datagram.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. /*
  2. * common UDP/RAW code
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/errno.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/socket.h>
  19. #include <linux/sockios.h>
  20. #include <linux/in6.h>
  21. #include <linux/ipv6.h>
  22. #include <linux/route.h>
  23. #include <linux/slab.h>
  24. #include <linux/export.h>
  25. #include <net/ipv6.h>
  26. #include <net/ndisc.h>
  27. #include <net/addrconf.h>
  28. #include <net/transp_v6.h>
  29. #include <net/ip6_route.h>
  30. #include <net/tcp_states.h>
  31. #include <net/dsfield.h>
  32. #include <linux/errqueue.h>
  33. #include <asm/uaccess.h>
  34. static bool ipv6_mapped_addr_any(const struct in6_addr *a)
  35. {
  36. return ipv6_addr_v4mapped(a) && (a->s6_addr32[3] == 0);
  37. }
  38. int ip6_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
  39. {
  40. struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr;
  41. struct inet_sock *inet = inet_sk(sk);
  42. struct ipv6_pinfo *np = inet6_sk(sk);
  43. struct in6_addr *daddr, *final_p, final;
  44. struct dst_entry *dst;
  45. struct flowi6 fl6;
  46. struct ip6_flowlabel *flowlabel = NULL;
  47. struct ipv6_txoptions *opt;
  48. int addr_type;
  49. int err;
  50. if (usin->sin6_family == AF_INET) {
  51. if (__ipv6_only_sock(sk))
  52. return -EAFNOSUPPORT;
  53. err = ip4_datagram_connect(sk, uaddr, addr_len);
  54. goto ipv4_connected;
  55. }
  56. if (addr_len < SIN6_LEN_RFC2133)
  57. return -EINVAL;
  58. if (usin->sin6_family != AF_INET6)
  59. return -EAFNOSUPPORT;
  60. memset(&fl6, 0, sizeof(fl6));
  61. if (np->sndflow) {
  62. fl6.flowlabel = usin->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  63. if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) {
  64. flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
  65. if (flowlabel == NULL)
  66. return -EINVAL;
  67. usin->sin6_addr = flowlabel->dst;
  68. }
  69. }
  70. addr_type = ipv6_addr_type(&usin->sin6_addr);
  71. if (addr_type == IPV6_ADDR_ANY) {
  72. /*
  73. * connect to self
  74. */
  75. usin->sin6_addr.s6_addr[15] = 0x01;
  76. }
  77. daddr = &usin->sin6_addr;
  78. if (addr_type == IPV6_ADDR_MAPPED) {
  79. struct sockaddr_in sin;
  80. if (__ipv6_only_sock(sk)) {
  81. err = -ENETUNREACH;
  82. goto out;
  83. }
  84. sin.sin_family = AF_INET;
  85. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  86. sin.sin_port = usin->sin6_port;
  87. err = ip4_datagram_connect(sk,
  88. (struct sockaddr *) &sin,
  89. sizeof(sin));
  90. ipv4_connected:
  91. if (err)
  92. goto out;
  93. ipv6_addr_set_v4mapped(inet->inet_daddr, &sk->sk_v6_daddr);
  94. if (ipv6_addr_any(&np->saddr) ||
  95. ipv6_mapped_addr_any(&np->saddr))
  96. ipv6_addr_set_v4mapped(inet->inet_saddr, &np->saddr);
  97. if (ipv6_addr_any(&sk->sk_v6_rcv_saddr) ||
  98. ipv6_mapped_addr_any(&sk->sk_v6_rcv_saddr)) {
  99. ipv6_addr_set_v4mapped(inet->inet_rcv_saddr,
  100. &sk->sk_v6_rcv_saddr);
  101. if (sk->sk_prot->rehash)
  102. sk->sk_prot->rehash(sk);
  103. }
  104. goto out;
  105. }
  106. if (__ipv6_addr_needs_scope_id(addr_type)) {
  107. if (addr_len >= sizeof(struct sockaddr_in6) &&
  108. usin->sin6_scope_id) {
  109. if (sk->sk_bound_dev_if &&
  110. sk->sk_bound_dev_if != usin->sin6_scope_id) {
  111. err = -EINVAL;
  112. goto out;
  113. }
  114. sk->sk_bound_dev_if = usin->sin6_scope_id;
  115. }
  116. if (!sk->sk_bound_dev_if && (addr_type & IPV6_ADDR_MULTICAST))
  117. sk->sk_bound_dev_if = np->mcast_oif;
  118. /* Connect to link-local address requires an interface */
  119. if (!sk->sk_bound_dev_if) {
  120. err = -EINVAL;
  121. goto out;
  122. }
  123. }
  124. sk->sk_v6_daddr = *daddr;
  125. np->flow_label = fl6.flowlabel;
  126. inet->inet_dport = usin->sin6_port;
  127. /*
  128. * Check for a route to destination an obtain the
  129. * destination cache for it.
  130. */
  131. fl6.flowi6_proto = sk->sk_protocol;
  132. fl6.daddr = sk->sk_v6_daddr;
  133. fl6.saddr = np->saddr;
  134. fl6.flowi6_oif = sk->sk_bound_dev_if;
  135. fl6.flowi6_mark = sk->sk_mark;
  136. fl6.fl6_dport = inet->inet_dport;
  137. fl6.fl6_sport = inet->inet_sport;
  138. if (!fl6.flowi6_oif && (addr_type&IPV6_ADDR_MULTICAST))
  139. fl6.flowi6_oif = np->mcast_oif;
  140. security_sk_classify_flow(sk, flowi6_to_flowi(&fl6));
  141. opt = flowlabel ? flowlabel->opt : np->opt;
  142. final_p = fl6_update_dst(&fl6, opt, &final);
  143. dst = ip6_dst_lookup_flow(sk, &fl6, final_p, true);
  144. err = 0;
  145. if (IS_ERR(dst)) {
  146. err = PTR_ERR(dst);
  147. goto out;
  148. }
  149. /* source address lookup done in ip6_dst_lookup */
  150. if (ipv6_addr_any(&np->saddr))
  151. np->saddr = fl6.saddr;
  152. if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) {
  153. sk->sk_v6_rcv_saddr = fl6.saddr;
  154. inet->inet_rcv_saddr = LOOPBACK4_IPV6;
  155. if (sk->sk_prot->rehash)
  156. sk->sk_prot->rehash(sk);
  157. }
  158. ip6_dst_store(sk, dst,
  159. ipv6_addr_equal(&fl6.daddr, &sk->sk_v6_daddr) ?
  160. &sk->sk_v6_daddr : NULL,
  161. #ifdef CONFIG_IPV6_SUBTREES
  162. ipv6_addr_equal(&fl6.saddr, &np->saddr) ?
  163. &np->saddr :
  164. #endif
  165. NULL);
  166. sk->sk_state = TCP_ESTABLISHED;
  167. out:
  168. fl6_sock_release(flowlabel);
  169. return err;
  170. }
  171. EXPORT_SYMBOL_GPL(ip6_datagram_connect);
  172. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err,
  173. __be16 port, u32 info, u8 *payload)
  174. {
  175. struct ipv6_pinfo *np = inet6_sk(sk);
  176. struct icmp6hdr *icmph = icmp6_hdr(skb);
  177. struct sock_exterr_skb *serr;
  178. if (!np->recverr)
  179. return;
  180. skb = skb_clone(skb, GFP_ATOMIC);
  181. if (!skb)
  182. return;
  183. skb->protocol = htons(ETH_P_IPV6);
  184. serr = SKB_EXT_ERR(skb);
  185. serr->ee.ee_errno = err;
  186. serr->ee.ee_origin = SO_EE_ORIGIN_ICMP6;
  187. serr->ee.ee_type = icmph->icmp6_type;
  188. serr->ee.ee_code = icmph->icmp6_code;
  189. serr->ee.ee_pad = 0;
  190. serr->ee.ee_info = info;
  191. serr->ee.ee_data = 0;
  192. serr->addr_offset = (u8 *)&(((struct ipv6hdr *)(icmph + 1))->daddr) -
  193. skb_network_header(skb);
  194. serr->port = port;
  195. __skb_pull(skb, payload - skb->data);
  196. skb_reset_transport_header(skb);
  197. if (sock_queue_err_skb(sk, skb))
  198. kfree_skb(skb);
  199. }
  200. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info)
  201. {
  202. struct ipv6_pinfo *np = inet6_sk(sk);
  203. struct sock_exterr_skb *serr;
  204. struct ipv6hdr *iph;
  205. struct sk_buff *skb;
  206. if (!np->recverr)
  207. return;
  208. skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
  209. if (!skb)
  210. return;
  211. skb->protocol = htons(ETH_P_IPV6);
  212. skb_put(skb, sizeof(struct ipv6hdr));
  213. skb_reset_network_header(skb);
  214. iph = ipv6_hdr(skb);
  215. iph->daddr = fl6->daddr;
  216. serr = SKB_EXT_ERR(skb);
  217. serr->ee.ee_errno = err;
  218. serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL;
  219. serr->ee.ee_type = 0;
  220. serr->ee.ee_code = 0;
  221. serr->ee.ee_pad = 0;
  222. serr->ee.ee_info = info;
  223. serr->ee.ee_data = 0;
  224. serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb);
  225. serr->port = fl6->fl6_dport;
  226. __skb_pull(skb, skb_tail_pointer(skb) - skb->data);
  227. skb_reset_transport_header(skb);
  228. if (sock_queue_err_skb(sk, skb))
  229. kfree_skb(skb);
  230. }
  231. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu)
  232. {
  233. struct ipv6_pinfo *np = inet6_sk(sk);
  234. struct ipv6hdr *iph;
  235. struct sk_buff *skb;
  236. struct ip6_mtuinfo *mtu_info;
  237. if (!np->rxopt.bits.rxpmtu)
  238. return;
  239. skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
  240. if (!skb)
  241. return;
  242. skb_put(skb, sizeof(struct ipv6hdr));
  243. skb_reset_network_header(skb);
  244. iph = ipv6_hdr(skb);
  245. iph->daddr = fl6->daddr;
  246. mtu_info = IP6CBMTU(skb);
  247. mtu_info->ip6m_mtu = mtu;
  248. mtu_info->ip6m_addr.sin6_family = AF_INET6;
  249. mtu_info->ip6m_addr.sin6_port = 0;
  250. mtu_info->ip6m_addr.sin6_flowinfo = 0;
  251. mtu_info->ip6m_addr.sin6_scope_id = fl6->flowi6_oif;
  252. mtu_info->ip6m_addr.sin6_addr = ipv6_hdr(skb)->daddr;
  253. __skb_pull(skb, skb_tail_pointer(skb) - skb->data);
  254. skb_reset_transport_header(skb);
  255. skb = xchg(&np->rxpmtu, skb);
  256. kfree_skb(skb);
  257. }
  258. /*
  259. * Handle MSG_ERRQUEUE
  260. */
  261. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len)
  262. {
  263. struct ipv6_pinfo *np = inet6_sk(sk);
  264. struct sock_exterr_skb *serr;
  265. struct sk_buff *skb, *skb2;
  266. struct sockaddr_in6 *sin;
  267. struct {
  268. struct sock_extended_err ee;
  269. struct sockaddr_in6 offender;
  270. } errhdr;
  271. int err;
  272. int copied;
  273. err = -EAGAIN;
  274. skb = skb_dequeue(&sk->sk_error_queue);
  275. if (skb == NULL)
  276. goto out;
  277. copied = skb->len;
  278. if (copied > len) {
  279. msg->msg_flags |= MSG_TRUNC;
  280. copied = len;
  281. }
  282. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  283. if (err)
  284. goto out_free_skb;
  285. sock_recv_timestamp(msg, sk, skb);
  286. serr = SKB_EXT_ERR(skb);
  287. sin = (struct sockaddr_in6 *)msg->msg_name;
  288. if (sin) {
  289. const unsigned char *nh = skb_network_header(skb);
  290. sin->sin6_family = AF_INET6;
  291. sin->sin6_flowinfo = 0;
  292. sin->sin6_port = serr->port;
  293. if (skb->protocol == htons(ETH_P_IPV6)) {
  294. const struct ipv6hdr *ip6h = container_of((struct in6_addr *)(nh + serr->addr_offset),
  295. struct ipv6hdr, daddr);
  296. sin->sin6_addr = ip6h->daddr;
  297. if (np->sndflow)
  298. sin->sin6_flowinfo = ip6_flowinfo(ip6h);
  299. sin->sin6_scope_id =
  300. ipv6_iface_scope_id(&sin->sin6_addr,
  301. IP6CB(skb)->iif);
  302. } else {
  303. ipv6_addr_set_v4mapped(*(__be32 *)(nh + serr->addr_offset),
  304. &sin->sin6_addr);
  305. sin->sin6_scope_id = 0;
  306. }
  307. *addr_len = sizeof(*sin);
  308. }
  309. memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err));
  310. sin = &errhdr.offender;
  311. sin->sin6_family = AF_UNSPEC;
  312. if (serr->ee.ee_origin != SO_EE_ORIGIN_LOCAL) {
  313. sin->sin6_family = AF_INET6;
  314. sin->sin6_flowinfo = 0;
  315. if (skb->protocol == htons(ETH_P_IPV6)) {
  316. sin->sin6_addr = ipv6_hdr(skb)->saddr;
  317. if (np->rxopt.all)
  318. ip6_datagram_recv_ctl(sk, msg, skb);
  319. sin->sin6_scope_id =
  320. ipv6_iface_scope_id(&sin->sin6_addr,
  321. IP6CB(skb)->iif);
  322. } else {
  323. struct inet_sock *inet = inet_sk(sk);
  324. ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr,
  325. &sin->sin6_addr);
  326. sin->sin6_scope_id = 0;
  327. if (inet->cmsg_flags)
  328. ip_cmsg_recv(msg, skb);
  329. }
  330. }
  331. put_cmsg(msg, SOL_IPV6, IPV6_RECVERR, sizeof(errhdr), &errhdr);
  332. /* Now we could try to dump offended packet options */
  333. msg->msg_flags |= MSG_ERRQUEUE;
  334. err = copied;
  335. /* Reset and regenerate socket error */
  336. spin_lock_bh(&sk->sk_error_queue.lock);
  337. sk->sk_err = 0;
  338. if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
  339. sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
  340. spin_unlock_bh(&sk->sk_error_queue.lock);
  341. sk->sk_error_report(sk);
  342. } else {
  343. spin_unlock_bh(&sk->sk_error_queue.lock);
  344. }
  345. out_free_skb:
  346. kfree_skb(skb);
  347. out:
  348. return err;
  349. }
  350. EXPORT_SYMBOL_GPL(ipv6_recv_error);
  351. /*
  352. * Handle IPV6_RECVPATHMTU
  353. */
  354. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  355. int *addr_len)
  356. {
  357. struct ipv6_pinfo *np = inet6_sk(sk);
  358. struct sk_buff *skb;
  359. struct sockaddr_in6 *sin;
  360. struct ip6_mtuinfo mtu_info;
  361. int err;
  362. int copied;
  363. err = -EAGAIN;
  364. skb = xchg(&np->rxpmtu, NULL);
  365. if (skb == NULL)
  366. goto out;
  367. copied = skb->len;
  368. if (copied > len) {
  369. msg->msg_flags |= MSG_TRUNC;
  370. copied = len;
  371. }
  372. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  373. if (err)
  374. goto out_free_skb;
  375. sock_recv_timestamp(msg, sk, skb);
  376. memcpy(&mtu_info, IP6CBMTU(skb), sizeof(mtu_info));
  377. sin = (struct sockaddr_in6 *)msg->msg_name;
  378. if (sin) {
  379. sin->sin6_family = AF_INET6;
  380. sin->sin6_flowinfo = 0;
  381. sin->sin6_port = 0;
  382. sin->sin6_scope_id = mtu_info.ip6m_addr.sin6_scope_id;
  383. sin->sin6_addr = mtu_info.ip6m_addr.sin6_addr;
  384. *addr_len = sizeof(*sin);
  385. }
  386. put_cmsg(msg, SOL_IPV6, IPV6_PATHMTU, sizeof(mtu_info), &mtu_info);
  387. err = copied;
  388. out_free_skb:
  389. kfree_skb(skb);
  390. out:
  391. return err;
  392. }
  393. int ip6_datagram_recv_ctl(struct sock *sk, struct msghdr *msg,
  394. struct sk_buff *skb)
  395. {
  396. struct ipv6_pinfo *np = inet6_sk(sk);
  397. struct inet6_skb_parm *opt = IP6CB(skb);
  398. unsigned char *nh = skb_network_header(skb);
  399. if (np->rxopt.bits.rxinfo) {
  400. struct in6_pktinfo src_info;
  401. src_info.ipi6_ifindex = opt->iif;
  402. src_info.ipi6_addr = ipv6_hdr(skb)->daddr;
  403. put_cmsg(msg, SOL_IPV6, IPV6_PKTINFO, sizeof(src_info), &src_info);
  404. }
  405. if (np->rxopt.bits.rxhlim) {
  406. int hlim = ipv6_hdr(skb)->hop_limit;
  407. put_cmsg(msg, SOL_IPV6, IPV6_HOPLIMIT, sizeof(hlim), &hlim);
  408. }
  409. if (np->rxopt.bits.rxtclass) {
  410. int tclass = ipv6_get_dsfield(ipv6_hdr(skb));
  411. put_cmsg(msg, SOL_IPV6, IPV6_TCLASS, sizeof(tclass), &tclass);
  412. }
  413. if (np->rxopt.bits.rxflow) {
  414. __be32 flowinfo = ip6_flowinfo((struct ipv6hdr *)nh);
  415. if (flowinfo)
  416. put_cmsg(msg, SOL_IPV6, IPV6_FLOWINFO, sizeof(flowinfo), &flowinfo);
  417. }
  418. /* HbH is allowed only once */
  419. if (np->rxopt.bits.hopopts && opt->hop) {
  420. u8 *ptr = nh + opt->hop;
  421. put_cmsg(msg, SOL_IPV6, IPV6_HOPOPTS, (ptr[1]+1)<<3, ptr);
  422. }
  423. if (opt->lastopt &&
  424. (np->rxopt.bits.dstopts || np->rxopt.bits.srcrt)) {
  425. /*
  426. * Silly enough, but we need to reparse in order to
  427. * report extension headers (except for HbH)
  428. * in order.
  429. *
  430. * Also note that IPV6_RECVRTHDRDSTOPTS is NOT
  431. * (and WILL NOT be) defined because
  432. * IPV6_RECVDSTOPTS is more generic. --yoshfuji
  433. */
  434. unsigned int off = sizeof(struct ipv6hdr);
  435. u8 nexthdr = ipv6_hdr(skb)->nexthdr;
  436. while (off <= opt->lastopt) {
  437. unsigned int len;
  438. u8 *ptr = nh + off;
  439. switch (nexthdr) {
  440. case IPPROTO_DSTOPTS:
  441. nexthdr = ptr[0];
  442. len = (ptr[1] + 1) << 3;
  443. if (np->rxopt.bits.dstopts)
  444. put_cmsg(msg, SOL_IPV6, IPV6_DSTOPTS, len, ptr);
  445. break;
  446. case IPPROTO_ROUTING:
  447. nexthdr = ptr[0];
  448. len = (ptr[1] + 1) << 3;
  449. if (np->rxopt.bits.srcrt)
  450. put_cmsg(msg, SOL_IPV6, IPV6_RTHDR, len, ptr);
  451. break;
  452. case IPPROTO_AH:
  453. nexthdr = ptr[0];
  454. len = (ptr[1] + 2) << 2;
  455. break;
  456. default:
  457. nexthdr = ptr[0];
  458. len = (ptr[1] + 1) << 3;
  459. break;
  460. }
  461. off += len;
  462. }
  463. }
  464. /* socket options in old style */
  465. if (np->rxopt.bits.rxoinfo) {
  466. struct in6_pktinfo src_info;
  467. src_info.ipi6_ifindex = opt->iif;
  468. src_info.ipi6_addr = ipv6_hdr(skb)->daddr;
  469. put_cmsg(msg, SOL_IPV6, IPV6_2292PKTINFO, sizeof(src_info), &src_info);
  470. }
  471. if (np->rxopt.bits.rxohlim) {
  472. int hlim = ipv6_hdr(skb)->hop_limit;
  473. put_cmsg(msg, SOL_IPV6, IPV6_2292HOPLIMIT, sizeof(hlim), &hlim);
  474. }
  475. if (np->rxopt.bits.ohopopts && opt->hop) {
  476. u8 *ptr = nh + opt->hop;
  477. put_cmsg(msg, SOL_IPV6, IPV6_2292HOPOPTS, (ptr[1]+1)<<3, ptr);
  478. }
  479. if (np->rxopt.bits.odstopts && opt->dst0) {
  480. u8 *ptr = nh + opt->dst0;
  481. put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr);
  482. }
  483. if (np->rxopt.bits.osrcrt && opt->srcrt) {
  484. struct ipv6_rt_hdr *rthdr = (struct ipv6_rt_hdr *)(nh + opt->srcrt);
  485. put_cmsg(msg, SOL_IPV6, IPV6_2292RTHDR, (rthdr->hdrlen+1) << 3, rthdr);
  486. }
  487. if (np->rxopt.bits.odstopts && opt->dst1) {
  488. u8 *ptr = nh + opt->dst1;
  489. put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr);
  490. }
  491. if (np->rxopt.bits.rxorigdstaddr) {
  492. struct sockaddr_in6 sin6;
  493. __be16 *ports = (__be16 *) skb_transport_header(skb);
  494. if (skb_transport_offset(skb) + 4 <= skb->len) {
  495. /* All current transport protocols have the port numbers in the
  496. * first four bytes of the transport header and this function is
  497. * written with this assumption in mind.
  498. */
  499. sin6.sin6_family = AF_INET6;
  500. sin6.sin6_addr = ipv6_hdr(skb)->daddr;
  501. sin6.sin6_port = ports[1];
  502. sin6.sin6_flowinfo = 0;
  503. sin6.sin6_scope_id =
  504. ipv6_iface_scope_id(&ipv6_hdr(skb)->daddr,
  505. opt->iif);
  506. put_cmsg(msg, SOL_IPV6, IPV6_ORIGDSTADDR, sizeof(sin6), &sin6);
  507. }
  508. }
  509. return 0;
  510. }
  511. EXPORT_SYMBOL_GPL(ip6_datagram_recv_ctl);
  512. int ip6_datagram_send_ctl(struct net *net, struct sock *sk,
  513. struct msghdr *msg, struct flowi6 *fl6,
  514. struct ipv6_txoptions *opt,
  515. int *hlimit, int *tclass, int *dontfrag)
  516. {
  517. struct in6_pktinfo *src_info;
  518. struct cmsghdr *cmsg;
  519. struct ipv6_rt_hdr *rthdr;
  520. struct ipv6_opt_hdr *hdr;
  521. int len;
  522. int err = 0;
  523. for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
  524. int addr_type;
  525. if (!CMSG_OK(msg, cmsg)) {
  526. err = -EINVAL;
  527. goto exit_f;
  528. }
  529. if (cmsg->cmsg_level != SOL_IPV6)
  530. continue;
  531. switch (cmsg->cmsg_type) {
  532. case IPV6_PKTINFO:
  533. case IPV6_2292PKTINFO:
  534. {
  535. struct net_device *dev = NULL;
  536. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct in6_pktinfo))) {
  537. err = -EINVAL;
  538. goto exit_f;
  539. }
  540. src_info = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  541. if (src_info->ipi6_ifindex) {
  542. if (fl6->flowi6_oif &&
  543. src_info->ipi6_ifindex != fl6->flowi6_oif)
  544. return -EINVAL;
  545. fl6->flowi6_oif = src_info->ipi6_ifindex;
  546. }
  547. addr_type = __ipv6_addr_type(&src_info->ipi6_addr);
  548. rcu_read_lock();
  549. if (fl6->flowi6_oif) {
  550. dev = dev_get_by_index_rcu(net, fl6->flowi6_oif);
  551. if (!dev) {
  552. rcu_read_unlock();
  553. return -ENODEV;
  554. }
  555. } else if (addr_type & IPV6_ADDR_LINKLOCAL) {
  556. rcu_read_unlock();
  557. return -EINVAL;
  558. }
  559. if (addr_type != IPV6_ADDR_ANY) {
  560. int strict = __ipv6_addr_src_scope(addr_type) <= IPV6_ADDR_SCOPE_LINKLOCAL;
  561. if (!(inet_sk(sk)->freebind || inet_sk(sk)->transparent) &&
  562. !ipv6_chk_addr(net, &src_info->ipi6_addr,
  563. strict ? dev : NULL, 0))
  564. err = -EINVAL;
  565. else
  566. fl6->saddr = src_info->ipi6_addr;
  567. }
  568. rcu_read_unlock();
  569. if (err)
  570. goto exit_f;
  571. break;
  572. }
  573. case IPV6_FLOWINFO:
  574. if (cmsg->cmsg_len < CMSG_LEN(4)) {
  575. err = -EINVAL;
  576. goto exit_f;
  577. }
  578. if (fl6->flowlabel&IPV6_FLOWINFO_MASK) {
  579. if ((fl6->flowlabel^*(__be32 *)CMSG_DATA(cmsg))&~IPV6_FLOWINFO_MASK) {
  580. err = -EINVAL;
  581. goto exit_f;
  582. }
  583. }
  584. fl6->flowlabel = IPV6_FLOWINFO_MASK & *(__be32 *)CMSG_DATA(cmsg);
  585. break;
  586. case IPV6_2292HOPOPTS:
  587. case IPV6_HOPOPTS:
  588. if (opt->hopopt || cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  589. err = -EINVAL;
  590. goto exit_f;
  591. }
  592. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  593. len = ((hdr->hdrlen + 1) << 3);
  594. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  595. err = -EINVAL;
  596. goto exit_f;
  597. }
  598. if (!ns_capable(net->user_ns, CAP_NET_RAW)) {
  599. err = -EPERM;
  600. goto exit_f;
  601. }
  602. opt->opt_nflen += len;
  603. opt->hopopt = hdr;
  604. break;
  605. case IPV6_2292DSTOPTS:
  606. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  607. err = -EINVAL;
  608. goto exit_f;
  609. }
  610. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  611. len = ((hdr->hdrlen + 1) << 3);
  612. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  613. err = -EINVAL;
  614. goto exit_f;
  615. }
  616. if (!ns_capable(net->user_ns, CAP_NET_RAW)) {
  617. err = -EPERM;
  618. goto exit_f;
  619. }
  620. if (opt->dst1opt) {
  621. err = -EINVAL;
  622. goto exit_f;
  623. }
  624. opt->opt_flen += len;
  625. opt->dst1opt = hdr;
  626. break;
  627. case IPV6_DSTOPTS:
  628. case IPV6_RTHDRDSTOPTS:
  629. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  630. err = -EINVAL;
  631. goto exit_f;
  632. }
  633. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  634. len = ((hdr->hdrlen + 1) << 3);
  635. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  636. err = -EINVAL;
  637. goto exit_f;
  638. }
  639. if (!ns_capable(net->user_ns, CAP_NET_RAW)) {
  640. err = -EPERM;
  641. goto exit_f;
  642. }
  643. if (cmsg->cmsg_type == IPV6_DSTOPTS) {
  644. opt->opt_flen += len;
  645. opt->dst1opt = hdr;
  646. } else {
  647. opt->opt_nflen += len;
  648. opt->dst0opt = hdr;
  649. }
  650. break;
  651. case IPV6_2292RTHDR:
  652. case IPV6_RTHDR:
  653. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_rt_hdr))) {
  654. err = -EINVAL;
  655. goto exit_f;
  656. }
  657. rthdr = (struct ipv6_rt_hdr *)CMSG_DATA(cmsg);
  658. switch (rthdr->type) {
  659. #if IS_ENABLED(CONFIG_IPV6_MIP6)
  660. case IPV6_SRCRT_TYPE_2:
  661. if (rthdr->hdrlen != 2 ||
  662. rthdr->segments_left != 1) {
  663. err = -EINVAL;
  664. goto exit_f;
  665. }
  666. break;
  667. #endif
  668. default:
  669. err = -EINVAL;
  670. goto exit_f;
  671. }
  672. len = ((rthdr->hdrlen + 1) << 3);
  673. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  674. err = -EINVAL;
  675. goto exit_f;
  676. }
  677. /* segments left must also match */
  678. if ((rthdr->hdrlen >> 1) != rthdr->segments_left) {
  679. err = -EINVAL;
  680. goto exit_f;
  681. }
  682. opt->opt_nflen += len;
  683. opt->srcrt = rthdr;
  684. if (cmsg->cmsg_type == IPV6_2292RTHDR && opt->dst1opt) {
  685. int dsthdrlen = ((opt->dst1opt->hdrlen+1)<<3);
  686. opt->opt_nflen += dsthdrlen;
  687. opt->dst0opt = opt->dst1opt;
  688. opt->dst1opt = NULL;
  689. opt->opt_flen -= dsthdrlen;
  690. }
  691. break;
  692. case IPV6_2292HOPLIMIT:
  693. case IPV6_HOPLIMIT:
  694. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) {
  695. err = -EINVAL;
  696. goto exit_f;
  697. }
  698. *hlimit = *(int *)CMSG_DATA(cmsg);
  699. if (*hlimit < -1 || *hlimit > 0xff) {
  700. err = -EINVAL;
  701. goto exit_f;
  702. }
  703. break;
  704. case IPV6_TCLASS:
  705. {
  706. int tc;
  707. err = -EINVAL;
  708. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int)))
  709. goto exit_f;
  710. tc = *(int *)CMSG_DATA(cmsg);
  711. if (tc < -1 || tc > 0xff)
  712. goto exit_f;
  713. err = 0;
  714. *tclass = tc;
  715. break;
  716. }
  717. case IPV6_DONTFRAG:
  718. {
  719. int df;
  720. err = -EINVAL;
  721. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int)))
  722. goto exit_f;
  723. df = *(int *)CMSG_DATA(cmsg);
  724. if (df < 0 || df > 1)
  725. goto exit_f;
  726. err = 0;
  727. *dontfrag = df;
  728. break;
  729. }
  730. default:
  731. LIMIT_NETDEBUG(KERN_DEBUG "invalid cmsg type: %d\n",
  732. cmsg->cmsg_type);
  733. err = -EINVAL;
  734. goto exit_f;
  735. }
  736. }
  737. exit_f:
  738. return err;
  739. }
  740. EXPORT_SYMBOL_GPL(ip6_datagram_send_ctl);
  741. void ip6_dgram_sock_seq_show(struct seq_file *seq, struct sock *sp,
  742. __u16 srcp, __u16 destp, int bucket)
  743. {
  744. const struct in6_addr *dest, *src;
  745. dest = &sp->sk_v6_daddr;
  746. src = &sp->sk_v6_rcv_saddr;
  747. seq_printf(seq,
  748. "%5d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X "
  749. "%02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d\n",
  750. bucket,
  751. src->s6_addr32[0], src->s6_addr32[1],
  752. src->s6_addr32[2], src->s6_addr32[3], srcp,
  753. dest->s6_addr32[0], dest->s6_addr32[1],
  754. dest->s6_addr32[2], dest->s6_addr32[3], destp,
  755. sp->sk_state,
  756. sk_wmem_alloc_get(sp),
  757. sk_rmem_alloc_get(sp),
  758. 0, 0L, 0,
  759. from_kuid_munged(seq_user_ns(seq), sock_i_uid(sp)),
  760. 0,
  761. sock_i_ino(sp),
  762. atomic_read(&sp->sk_refcnt), sp,
  763. atomic_read(&sp->sk_drops));
  764. }