5539. struct rq *rq = this_rq_lock();
  5540. schedstat_inc(rq, yld_count);
  5541. current->sched_class->yield_task(rq);
  5542. /*
  5543. * Since we are going to call schedule() anyway, there's
  5544. * no need to preempt or enable interrupts:
  5545. */
  5546. __release(rq->lock);
  5547. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5548. _raw_spin_unlock(&rq->lock);
  5549. preempt_enable_no_resched();
  5550. schedule();
  5551. return 0;
  5552. }
  5553. static void __cond_resched(void)
  5554. {
  5555. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5556. __might_sleep(__FILE__, __LINE__);
  5557. #endif
  5558. /*
  5559. * The BKS might be reacquired before we have dropped
  5560. * PREEMPT_ACTIVE, which could trigger a second
  5561. * cond_resched() call.
  5562. */
  5563. do {
  5564. add_preempt_count(PREEMPT_ACTIVE);
  5565. schedule();
  5566. sub_preempt_count(PREEMPT_ACTIVE);
  5567. } while (need_resched());
  5568. }
  5569. int __sched _cond_resched(void)
  5570. {
  5571. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5572. system_state == SYSTEM_RUNNING) {
  5573. __cond_resched();
  5574. return 1;
  5575. }
  5576. return 0;
  5577. }
  5578. EXPORT_SYMBOL(_cond_resched);
  5579. /*
  5580. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5581. * call schedule, and on return reacquire the lock.
  5582. *
  5583. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5584. * operations here to prevent schedule() from being called twice (once via
  5585. * spin_unlock(), once by hand).
  5586. */
  5587. int cond_resched_lock(spinlock_t *lock)
  5588. {
  5589. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5590. int ret = 0;
  5591. if (spin_needbreak(lock) || resched) {
  5592. spin_unlock(lock);
  5593. if (resched && need_resched())
  5594. __cond_resched();
  5595. else
  5596. cpu_relax();
  5597. ret = 1;
  5598. spin_lock(lock);
  5599. }
  5600. return ret;
  5601. }
  5602. EXPORT_SYMBOL(cond_resched_lock);
  5603. int __sched cond_resched_softirq(void)
  5604. {
  5605. BUG_ON(!in_softirq());
  5606. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5607. local_bh_enable();
  5608. __cond_resched();
  5609. local_bh_disable();
  5610. return 1;
  5611. }
  5612. return 0;
  5613. }
  5614. EXPORT_SYMBOL(cond_resched_softirq);
  5615. /**
  5616. * yield - yield the current processor to other threads.
  5617. *
  5618. * This is a shortcut for kernel-space yielding - it marks the
  5619. * thread runnable and calls sys_sched_yield().
  5620. */
  5621. void __sched yield(void)
  5622. {
  5623. set_current_state(TASK_RUNNING);
  5624. sys_sched_yield();
  5625. }
  5626. EXPORT_SYMBOL(yield);
  5627. /*
  5628. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5629. * that process accounting knows that this is a task in IO wait state.
  5630. *
  5631. * But don't do that if it is a deliberate, throttling IO wait (this task
  5632. * has set its backing_dev_info: the queue against which it should throttle)
  5633. */
  5634. void __sched io_schedule(void)
  5635. {
  5636. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5637. delayacct_blkio_start();
  5638. atomic_inc(&rq->nr_iowait);
  5639. schedule();
  5640. atomic_dec(&rq->nr_iowait);
  5641. delayacct_blkio_end();
  5642. }
  5643. EXPORT_SYMBOL(io_schedule);
  5644. long __sched io_schedule_timeout(long timeout)
  5645. {
  5646. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5647. long ret;
  5648. delayacct_blkio_start();
  5649. atomic_inc(&rq->nr_iowait);
  5650. ret = schedule_timeout(timeout);
  5651. atomic_dec(&rq->nr_iowait);
  5652. delayacct_blkio_end();
  5653. return ret;
  5654. }
  5655. /**
  5656. * sys_sched_get_priority_max - return maximum RT priority.
  5657. * @policy: scheduling class.
  5658. *
  5659. * this syscall returns the maximum rt_priority that can be used
  5660. * by a given scheduling class.
  5661. */
  5662. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5663. {
  5664. int ret = -EINVAL;
  5665. switch (policy) {
  5666. case SCHED_FIFO:
  5667. case SCHED_RR:
  5668. ret = MAX_USER_RT_PRIO-1;
  5669. break;
  5670. case SCHED_NORMAL:
  5671. case SCHED_BATCH:
  5672. case SCHED_IDLE:
  5673. ret = 0;
  5674. break;
  5675. }
  5676. return ret;
  5677. }
  5678. /**
  5679. * sys_sched_get_priority_min - return minimum RT priority.
  5680. * @policy: scheduling class.
  5681. *
  5682. * this syscall returns the minimum rt_priority that can be used
  5683. * by a given scheduling class.
  5684. */
  5685. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5686. {
  5687. int ret = -EINVAL;
  5688. switch (policy) {
  5689. case SCHED_FIFO:
  5690. case SCHED_RR:
  5691. ret = 1;
  5692. break;
  5693. case SCHED_NORMAL:
  5694. case SCHED_BATCH:
  5695. case SCHED_IDLE:
  5696. ret = 0;
  5697. }
  5698. return ret;
  5699. }
  5700. /**
  5701. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5702. * @pid: pid of the process.
  5703. * @interval: userspace pointer to the timeslice value.
  5704. *
  5705. * this syscall writes the default timeslice value of a given process
  5706. * into the user-space timespec buffer. A value of '0' means infinity.
  5707. */
  5708. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5709. struct timespec __user *, interval)
  5710. {
  5711. struct task_struct *p;
  5712. unsigned int time_slice;
  5713. int retval;
  5714. struct timespec t;
  5715. if (pid < 0)
  5716. return -EINVAL;
  5717. retval = -ESRCH;
  5718. read_lock(&tasklist_lock);
  5719. p = find_process_by_pid(pid);
  5720. if (!p)
  5721. goto out_unlock;
  5722. retval = security_task_getscheduler(p);
  5723. if (retval)
  5724. goto out_unlock;
  5725. /*
  5726. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5727. * tasks that are on an otherwise idle runqueue:
  5728. */
  5729. time_slice = 0;
  5730. if (p->policy == SCHED_RR) {
  5731. time_slice = DEF_TIMESLICE;
  5732. } else if (p->policy != SCHED_FIFO) {
  5733. struct sched_entity *se = &p->se;
  5734. unsigned long flags;
  5735. struct rq *rq;
  5736. rq = task_rq_lock(p, &flags);
  5737. if (rq->cfs.load.weight)
  5738. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5739. task_rq_unlock(rq, &flags);
  5740. }
  5741. read_unlock(&tasklist_lock);
  5742. jiffies_to_timespec(time_slice, &t);
  5743. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5744. return retval;
  5745. out_unlock:
  5746. read_unlock(&tasklist_lock);
  5747. return retval;
  5748. }
  5749. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5750. void sched_show_task(struct task_struct *p)
  5751. {
  5752. unsigned long free = 0;
  5753. unsigned state;
  5754. state = p->state ? __ffs(p->state) + 1 : 0;
  5755. printk(KERN_INFO "%-13.13s %c", p->comm,
  5756. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5757. #if BITS_PER_LONG == 32
  5758. if (state == TASK_RUNNING)
  5759. printk(KERN_CONT " running ");
  5760. else
  5761. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5762. #else
  5763. if (state == TASK_RUNNING)
  5764. printk(KERN_CONT " running task ");
  5765. else
  5766. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5767. #endif
  5768. #ifdef CONFIG_DEBUG_STACK_USAGE
  5769. free = stack_not_used(p);
  5770. #endif
  5771. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5772. task_pid_nr(p), task_pid_nr(p->real_parent),
  5773. (unsigned long)task_thread_info(p)->flags);
  5774. show_stack(p, NULL);
  5775. }
  5776. void show_state_filter(unsigned long state_filter)
  5777. {
  5778. struct task_struct *g, *p;
  5779. #if BITS_PER_LONG == 32
  5780. printk(KERN_INFO
  5781. " task PC stack pid father\n");
  5782. #else
  5783. printk(KERN_INFO
  5784. " task PC stack pid father\n");
  5785. #endif
  5786. read_lock(&tasklist_lock);
  5787. do_each_thread(g, p) {
  5788. /*
  5789. * reset the NMI-timeout, listing all files on a slow
  5790. * console might take alot of time:
  5791. */
  5792. touch_nmi_watchdog();
  5793. if (!state_filter || (p->state & state_filter))
  5794. sched_show_task(p);
  5795. } while_each_thread(g, p);
  5796. touch_all_softlockup_watchdogs();
  5797. #ifdef CONFIG_SCHED_DEBUG
  5798. sysrq_sched_debug_show();
  5799. #endif
  5800. read_unlock(&tasklist_lock);
  5801. /*
  5802. * Only show locks if all tasks are dumped:
  5803. */
  5804. if (state_filter == -1)
  5805. debug_show_all_locks();
  5806. }
  5807. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5808. {
  5809. idle->sched_class = &idle_sched_class;
  5810. }
  5811. /**
  5812. * init_idle - set up an idle thread for a given CPU
  5813. * @idle: task in question
  5814. * @cpu: cpu the idle task belongs to
  5815. *
  5816. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5817. * flag, to make booting more robust.
  5818. */
  5819. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5820. {
  5821. struct rq *rq = cpu_rq(cpu);
  5822. unsigned long flags;
  5823. spin_lock_irqsave(&rq->lock, flags);
  5824. __sched_fork(idle);
  5825. idle->se.exec_start = sched_clock();
  5826. idle->prio = idle->normal_prio = MAX_PRIO;
  5827. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5828. __set_task_cpu(idle, cpu);
  5829. rq->curr = rq->idle = idle;
  5830. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5831. idle->oncpu = 1;
  5832. #endif
  5833. spin_unlock_irqrestore(&rq->lock, flags);
  5834. /* Set the preempt count _outside_ the spinlocks! */
  5835. #if defined(CONFIG_PREEMPT)
  5836. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5837. #else
  5838. task_thread_info(idle)->preempt_count = 0;
  5839. #endif
  5840. /*
  5841. * The idle tasks have their own, simple scheduling class:
  5842. */
  5843. idle->sched_class = &idle_sched_class;
  5844. ftrace_graph_init_task(idle);
  5845. }
  5846. /*
  5847. * In a system that switches off the HZ timer nohz_cpu_mask
  5848. * indicates which cpus entered this state. This is used
  5849. * in the rcu update to wait only for active cpus. For system
  5850. * which do not switch off the HZ timer nohz_cpu_mask should
  5851. * always be CPU_BITS_NONE.
  5852. */
  5853. cpumask_var_t nohz_cpu_mask;
  5854. /*
  5855. * Increase the granularity value when there are more CPUs,
  5856. * because with more CPUs the 'effective latency' as visible
  5857. * to users decreases. But the relationship is not linear,
  5858. * so pick a second-best guess by going with the log2 of the
  5859. * number of CPUs.
  5860. *
  5861. * This idea comes from the SD scheduler of Con Kolivas:
  5862. */
  5863. static inline void sched_init_granularity(void)
  5864. {
  5865. unsigned int factor = 1 + ilog2(num_online_cpus());
  5866. const unsigned long limit = 200000000;
  5867. sysctl_sched_min_granularity *= factor;
  5868. if (sysctl_sched_min_granularity > limit)
  5869. sysctl_sched_min_granularity = limit;
  5870. sysctl_sched_latency *= factor;
  5871. if (sysctl_sched_latency > limit)
  5872. sysctl_sched_latency = limit;
  5873. sysctl_sched_wakeup_granularity *= factor;
  5874. sysctl_sched_shares_ratelimit *= factor;
  5875. }
  5876. #ifdef CONFIG_SMP
  5877. /*
  5878. * This is how migration works:
  5879. *
  5880. * 1) we queue a struct migration_req structure in the source CPU's
  5881. * runqueue and wake up that CPU's migration thread.
  5882. * 2) we down() the locked semaphore => thread blocks.
  5883. * 3) migration thread wakes up (implicitly it forces the migrated
  5884. * thread off the CPU)
  5885. * 4) it gets the migration request and checks whether the migrated
  5886. * task is still in the wrong runqueue.
  5887. * 5) if it's in the wrong runqueue then the migration thread removes
  5888. * it and puts it into the right queue.
  5889. * 6) migration thread up()s the semaphore.
  5890. * 7) we wake up and the migration is done.
  5891. */
  5892. /*
  5893. * Change a given task's CPU affinity. Migrate the thread to a
  5894. * proper CPU and schedule it away if the CPU it's executing on
  5895. * is removed from the allowed bitmask.
  5896. *
  5897. * NOTE: the caller must have a valid reference to the task, the
  5898. * task must not exit() & deallocate itself prematurely. The
  5899. * call is not atomic; no spinlocks may be held.
  5900. */
  5901. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5902. {
  5903. struct migration_req req;
  5904. unsigned long flags;
  5905. struct rq *rq;
  5906. int ret = 0;
  5907. rq = task_rq_lock(p, &flags);
  5908. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5909. ret = -EINVAL;
  5910. goto out;
  5911. }
  5912. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5913. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5914. ret = -EINVAL;
  5915. goto out;
  5916. }
  5917. if (p->sched_class->set_cpus_allowed)
  5918. p->sched_class->set_cpus_allowed(p, new_mask);
  5919. else {
  5920. cpumask_copy(&p->cpus_allowed, new_mask);
  5921. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5922. }
  5923. /* Can the task run on the task's current CPU? If so, we're done */
  5924. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5925. goto out;
  5926. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5927. /* Need help from migration thread: drop lock and wait. */
  5928. task_rq_unlock(rq, &flags);
  5929. wake_up_process(rq->migration_thread);
  5930. wait_for_completion(&req.done);
  5931. tlb_migrate_finish(p->mm);
  5932. return 0;
  5933. }
  5934. out:
  5935. task_rq_unlock(rq, &flags);
  5936. return ret;
  5937. }
  5938. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5939. /*
  5940. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5941. * this because either it can't run here any more (set_cpus_allowed()
  5942. * away from this CPU, or CPU going down), or because we're
  5943. * attempting to rebalance this task on exec (sched_exec).
  5944. *
  5945. * So we race with normal scheduler movements, but that's OK, as long
  5946. * as the task is no longer on this CPU.
  5947. *
  5948. * Returns non-zero if task was successfully migrated.
  5949. */
  5950. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5951. {
  5952. struct rq *rq_dest, *rq_src;
  5953. int ret = 0, on_rq;
  5954. if (unlikely(!cpu_active(dest_cpu)))
  5955. return ret;
  5956. rq_src = cpu_rq(src_cpu);
  5957. rq_dest = cpu_rq(dest_cpu);
  5958. double_rq_lock(rq_src, rq_dest);
  5959. /* Already moved. */
  5960. if (task_cpu(p) != src_cpu)
  5961. goto done;
  5962. /* Affinity changed (again). */
  5963. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5964. goto fail;
  5965. on_rq = p->se.on_rq;
  5966. if (on_rq)
  5967. deactivate_task(rq_src, p, 0);
  5968. set_task_cpu(p, dest_cpu);
  5969. if (on_rq) {
  5970. activate_task(rq_dest, p, 0);
  5971. check_preempt_curr(rq_dest, p, 0);
  5972. }
  5973. done:
  5974. ret = 1;
  5975. fail:
  5976. double_rq_unlock(rq_src, rq_dest);
  5977. return ret;
  5978. }
  5979. /*
  5980. * migration_thread - this is a highprio system thread that performs
  5981. * thread migration by bumping thread off CPU then 'pushing' onto
  5982. * another runqueue.
  5983. */
  5984. static int migration_thread(void *data)
  5985. {
  5986. int cpu = (long)data;
  5987. struct rq *rq;
  5988. rq = cpu_rq(cpu);
  5989. BUG_ON(rq->migration_thread != current);
  5990. set_current_state(TASK_INTERRUPTIBLE);
  5991. while (!kthread_should_stop()) {
  5992. struct migration_req *req;
  5993. struct list_head *head;
  5994. spin_lock_irq(&rq->lock);
  5995. if (cpu_is_offline(cpu)) {
  5996. spin_unlock_irq(&rq->lock);
  5997. goto wait_to_die;
  5998. }
  5999. if (rq->active_balance) {
  6000. active_load_balance(rq, cpu);
  6001. rq->active_balance = 0;
  6002. }
  6003. head = &rq->migration_queue;
  6004. if (list_empty(head)) {
  6005. spin_unlock_irq(&rq->lock);
  6006. schedule();
  6007. set_current_state(TASK_INTERRUPTIBLE);
  6008. continue;
  6009. }
  6010. req = list_entry(head->next, struct migration_req, list);
  6011. list_del_init(head->next);
  6012. spin_unlock(&rq->lock);
  6013. __migrate_task(req->task, cpu, req->dest_cpu);
  6014. local_irq_enable();
  6015. complete(&req->done);
  6016. }
  6017. __set_current_state(TASK_RUNNING);
  6018. return 0;
  6019. wait_to_die:
  6020. /* Wait for kthread_stop */
  6021. set_current_state(TASK_INTERRUPTIBLE);
  6022. while (!kthread_should_stop()) {
  6023. schedule();
  6024. set_current_state(TASK_INTERRUPTIBLE);
  6025. }
  6026. __set_current_state(TASK_RUNNING);
  6027. return 0;
  6028. }
  6029. #ifdef CONFIG_HOTPLUG_CPU
  6030. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6031. {
  6032. int ret;
  6033. local_irq_disable();
  6034. ret = __migrate_task(p, src_cpu, dest_cpu);
  6035. local_irq_enable();
  6036. return ret;
  6037. }
  6038. /*
  6039. * Figure out where task on dead CPU should go, use force if necessary.
  6040. */
  6041. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6042. {
  6043. int dest_cpu;
  6044. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6045. again:
  6046. /* Look for allowed, online CPU in same node. */
  6047. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6048. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6049. goto move;
  6050. /* Any allowed, online CPU? */
  6051. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6052. if (dest_cpu < nr_cpu_ids)
  6053. goto move;
  6054. /* No more Mr. Nice Guy. */
  6055. if (dest_cpu >= nr_cpu_ids) {
  6056. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6057. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6058. /*
  6059. * Don't tell them about moving exiting tasks or
  6060. * kernel threads (both mm NULL), since they never
  6061. * leave kernel.
  6062. */
  6063. if (p->mm && printk_ratelimit()) {
  6064. printk(KERN_INFO "process %d (%s) no "
  6065. "longer affine to cpu%d\n",
  6066. task_pid_nr(p), p->comm, dead_cpu);
  6067. }
  6068. }
  6069. move:
  6070. /* It can have affinity changed while we were choosing. */
  6071. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6072. goto again;
  6073. }
  6074. /*
  6075. * While a dead CPU has no uninterruptible tasks queued at this point,
  6076. * it might still have a nonzero ->nr_uninterruptible counter, because
  6077. * for performance reasons the counter is not stricly tracking tasks to
  6078. * their home CPUs. So we just add the counter to another CPU's counter,
  6079. * to keep the global sum constant after CPU-down:
  6080. */
  6081. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6082. {
  6083. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6084. unsigned long flags;
  6085. local_irq_save(flags);
  6086. double_rq_lock(rq_src, rq_dest);
  6087. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6088. rq_src->nr_uninterruptible = 0;
  6089. double_rq_unlock(rq_src, rq_dest);
  6090. local_irq_restore(flags);
  6091. }
  6092. /* Run through task list and migrate tasks from the dead cpu. */
  6093. static void migrate_live_tasks(int src_cpu)
  6094. {
  6095. struct task_struct *p, *t;
  6096. read_lock(&tasklist_lock);
  6097. do_each_thread(t, p) {
  6098. if (p == current)
  6099. continue;
  6100. if (task_cpu(p) == src_cpu)
  6101. move_task_off_dead_cpu(src_cpu, p);
  6102. } while_each_thread(t, p);
  6103. read_unlock(&tasklist_lock);
  6104. }
  6105. /*
  6106. * Schedules idle task to be the next runnable task on current CPU.
  6107. * It does so by boosting its priority to highest possible.
  6108. * Used by CPU offline code.
  6109. */
  6110. void sched_idle_next(void)
  6111. {
  6112. int this_cpu = smp_processor_id();
  6113. struct rq *rq = cpu_rq(this_cpu);
  6114. struct task_struct *p = rq->idle;
  6115. unsigned long flags;
  6116. /* cpu has to be offline */
  6117. BUG_ON(cpu_online(this_cpu));
  6118. /*
  6119. * Strictly not necessary since rest of the CPUs are stopped by now
  6120. * and interrupts disabled on the current cpu.
  6121. */
  6122. spin_lock_irqsave(&rq->lock, flags);
  6123. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6124. update_rq_clock(rq);
  6125. activate_task(rq, p, 0);
  6126. spin_unlock_irqrestore(&rq->lock, flags);
  6127. }
  6128. /*
  6129. * Ensures that the idle task is using init_mm right before its cpu goes
  6130. * offline.
  6131. */
  6132. void idle_task_exit(void)
  6133. {
  6134. struct mm_struct *mm = current->active_mm;
  6135. BUG_ON(cpu_online(smp_processor_id()));
  6136. if (mm != &init_mm)
  6137. switch_mm(mm, &init_mm, current);
  6138. mmdrop(mm);
  6139. }
  6140. /* called under rq->lock with disabled interrupts */
  6141. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6142. {
  6143. struct rq *rq = cpu_rq(dead_cpu);
  6144. /* Must be exiting, otherwise would be on tasklist. */
  6145. BUG_ON(!p->exit_state);
  6146. /* Cannot have done final schedule yet: would have vanished. */
  6147. BUG_ON(p->state == TASK_DEAD);
  6148. get_task_struct(p);
  6149. /*
  6150. * Drop lock around migration; if someone else moves it,
  6151. * that's OK. No task can be added to this CPU, so iteration is
  6152. * fine.
  6153. */
  6154. spin_unlock_irq(&rq->lock);
  6155. move_task_off_dead_cpu(dead_cpu, p);
  6156. spin_lock_irq(&rq->lock);
  6157. put_task_struct(p);
  6158. }
  6159. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6160. static void migrate_dead_tasks(unsigned int dead_cpu)
  6161. {
  6162. struct rq *rq = cpu_rq(dead_cpu);
  6163. struct task_struct *next;
  6164. for ( ; ; ) {
  6165. if (!rq->nr_running)
  6166. break;
  6167. update_rq_clock(rq);
  6168. next = pick_next_task(rq);
  6169. if (!next)
  6170. break;
  6171. next->sched_class->put_prev_task(rq, next);
  6172. migrate_dead(dead_cpu, next);
  6173. }
  6174. }
  6175. /*
  6176. * remove the tasks which were accounted by rq from calc_load_tasks.
  6177. */
  6178. static void calc_global_load_remove(struct rq *rq)
  6179. {
  6180. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6181. }
  6182. #endif /* CONFIG_HOTPLUG_CPU */
  6183. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6184. static struct ctl_table sd_ctl_dir[] = {
  6185. {
  6186. .procname = "sched_domain",
  6187. .mode = 0555,
  6188. },
  6189. {0, },
  6190. };
  6191. static struct ctl_table sd_ctl_root[] = {
  6192. {
  6193. .ctl_name = CTL_KERN,
  6194. .procname = "kernel",
  6195. .mode = 0555,
  6196. .child = sd_ctl_dir,
  6197. },
  6198. {0, },
  6199. };
  6200. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6201. {
  6202. struct ctl_table *entry =
  6203. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6204. return entry;
  6205. }
  6206. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6207. {
  6208. struct ctl_table *entry;
  6209. /*
  6210. * In the intermediate directories, both the child directory and
  6211. * procname are dynamically allocated and could fail but the mode
  6212. * will always be set. In the lowest directory the names are
  6213. * static strings and all have proc handlers.
  6214. */
  6215. for (entry = *tablep; entry->mode; entry++) {
  6216. if (entry->child)
  6217. sd_free_ctl_entry(&entry->child);
  6218. if (entry->proc_handler == NULL)
  6219. kfree(entry->procname);
  6220. }
  6221. kfree(*tablep);
  6222. *tablep = NULL;
  6223. }
  6224. static void
  6225. set_table_entry(struct ctl_table *entry,
  6226. const char *procname, void *data, int maxlen,
  6227. mode_t mode, proc_handler *proc_handler)
  6228. {
  6229. entry->procname = procname;
  6230. entry->data = data;
  6231. entry->maxlen = maxlen;
  6232. entry->mode = mode;
  6233. entry->proc_handler = proc_handler;
  6234. }
  6235. static struct ctl_table *
  6236. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6237. {
  6238. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6239. if (table == NULL)
  6240. return NULL;
  6241. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6242. sizeof(long), 0644, proc_doulongvec_minmax);
  6243. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6244. sizeof(long), 0644, proc_doulongvec_minmax);
  6245. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6246. sizeof(int), 0644, proc_dointvec_minmax);
  6247. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6248. sizeof(int), 0644, proc_dointvec_minmax);
  6249. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6250. sizeof(int), 0644, proc_dointvec_minmax);
  6251. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6252. sizeof(int), 0644, proc_dointvec_minmax);
  6253. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6254. sizeof(int), 0644, proc_dointvec_minmax);
  6255. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6256. sizeof(int), 0644, proc_dointvec_minmax);
  6257. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6258. sizeof(int), 0644, proc_dointvec_minmax);
  6259. set_table_entry(&table[9], "cache_nice_tries",
  6260. &sd->cache_nice_tries,
  6261. sizeof(int), 0644, proc_dointvec_minmax);
  6262. set_table_entry(&table[10], "flags", &sd->flags,
  6263. sizeof(int), 0644, proc_dointvec_minmax);
  6264. set_table_entry(&table[11], "name", sd->name,
  6265. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6266. /* &table[12] is terminator */
  6267. return table;
  6268. }
  6269. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6270. {
  6271. struct ctl_table *entry, *table;
  6272. struct sched_domain *sd;
  6273. int domain_num = 0, i;
  6274. char buf[32];
  6275. for_each_domain(cpu, sd)
  6276. domain_num++;
  6277. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6278. if (table == NULL)
  6279. return NULL;
  6280. i = 0;
  6281. for_each_domain(cpu, sd) {
  6282. snprintf(buf, 32, "domain%d", i);
  6283. entry->procname = kstrdup(buf, GFP_KERNEL);
  6284. entry->mode = 0555;
  6285. entry->child = sd_alloc_ctl_domain_table(sd);
  6286. entry++;
  6287. i++;
  6288. }
  6289. return table;
  6290. }
  6291. static struct ctl_table_header *sd_sysctl_header;
  6292. static void register_sched_domain_sysctl(void)
  6293. {
  6294. int i, cpu_num = num_online_cpus();
  6295. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6296. char buf[32];
  6297. WARN_ON(sd_ctl_dir[0].child);
  6298. sd_ctl_dir[0].child = entry;
  6299. if (entry == NULL)
  6300. return;
  6301. for_each_online_cpu(i) {
  6302. snprintf(buf, 32, "cpu%d", i);
  6303. entry->procname = kstrdup(buf, GFP_KERNEL);
  6304. entry->mode = 0555;
  6305. entry->child = sd_alloc_ctl_cpu_table(i);
  6306. entry++;
  6307. }
  6308. WARN_ON(sd_sysctl_header);
  6309. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6310. }
  6311. /* may be called multiple times per register */
  6312. static void unregister_sched_domain_sysctl(void)
  6313. {
  6314. if (sd_sysctl_header)
  6315. unregister_sysctl_table(sd_sysctl_header);
  6316. sd_sysctl_header = NULL;
  6317. if (sd_ctl_dir[0].child)
  6318. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6319. }
  6320. #else
  6321. static void register_sched_domain_sysctl(void)
  6322. {
  6323. }
  6324. static void unregister_sched_domain_sysctl(void)
  6325. {
  6326. }
  6327. #endif
  6328. static void set_rq_online(struct rq *rq)
  6329. {
  6330. if (!rq->online) {
  6331. const struct sched_class *class;
  6332. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6333. rq->online = 1;
  6334. for_each_class(class) {
  6335. if (class->rq_online)
  6336. class->rq_online(rq);
  6337. }
  6338. }
  6339. }
  6340. static void set_rq_offline(struct rq *rq)
  6341. {
  6342. if (rq->online) {
  6343. const struct sched_class *class;
  6344. for_each_class(class) {
  6345. if (class->rq_offline)
  6346. class->rq_offline(rq);
  6347. }
  6348. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6349. rq->online = 0;
  6350. }
  6351. }
  6352. /*
  6353. * migration_call - callback that gets triggered when a CPU is added.
  6354. * Here we can start up the necessary migration thread for the new CPU.
  6355. */
  6356. static int __cpuinit
  6357. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6358. {
  6359. struct task_struct *p;
  6360. int cpu = (long)hcpu;
  6361. unsigned long flags;
  6362. struct rq *rq;
  6363. switch (action) {
  6364. case CPU_UP_PREPARE:
  6365. case CPU_UP_PREPARE_FROZEN:
  6366. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6367. if (IS_ERR(p))
  6368. return NOTIFY_BAD;
  6369. kthread_bind(p, cpu);
  6370. /* Must be high prio: stop_machine expects to yield to it. */
  6371. rq = task_rq_lock(p, &flags);
  6372. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6373. task_rq_unlock(rq, &flags);
  6374. cpu_rq(cpu)->migration_thread = p;
  6375. break;
  6376. case CPU_ONLINE:
  6377. case CPU_ONLINE_FROZEN:
  6378. /* Strictly unnecessary, as first user will wake it. */
  6379. wake_up_process(cpu_rq(cpu)->migration_thread);
  6380. /* Update our root-domain */
  6381. rq = cpu_rq(cpu);
  6382. spin_lock_irqsave(&rq->lock, flags);
  6383. rq->calc_load_update = calc_load_update;
  6384. rq->calc_load_active = 0;
  6385. if (rq->rd) {
  6386. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6387. set_rq_online(rq);
  6388. }
  6389. spin_unlock_irqrestore(&rq->lock, flags);
  6390. break;
  6391. #ifdef CONFIG_HOTPLUG_CPU
  6392. case CPU_UP_CANCELED:
  6393. case CPU_UP_CANCELED_FROZEN:
  6394. if (!cpu_rq(cpu)->migration_thread)
  6395. break;
  6396. /* Unbind it from offline cpu so it can run. Fall thru. */
  6397. kthread_bind(cpu_rq(cpu)->migration_thread,
  6398. cpumask_any(cpu_online_mask));
  6399. kthread_stop(cpu_rq(cpu)->migration_thread);
  6400. cpu_rq(cpu)->migration_thread = NULL;
  6401. break;
  6402. case CPU_DEAD:
  6403. case CPU_DEAD_FROZEN:
  6404. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6405. migrate_live_tasks(cpu);
  6406. rq = cpu_rq(cpu);
  6407. kthread_stop(rq->migration_thread);
  6408. rq->migration_thread = NULL;
  6409. /* Idle task back to normal (off runqueue, low prio) */
  6410. spin_lock_irq(&rq->lock);
  6411. update_rq_clock(rq);
  6412. deactivate_task(rq, rq->idle, 0);
  6413. rq->idle->static_prio = MAX_PRIO;
  6414. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6415. rq->idle->sched_class = &idle_sched_class;
  6416. migrate_dead_tasks(cpu);
  6417. spin_unlock_irq(&rq->lock);
  6418. cpuset_unlock();
  6419. migrate_nr_uninterruptible(rq);
  6420. BUG_ON(rq->nr_running != 0);
  6421. calc_global_load_remove(rq);
  6422. /*
  6423. * No need to migrate the tasks: it was best-effort if
  6424. * they didn't take sched_hotcpu_mutex. Just wake up
  6425. * the requestors.
  6426. */
  6427. spin_lock_irq(&rq->lock);
  6428. while (!list_empty(&rq->migration_queue)) {
  6429. struct migration_req *req;
  6430. req = list_entry(rq->migration_queue.next,
  6431. struct migration_req, list);
  6432. list_del_init(&req->list);
  6433. spin_unlock_irq(&rq->lock);
  6434. complete(&req->done);
  6435. spin_lock_irq(&rq->lock);
  6436. }
  6437. spin_unlock_irq(&rq->lock);
  6438. break;
  6439. case CPU_DYING:
  6440. case CPU_DYING_FROZEN:
  6441. /* Update our root-domain */
  6442. rq = cpu_rq(cpu);
  6443. spin_lock_irqsave(&rq->lock, flags);
  6444. if (rq->rd) {
  6445. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6446. set_rq_offline(rq);
  6447. }
  6448. spin_unlock_irqrestore(&rq->lock, flags);
  6449. break;
  6450. #endif
  6451. }
  6452. return NOTIFY_OK;
  6453. }
  6454. /* Register at highest priority so that task migration (migrate_all_tasks)
  6455. * happens before everything else.
  6456. */
  6457. static struct notifier_block __cpuinitdata migration_notifier = {
  6458. .notifier_call = migration_call,
  6459. .priority = 10
  6460. };
  6461. static int __init migration_init(void)
  6462. {
  6463. void *cpu = (void *)(long)smp_processor_id();
  6464. int err;
  6465. /* Start one for the boot CPU: */
  6466. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6467. BUG_ON(err == NOTIFY_BAD);
  6468. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6469. register_cpu_notifier(&migration_notifier);
  6470. return err;
  6471. }
  6472. early_initcall(migration_init);
  6473. #endif
  6474. #ifdef CONFIG_SMP
  6475. #ifdef CONFIG_SCHED_DEBUG
  6476. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6477. struct cpumask *groupmask)
  6478. {
  6479. struct sched_group *group = sd->groups;
  6480. char str[256];
  6481. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6482. cpumask_clear(groupmask);
  6483. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6484. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6485. printk("does not load-balance\n");
  6486. if (sd->parent)
  6487. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6488. " has parent");
  6489. return -1;
  6490. }
  6491. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6492. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6493. printk(KERN_ERR "ERROR: domain->span does not contain "
  6494. "CPU%d\n", cpu);
  6495. }
  6496. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6497. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6498. " CPU%d\n", cpu);
  6499. }
  6500. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6501. do {
  6502. if (!group) {
  6503. printk("\n");
  6504. printk(KERN_ERR "ERROR: group is NULL\n");
  6505. break;
  6506. }
  6507. if (!group->__cpu_power) {
  6508. printk(KERN_CONT "\n");
  6509. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6510. "set\n");
  6511. break;
  6512. }
  6513. if (!cpumask_weight(sched_group_cpus(group))) {
  6514. printk(KERN_CONT "\n");
  6515. printk(KERN_ERR "ERROR: empty group\n");
  6516. break;
  6517. }
  6518. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6519. printk(KERN_CONT "\n");
  6520. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6521. break;
  6522. }
  6523. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6524. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6525. printk(KERN_CONT " %s", str);
  6526. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6527. printk(KERN_CONT " (__cpu_power = %d)",
  6528. group->__cpu_power);
  6529. }
  6530. group = group->next;
  6531. } while (group != sd->groups);
  6532. printk(KERN_CONT "\n");
  6533. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6534. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6535. if (sd->parent &&
  6536. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6537. printk(KERN_ERR "ERROR: parent span is not a superset "
  6538. "of domain->span\n");
  6539. return 0;
  6540. }
  6541. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6542. {
  6543. cpumask_var_t groupmask;
  6544. int level = 0;
  6545. if (!sd) {
  6546. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6547. return;
  6548. }
  6549. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6550. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6551. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6552. return;
  6553. }
  6554. for (;;) {
  6555. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6556. break;
  6557. level++;
  6558. sd = sd->parent;
  6559. if (!sd)
  6560. break;
  6561. }
  6562. free_cpumask_var(groupmask);
  6563. }
  6564. #else /* !CONFIG_SCHED_DEBUG */
  6565. # define sched_domain_debug(sd, cpu) do { } while (0)
  6566. #endif /* CONFIG_SCHED_DEBUG */
  6567. static int sd_degenerate(struct sched_domain *sd)
  6568. {
  6569. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6570. return 1;
  6571. /* Following flags need at least 2 groups */
  6572. if (sd->flags & (SD_LOAD_BALANCE |
  6573. SD_BALANCE_NEWIDLE |
  6574. SD_BALANCE_FORK |
  6575. SD_BALANCE_EXEC |
  6576. SD_SHARE_CPUPOWER |
  6577. SD_SHARE_PKG_RESOURCES)) {
  6578. if (sd->groups != sd->groups->next)
  6579. return 0;
  6580. }
  6581. /* Following flags don't use groups */
  6582. if (sd->flags & (SD_WAKE_IDLE |
  6583. SD_WAKE_AFFINE |
  6584. SD_WAKE_BALANCE))
  6585. return 0;
  6586. return 1;
  6587. }
  6588. static int
  6589. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6590. {
  6591. unsigned long cflags = sd->flags, pflags = parent->flags;
  6592. if (sd_degenerate(parent))
  6593. return 1;
  6594. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6595. return 0;
  6596. /* Does parent contain flags not in child? */
  6597. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6598. if (cflags & SD_WAKE_AFFINE)
  6599. pflags &= ~SD_WAKE_BALANCE;
  6600. /* Flags needing groups don't count if only 1 group in parent */
  6601. if (parent->groups == parent->groups->next) {
  6602. pflags &= ~(SD_LOAD_BALANCE |
  6603. SD_BALANCE_NEWIDLE |
  6604. SD_BALANCE_FORK |
  6605. SD_BALANCE_EXEC |
  6606. SD_SHARE_CPUPOWER |
  6607. SD_SHARE_PKG_RESOURCES);
  6608. if (nr_node_ids == 1)
  6609. pflags &= ~SD_SERIALIZE;
  6610. }
  6611. if (~cflags & pflags)
  6612. return 0;
  6613. return 1;
  6614. }
  6615. static void free_rootdomain(struct root_domain *rd)
  6616. {
  6617. cpupri_cleanup(&rd->cpupri);
  6618. free_cpumask_var(rd->rto_mask);
  6619. free_cpumask_var(rd->online);
  6620. free_cpumask_var(rd->span);
  6621. kfree(rd);
  6622. }
  6623. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6624. {
  6625. struct root_domain *old_rd = NULL;
  6626. unsigned long flags;
  6627. spin_lock_irqsave(&rq->lock, flags);
  6628. if (rq->rd) {
  6629. old_rd = rq->rd;
  6630. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6631. set_rq_offline(rq);
  6632. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6633. /*
  6634. * If we dont want to free the old_rt yet then
  6635. * set old_rd to NULL to skip the freeing later
  6636. * in this function:
  6637. */
  6638. if (!atomic_dec_and_test(&old_rd->refcount))
  6639. old_rd = NULL;
  6640. }
  6641. atomic_inc(&rd->refcount);
  6642. rq->rd = rd;
  6643. cpumask_set_cpu(rq->cpu, rd->span);
  6644. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6645. set_rq_online(rq);
  6646. spin_unlock_irqrestore(&rq->lock, flags);
  6647. if (old_rd)
  6648. free_rootdomain(old_rd);
  6649. }
  6650. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6651. {
  6652. memset(rd, 0, sizeof(*rd));
  6653. if (bootmem) {
  6654. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6655. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6656. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6657. cpupri_init(&rd->cpupri, true);
  6658. return 0;
  6659. }
  6660. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6661. goto out;
  6662. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6663. goto free_span;
  6664. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6665. goto free_online;
  6666. if (cpupri_init(&rd->cpupri, false) != 0)
  6667. goto free_rto_mask;
  6668. return 0;
  6669. free_rto_mask:
  6670. free_cpumask_var(rd->rto_mask);
  6671. free_online:
  6672. free_cpumask_var(rd->online);
  6673. free_span:
  6674. free_cpumask_var(rd->span);
  6675. out:
  6676. return -ENOMEM;
  6677. }
  6678. static void init_defrootdomain(void)
  6679. {
  6680. init_rootdomain(&def_root_domain, true);
  6681. atomic_set(&def_root_domain.refcount, 1);
  6682. }
  6683. static struct root_domain *alloc_rootdomain(void)
  6684. {
  6685. struct root_domain *rd;
  6686. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6687. if (!rd)
  6688. return NULL;
  6689. if (init_rootdomain(rd, false) != 0) {
  6690. kfree(rd);
  6691. return NULL;
  6692. }
  6693. return rd;
  6694. }
  6695. /*
  6696. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6697. * hold the hotplug lock.
  6698. */
  6699. static void
  6700. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6701. {
  6702. struct rq *rq = cpu_rq(cpu);
  6703. struct sched_domain *tmp;
  6704. /* Remove the sched domains which do not contribute to scheduling. */
  6705. for (tmp = sd; tmp; ) {
  6706. struct sched_domain *parent = tmp->parent;
  6707. if (!parent)
  6708. break;
  6709. if (sd_parent_degenerate(tmp, parent)) {
  6710. tmp->parent = parent->parent;
  6711. if (parent->parent)
  6712. parent->parent->child = tmp;
  6713. } else
  6714. tmp = tmp->parent;
  6715. }
  6716. if (sd && sd_degenerate(sd)) {
  6717. sd = sd->parent;
  6718. if (sd)
  6719. sd->child = NULL;
  6720. }
  6721. sched_domain_debug(sd, cpu);
  6722. rq_attach_root(rq, rd);
  6723. rcu_assign_pointer(rq->sd, sd);
  6724. }
  6725. /* cpus with isolated domains */
  6726. static cpumask_var_t cpu_isolated_map;
  6727. /* Setup the mask of cpus configured for isolated domains */
  6728. static int __init isolated_cpu_setup(char *str)
  6729. {
  6730. cpulist_parse(str, cpu_isolated_map);
  6731. return 1;
  6732. }
  6733. __setup("isolcpus=", isolated_cpu_setup);
  6734. /*
  6735. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6736. * to a function which identifies what group(along with sched group) a CPU
  6737. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6738. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6739. *
  6740. * init_sched_build_groups will build a circular linked list of the groups
  6741. * covered by the given span, and will set each group's ->cpumask correctly,
  6742. * and ->cpu_power to 0.
  6743. */
  6744. static void
  6745. init_sched_build_groups(const struct cpumask *span,
  6746. const struct cpumask *cpu_map,
  6747. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6748. struct sched_group **sg,
  6749. struct cpumask *tmpmask),
  6750. struct cpumask *covered, struct cpumask *tmpmask)
  6751. {
  6752. struct sched_group *first = NULL, *last = NULL;
  6753. int i;
  6754. cpumask_clear(covered);
  6755. for_each_cpu(i, span) {
  6756. struct sched_group *sg;
  6757. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6758. int j;
  6759. if (cpumask_test_cpu(i, covered))
  6760. continue;
  6761. cpumask_clear(sched_group_cpus(sg));
  6762. sg->__cpu_power = 0;
  6763. for_each_cpu(j, span) {
  6764. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6765. continue;
  6766. cpumask_set_cpu(j, covered);
  6767. cpumask_set_cpu(j, sched_group_cpus(sg));
  6768. }
  6769. if (!first)
  6770. first = sg;
  6771. if (last)
  6772. last->next = sg;
  6773. last = sg;
  6774. }
  6775. last->next = first;
  6776. }
  6777. #define SD_NODES_PER_DOMAIN 16
  6778. #ifdef CONFIG_NUMA
  6779. /**
  6780. * find_next_best_node - find the next node to include in a sched_domain
  6781. * @node: node whose sched_domain we're building
  6782. * @used_nodes: nodes already in the sched_domain
  6783. *
  6784. * Find the next node to include in a given scheduling domain. Simply
  6785. * finds the closest node not already in the @used_nodes map.
  6786. *
  6787. * Should use nodemask_t.
  6788. */
  6789. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6790. {
  6791. int i, n, val, min_val, best_node = 0;
  6792. min_val = INT_MAX;
  6793. for (i = 0; i < nr_node_ids; i++) {
  6794. /* Start at @node */
  6795. n = (node + i) % nr_node_ids;
  6796. if (!nr_cpus_node(n))
  6797. continue;
  6798. /* Skip already used nodes */
  6799. if (node_isset(n, *used_nodes))
  6800. continue;
  6801. /* Simple min distance search */
  6802. val = node_distance(node, n);
  6803. if (val < min_val) {
  6804. min_val = val;
  6805. best_node = n;
  6806. }
  6807. }
  6808. node_set(best_node, *used_nodes);
  6809. return best_node;
  6810. }
  6811. /**
  6812. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6813. * @node: node whose cpumask we're constructing
  6814. * @span: resulting cpumask
  6815. *
  6816. * Given a node, construct a good cpumask for its sched_domain to span. It
  6817. * should be one that prevents unnecessary balancing, but also spreads tasks
  6818. * out optimally.
  6819. */
  6820. static void sched_domain_node_span(int node, struct cpumask *span)
  6821. {
  6822. nodemask_t used_nodes;
  6823. int i;
  6824. cpumask_clear(span);
  6825. nodes_clear(used_nodes);
  6826. cpumask_or(span, span, cpumask_of_node(node));
  6827. node_set(node, used_nodes);
  6828. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6829. int next_node = find_next_best_node(node, &used_nodes);
  6830. cpumask_or(span, span, cpumask_of_node(next_node));
  6831. }
  6832. }
  6833. #endif /* CONFIG_NUMA */
  6834. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6835. /*
  6836. * The cpus mask in sched_group and sched_domain hangs off the end.
  6837. *
  6838. * ( See the the comments in include/linux/sched.h:struct sched_group
  6839. * and struct sched_domain. )
  6840. */
  6841. struct static_sched_group {
  6842. struct sched_group sg;
  6843. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6844. };
  6845. struct static_sched_domain {
  6846. struct sched_domain sd;
  6847. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6848. };
  6849. /*
  6850. * SMT sched-domains:
  6851. */
  6852. #ifdef CONFIG_SCHED_SMT
  6853. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6854. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6855. static int
  6856. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6857. struct sched_group **sg, struct cpumask *unused)
  6858. {
  6859. if (sg)
  6860. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6861. return cpu;
  6862. }
  6863. #endif /* CONFIG_SCHED_SMT */
  6864. /*
  6865. * multi-core sched-domains:
  6866. */
  6867. #ifdef CONFIG_SCHED_MC
  6868. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6869. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6870. #endif /* CONFIG_SCHED_MC */
  6871. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6872. static int
  6873. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6874. struct sched_group **sg, struct cpumask *mask)
  6875. {
  6876. int group;
  6877. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6878. group = cpumask_first(mask);
  6879. if (sg)
  6880. *sg = &per_cpu(sched_group_core, group).sg;
  6881. return group;
  6882. }
  6883. #elif defined(CONFIG_SCHED_MC)
  6884. static int
  6885. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6886. struct sched_group **sg, struct cpumask *unused)
  6887. {
  6888. if (sg)
  6889. *sg = &per_cpu(sched_group_core, cpu).sg;
  6890. return cpu;
  6891. }
  6892. #endif
  6893. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6894. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6895. static int
  6896. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6897. struct sched_group **sg, struct cpumask *mask)
  6898. {
  6899. int group;
  6900. #ifdef CONFIG_SCHED_MC
  6901. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6902. group = cpumask_first(mask);
  6903. #elif defined(CONFIG_SCHED_SMT)
  6904. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6905. group = cpumask_first(mask);
  6906. #else
  6907. group = cpu;
  6908. #endif
  6909. if (sg)
  6910. *sg = &per_cpu(sched_group_phys, group).sg;
  6911. return group;
  6912. }
  6913. #ifdef CONFIG_NUMA
  6914. /*
  6915. * The init_sched_build_groups can't handle what we want to do with node
  6916. * groups, so roll our own. Now each node has its own list of groups which
  6917. * gets dynamically allocated.
  6918. */
  6919. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6920. static struct sched_group ***sched_group_nodes_bycpu;
  6921. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6922. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6923. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6924. struct sched_group **sg,
  6925. struct cpumask *nodemask)
  6926. {
  6927. int group;
  6928. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6929. group = cpumask_first(nodemask);
  6930. if (sg)
  6931. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6932. return group;
  6933. }
  6934. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6935. {
  6936. struct sched_group *sg = group_head;
  6937. int j;
  6938. if (!sg)
  6939. return;
  6940. do {
  6941. for_each_cpu(j, sched_group_cpus(sg)) {
  6942. struct sched_domain *sd;
  6943. sd = &per_cpu(phys_domains, j).sd;
  6944. if (j != group_first_cpu(sd->groups)) {
  6945. /*
  6946. * Only add "power" once for each
  6947. * physical package.
  6948. */
  6949. continue;
  6950. }
  6951. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6952. }
  6953. sg = sg->next;
  6954. } while (sg != group_head);
  6955. }
  6956. #endif /* CONFIG_NUMA */
  6957. #ifdef CONFIG_NUMA
  6958. /* Free memory allocated for various sched_group structures */
  6959. static void free_sched_groups(const struct cpumask *cpu_map,
  6960. struct cpumask *nodemask)
  6961. {
  6962. int cpu, i;
  6963. for_each_cpu(cpu, cpu_map) {
  6964. struct sched_group **sched_group_nodes
  6965. = sched_group_nodes_bycpu[cpu];
  6966. if (!sched_group_nodes)
  6967. continue;
  6968. for (i = 0; i < nr_node_ids; i++) {
  6969. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6970. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6971. if (cpumask_empty(nodemask))
  6972. continue;
  6973. if (sg == NULL)
  6974. continue;
  6975. sg = sg->next;
  6976. next_sg:
  6977. oldsg = sg;
  6978. sg = sg->next;
  6979. kfree(oldsg);
  6980. if (oldsg != sched_group_nodes[i])
  6981. goto next_sg;
  6982. }
  6983. kfree(sched_group_nodes);
  6984. sched_group_nodes_bycpu[cpu] = NULL;
  6985. }
  6986. }
  6987. #else /* !CONFIG_NUMA */
  6988. static void free_sched_groups(const struct cpumask *cpu_map,
  6989. struct cpumask *nodemask)
  6990. {
  6991. }
  6992. #endif /* CONFIG_NUMA */
  6993. /*
  6994. * Initialize sched groups cpu_power.
  6995. *
  6996. * cpu_power indicates the capacity of sched group, which is used while
  6997. * distributing the load between different sched groups in a sched domain.
  6998. * Typically cpu_power for all the groups in a sched domain will be same unless
  6999. * there are asymmetries in the topology. If there are asymmetries, group
  7000. * having more cpu_power will pickup more load compared to the group having
  7001. * less cpu_power.
  7002. *
  7003. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7004. * the maximum number of tasks a group can handle in the presence of other idle
  7005. * or lightly loaded groups in the same sched domain.
  7006. */
  7007. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7008. {
  7009. struct sched_domain *child;
  7010. struct sched_group *group;
  7011. WARN_ON(!sd || !sd->groups);
  7012. if (cpu != group_first_cpu(sd->groups))
  7013. return;
  7014. child = sd->child;
  7015. sd->groups->__cpu_power = 0;
  7016. /*
  7017. * For perf policy, if the groups in child domain share resources
  7018. * (for example cores sharing some portions of the cache hierarchy
  7019. * or SMT), then set this domain groups cpu_power such that each group
  7020. * can handle only one task, when there are other idle groups in the
  7021. * same sched domain.
  7022. */
  7023. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7024. (child->flags &
  7025. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7026. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7027. return;
  7028. }
  7029. /*
  7030. * add cpu_power of each child group to this groups cpu_power
  7031. */
  7032. group = child->groups;
  7033. do {
  7034. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7035. group = group->next;
  7036. } while (group != child->groups);
  7037. }
  7038. /*
  7039. * Initializers for schedule domains
  7040. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7041. */
  7042. #ifdef CONFIG_SCHED_DEBUG
  7043. # define SD_INIT_NAME(sd, type) sd->name = #type
  7044. #else
  7045. # define SD_INIT_NAME(sd, type) do { } while (0)
  7046. #endif
  7047. #define SD_INIT(sd, type) sd_init_##type(sd)
  7048. #define SD_INIT_FUNC(type) \
  7049. static noinline void sd_init_##type(struct sched_domain *sd) \
  7050. { \
  7051. memset(sd, 0, sizeof(*sd)); \
  7052. *sd = SD_##type##_INIT; \
  7053. sd->level = SD_LV_##type; \
  7054. SD_INIT_NAME(sd, type); \
  7055. }
  7056. SD_INIT_FUNC(CPU)
  7057. #ifdef CONFIG_NUMA
  7058. SD_INIT_FUNC(ALLNODES)
  7059. SD_INIT_FUNC(NODE)
  7060. #endif
  7061. #ifdef CONFIG_SCHED_SMT
  7062. SD_INIT_FUNC(SIBLING)
  7063. #endif
  7064. #ifdef CONFIG_SCHED_MC
  7065. SD_INIT_FUNC(MC)
  7066. #endif
  7067. static int default_relax_domain_level = -1;
  7068. static int __init setup_relax_domain_level(char *str)
  7069. {
  7070. unsigned long val;
  7071. val = simple_strtoul(str, NULL, 0);
  7072. if (val < SD_LV_MAX)
  7073. default_relax_domain_level = val;
  7074. return 1;
  7075. }
  7076. __setup("relax_domain_level=", setup_relax_domain_level);
  7077. static void set_domain_attribute(struct sched_domain *sd,
  7078. struct sched_domain_attr *attr)
  7079. {
  7080. int request;
  7081. if (!attr || attr->relax_domain_level < 0) {
  7082. if (default_relax_domain_level < 0)
  7083. return;
  7084. else
  7085. request = default_relax_domain_level;
  7086. } else
  7087. request = attr->relax_domain_level;
  7088. if (request < sd->level) {
  7089. /* turn off idle balance on this domain */
  7090. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7091. } else {
  7092. /* turn on idle balance on this domain */
  7093. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7094. }
  7095. }
  7096. /*
  7097. * Build sched domains for a given set of cpus and attach the sched domains
  7098. * to the individual cpus
  7099. */
  7100. static int __build_sched_domains(const struct cpumask *cpu_map,
  7101. struct sched_domain_attr *attr)
  7102. {
  7103. int i, err = -ENOMEM;
  7104. struct root_domain *rd;
  7105. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7106. tmpmask;
  7107. #ifdef CONFIG_NUMA
  7108. cpumask_var_t domainspan, covered, notcovered;
  7109. struct sched_group **sched_group_nodes = NULL;
  7110. int sd_allnodes = 0;
  7111. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7112. goto out;
  7113. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7114. goto free_domainspan;
  7115. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7116. goto free_covered;
  7117. #endif
  7118. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7119. goto free_notcovered;
  7120. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7121. goto free_nodemask;
  7122. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7123. goto free_this_sibling_map;
  7124. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7125. goto free_this_core_map;
  7126. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7127. goto free_send_covered;
  7128. #ifdef CONFIG_NUMA
  7129. /*
  7130. * Allocate the per-node list of sched groups
  7131. */
  7132. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7133. GFP_KERNEL);
  7134. if (!sched_group_nodes) {
  7135. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7136. goto free_tmpmask;
  7137. }
  7138. #endif
  7139. rd = alloc_rootdomain();
  7140. if (!rd) {
  7141. printk(KERN_WARNING "Cannot alloc root domain\n");
  7142. goto free_sched_groups;
  7143. }
  7144. #ifdef CONFIG_NUMA
  7145. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7146. #endif
  7147. /*
  7148. * Set up domains for cpus specified by the cpu_map.
  7149. */
  7150. for_each_cpu(i, cpu_map) {
  7151. struct sched_domain *sd = NULL, *p;
  7152. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7153. #ifdef CONFIG_NUMA
  7154. if (cpumask_weight(cpu_map) >
  7155. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7156. sd = &per_cpu(allnodes_domains, i).sd;
  7157. SD_INIT(sd, ALLNODES);
  7158. set_domain_attribute(sd, attr);
  7159. cpumask_copy(sched_domain_span(sd), cpu_map);
  7160. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7161. p = sd;
  7162. sd_allnodes = 1;
  7163. } else
  7164. p = NULL;
  7165. sd = &per_cpu(node_domains, i).sd;
  7166. SD_INIT(sd, NODE);
  7167. set_domain_attribute(sd, attr);
  7168. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7169. sd->parent = p;
  7170. if (p)
  7171. p->child = sd;
  7172. cpumask_and(sched_domain_span(sd),
  7173. sched_domain_span(sd), cpu_map);
  7174. #endif
  7175. p = sd;
  7176. sd = &per_cpu(phys_domains, i).sd;
  7177. SD_INIT(sd, CPU);
  7178. set_domain_attribute(sd, attr);
  7179. cpumask_copy(sched_domain_span(sd), nodemask);
  7180. sd->parent = p;
  7181. if (p)
  7182. p->child = sd;
  7183. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7184. #ifdef CONFIG_SCHED_MC
  7185. p = sd;
  7186. sd = &per_cpu(core_domains, i).sd;
  7187. SD_INIT(sd, MC);
  7188. set_domain_attribute(sd, attr);
  7189. cpumask_and(sched_domain_span(sd), cpu_map,
  7190. cpu_coregroup_mask(i));
  7191. sd->parent = p;
  7192. p->child = sd;
  7193. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7194. #endif
  7195. #ifdef CONFIG_SCHED_SMT
  7196. p = sd;
  7197. sd = &per_cpu(cpu_domains, i).sd;
  7198. SD_INIT(sd, SIBLING);
  7199. set_domain_attribute(sd, attr);
  7200. cpumask_and(sched_domain_span(sd),
  7201. topology_thread_cpumask(i), cpu_map);
  7202. sd->parent = p;
  7203. p->child = sd;
  7204. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7205. #endif
  7206. }
  7207. #ifdef CONFIG_SCHED_SMT
  7208. /* Set up CPU (sibling) groups */
  7209. for_each_cpu(i, cpu_map) {
  7210. cpumask_and(this_sibling_map,
  7211. topology_thread_cpumask(i), cpu_map);
  7212. if (i != cpumask_first(this_sibling_map))
  7213. continue;
  7214. init_sched_build_groups(this_sibling_map, cpu_map,
  7215. &cpu_to_cpu_group,
  7216. send_covered, tmpmask);
  7217. }
  7218. #endif
  7219. #ifdef CONFIG_SCHED_MC
  7220. /* Set up multi-core groups */
  7221. for_each_cpu(i, cpu_map) {
  7222. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7223. if (i != cpumask_first(this_core_map))
  7224. continue;
  7225. init_sched_build_groups(this_core_map, cpu_map,
  7226. &cpu_to_core_group,
  7227. send_covered, tmpmask);
  7228. }
  7229. #endif
  7230. /* Set up physical groups */
  7231. for (i = 0; i < nr_node_ids; i++) {
  7232. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7233. if (cpumask_empty(nodemask))
  7234. continue;
  7235. init_sched_build_groups(nodemask, cpu_map,
  7236. &cpu_to_phys_group,
  7237. send_covered, tmpmask);
  7238. }
  7239. #ifdef CONFIG_NUMA
  7240. /* Set up node groups */
  7241. if (sd_allnodes) {
  7242. init_sched_build_groups(cpu_map, cpu_map,
  7243. &cpu_to_allnodes_group,
  7244. send_covered, tmpmask);
  7245. }
  7246. for (i = 0; i < nr_node_ids; i++) {
  7247. /* Set up node groups */
  7248. struct sched_group *sg, *prev;
  7249. int j;
  7250. cpumask_clear(covered);
  7251. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7252. if (cpumask_empty(nodemask)) {
  7253. sched_group_nodes[i] = NULL;
  7254. continue;
  7255. }
  7256. sched_domain_node_span(i, domainspan);
  7257. cpumask_and(domainspan, domainspan, cpu_map);
  7258. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7259. GFP_KERNEL, i);
  7260. if (!sg) {
  7261. printk(KERN_WARNING "Can not alloc domain group for "
  7262. "node %d\n", i);
  7263. goto error;
  7264. }
  7265. sched_group_nodes[i] = sg;
  7266. for_each_cpu(j, nodemask) {
  7267. struct sched_domain *sd;
  7268. sd = &per_cpu(node_domains, j).sd;
  7269. sd->groups = sg;
  7270. }
  7271. sg->__cpu_power = 0;
  7272. cpumask_copy(sched_group_cpus(sg), nodemask);
  7273. sg->next = sg;
  7274. cpumask_or(covered, covered, nodemask);
  7275. prev = sg;
  7276. for (j = 0; j < nr_node_ids; j++) {
  7277. int n = (i + j) % nr_node_ids;
  7278. cpumask_complement(notcovered, covered);
  7279. cpumask_and(tmpmask, notcovered, cpu_map);
  7280. cpumask_and(tmpmask, tmpmask, domainspan);
  7281. if (cpumask_empty(tmpmask))
  7282. break;
  7283. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7284. if (cpumask_empty(tmpmask))
  7285. continue;
  7286. sg = kmalloc_node(sizeof(struct sched_group) +
  7287. cpumask_size(),
  7288. GFP_KERNEL, i);
  7289. if (!sg) {
  7290. printk(KERN_WARNING
  7291. "Can not alloc domain group for node %d\n", j);
  7292. goto error;
  7293. }
  7294. sg->__cpu_power = 0;
  7295. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7296. sg->next = prev->next;
  7297. cpumask_or(covered, covered, tmpmask);
  7298. prev->next = sg;
  7299. prev = sg;
  7300. }
  7301. }
  7302. #endif
  7303. /* Calculate CPU power for physical packages and nodes */
  7304. #ifdef CONFIG_SCHED_SMT
  7305. for_each_cpu(i, cpu_map) {
  7306. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7307. init_sched_groups_power(i, sd);
  7308. }
  7309. #endif
  7310. #ifdef CONFIG_SCHED_MC
  7311. for_each_cpu(i, cpu_map) {
  7312. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7313. init_sched_groups_power(i, sd);
  7314. }
  7315. #endif
  7316. for_each_cpu(i, cpu_map) {
  7317. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7318. init_sched_groups_power(i, sd);
  7319. }
  7320. #ifdef CONFIG_NUMA
  7321. for (i = 0; i < nr_node_ids; i++)
  7322. init_numa_sched_groups_power(sched_group_nodes[i]);
  7323. if (sd_allnodes) {
  7324. struct sched_group *sg;
  7325. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7326. tmpmask);
  7327. init_numa_sched_groups_power(sg);
  7328. }
  7329. #endif
  7330. /* Attach the domains */
  7331. for_each_cpu(i, cpu_map) {
  7332. struct sched_domain *sd;
  7333. #ifdef CONFIG_SCHED_SMT
  7334. sd = &per_cpu(cpu_domains, i).sd;
  7335. #elif defined(CONFIG_SCHED_MC)
  7336. sd = &per_cpu(core_domains, i).sd;
  7337. #else
  7338. sd = &per_cpu(phys_domains, i).sd;
  7339. #endif
  7340. cpu_attach_domain(sd, rd, i);
  7341. }
  7342. err = 0;
  7343. free_tmpmask:
  7344. free_cpumask_var(tmpmask);
  7345. free_send_covered:
  7346. free_cpumask_var(send_covered);
  7347. free_this_core_map:
  7348. free_cpumask_var(this_core_map);
  7349. free_this_sibling_map:
  7350. free_cpumask_var(this_sibling_map);
  7351. free_nodemask:
  7352. free_cpumask_var(nodemask);
  7353. free_notcovered:
  7354. #ifdef CONFIG_NUMA
  7355. free_cpumask_var(notcovered);
  7356. free_covered:
  7357. free_cpumask_var(covered);
  7358. free_domainspan:
  7359. free_cpumask_var(domainspan);
  7360. out:
  7361. #endif
  7362. return err;
  7363. free_sched_groups:
  7364. #ifdef CONFIG_NUMA
  7365. kfree(sched_group_nodes);
  7366. #endif
  7367. goto free_tmpmask;
  7368. #ifdef CONFIG_NUMA
  7369. error:
  7370. free_sched_groups(cpu_map, tmpmask);
  7371. free_rootdomain(rd);
  7372. goto free_tmpmask;
  7373. #endif
  7374. }
  7375. static int build_sched_domains(const struct cpumask *cpu_map)
  7376. {
  7377. return __build_sched_domains(cpu_map, NULL);
  7378. }
  7379. static struct cpumask *doms_cur; /* current sched domains */
  7380. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7381. static struct sched_domain_attr *dattr_cur;
  7382. /* attribues of custom domains in 'doms_cur' */
  7383. /*
  7384. * Special case: If a kmalloc of a doms_cur partition (array of
  7385. * cpumask) fails, then fallback to a single sched domain,
  7386. * as determined by the single cpumask fallback_doms.
  7387. */
  7388. static cpumask_var_t fallback_doms;
  7389. /*
  7390. * arch_update_cpu_topology lets virtualized architectures update the
  7391. * cpu core maps. It is supposed to return 1 if the topology changed
  7392. * or 0 if it stayed the same.
  7393. */
  7394. int __attribute__((weak)) arch_update_cpu_topology(void)
  7395. {
  7396. return 0;
  7397. }
  7398. /*
  7399. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7400. * For now this just excludes isolated cpus, but could be used to
  7401. * exclude other special cases in the future.
  7402. */
  7403. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7404. {
  7405. int err;
  7406. arch_update_cpu_topology();
  7407. ndoms_cur = 1;
  7408. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7409. if (!doms_cur)
  7410. doms_cur = fallback_doms;
  7411. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7412. dattr_cur = NULL;
  7413. err = build_sched_domains(doms_cur);
  7414. register_sched_domain_sysctl();
  7415. return err;
  7416. }
  7417. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7418. struct cpumask *tmpmask)
  7419. {
  7420. free_sched_groups(cpu_map, tmpmask);
  7421. }
  7422. /*
  7423. * Detach sched domains from a group of cpus specified in cpu_map
  7424. * These cpus will now be attached to the NULL domain
  7425. */
  7426. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7427. {
  7428. /* Save because hotplug lock held. */
  7429. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7430. int i;
  7431. for_each_cpu(i, cpu_map)
  7432. cpu_attach_domain(NULL, &def_root_domain, i);
  7433. synchronize_sched();
  7434. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7435. }
  7436. /* handle null as "default" */
  7437. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7438. struct sched_domain_attr *new, int idx_new)
  7439. {
  7440. struct sched_domain_attr tmp;
  7441. /* fast path */
  7442. if (!new && !cur)
  7443. return 1;
  7444. tmp = SD_ATTR_INIT;
  7445. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7446. new ? (new + idx_new) : &tmp,
  7447. sizeof(struct sched_domain_attr));
  7448. }
  7449. /*
  7450. * Partition sched domains as specified by the 'ndoms_new'
  7451. * cpumasks in the array doms_new[] of cpumasks. This compares
  7452. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7453. * It destroys each deleted domain and builds each new domain.
  7454. *
  7455. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7456. * The masks don't intersect (don't overlap.) We should setup one
  7457. * sched domain for each mask. CPUs not in any of the cpumasks will
  7458. * not be load balanced. If the same cpumask appears both in the
  7459. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7460. * it as it is.
  7461. *
  7462. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7463. * ownership of it and will kfree it when done with it. If the caller
  7464. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7465. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7466. * the single partition 'fallback_doms', it also forces the domains
  7467. * to be rebuilt.
  7468. *
  7469. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7470. * ndoms_new == 0 is a special case for destroying existing domains,
  7471. * and it will not create the default domain.
  7472. *
  7473. * Call with hotplug lock held
  7474. */
  7475. /* FIXME: Change to struct cpumask *doms_new[] */
  7476. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7477. struct sched_domain_attr *dattr_new)
  7478. {
  7479. int i, j, n;
  7480. int new_topology;
  7481. mutex_lock(&sched_domains_mutex);
  7482. /* always unregister in case we don't destroy any domains */
  7483. unregister_sched_domain_sysctl();
  7484. /* Let architecture update cpu core mappings. */
  7485. new_topology = arch_update_cpu_topology();
  7486. n = doms_new ? ndoms_new : 0;
  7487. /* Destroy deleted domains */
  7488. for (i = 0; i < ndoms_cur; i++) {
  7489. for (j = 0; j < n && !new_topology; j++) {
  7490. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7491. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7492. goto match1;
  7493. }
  7494. /* no match - a current sched domain not in new doms_new[] */
  7495. detach_destroy_domains(doms_cur + i);
  7496. match1:
  7497. ;
  7498. }
  7499. if (doms_new == NULL) {
  7500. ndoms_cur = 0;
  7501. doms_new = fallback_doms;
  7502. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7503. WARN_ON_ONCE(dattr_new);
  7504. }
  7505. /* Build new domains */
  7506. for (i = 0; i < ndoms_new; i++) {
  7507. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7508. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7509. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7510. goto match2;
  7511. }
  7512. /* no match - add a new doms_new */
  7513. __build_sched_domains(doms_new + i,
  7514. dattr_new ? dattr_new + i : NULL);
  7515. match2:
  7516. ;
  7517. }
  7518. /* Remember the new sched domains */
  7519. if (doms_cur != fallback_doms)
  7520. kfree(doms_cur);
  7521. kfree(dattr_cur); /* kfree(NULL) is safe */
  7522. doms_cur = doms_new;
  7523. dattr_cur = dattr_new;
  7524. ndoms_cur = ndoms_new;
  7525. register_sched_domain_sysctl();
  7526. mutex_unlock(&sched_domains_mutex);
  7527. }
  7528. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7529. static void arch_reinit_sched_domains(void)
  7530. {
  7531. get_online_cpus();
  7532. /* Destroy domains first to force the rebuild */
  7533. partition_sched_domains(0, NULL, NULL);
  7534. rebuild_sched_domains();
  7535. put_online_cpus();
  7536. }
  7537. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7538. {
  7539. unsigned int level = 0;
  7540. if (sscanf(buf, "%u", &level) != 1)
  7541. return -EINVAL;
  7542. /*
  7543. * level is always be positive so don't check for
  7544. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7545. * What happens on 0 or 1 byte write,
  7546. * need to check for count as well?
  7547. */
  7548. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7549. return -EINVAL;
  7550. if (smt)
  7551. sched_smt_power_savings = level;
  7552. else
  7553. sched_mc_power_savings = level;
  7554. arch_reinit_sched_domains();
  7555. return count;
  7556. }
  7557. #ifdef CONFIG_SCHED_MC
  7558. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7559. char *page)
  7560. {
  7561. return sprintf(page, "%u\n", sched_mc_power_savings);
  7562. }
  7563. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7564. const char *buf, size_t count)
  7565. {
  7566. return sched_power_savings_store(buf, count, 0);
  7567. }
  7568. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7569. sched_mc_power_savings_show,
  7570. sched_mc_power_savings_store);
  7571. #endif
  7572. #ifdef CONFIG_SCHED_SMT
  7573. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7574. char *page)
  7575. {
  7576. return sprintf(page, "%u\n", sched_smt_power_savings);
  7577. }
  7578. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7579. const char *buf, size_t count)
  7580. {
  7581. return sched_power_savings_store(buf, count, 1);
  7582. }
  7583. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7584. sched_smt_power_savings_show,
  7585. sched_smt_power_savings_store);
  7586. #endif
  7587. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7588. {
  7589. int err = 0;
  7590. #ifdef CONFIG_SCHED_SMT
  7591. if (smt_capable())
  7592. err = sysfs_create_file(&cls->kset.kobj,
  7593. &attr_sched_smt_power_savings.attr);
  7594. #endif
  7595. #ifdef CONFIG_SCHED_MC
  7596. if (!err && mc_capable())
  7597. err = sysfs_create_file(&cls->kset.kobj,
  7598. &attr_sched_mc_power_savings.attr);
  7599. #endif
  7600. return err;
  7601. }
  7602. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7603. #ifndef CONFIG_CPUSETS
  7604. /*
  7605. * Add online and remove offline CPUs from the scheduler domains.
  7606. * When cpusets are enabled they take over this function.
  7607. */
  7608. static int update_sched_domains(struct notifier_block *nfb,
  7609. unsigned long action, void *hcpu)
  7610. {
  7611. switch (action) {
  7612. case CPU_ONLINE:
  7613. case CPU_ONLINE_FROZEN:
  7614. case CPU_DEAD:
  7615. case CPU_DEAD_FROZEN:
  7616. partition_sched_domains(1, NULL, NULL);
  7617. return NOTIFY_OK;
  7618. default:
  7619. return NOTIFY_DONE;
  7620. }
  7621. }
  7622. #endif
  7623. static int update_runtime(struct notifier_block *nfb,
  7624. unsigned long action, void *hcpu)
  7625. {
  7626. int cpu = (int)(long)hcpu;
  7627. switch (action) {
  7628. case CPU_DOWN_PREPARE:
  7629. case CPU_DOWN_PREPARE_FROZEN:
  7630. disable_runtime(cpu_rq(cpu));
  7631. return NOTIFY_OK;
  7632. case CPU_DOWN_FAILED:
  7633. case CPU_DOWN_FAILED_FROZEN:
  7634. case CPU_ONLINE:
  7635. case CPU_ONLINE_FROZEN:
  7636. enable_runtime(cpu_rq(cpu));
  7637. return NOTIFY_OK;
  7638. default:
  7639. return NOTIFY_DONE;
  7640. }
  7641. }
  7642. void __init sched_init_smp(void)
  7643. {
  7644. cpumask_var_t non_isolated_cpus;
  7645. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7646. #if defined(CONFIG_NUMA)
  7647. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7648. GFP_KERNEL);
  7649. BUG_ON(sched_group_nodes_bycpu == NULL);
  7650. #endif
  7651. get_online_cpus();
  7652. mutex_lock(&sched_domains_mutex);
  7653. arch_init_sched_domains(cpu_online_mask);
  7654. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7655. if (cpumask_empty(non_isolated_cpus))
  7656. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7657. mutex_unlock(&sched_domains_mutex);
  7658. put_online_cpus();
  7659. #ifndef CONFIG_CPUSETS
  7660. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7661. hotcpu_notifier(update_sched_domains, 0);
  7662. #endif
  7663. /* RT runtime code needs to handle some hotplug events */
  7664. hotcpu_notifier(update_runtime, 0);
  7665. init_hrtick();
  7666. /* Move init over to a non-isolated CPU */
  7667. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7668. BUG();
  7669. sched_init_granularity();
  7670. free_cpumask_var(non_isolated_cpus);
  7671. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7672. init_sched_rt_class();
  7673. }
  7674. #else
  7675. void __init sched_init_smp(void)
  7676. {
  7677. sched_init_granularity();
  7678. }
  7679. #endif /* CONFIG_SMP */
  7680. int in_sched_functions(unsigned long addr)
  7681. {
  7682. return in_lock_functions(addr) ||
  7683. (addr >= (unsigned long)__sched_text_start
  7684. && addr < (unsigned long)__sched_text_end);
  7685. }
  7686. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7687. {
  7688. cfs_rq->tasks_timeline = RB_ROOT;
  7689. INIT_LIST_HEAD(&cfs_rq->tasks);
  7690. #ifdef CONFIG_FAIR_GROUP_SCHED
  7691. cfs_rq->rq = rq;
  7692. #endif
  7693. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7694. }
  7695. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7696. {
  7697. struct rt_prio_array *array;
  7698. int i;
  7699. array = &rt_rq->active;
  7700. for (i = 0; i < MAX_RT_PRIO; i++) {
  7701. INIT_LIST_HEAD(array->queue + i);
  7702. __clear_bit(i, array->bitmap);
  7703. }
  7704. /* delimiter for bitsearch: */
  7705. __set_bit(MAX_RT_PRIO, array->bitmap);
  7706. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7707. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7708. #ifdef CONFIG_SMP
  7709. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7710. #endif
  7711. #endif
  7712. #ifdef CONFIG_SMP
  7713. rt_rq->rt_nr_migratory = 0;
  7714. rt_rq->overloaded = 0;
  7715. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7716. #endif
  7717. rt_rq->rt_time = 0;
  7718. rt_rq->rt_throttled = 0;
  7719. rt_rq->rt_runtime = 0;
  7720. spin_lock_init(&rt_rq->rt_runtime_lock);
  7721. #ifdef CONFIG_RT_GROUP_SCHED
  7722. rt_rq->rt_nr_boosted = 0;
  7723. rt_rq->rq = rq;
  7724. #endif
  7725. }
  7726. #ifdef CONFIG_FAIR_GROUP_SCHED
  7727. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7728. struct sched_entity *se, int cpu, int add,
  7729. struct sched_entity *parent)
  7730. {
  7731. struct rq *rq = cpu_rq(cpu);
  7732. tg->cfs_rq[cpu] = cfs_rq;
  7733. init_cfs_rq(cfs_rq, rq);
  7734. cfs_rq->tg = tg;
  7735. if (add)
  7736. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7737. tg->se[cpu] = se;
  7738. /* se could be NULL for init_task_group */
  7739. if (!se)
  7740. return;
  7741. if (!parent)
  7742. se->cfs_rq = &rq->cfs;
  7743. else
  7744. se->cfs_rq = parent->my_q;
  7745. se->my_q = cfs_rq;
  7746. se->load.weight = tg->shares;
  7747. se->load.inv_weight = 0;
  7748. se->parent = parent;
  7749. }
  7750. #endif
  7751. #ifdef CONFIG_RT_GROUP_SCHED
  7752. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7753. struct sched_rt_entity *rt_se, int cpu, int add,
  7754. struct sched_rt_entity *parent)
  7755. {
  7756. struct rq *rq = cpu_rq(cpu);
  7757. tg->rt_rq[cpu] = rt_rq;
  7758. init_rt_rq(rt_rq, rq);
  7759. rt_rq->tg = tg;
  7760. rt_rq->rt_se = rt_se;
  7761. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7762. if (add)
  7763. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7764. tg->rt_se[cpu] = rt_se;
  7765. if (!rt_se)
  7766. return;
  7767. if (!parent)
  7768. rt_se->rt_rq = &rq->rt;
  7769. else
  7770. rt_se->rt_rq = parent->my_q;
  7771. rt_se->my_q = rt_rq;
  7772. rt_se->parent = parent;
  7773. INIT_LIST_HEAD(&rt_se->run_list);
  7774. }
  7775. #endif
  7776. void __init sched_init(void)
  7777. {
  7778. int i, j;
  7779. unsigned long alloc_size = 0, ptr;
  7780. #ifdef CONFIG_FAIR_GROUP_SCHED
  7781. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7782. #endif
  7783. #ifdef CONFIG_RT_GROUP_SCHED
  7784. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7785. #endif
  7786. #ifdef CONFIG_USER_SCHED
  7787. alloc_size *= 2;
  7788. #endif
  7789. #ifdef CONFIG_CPUMASK_OFFSTACK
  7790. alloc_size += num_possible_cpus() * cpumask_size();
  7791. #endif
  7792. /*
  7793. * As sched_init() is called before page_alloc is setup,
  7794. * we use alloc_bootmem().
  7795. */
  7796. if (alloc_size) {
  7797. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7798. #ifdef CONFIG_FAIR_GROUP_SCHED
  7799. init_task_group.se = (struct sched_entity **)ptr;
  7800. ptr += nr_cpu_ids * sizeof(void **);
  7801. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7802. ptr += nr_cpu_ids * sizeof(void **);
  7803. #ifdef CONFIG_USER_SCHED
  7804. root_task_group.se = (struct sched_entity **)ptr;
  7805. ptr += nr_cpu_ids * sizeof(void **);
  7806. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7807. ptr += nr_cpu_ids * sizeof(void **);
  7808. #endif /* CONFIG_USER_SCHED */
  7809. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7810. #ifdef CONFIG_RT_GROUP_SCHED
  7811. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7812. ptr += nr_cpu_ids * sizeof(void **);
  7813. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7814. ptr += nr_cpu_ids * sizeof(void **);
  7815. #ifdef CONFIG_USER_SCHED
  7816. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7817. ptr += nr_cpu_ids * sizeof(void **);
  7818. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7819. ptr += nr_cpu_ids * sizeof(void **);
  7820. #endif /* CONFIG_USER_SCHED */
  7821. #endif /* CONFIG_RT_GROUP_SCHED */
  7822. #ifdef CONFIG_CPUMASK_OFFSTACK
  7823. for_each_possible_cpu(i) {
  7824. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7825. ptr += cpumask_size();
  7826. }
  7827. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7828. }
  7829. #ifdef CONFIG_SMP
  7830. init_defrootdomain();
  7831. #endif
  7832. init_rt_bandwidth(&def_rt_bandwidth,
  7833. global_rt_period(), global_rt_runtime());
  7834. #ifdef CONFIG_RT_GROUP_SCHED
  7835. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7836. global_rt_period(), global_rt_runtime());
  7837. #ifdef CONFIG_USER_SCHED
  7838. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7839. global_rt_period(), RUNTIME_INF);
  7840. #endif /* CONFIG_USER_SCHED */
  7841. #endif /* CONFIG_RT_GROUP_SCHED */
  7842. #ifdef CONFIG_GROUP_SCHED
  7843. list_add(&init_task_group.list, &task_groups);
  7844. INIT_LIST_HEAD(&init_task_group.children);
  7845. #ifdef CONFIG_USER_SCHED
  7846. INIT_LIST_HEAD(&root_task_group.children);
  7847. init_task_group.parent = &root_task_group;
  7848. list_add(&init_task_group.siblings, &root_task_group.children);
  7849. #endif /* CONFIG_USER_SCHED */
  7850. #endif /* CONFIG_GROUP_SCHED */
  7851. for_each_possible_cpu(i) {
  7852. struct rq *rq;
  7853. rq = cpu_rq(i);
  7854. spin_lock_init(&rq->lock);
  7855. rq->nr_running = 0;
  7856. rq->calc_load_active = 0;
  7857. rq->calc_load_update = jiffies + LOAD_FREQ;
  7858. init_cfs_rq(&rq->cfs, rq);
  7859. init_rt_rq(&rq->rt, rq);
  7860. #ifdef CONFIG_FAIR_GROUP_SCHED
  7861. init_task_group.shares = init_task_group_load;
  7862. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7863. #ifdef CONFIG_CGROUP_SCHED
  7864. /*
  7865. * How much cpu bandwidth does init_task_group get?
  7866. *
  7867. * In case of task-groups formed thr' the cgroup filesystem, it
  7868. * gets 100% of the cpu resources in the system. This overall
  7869. * system cpu resource is divided among the tasks of
  7870. * init_task_group and its child task-groups in a fair manner,
  7871. * based on each entity's (task or task-group's) weight
  7872. * (se->load.weight).
  7873. *
  7874. * In other words, if init_task_group has 10 tasks of weight
  7875. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7876. * then A0's share of the cpu resource is:
  7877. *
  7878. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7879. *
  7880. * We achieve this by letting init_task_group's tasks sit
  7881. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7882. */
  7883. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7884. #elif defined CONFIG_USER_SCHED
  7885. root_task_group.shares = NICE_0_LOAD;
  7886. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7887. /*
  7888. * In case of task-groups formed thr' the user id of tasks,
  7889. * init_task_group represents tasks belonging to root user.
  7890. * Hence it forms a sibling of all subsequent groups formed.
  7891. * In this case, init_task_group gets only a fraction of overall
  7892. * system cpu resource, based on the weight assigned to root
  7893. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7894. * by letting tasks of init_task_group sit in a separate cfs_rq
  7895. * (init_cfs_rq) and having one entity represent this group of
  7896. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7897. */
  7898. init_tg_cfs_entry(&init_task_group,
  7899. &per_cpu(init_cfs_rq, i),
  7900. &per_cpu(init_sched_entity, i), i, 1,
  7901. root_task_group.se[i]);
  7902. #endif
  7903. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7904. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7905. #ifdef CONFIG_RT_GROUP_SCHED
  7906. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7907. #ifdef CONFIG_CGROUP_SCHED
  7908. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7909. #elif defined CONFIG_USER_SCHED
  7910. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7911. init_tg_rt_entry(&init_task_group,
  7912. &per_cpu(init_rt_rq, i),
  7913. &per_cpu(init_sched_rt_entity, i), i, 1,
  7914. root_task_group.rt_se[i]);
  7915. #endif
  7916. #endif
  7917. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7918. rq->cpu_load[j] = 0;
  7919. #ifdef CONFIG_SMP
  7920. rq->sd = NULL;
  7921. rq->rd = NULL;
  7922. rq->active_balance = 0;
  7923. rq->next_balance = jiffies;
  7924. rq->push_cpu = 0;
  7925. rq->cpu = i;
  7926. rq->online = 0;
  7927. rq->migration_thread = NULL;
  7928. INIT_LIST_HEAD(&rq->migration_queue);
  7929. rq_attach_root(rq, &def_root_domain);
  7930. #endif
  7931. init_rq_hrtick(rq);
  7932. atomic_set(&rq->nr_iowait, 0);
  7933. }
  7934. set_load_weight(&init_task);
  7935. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7936. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7937. #endif
  7938. #ifdef CONFIG_SMP
  7939. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7940. #endif
  7941. #ifdef CONFIG_RT_MUTEXES
  7942. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7943. #endif
  7944. /*
  7945. * The boot idle thread does lazy MMU switching as well:
  7946. */
  7947. atomic_inc(&init_mm.mm_count);
  7948. enter_lazy_tlb(&init_mm, current);
  7949. /*
  7950. * Make us the idle thread. Technically, schedule() should not be
  7951. * called from this thread, however somewhere below it might be,
  7952. * but because we are the idle thread, we just pick up running again
  7953. * when this runqueue becomes "idle".
  7954. */
  7955. init_idle(current, smp_processor_id());
  7956. calc_load_update = jiffies + LOAD_FREQ;
  7957. /*
  7958. * During early bootup we pretend to be a normal task:
  7959. */
  7960. current->sched_class = &fair_sched_class;
  7961. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7962. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7963. #ifdef CONFIG_SMP
  7964. #ifdef CONFIG_NO_HZ
  7965. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7966. alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
  7967. #endif
  7968. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7969. #endif /* SMP */
  7970. scheduler_running = 1;
  7971. }
  7972. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7973. void __might_sleep(char *file, int line)
  7974. {
  7975. #ifdef in_atomic
  7976. static unsigned long prev_jiffy; /* ratelimiting */
  7977. if ((!in_atomic() && !irqs_disabled()) ||
  7978. system_state != SYSTEM_RUNNING || oops_in_progress)
  7979. return;
  7980. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7981. return;
  7982. prev_jiffy = jiffies;
  7983. printk(KERN_ERR
  7984. "BUG: sleeping function called from invalid context at %s:%d\n",
  7985. file, line);
  7986. printk(KERN_ERR
  7987. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7988. in_atomic(), irqs_disabled(),
  7989. current->pid, current->comm);
  7990. debug_show_held_locks(current);
  7991. if (irqs_disabled())
  7992. print_irqtrace_events(current);
  7993. dump_stack();
  7994. #endif
  7995. }
  7996. EXPORT_SYMBOL(__might_sleep);
  7997. #endif
  7998. #ifdef CONFIG_MAGIC_SYSRQ
  7999. static void normalize_task(struct rq *rq, struct task_struct *p)
  8000. {
  8001. int on_rq;
  8002. update_rq_clock(rq);
  8003. on_rq = p->se.on_rq;
  8004. if (on_rq)
  8005. deactivate_task(rq, p, 0);
  8006. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8007. if (on_rq) {
  8008. activate_task(rq, p, 0);
  8009. resched_task(rq->curr);
  8010. }
  8011. }
  8012. void normalize_rt_tasks(void)
  8013. {
  8014. struct task_struct *g, *p;
  8015. unsigned long flags;
  8016. struct rq *rq;
  8017. read_lock_irqsave(&tasklist_lock, flags);
  8018. do_each_thread(g, p) {
  8019. /*
  8020. * Only normalize user tasks:
  8021. */
  8022. if (!p->mm)
  8023. continue;
  8024. p->se.exec_start = 0;
  8025. #ifdef CONFIG_SCHEDSTATS
  8026. p->se.wait_start = 0;
  8027. p->se.sleep_start = 0;
  8028. p->se.block_start = 0;
  8029. #endif
  8030. if (!rt_task(p)) {
  8031. /*
  8032. * Renice negative nice level userspace
  8033. * tasks back to 0:
  8034. */
  8035. if (TASK_NICE(p) < 0 && p->mm)
  8036. set_user_nice(p, 0);
  8037. continue;
  8038. }
  8039. spin_lock(&p->pi_lock);
  8040. rq = __task_rq_lock(p);
  8041. normalize_task(rq, p);
  8042. __task_rq_unlock(rq);
  8043. spin_unlock(&p->pi_lock);
  8044. } while_each_thread(g, p);
  8045. read_unlock_irqrestore(&tasklist_lock, flags);
  8046. }
  8047. #endif /* CONFIG_MAGIC_SYSRQ */
  8048. #ifdef CONFIG_IA64
  8049. /*
  8050. * These functions are only useful for the IA64 MCA handling.
  8051. *
  8052. * They can only be called when the whole system has been
  8053. * stopped - every CPU needs to be quiescent, and no scheduling
  8054. * activity can take place. Using them for anything else would
  8055. * be a serious bug, and as a result, they aren't even visible
  8056. * under any other configuration.
  8057. */
  8058. /**
  8059. * curr_task - return the current task for a given cpu.
  8060. * @cpu: the processor in question.
  8061. *
  8062. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8063. */
  8064. struct task_struct *curr_task(int cpu)
  8065. {
  8066. return cpu_curr(cpu);
  8067. }
  8068. /**
  8069. * set_curr_task - set the current task for a given cpu.
  8070. * @cpu: the processor in question.
  8071. * @p: the task pointer to set.
  8072. *
  8073. * Description: This function must only be used when non-maskable interrupts
  8074. * are serviced on a separate stack. It allows the architecture to switch the
  8075. * notion of the current task on a cpu in a non-blocking manner. This function
  8076. * must be called with all CPU's synchronized, and interrupts disabled, the
  8077. * and caller must save the original value of the current task (see
  8078. * curr_task() above) and restore that value before reenabling interrupts and
  8079. * re-starting the system.
  8080. *
  8081. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8082. */
  8083. void set_curr_task(int cpu, struct task_struct *p)
  8084. {
  8085. cpu_curr(cpu) = p;
  8086. }
  8087. #endif
  8088. #ifdef CONFIG_FAIR_GROUP_SCHED
  8089. static void free_fair_sched_group(struct task_group *tg)
  8090. {
  8091. int i;
  8092. for_each_possible_cpu(i) {
  8093. if (tg->cfs_rq)
  8094. kfree(tg->cfs_rq[i]);
  8095. if (tg->se)
  8096. kfree(tg->se[i]);
  8097. }
  8098. kfree(tg->cfs_rq);
  8099. kfree(tg->se);
  8100. }
  8101. static
  8102. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8103. {
  8104. struct cfs_rq *cfs_rq;
  8105. struct sched_entity *se;
  8106. struct rq *rq;
  8107. int i;
  8108. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8109. if (!tg->cfs_rq)
  8110. goto err;
  8111. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8112. if (!tg->se)
  8113. goto err;
  8114. tg->shares = NICE_0_LOAD;
  8115. for_each_possible_cpu(i) {
  8116. rq = cpu_rq(i);
  8117. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8118. GFP_KERNEL, cpu_to_node(i));
  8119. if (!cfs_rq)
  8120. goto err;
  8121. se = kzalloc_node(sizeof(struct sched_entity),
  8122. GFP_KERNEL, cpu_to_node(i));
  8123. if (!se)
  8124. goto err;
  8125. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8126. }
  8127. return 1;
  8128. err:
  8129. return 0;
  8130. }
  8131. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8132. {
  8133. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8134. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8135. }
  8136. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8137. {
  8138. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8139. }
  8140. #else /* !CONFG_FAIR_GROUP_SCHED */
  8141. static inline void free_fair_sched_group(struct task_group *tg)
  8142. {
  8143. }
  8144. static inline
  8145. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8146. {
  8147. return 1;
  8148. }
  8149. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8150. {
  8151. }
  8152. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8153. {
  8154. }
  8155. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8156. #ifdef CONFIG_RT_GROUP_SCHED
  8157. static void free_rt_sched_group(struct task_group *tg)
  8158. {
  8159. int i;
  8160. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8161. for_each_possible_cpu(i) {
  8162. if (tg->rt_rq)
  8163. kfree(tg->rt_rq[i]);
  8164. if (tg->rt_se)
  8165. kfree(tg->rt_se[i]);
  8166. }
  8167. kfree(tg->rt_rq);
  8168. kfree(tg->rt_se);
  8169. }
  8170. static
  8171. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8172. {
  8173. struct rt_rq *rt_rq;
  8174. struct sched_rt_entity *rt_se;
  8175. struct rq *rq;
  8176. int i;
  8177. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8178. if (!tg->rt_rq)
  8179. goto err;
  8180. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8181. if (!tg->rt_se)
  8182. goto err;
  8183. init_rt_bandwidth(&tg->rt_bandwidth,
  8184. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8185. for_each_possible_cpu(i) {
  8186. rq = cpu_rq(i);
  8187. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8188. GFP_KERNEL, cpu_to_node(i));
  8189. if (!rt_rq)
  8190. goto err;
  8191. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8192. GFP_KERNEL, cpu_to_node(i));
  8193. if (!rt_se)
  8194. goto err;
  8195. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8196. }
  8197. return 1;
  8198. err:
  8199. return 0;
  8200. }
  8201. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8202. {
  8203. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8204. &cpu_rq(cpu)->leaf_rt_rq_list);
  8205. }
  8206. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8207. {
  8208. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8209. }
  8210. #else /* !CONFIG_RT_GROUP_SCHED */
  8211. static inline void free_rt_sched_group(struct task_group *tg)
  8212. {
  8213. }
  8214. static inline
  8215. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8216. {
  8217. return 1;
  8218. }
  8219. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8220. {
  8221. }
  8222. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8223. {
  8224. }
  8225. #endif /* CONFIG_RT_GROUP_SCHED */
  8226. #ifdef CONFIG_GROUP_SCHED
  8227. static void free_sched_group(struct task_group *tg)
  8228. {
  8229. free_fair_sched_group(tg);
  8230. free_rt_sched_group(tg);
  8231. kfree(tg);
  8232. }
  8233. /* allocate runqueue etc for a new task group */
  8234. struct task_group *sched_create_group(struct task_group *parent)
  8235. {
  8236. struct task_group *tg;
  8237. unsigned long flags;
  8238. int i;
  8239. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8240. if (!tg)
  8241. return ERR_PTR(-ENOMEM);
  8242. if (!alloc_fair_sched_group(tg, parent))
  8243. goto err;
  8244. if (!alloc_rt_sched_group(tg, parent))
  8245. goto err;
  8246. spin_lock_irqsave(&task_group_lock, flags);
  8247. for_each_possible_cpu(i) {
  8248. register_fair_sched_group(tg, i);
  8249. register_rt_sched_group(tg, i);
  8250. }
  8251. list_add_rcu(&tg->list, &task_groups);
  8252. WARN_ON(!parent); /* root should already exist */
  8253. tg->parent = parent;
  8254. INIT_LIST_HEAD(&tg->children);
  8255. list_add_rcu(&tg->siblings, &parent->children);
  8256. spin_unlock_irqrestore(&task_group_lock, flags);
  8257. return tg;
  8258. err:
  8259. free_sched_group(tg);
  8260. return ERR_PTR(-ENOMEM);
  8261. }
  8262. /* rcu callback to free various structures associated with a task group */
  8263. static void free_sched_group_rcu(struct rcu_head *rhp)
  8264. {
  8265. /* now it should be safe to free those cfs_rqs */
  8266. free_sched_group(container_of(rhp, struct task_group, rcu));
  8267. }
  8268. /* Destroy runqueue etc associated with a task group */
  8269. void sched_destroy_group(struct task_group *tg)
  8270. {
  8271. unsigned long flags;
  8272. int i;
  8273. spin_lock_irqsave(&task_group_lock, flags);
  8274. for_each_possible_cpu(i) {
  8275. unregister_fair_sched_group(tg, i);
  8276. unregister_rt_sched_group(tg, i);
  8277. }
  8278. list_del_rcu(&tg->list);
  8279. list_del_rcu(&tg->siblings);
  8280. spin_unlock_irqrestore(&task_group_lock, flags);
  8281. /* wait for possible concurrent references to cfs_rqs complete */
  8282. call_rcu(&tg->rcu, free_sched_group_rcu);
  8283. }
  8284. /* change task's runqueue when it moves between groups.
  8285. * The caller of this function should have put the task in its new group
  8286. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8287. * reflect its new group.
  8288. */
  8289. void sched_move_task(struct task_struct *tsk)
  8290. {
  8291. int on_rq, running;
  8292. unsigned long flags;
  8293. struct rq *rq;
  8294. rq = task_rq_lock(tsk, &flags);
  8295. update_rq_clock(rq);
  8296. running = task_current(rq, tsk);
  8297. on_rq = tsk->se.on_rq;
  8298. if (on_rq)
  8299. dequeue_task(rq, tsk, 0);
  8300. if (unlikely(running))
  8301. tsk->sched_class->put_prev_task(rq, tsk);
  8302. set_task_rq(tsk, task_cpu(tsk));
  8303. #ifdef CONFIG_FAIR_GROUP_SCHED
  8304. if (tsk->sched_class->moved_group)
  8305. tsk->sched_class->moved_group(tsk);
  8306. #endif
  8307. if (unlikely(running))
  8308. tsk->sched_class->set_curr_task(rq);
  8309. if (on_rq)
  8310. enqueue_task(rq, tsk, 0);
  8311. task_rq_unlock(rq, &flags);
  8312. }
  8313. #endif /* CONFIG_GROUP_SCHED */
  8314. #ifdef CONFIG_FAIR_GROUP_SCHED
  8315. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8316. {
  8317. struct cfs_rq *cfs_rq = se->cfs_rq;
  8318. int on_rq;
  8319. on_rq = se->on_rq;
  8320. if (on_rq)
  8321. dequeue_entity(cfs_rq, se, 0);
  8322. se->load.weight = shares;
  8323. se->load.inv_weight = 0;
  8324. if (on_rq)
  8325. enqueue_entity(cfs_rq, se, 0);
  8326. }
  8327. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8328. {
  8329. struct cfs_rq *cfs_rq = se->cfs_rq;
  8330. struct rq *rq = cfs_rq->rq;
  8331. unsigned long flags;
  8332. spin_lock_irqsave(&rq->lock, flags);
  8333. __set_se_shares(se, shares);
  8334. spin_unlock_irqrestore(&rq->lock, flags);
  8335. }
  8336. static DEFINE_MUTEX(shares_mutex);
  8337. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8338. {
  8339. int i;
  8340. unsigned long flags;
  8341. /*
  8342. * We can't change the weight of the root cgroup.
  8343. */
  8344. if (!tg->se[0])
  8345. return -EINVAL;
  8346. if (shares < MIN_SHARES)
  8347. shares = MIN_SHARES;
  8348. else if (shares > MAX_SHARES)
  8349. shares = MAX_SHARES;
  8350. mutex_lock(&shares_mutex);
  8351. if (tg->shares == shares)
  8352. goto done;
  8353. spin_lock_irqsave(&task_group_lock, flags);
  8354. for_each_possible_cpu(i)
  8355. unregister_fair_sched_group(tg, i);
  8356. list_del_rcu(&tg->siblings);
  8357. spin_unlock_irqrestore(&task_group_lock, flags);
  8358. /* wait for any ongoing reference to this group to finish */
  8359. synchronize_sched();
  8360. /*
  8361. * Now we are free to modify the group's share on each cpu
  8362. * w/o tripping rebalance_share or load_balance_fair.
  8363. */
  8364. tg->shares = shares;
  8365. for_each_possible_cpu(i) {
  8366. /*
  8367. * force a rebalance
  8368. */
  8369. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8370. set_se_shares(tg->se[i], shares);
  8371. }
  8372. /*
  8373. * Enable load balance activity on this group, by inserting it back on
  8374. * each cpu's rq->leaf_cfs_rq_list.
  8375. */
  8376. spin_lock_irqsave(&task_group_lock, flags);
  8377. for_each_possible_cpu(i)
  8378. register_fair_sched_group(tg, i);
  8379. list_add_rcu(&tg->siblings, &tg->parent->children);
  8380. spin_unlock_irqrestore(&task_group_lock, flags);
  8381. done:
  8382. mutex_unlock(&shares_mutex);
  8383. return 0;
  8384. }
  8385. unsigned long sched_group_shares(struct task_group *tg)
  8386. {
  8387. return tg->shares;
  8388. }
  8389. #endif
  8390. #ifdef CONFIG_RT_GROUP_SCHED
  8391. /*
  8392. * Ensure that the real time constraints are schedulable.
  8393. */
  8394. static DEFINE_MUTEX(rt_constraints_mutex);
  8395. static unsigned long to_ratio(u64 period, u64 runtime)
  8396. {
  8397. if (runtime == RUNTIME_INF)
  8398. return 1ULL << 20;
  8399. return div64_u64(runtime << 20, period);
  8400. }
  8401. /* Must be called with tasklist_lock held */
  8402. static inline int tg_has_rt_tasks(struct task_group *tg)
  8403. {
  8404. struct task_struct *g, *p;
  8405. do_each_thread(g, p) {
  8406. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8407. return 1;
  8408. } while_each_thread(g, p);
  8409. return 0;
  8410. }
  8411. struct rt_schedulable_data {
  8412. struct task_group *tg;
  8413. u64 rt_period;
  8414. u64 rt_runtime;
  8415. };
  8416. static int tg_schedulable(struct task_group *tg, void *data)
  8417. {
  8418. struct rt_schedulable_data *d = data;
  8419. struct task_group *child;
  8420. unsigned long total, sum = 0;
  8421. u64 period, runtime;
  8422. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8423. runtime = tg->rt_bandwidth.rt_runtime;
  8424. if (tg == d->tg) {
  8425. period = d->rt_period;
  8426. runtime = d->rt_runtime;
  8427. }
  8428. #ifdef CONFIG_USER_SCHED
  8429. if (tg == &root_task_group) {
  8430. period = global_rt_period();
  8431. runtime = global_rt_runtime();
  8432. }
  8433. #endif
  8434. /*
  8435. * Cannot have more runtime than the period.
  8436. */
  8437. if (runtime > period && runtime != RUNTIME_INF)
  8438. return -EINVAL;
  8439. /*
  8440. * Ensure we don't starve existing RT tasks.
  8441. */
  8442. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8443. return -EBUSY;
  8444. total = to_ratio(period, runtime);
  8445. /*
  8446. * Nobody can have more than the global setting allows.
  8447. */
  8448. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8449. return -EINVAL;
  8450. /*
  8451. * The sum of our children's runtime should not exceed our own.
  8452. */
  8453. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8454. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8455. runtime = child->rt_bandwidth.rt_runtime;
  8456. if (child == d->tg) {
  8457. period = d->rt_period;
  8458. runtime = d->rt_runtime;
  8459. }
  8460. sum += to_ratio(period, runtime);
  8461. }
  8462. if (sum > total)
  8463. return -EINVAL;
  8464. return 0;
  8465. }
  8466. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8467. {
  8468. struct rt_schedulable_data data = {
  8469. .tg = tg,
  8470. .rt_period = period,
  8471. .rt_runtime = runtime,
  8472. };
  8473. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8474. }
  8475. static int tg_set_bandwidth(struct task_group *tg,
  8476. u64 rt_period, u64 rt_runtime)
  8477. {
  8478. int i, err = 0;
  8479. mutex_lock(&rt_constraints_mutex);
  8480. read_lock(&tasklist_lock);
  8481. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8482. if (err)
  8483. goto unlock;
  8484. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8485. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8486. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8487. for_each_possible_cpu(i) {
  8488. struct rt_rq *rt_rq = tg->rt_rq[i];
  8489. spin_lock(&rt_rq->rt_runtime_lock);
  8490. rt_rq->rt_runtime = rt_runtime;
  8491. spin_unlock(&rt_rq->rt_runtime_lock);
  8492. }
  8493. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8494. unlock:
  8495. read_unlock(&tasklist_lock);
  8496. mutex_unlock(&rt_constraints_mutex);
  8497. return err;
  8498. }
  8499. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8500. {
  8501. u64 rt_runtime, rt_period;
  8502. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8503. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8504. if (rt_runtime_us < 0)
  8505. rt_runtime = RUNTIME_INF;
  8506. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8507. }
  8508. long sched_group_rt_runtime(struct task_group *tg)
  8509. {
  8510. u64 rt_runtime_us;
  8511. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8512. return -1;
  8513. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8514. do_div(rt_runtime_us, NSEC_PER_USEC);
  8515. return rt_runtime_us;
  8516. }
  8517. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8518. {
  8519. u64 rt_runtime, rt_period;
  8520. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8521. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8522. if (rt_period == 0)
  8523. return -EINVAL;
  8524. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8525. }
  8526. long sched_group_rt_period(struct task_group *tg)
  8527. {
  8528. u64 rt_period_us;
  8529. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8530. do_div(rt_period_us, NSEC_PER_USEC);
  8531. return rt_period_us;
  8532. }
  8533. static int sched_rt_global_constraints(void)
  8534. {
  8535. u64 runtime, period;
  8536. int ret = 0;
  8537. if (sysctl_sched_rt_period <= 0)
  8538. return -EINVAL;
  8539. runtime = global_rt_runtime();
  8540. period = global_rt_period();
  8541. /*
  8542. * Sanity check on the sysctl variables.
  8543. */
  8544. if (runtime > period && runtime != RUNTIME_INF)
  8545. return -EINVAL;
  8546. mutex_lock(&rt_constraints_mutex);
  8547. read_lock(&tasklist_lock);
  8548. ret = __rt_schedulable(NULL, 0, 0);
  8549. read_unlock(&tasklist_lock);
  8550. mutex_unlock(&rt_constraints_mutex);
  8551. return ret;
  8552. }
  8553. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8554. {
  8555. /* Don't accept realtime tasks when there is no way for them to run */
  8556. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8557. return 0;
  8558. return 1;
  8559. }
  8560. #else /* !CONFIG_RT_GROUP_SCHED */
  8561. static int sched_rt_global_constraints(void)
  8562. {
  8563. unsigned long flags;
  8564. int i;
  8565. if (sysctl_sched_rt_period <= 0)
  8566. return -EINVAL;
  8567. /*
  8568. * There's always some RT tasks in the root group
  8569. * -- migration, kstopmachine etc..
  8570. */
  8571. if (sysctl_sched_rt_runtime == 0)
  8572. return -EBUSY;
  8573. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8574. for_each_possible_cpu(i) {
  8575. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8576. spin_lock(&rt_rq->rt_runtime_lock);
  8577. rt_rq->rt_runtime = global_rt_runtime();
  8578. spin_unlock(&rt_rq->rt_runtime_lock);
  8579. }
  8580. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8581. return 0;
  8582. }
  8583. #endif /* CONFIG_RT_GROUP_SCHED */
  8584. int sched_rt_handler(struct ctl_table *table, int write,
  8585. struct file *filp, void __user *buffer, size_t *lenp,
  8586. loff_t *ppos)
  8587. {
  8588. int ret;
  8589. int old_period, old_runtime;
  8590. static DEFINE_MUTEX(mutex);
  8591. mutex_lock(&mutex);
  8592. old_period = sysctl_sched_rt_period;
  8593. old_runtime = sysctl_sched_rt_runtime;
  8594. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8595. if (!ret && write) {
  8596. ret = sched_rt_global_constraints();
  8597. if (ret) {
  8598. sysctl_sched_rt_period = old_period;
  8599. sysctl_sched_rt_runtime = old_runtime;
  8600. } else {
  8601. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8602. def_rt_bandwidth.rt_period =
  8603. ns_to_ktime(global_rt_period());
  8604. }
  8605. }
  8606. mutex_unlock(&mutex);
  8607. return ret;
  8608. }
  8609. #ifdef CONFIG_CGROUP_SCHED
  8610. /* return corresponding task_group object of a cgroup */
  8611. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8612. {
  8613. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8614. struct task_group, css);
  8615. }
  8616. static struct cgroup_subsys_state *
  8617. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8618. {
  8619. struct task_group *tg, *parent;
  8620. if (!cgrp->parent) {
  8621. /* This is early initialization for the top cgroup */
  8622. return &init_task_group.css;
  8623. }
  8624. parent = cgroup_tg(cgrp->parent);
  8625. tg = sched_create_group(parent);
  8626. if (IS_ERR(tg))
  8627. return ERR_PTR(-ENOMEM);
  8628. return &tg->css;
  8629. }
  8630. static void
  8631. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8632. {
  8633. struct task_group *tg = cgroup_tg(cgrp);
  8634. sched_destroy_group(tg);
  8635. }
  8636. static int
  8637. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8638. struct task_struct *tsk)
  8639. {
  8640. #ifdef CONFIG_RT_GROUP_SCHED
  8641. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8642. return -EINVAL;
  8643. #else
  8644. /* We don't support RT-tasks being in separate groups */
  8645. if (tsk->sched_class != &fair_sched_class)
  8646. return -EINVAL;
  8647. #endif
  8648. return 0;
  8649. }
  8650. static void
  8651. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8652. struct cgroup *old_cont, struct task_struct *tsk)
  8653. {
  8654. sched_move_task(tsk);
  8655. }
  8656. #ifdef CONFIG_FAIR_GROUP_SCHED
  8657. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8658. u64 shareval)
  8659. {
  8660. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8661. }
  8662. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8663. {
  8664. struct task_group *tg = cgroup_tg(cgrp);
  8665. return (u64) tg->shares;
  8666. }
  8667. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8668. #ifdef CONFIG_RT_GROUP_SCHED
  8669. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8670. s64 val)
  8671. {
  8672. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8673. }
  8674. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8675. {
  8676. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8677. }
  8678. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8679. u64 rt_period_us)
  8680. {
  8681. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8682. }
  8683. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8684. {
  8685. return sched_group_rt_period(cgroup_tg(cgrp));
  8686. }
  8687. #endif /* CONFIG_RT_GROUP_SCHED */
  8688. static struct cftype cpu_files[] = {
  8689. #ifdef CONFIG_FAIR_GROUP_SCHED
  8690. {
  8691. .name = "shares",
  8692. .read_u64 = cpu_shares_read_u64,
  8693. .write_u64 = cpu_shares_write_u64,
  8694. },
  8695. #endif
  8696. #ifdef CONFIG_RT_GROUP_SCHED
  8697. {
  8698. .name = "rt_runtime_us",
  8699. .read_s64 = cpu_rt_runtime_read,
  8700. .write_s64 = cpu_rt_runtime_write,
  8701. },
  8702. {
  8703. .name = "rt_period_us",
  8704. .read_u64 = cpu_rt_period_read_uint,
  8705. .write_u64 = cpu_rt_period_write_uint,
  8706. },
  8707. #endif
  8708. };
  8709. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8710. {
  8711. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8712. }
  8713. struct cgroup_subsys cpu_cgroup_subsys = {
  8714. .name = "cpu",
  8715. .create = cpu_cgroup_create,
  8716. .destroy = cpu_cgroup_destroy,
  8717. .can_attach = cpu_cgroup_can_attach,
  8718. .attach = cpu_cgroup_attach,
  8719. .populate = cpu_cgroup_populate,
  8720. .subsys_id = cpu_cgroup_subsys_id,
  8721. .early_init = 1,
  8722. };
  8723. #endif /* CONFIG_CGROUP_SCHED */
  8724. #ifdef CONFIG_CGROUP_CPUACCT
  8725. /*
  8726. * CPU accounting code for task groups.
  8727. *
  8728. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8729. * (balbir@in.ibm.com).
  8730. */
  8731. /* track cpu usage of a group of tasks and its child groups */
  8732. struct cpuacct {
  8733. struct cgroup_subsys_state css;
  8734. /* cpuusage holds pointer to a u64-type object on every cpu */
  8735. u64 *cpuusage;
  8736. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8737. struct cpuacct *parent;
  8738. };
  8739. struct cgroup_subsys cpuacct_subsys;
  8740. /* return cpu accounting group corresponding to this container */
  8741. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8742. {
  8743. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8744. struct cpuacct, css);
  8745. }
  8746. /* return cpu accounting group to which this task belongs */
  8747. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8748. {
  8749. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8750. struct cpuacct, css);
  8751. }
  8752. /* create a new cpu accounting group */
  8753. static struct cgroup_subsys_state *cpuacct_create(
  8754. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8755. {
  8756. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8757. int i;
  8758. if (!ca)
  8759. goto out;
  8760. ca->cpuusage = alloc_percpu(u64);
  8761. if (!ca->cpuusage)
  8762. goto out_free_ca;
  8763. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8764. if (percpu_counter_init(&ca->cpustat[i], 0))
  8765. goto out_free_counters;
  8766. if (cgrp->parent)
  8767. ca->parent = cgroup_ca(cgrp->parent);
  8768. return &ca->css;
  8769. out_free_counters:
  8770. while (--i >= 0)
  8771. percpu_counter_destroy(&ca->cpustat[i]);
  8772. free_percpu(ca->cpuusage);
  8773. out_free_ca:
  8774. kfree(ca);
  8775. out:
  8776. return ERR_PTR(-ENOMEM);
  8777. }
  8778. /* destroy an existing cpu accounting group */
  8779. static void
  8780. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8781. {
  8782. struct cpuacct *ca = cgroup_ca(cgrp);
  8783. int i;
  8784. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8785. percpu_counter_destroy(&ca->cpustat[i]);
  8786. free_percpu(ca->cpuusage);
  8787. kfree(ca);
  8788. }
  8789. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8790. {
  8791. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8792. u64 data;
  8793. #ifndef CONFIG_64BIT
  8794. /*
  8795. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8796. */
  8797. spin_lock_irq(&cpu_rq(cpu)->lock);
  8798. data = *cpuusage;
  8799. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8800. #else
  8801. data = *cpuusage;
  8802. #endif
  8803. return data;
  8804. }
  8805. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8806. {
  8807. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8808. #ifndef CONFIG_64BIT
  8809. /*
  8810. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8811. */
  8812. spin_lock_irq(&cpu_rq(cpu)->lock);
  8813. *cpuusage = val;
  8814. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8815. #else
  8816. *cpuusage = val;
  8817. #endif
  8818. }
  8819. /* return total cpu usage (in nanoseconds) of a group */
  8820. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8821. {
  8822. struct cpuacct *ca = cgroup_ca(cgrp);
  8823. u64 totalcpuusage = 0;
  8824. int i;
  8825. for_each_present_cpu(i)
  8826. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8827. return totalcpuusage;
  8828. }
  8829. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8830. u64 reset)
  8831. {
  8832. struct cpuacct *ca = cgroup_ca(cgrp);
  8833. int err = 0;
  8834. int i;
  8835. if (reset) {
  8836. err = -EINVAL;
  8837. goto out;
  8838. }
  8839. for_each_present_cpu(i)
  8840. cpuacct_cpuusage_write(ca, i, 0);
  8841. out:
  8842. return err;
  8843. }
  8844. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8845. struct seq_file *m)
  8846. {
  8847. struct cpuacct *ca = cgroup_ca(cgroup);
  8848. u64 percpu;
  8849. int i;
  8850. for_each_present_cpu(i) {
  8851. percpu = cpuacct_cpuusage_read(ca, i);
  8852. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8853. }
  8854. seq_printf(m, "\n");
  8855. return 0;
  8856. }
  8857. static const char *cpuacct_stat_desc[] = {
  8858. [CPUACCT_STAT_USER] = "user",
  8859. [CPUACCT_STAT_SYSTEM] = "system",
  8860. };
  8861. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8862. struct cgroup_map_cb *cb)
  8863. {
  8864. struct cpuacct *ca = cgroup_ca(cgrp);
  8865. int i;
  8866. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8867. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8868. val = cputime64_to_clock_t(val);
  8869. cb->fill(cb, cpuacct_stat_desc[i], val);
  8870. }
  8871. return 0;
  8872. }
  8873. static struct cftype files[] = {
  8874. {
  8875. .name = "usage",
  8876. .read_u64 = cpuusage_read,
  8877. .write_u64 = cpuusage_write,
  8878. },
  8879. {
  8880. .name = "usage_percpu",
  8881. .read_seq_string = cpuacct_percpu_seq_read,
  8882. },
  8883. {
  8884. .name = "stat",
  8885. .read_map = cpuacct_stats_show,
  8886. },
  8887. };
  8888. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8889. {
  8890. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8891. }
  8892. /*
  8893. * charge this task's execution time to its accounting group.
  8894. *
  8895. * called with rq->lock held.
  8896. */
  8897. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8898. {
  8899. struct cpuacct *ca;
  8900. int cpu;
  8901. if (unlikely(!cpuacct_subsys.active))
  8902. return;
  8903. cpu = task_cpu(tsk);
  8904. rcu_read_lock();
  8905. ca = task_ca(tsk);
  8906. for (; ca; ca = ca->parent) {
  8907. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8908. *cpuusage += cputime;
  8909. }
  8910. rcu_read_unlock();
  8911. }
  8912. /*
  8913. * Charge the system/user time to the task's accounting group.
  8914. */
  8915. static void cpuacct_update_stats(struct task_struct *tsk,
  8916. enum cpuacct_stat_index idx, cputime_t val)
  8917. {
  8918. struct cpuacct *ca;
  8919. if (unlikely(!cpuacct_subsys.active))
  8920. return;
  8921. rcu_read_lock();
  8922. ca = task_ca(tsk);
  8923. do {
  8924. percpu_counter_add(&ca->cpustat[idx], val);
  8925. ca = ca->parent;
  8926. } while (ca);
  8927. rcu_read_unlock();
  8928. }
  8929. struct cgroup_subsys cpuacct_subsys = {
  8930. .name = "cpuacct",
  8931. .create = cpuacct_create,
  8932. .destroy = cpuacct_destroy,
  8933. .populate = cpuacct_populate,
  8934. .subsys_id = cpuacct_subsys_id,
  8935. };
  8936. #endif /* CONFIG_CGROUP_CPUACCT */