ohci.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130
  1. /*
  2. * Driver for OHCI 1394 controllers
  3. *
  4. * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #include <linux/bug.h>
  21. #include <linux/compiler.h>
  22. #include <linux/delay.h>
  23. #include <linux/device.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/firewire.h>
  26. #include <linux/firewire-constants.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/io.h>
  30. #include <linux/kernel.h>
  31. #include <linux/list.h>
  32. #include <linux/mm.h>
  33. #include <linux/module.h>
  34. #include <linux/moduleparam.h>
  35. #include <linux/mutex.h>
  36. #include <linux/pci.h>
  37. #include <linux/pci_ids.h>
  38. #include <linux/slab.h>
  39. #include <linux/spinlock.h>
  40. #include <linux/string.h>
  41. #include <linux/time.h>
  42. #include <asm/byteorder.h>
  43. #include <asm/page.h>
  44. #include <asm/system.h>
  45. #ifdef CONFIG_PPC_PMAC
  46. #include <asm/pmac_feature.h>
  47. #endif
  48. #include "core.h"
  49. #include "ohci.h"
  50. #define DESCRIPTOR_OUTPUT_MORE 0
  51. #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
  52. #define DESCRIPTOR_INPUT_MORE (2 << 12)
  53. #define DESCRIPTOR_INPUT_LAST (3 << 12)
  54. #define DESCRIPTOR_STATUS (1 << 11)
  55. #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
  56. #define DESCRIPTOR_PING (1 << 7)
  57. #define DESCRIPTOR_YY (1 << 6)
  58. #define DESCRIPTOR_NO_IRQ (0 << 4)
  59. #define DESCRIPTOR_IRQ_ERROR (1 << 4)
  60. #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
  61. #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
  62. #define DESCRIPTOR_WAIT (3 << 0)
  63. struct descriptor {
  64. __le16 req_count;
  65. __le16 control;
  66. __le32 data_address;
  67. __le32 branch_address;
  68. __le16 res_count;
  69. __le16 transfer_status;
  70. } __attribute__((aligned(16)));
  71. #define CONTROL_SET(regs) (regs)
  72. #define CONTROL_CLEAR(regs) ((regs) + 4)
  73. #define COMMAND_PTR(regs) ((regs) + 12)
  74. #define CONTEXT_MATCH(regs) ((regs) + 16)
  75. struct ar_buffer {
  76. struct descriptor descriptor;
  77. struct ar_buffer *next;
  78. __le32 data[0];
  79. };
  80. struct ar_context {
  81. struct fw_ohci *ohci;
  82. struct ar_buffer *current_buffer;
  83. struct ar_buffer *last_buffer;
  84. void *pointer;
  85. u32 regs;
  86. struct tasklet_struct tasklet;
  87. };
  88. struct context;
  89. typedef int (*descriptor_callback_t)(struct context *ctx,
  90. struct descriptor *d,
  91. struct descriptor *last);
  92. /*
  93. * A buffer that contains a block of DMA-able coherent memory used for
  94. * storing a portion of a DMA descriptor program.
  95. */
  96. struct descriptor_buffer {
  97. struct list_head list;
  98. dma_addr_t buffer_bus;
  99. size_t buffer_size;
  100. size_t used;
  101. struct descriptor buffer[0];
  102. };
  103. struct context {
  104. struct fw_ohci *ohci;
  105. u32 regs;
  106. int total_allocation;
  107. /*
  108. * List of page-sized buffers for storing DMA descriptors.
  109. * Head of list contains buffers in use and tail of list contains
  110. * free buffers.
  111. */
  112. struct list_head buffer_list;
  113. /*
  114. * Pointer to a buffer inside buffer_list that contains the tail
  115. * end of the current DMA program.
  116. */
  117. struct descriptor_buffer *buffer_tail;
  118. /*
  119. * The descriptor containing the branch address of the first
  120. * descriptor that has not yet been filled by the device.
  121. */
  122. struct descriptor *last;
  123. /*
  124. * The last descriptor in the DMA program. It contains the branch
  125. * address that must be updated upon appending a new descriptor.
  126. */
  127. struct descriptor *prev;
  128. descriptor_callback_t callback;
  129. struct tasklet_struct tasklet;
  130. };
  131. #define IT_HEADER_SY(v) ((v) << 0)
  132. #define IT_HEADER_TCODE(v) ((v) << 4)
  133. #define IT_HEADER_CHANNEL(v) ((v) << 8)
  134. #define IT_HEADER_TAG(v) ((v) << 14)
  135. #define IT_HEADER_SPEED(v) ((v) << 16)
  136. #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
  137. struct iso_context {
  138. struct fw_iso_context base;
  139. struct context context;
  140. int excess_bytes;
  141. void *header;
  142. size_t header_length;
  143. };
  144. #define CONFIG_ROM_SIZE 1024
  145. struct fw_ohci {
  146. struct fw_card card;
  147. __iomem char *registers;
  148. int node_id;
  149. int generation;
  150. int request_generation; /* for timestamping incoming requests */
  151. unsigned quirks;
  152. unsigned int pri_req_max;
  153. u32 bus_time;
  154. bool is_root;
  155. bool csr_state_setclear_abdicate;
  156. /*
  157. * Spinlock for accessing fw_ohci data. Never call out of
  158. * this driver with this lock held.
  159. */
  160. spinlock_t lock;
  161. struct mutex phy_reg_mutex;
  162. struct ar_context ar_request_ctx;
  163. struct ar_context ar_response_ctx;
  164. struct context at_request_ctx;
  165. struct context at_response_ctx;
  166. u32 it_context_mask; /* unoccupied IT contexts */
  167. struct iso_context *it_context_list;
  168. u64 ir_context_channels; /* unoccupied channels */
  169. u32 ir_context_mask; /* unoccupied IR contexts */
  170. struct iso_context *ir_context_list;
  171. u64 mc_channels; /* channels in use by the multichannel IR context */
  172. bool mc_allocated;
  173. __be32 *config_rom;
  174. dma_addr_t config_rom_bus;
  175. __be32 *next_config_rom;
  176. dma_addr_t next_config_rom_bus;
  177. __be32 next_header;
  178. __le32 *self_id_cpu;
  179. dma_addr_t self_id_bus;
  180. struct tasklet_struct bus_reset_tasklet;
  181. u32 self_id_buffer[512];
  182. };
  183. static inline struct fw_ohci *fw_ohci(struct fw_card *card)
  184. {
  185. return container_of(card, struct fw_ohci, card);
  186. }
  187. #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
  188. #define IR_CONTEXT_BUFFER_FILL 0x80000000
  189. #define IR_CONTEXT_ISOCH_HEADER 0x40000000
  190. #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
  191. #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
  192. #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
  193. #define CONTEXT_RUN 0x8000
  194. #define CONTEXT_WAKE 0x1000
  195. #define CONTEXT_DEAD 0x0800
  196. #define CONTEXT_ACTIVE 0x0400
  197. #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
  198. #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
  199. #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
  200. #define OHCI1394_REGISTER_SIZE 0x800
  201. #define OHCI_LOOP_COUNT 500
  202. #define OHCI1394_PCI_HCI_Control 0x40
  203. #define SELF_ID_BUF_SIZE 0x800
  204. #define OHCI_TCODE_PHY_PACKET 0x0e
  205. #define OHCI_VERSION_1_1 0x010010
  206. static char ohci_driver_name[] = KBUILD_MODNAME;
  207. #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
  208. #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
  209. #define QUIRK_CYCLE_TIMER 1
  210. #define QUIRK_RESET_PACKET 2
  211. #define QUIRK_BE_HEADERS 4
  212. #define QUIRK_NO_1394A 8
  213. #define QUIRK_NO_MSI 16
  214. /* In case of multiple matches in ohci_quirks[], only the first one is used. */
  215. static const struct {
  216. unsigned short vendor, device, flags;
  217. } ohci_quirks[] = {
  218. {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
  219. QUIRK_RESET_PACKET |
  220. QUIRK_NO_1394A},
  221. {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
  222. {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
  223. {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
  224. {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
  225. {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
  226. {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
  227. {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
  228. };
  229. /* This overrides anything that was found in ohci_quirks[]. */
  230. static int param_quirks;
  231. module_param_named(quirks, param_quirks, int, 0644);
  232. MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
  233. ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
  234. ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
  235. ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
  236. ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
  237. ", disable MSI = " __stringify(QUIRK_NO_MSI)
  238. ")");
  239. #define OHCI_PARAM_DEBUG_AT_AR 1
  240. #define OHCI_PARAM_DEBUG_SELFIDS 2
  241. #define OHCI_PARAM_DEBUG_IRQS 4
  242. #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
  243. #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
  244. static int param_debug;
  245. module_param_named(debug, param_debug, int, 0644);
  246. MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
  247. ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
  248. ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
  249. ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
  250. ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
  251. ", or a combination, or all = -1)");
  252. static void log_irqs(u32 evt)
  253. {
  254. if (likely(!(param_debug &
  255. (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
  256. return;
  257. if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
  258. !(evt & OHCI1394_busReset))
  259. return;
  260. fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
  261. evt & OHCI1394_selfIDComplete ? " selfID" : "",
  262. evt & OHCI1394_RQPkt ? " AR_req" : "",
  263. evt & OHCI1394_RSPkt ? " AR_resp" : "",
  264. evt & OHCI1394_reqTxComplete ? " AT_req" : "",
  265. evt & OHCI1394_respTxComplete ? " AT_resp" : "",
  266. evt & OHCI1394_isochRx ? " IR" : "",
  267. evt & OHCI1394_isochTx ? " IT" : "",
  268. evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
  269. evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
  270. evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
  271. evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
  272. evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
  273. evt & OHCI1394_busReset ? " busReset" : "",
  274. evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
  275. OHCI1394_RSPkt | OHCI1394_reqTxComplete |
  276. OHCI1394_respTxComplete | OHCI1394_isochRx |
  277. OHCI1394_isochTx | OHCI1394_postedWriteErr |
  278. OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
  279. OHCI1394_cycleInconsistent |
  280. OHCI1394_regAccessFail | OHCI1394_busReset)
  281. ? " ?" : "");
  282. }
  283. static const char *speed[] = {
  284. [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
  285. };
  286. static const char *power[] = {
  287. [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
  288. [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
  289. };
  290. static const char port[] = { '.', '-', 'p', 'c', };
  291. static char _p(u32 *s, int shift)
  292. {
  293. return port[*s >> shift & 3];
  294. }
  295. static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
  296. {
  297. if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
  298. return;
  299. fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
  300. self_id_count, generation, node_id);
  301. for (; self_id_count--; ++s)
  302. if ((*s & 1 << 23) == 0)
  303. fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
  304. "%s gc=%d %s %s%s%s\n",
  305. *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
  306. speed[*s >> 14 & 3], *s >> 16 & 63,
  307. power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
  308. *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
  309. else
  310. fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
  311. *s, *s >> 24 & 63,
  312. _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
  313. _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
  314. }
  315. static const char *evts[] = {
  316. [0x00] = "evt_no_status", [0x01] = "-reserved-",
  317. [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
  318. [0x04] = "evt_underrun", [0x05] = "evt_overrun",
  319. [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
  320. [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
  321. [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
  322. [0x0c] = "-reserved-", [0x0d] = "-reserved-",
  323. [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
  324. [0x10] = "-reserved-", [0x11] = "ack_complete",
  325. [0x12] = "ack_pending ", [0x13] = "-reserved-",
  326. [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
  327. [0x16] = "ack_busy_B", [0x17] = "-reserved-",
  328. [0x18] = "-reserved-", [0x19] = "-reserved-",
  329. [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
  330. [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
  331. [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
  332. [0x20] = "pending/cancelled",
  333. };
  334. static const char *tcodes[] = {
  335. [0x0] = "QW req", [0x1] = "BW req",
  336. [0x2] = "W resp", [0x3] = "-reserved-",
  337. [0x4] = "QR req", [0x5] = "BR req",
  338. [0x6] = "QR resp", [0x7] = "BR resp",
  339. [0x8] = "cycle start", [0x9] = "Lk req",
  340. [0xa] = "async stream packet", [0xb] = "Lk resp",
  341. [0xc] = "-reserved-", [0xd] = "-reserved-",
  342. [0xe] = "link internal", [0xf] = "-reserved-",
  343. };
  344. static const char *phys[] = {
  345. [0x0] = "phy config packet", [0x1] = "link-on packet",
  346. [0x2] = "self-id packet", [0x3] = "-reserved-",
  347. };
  348. static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
  349. {
  350. int tcode = header[0] >> 4 & 0xf;
  351. char specific[12];
  352. if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
  353. return;
  354. if (unlikely(evt >= ARRAY_SIZE(evts)))
  355. evt = 0x1f;
  356. if (evt == OHCI1394_evt_bus_reset) {
  357. fw_notify("A%c evt_bus_reset, generation %d\n",
  358. dir, (header[2] >> 16) & 0xff);
  359. return;
  360. }
  361. if (header[0] == ~header[1]) {
  362. fw_notify("A%c %s, %s, %08x\n",
  363. dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
  364. return;
  365. }
  366. switch (tcode) {
  367. case 0x0: case 0x6: case 0x8:
  368. snprintf(specific, sizeof(specific), " = %08x",
  369. be32_to_cpu((__force __be32)header[3]));
  370. break;
  371. case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
  372. snprintf(specific, sizeof(specific), " %x,%x",
  373. header[3] >> 16, header[3] & 0xffff);
  374. break;
  375. default:
  376. specific[0] = '\0';
  377. }
  378. switch (tcode) {
  379. case 0xe: case 0xa:
  380. fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
  381. break;
  382. case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
  383. fw_notify("A%c spd %x tl %02x, "
  384. "%04x -> %04x, %s, "
  385. "%s, %04x%08x%s\n",
  386. dir, speed, header[0] >> 10 & 0x3f,
  387. header[1] >> 16, header[0] >> 16, evts[evt],
  388. tcodes[tcode], header[1] & 0xffff, header[2], specific);
  389. break;
  390. default:
  391. fw_notify("A%c spd %x tl %02x, "
  392. "%04x -> %04x, %s, "
  393. "%s%s\n",
  394. dir, speed, header[0] >> 10 & 0x3f,
  395. header[1] >> 16, header[0] >> 16, evts[evt],
  396. tcodes[tcode], specific);
  397. }
  398. }
  399. #else
  400. #define param_debug 0
  401. static inline void log_irqs(u32 evt) {}
  402. static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
  403. static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
  404. #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
  405. static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
  406. {
  407. writel(data, ohci->registers + offset);
  408. }
  409. static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
  410. {
  411. return readl(ohci->registers + offset);
  412. }
  413. static inline void flush_writes(const struct fw_ohci *ohci)
  414. {
  415. /* Do a dummy read to flush writes. */
  416. reg_read(ohci, OHCI1394_Version);
  417. }
  418. static int read_phy_reg(struct fw_ohci *ohci, int addr)
  419. {
  420. u32 val;
  421. int i;
  422. reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
  423. for (i = 0; i < 3 + 100; i++) {
  424. val = reg_read(ohci, OHCI1394_PhyControl);
  425. if (val & OHCI1394_PhyControl_ReadDone)
  426. return OHCI1394_PhyControl_ReadData(val);
  427. /*
  428. * Try a few times without waiting. Sleeping is necessary
  429. * only when the link/PHY interface is busy.
  430. */
  431. if (i >= 3)
  432. msleep(1);
  433. }
  434. fw_error("failed to read phy reg\n");
  435. return -EBUSY;
  436. }
  437. static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
  438. {
  439. int i;
  440. reg_write(ohci, OHCI1394_PhyControl,
  441. OHCI1394_PhyControl_Write(addr, val));
  442. for (i = 0; i < 3 + 100; i++) {
  443. val = reg_read(ohci, OHCI1394_PhyControl);
  444. if (!(val & OHCI1394_PhyControl_WritePending))
  445. return 0;
  446. if (i >= 3)
  447. msleep(1);
  448. }
  449. fw_error("failed to write phy reg\n");
  450. return -EBUSY;
  451. }
  452. static int update_phy_reg(struct fw_ohci *ohci, int addr,
  453. int clear_bits, int set_bits)
  454. {
  455. int ret = read_phy_reg(ohci, addr);
  456. if (ret < 0)
  457. return ret;
  458. /*
  459. * The interrupt status bits are cleared by writing a one bit.
  460. * Avoid clearing them unless explicitly requested in set_bits.
  461. */
  462. if (addr == 5)
  463. clear_bits |= PHY_INT_STATUS_BITS;
  464. return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
  465. }
  466. static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
  467. {
  468. int ret;
  469. ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
  470. if (ret < 0)
  471. return ret;
  472. return read_phy_reg(ohci, addr);
  473. }
  474. static int ohci_read_phy_reg(struct fw_card *card, int addr)
  475. {
  476. struct fw_ohci *ohci = fw_ohci(card);
  477. int ret;
  478. mutex_lock(&ohci->phy_reg_mutex);
  479. ret = read_phy_reg(ohci, addr);
  480. mutex_unlock(&ohci->phy_reg_mutex);
  481. return ret;
  482. }
  483. static int ohci_update_phy_reg(struct fw_card *card, int addr,
  484. int clear_bits, int set_bits)
  485. {
  486. struct fw_ohci *ohci = fw_ohci(card);
  487. int ret;
  488. mutex_lock(&ohci->phy_reg_mutex);
  489. ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
  490. mutex_unlock(&ohci->phy_reg_mutex);
  491. return ret;
  492. }
  493. static int ar_context_add_page(struct ar_context *ctx)
  494. {
  495. struct device *dev = ctx->ohci->card.device;
  496. struct ar_buffer *ab;
  497. dma_addr_t uninitialized_var(ab_bus);
  498. size_t offset;
  499. ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
  500. if (ab == NULL)
  501. return -ENOMEM;
  502. ab->next = NULL;
  503. memset(&ab->descriptor, 0, sizeof(ab->descriptor));
  504. ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
  505. DESCRIPTOR_STATUS |
  506. DESCRIPTOR_BRANCH_ALWAYS);
  507. offset = offsetof(struct ar_buffer, data);
  508. ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
  509. ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
  510. ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
  511. ab->descriptor.branch_address = 0;
  512. wmb(); /* finish init of new descriptors before branch_address update */
  513. ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
  514. ctx->last_buffer->next = ab;
  515. ctx->last_buffer = ab;
  516. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
  517. flush_writes(ctx->ohci);
  518. return 0;
  519. }
  520. static void ar_context_release(struct ar_context *ctx)
  521. {
  522. struct ar_buffer *ab, *ab_next;
  523. size_t offset;
  524. dma_addr_t ab_bus;
  525. for (ab = ctx->current_buffer; ab; ab = ab_next) {
  526. ab_next = ab->next;
  527. offset = offsetof(struct ar_buffer, data);
  528. ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
  529. dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
  530. ab, ab_bus);
  531. }
  532. }
  533. #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
  534. #define cond_le32_to_cpu(v) \
  535. (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
  536. #else
  537. #define cond_le32_to_cpu(v) le32_to_cpu(v)
  538. #endif
  539. static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
  540. {
  541. struct fw_ohci *ohci = ctx->ohci;
  542. struct fw_packet p;
  543. u32 status, length, tcode;
  544. int evt;
  545. p.header[0] = cond_le32_to_cpu(buffer[0]);
  546. p.header[1] = cond_le32_to_cpu(buffer[1]);
  547. p.header[2] = cond_le32_to_cpu(buffer[2]);
  548. tcode = (p.header[0] >> 4) & 0x0f;
  549. switch (tcode) {
  550. case TCODE_WRITE_QUADLET_REQUEST:
  551. case TCODE_READ_QUADLET_RESPONSE:
  552. p.header[3] = (__force __u32) buffer[3];
  553. p.header_length = 16;
  554. p.payload_length = 0;
  555. break;
  556. case TCODE_READ_BLOCK_REQUEST :
  557. p.header[3] = cond_le32_to_cpu(buffer[3]);
  558. p.header_length = 16;
  559. p.payload_length = 0;
  560. break;
  561. case TCODE_WRITE_BLOCK_REQUEST:
  562. case TCODE_READ_BLOCK_RESPONSE:
  563. case TCODE_LOCK_REQUEST:
  564. case TCODE_LOCK_RESPONSE:
  565. p.header[3] = cond_le32_to_cpu(buffer[3]);
  566. p.header_length = 16;
  567. p.payload_length = p.header[3] >> 16;
  568. break;
  569. case TCODE_WRITE_RESPONSE:
  570. case TCODE_READ_QUADLET_REQUEST:
  571. case OHCI_TCODE_PHY_PACKET:
  572. p.header_length = 12;
  573. p.payload_length = 0;
  574. break;
  575. default:
  576. /* FIXME: Stop context, discard everything, and restart? */
  577. p.header_length = 0;
  578. p.payload_length = 0;
  579. }
  580. p.payload = (void *) buffer + p.header_length;
  581. /* FIXME: What to do about evt_* errors? */
  582. length = (p.header_length + p.payload_length + 3) / 4;
  583. status = cond_le32_to_cpu(buffer[length]);
  584. evt = (status >> 16) & 0x1f;
  585. p.ack = evt - 16;
  586. p.speed = (status >> 21) & 0x7;
  587. p.timestamp = status & 0xffff;
  588. p.generation = ohci->request_generation;
  589. log_ar_at_event('R', p.speed, p.header, evt);
  590. /*
  591. * Several controllers, notably from NEC and VIA, forget to
  592. * write ack_complete status at PHY packet reception.
  593. */
  594. if (evt == OHCI1394_evt_no_status &&
  595. (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
  596. p.ack = ACK_COMPLETE;
  597. /*
  598. * The OHCI bus reset handler synthesizes a PHY packet with
  599. * the new generation number when a bus reset happens (see
  600. * section 8.4.2.3). This helps us determine when a request
  601. * was received and make sure we send the response in the same
  602. * generation. We only need this for requests; for responses
  603. * we use the unique tlabel for finding the matching
  604. * request.
  605. *
  606. * Alas some chips sometimes emit bus reset packets with a
  607. * wrong generation. We set the correct generation for these
  608. * at a slightly incorrect time (in bus_reset_tasklet).
  609. */
  610. if (evt == OHCI1394_evt_bus_reset) {
  611. if (!(ohci->quirks & QUIRK_RESET_PACKET))
  612. ohci->request_generation = (p.header[2] >> 16) & 0xff;
  613. } else if (ctx == &ohci->ar_request_ctx) {
  614. fw_core_handle_request(&ohci->card, &p);
  615. } else {
  616. fw_core_handle_response(&ohci->card, &p);
  617. }
  618. return buffer + length + 1;
  619. }
  620. static void ar_context_tasklet(unsigned long data)
  621. {
  622. struct ar_context *ctx = (struct ar_context *)data;
  623. struct fw_ohci *ohci = ctx->ohci;
  624. struct ar_buffer *ab;
  625. struct descriptor *d;
  626. void *buffer, *end;
  627. ab = ctx->current_buffer;
  628. d = &ab->descriptor;
  629. if (d->res_count == 0) {
  630. size_t size, size2, rest, pktsize, size3, offset;
  631. dma_addr_t start_bus;
  632. void *start;
  633. /*
  634. * This descriptor is finished and we may have a
  635. * packet split across this and the next buffer. We
  636. * reuse the page for reassembling the split packet.
  637. */
  638. offset = offsetof(struct ar_buffer, data);
  639. start = buffer = ab;
  640. start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
  641. ab = ab->next;
  642. d = &ab->descriptor;
  643. size = buffer + PAGE_SIZE - ctx->pointer;
  644. /* valid buffer data in the next page */
  645. rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
  646. /* what actually fits in this page */
  647. size2 = min(rest, (size_t)PAGE_SIZE - size);
  648. memmove(buffer, ctx->pointer, size);
  649. memcpy(buffer + size, ab->data, size2);
  650. ctx->current_buffer = ab;
  651. ctx->pointer = (void *) ab->data + rest;
  652. while (size > 0) {
  653. void *next = handle_ar_packet(ctx, buffer);
  654. pktsize = next - buffer;
  655. if (pktsize >= size) {
  656. /*
  657. * We have handled all the data that was
  658. * originally in this page, so we can now
  659. * continue in the next page.
  660. */
  661. buffer = next;
  662. break;
  663. }
  664. /* move the next packet to the start of the buffer */
  665. memmove(buffer, next, size + size2 - pktsize);
  666. size -= pktsize;
  667. /* fill up this page again */
  668. size3 = min(rest - size2,
  669. (size_t)PAGE_SIZE - size - size2);
  670. memcpy(buffer + size + size2,
  671. (void *) ab->data + size2, size3);
  672. size2 += size3;
  673. }
  674. /* handle the packets that are fully in the next page */
  675. buffer = (void *) ab->data + (buffer - (start + size));
  676. end = (void *) ab->data + rest;
  677. while (buffer < end)
  678. buffer = handle_ar_packet(ctx, buffer);
  679. dma_free_coherent(ohci->card.device, PAGE_SIZE,
  680. start, start_bus);
  681. ar_context_add_page(ctx);
  682. } else {
  683. buffer = ctx->pointer;
  684. ctx->pointer = end =
  685. (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
  686. while (buffer < end)
  687. buffer = handle_ar_packet(ctx, buffer);
  688. }
  689. }
  690. static int ar_context_init(struct ar_context *ctx,
  691. struct fw_ohci *ohci, u32 regs)
  692. {
  693. struct ar_buffer ab;
  694. ctx->regs = regs;
  695. ctx->ohci = ohci;
  696. ctx->last_buffer = &ab;
  697. tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
  698. ar_context_add_page(ctx);
  699. ar_context_add_page(ctx);
  700. ctx->current_buffer = ab.next;
  701. ctx->pointer = ctx->current_buffer->data;
  702. return 0;
  703. }
  704. static void ar_context_run(struct ar_context *ctx)
  705. {
  706. struct ar_buffer *ab = ctx->current_buffer;
  707. dma_addr_t ab_bus;
  708. size_t offset;
  709. offset = offsetof(struct ar_buffer, data);
  710. ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
  711. reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
  712. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
  713. flush_writes(ctx->ohci);
  714. }
  715. static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
  716. {
  717. int b, key;
  718. b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
  719. key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
  720. /* figure out which descriptor the branch address goes in */
  721. if (z == 2 && (b == 3 || key == 2))
  722. return d;
  723. else
  724. return d + z - 1;
  725. }
  726. static void context_tasklet(unsigned long data)
  727. {
  728. struct context *ctx = (struct context *) data;
  729. struct descriptor *d, *last;
  730. u32 address;
  731. int z;
  732. struct descriptor_buffer *desc;
  733. desc = list_entry(ctx->buffer_list.next,
  734. struct descriptor_buffer, list);
  735. last = ctx->last;
  736. while (last->branch_address != 0) {
  737. struct descriptor_buffer *old_desc = desc;
  738. address = le32_to_cpu(last->branch_address);
  739. z = address & 0xf;
  740. address &= ~0xf;
  741. /* If the branch address points to a buffer outside of the
  742. * current buffer, advance to the next buffer. */
  743. if (address < desc->buffer_bus ||
  744. address >= desc->buffer_bus + desc->used)
  745. desc = list_entry(desc->list.next,
  746. struct descriptor_buffer, list);
  747. d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
  748. last = find_branch_descriptor(d, z);
  749. if (!ctx->callback(ctx, d, last))
  750. break;
  751. if (old_desc != desc) {
  752. /* If we've advanced to the next buffer, move the
  753. * previous buffer to the free list. */
  754. unsigned long flags;
  755. old_desc->used = 0;
  756. spin_lock_irqsave(&ctx->ohci->lock, flags);
  757. list_move_tail(&old_desc->list, &ctx->buffer_list);
  758. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  759. }
  760. ctx->last = last;
  761. }
  762. }
  763. /*
  764. * Allocate a new buffer and add it to the list of free buffers for this
  765. * context. Must be called with ohci->lock held.
  766. */
  767. static int context_add_buffer(struct context *ctx)
  768. {
  769. struct descriptor_buffer *desc;
  770. dma_addr_t uninitialized_var(bus_addr);
  771. int offset;
  772. /*
  773. * 16MB of descriptors should be far more than enough for any DMA
  774. * program. This will catch run-away userspace or DoS attacks.
  775. */
  776. if (ctx->total_allocation >= 16*1024*1024)
  777. return -ENOMEM;
  778. desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
  779. &bus_addr, GFP_ATOMIC);
  780. if (!desc)
  781. return -ENOMEM;
  782. offset = (void *)&desc->buffer - (void *)desc;
  783. desc->buffer_size = PAGE_SIZE - offset;
  784. desc->buffer_bus = bus_addr + offset;
  785. desc->used = 0;
  786. list_add_tail(&desc->list, &ctx->buffer_list);
  787. ctx->total_allocation += PAGE_SIZE;
  788. return 0;
  789. }
  790. static int context_init(struct context *ctx, struct fw_ohci *ohci,
  791. u32 regs, descriptor_callback_t callback)
  792. {
  793. ctx->ohci = ohci;
  794. ctx->regs = regs;
  795. ctx->total_allocation = 0;
  796. INIT_LIST_HEAD(&ctx->buffer_list);
  797. if (context_add_buffer(ctx) < 0)
  798. return -ENOMEM;
  799. ctx->buffer_tail = list_entry(ctx->buffer_list.next,
  800. struct descriptor_buffer, list);
  801. tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
  802. ctx->callback = callback;
  803. /*
  804. * We put a dummy descriptor in the buffer that has a NULL
  805. * branch address and looks like it's been sent. That way we
  806. * have a descriptor to append DMA programs to.
  807. */
  808. memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
  809. ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
  810. ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
  811. ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
  812. ctx->last = ctx->buffer_tail->buffer;
  813. ctx->prev = ctx->buffer_tail->buffer;
  814. return 0;
  815. }
  816. static void context_release(struct context *ctx)
  817. {
  818. struct fw_card *card = &ctx->ohci->card;
  819. struct descriptor_buffer *desc, *tmp;
  820. list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
  821. dma_free_coherent(card->device, PAGE_SIZE, desc,
  822. desc->buffer_bus -
  823. ((void *)&desc->buffer - (void *)desc));
  824. }
  825. /* Must be called with ohci->lock held */
  826. static struct descriptor *context_get_descriptors(struct context *ctx,
  827. int z, dma_addr_t *d_bus)
  828. {
  829. struct descriptor *d = NULL;
  830. struct descriptor_buffer *desc = ctx->buffer_tail;
  831. if (z * sizeof(*d) > desc->buffer_size)
  832. return NULL;
  833. if (z * sizeof(*d) > desc->buffer_size - desc->used) {
  834. /* No room for the descriptor in this buffer, so advance to the
  835. * next one. */
  836. if (desc->list.next == &ctx->buffer_list) {
  837. /* If there is no free buffer next in the list,
  838. * allocate one. */
  839. if (context_add_buffer(ctx) < 0)
  840. return NULL;
  841. }
  842. desc = list_entry(desc->list.next,
  843. struct descriptor_buffer, list);
  844. ctx->buffer_tail = desc;
  845. }
  846. d = desc->buffer + desc->used / sizeof(*d);
  847. memset(d, 0, z * sizeof(*d));
  848. *d_bus = desc->buffer_bus + desc->used;
  849. return d;
  850. }
  851. static void context_run(struct context *ctx, u32 extra)
  852. {
  853. struct fw_ohci *ohci = ctx->ohci;
  854. reg_write(ohci, COMMAND_PTR(ctx->regs),
  855. le32_to_cpu(ctx->last->branch_address));
  856. reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
  857. reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
  858. flush_writes(ohci);
  859. }
  860. static void context_append(struct context *ctx,
  861. struct descriptor *d, int z, int extra)
  862. {
  863. dma_addr_t d_bus;
  864. struct descriptor_buffer *desc = ctx->buffer_tail;
  865. d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
  866. desc->used += (z + extra) * sizeof(*d);
  867. wmb(); /* finish init of new descriptors before branch_address update */
  868. ctx->prev->branch_address = cpu_to_le32(d_bus | z);
  869. ctx->prev = find_branch_descriptor(d, z);
  870. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
  871. flush_writes(ctx->ohci);
  872. }
  873. static void context_stop(struct context *ctx)
  874. {
  875. u32 reg;
  876. int i;
  877. reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
  878. flush_writes(ctx->ohci);
  879. for (i = 0; i < 10; i++) {
  880. reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
  881. if ((reg & CONTEXT_ACTIVE) == 0)
  882. return;
  883. mdelay(1);
  884. }
  885. fw_error("Error: DMA context still active (0x%08x)\n", reg);
  886. }
  887. struct driver_data {
  888. struct fw_packet *packet;
  889. };
  890. /*
  891. * This function apppends a packet to the DMA queue for transmission.
  892. * Must always be called with the ochi->lock held to ensure proper
  893. * generation handling and locking around packet queue manipulation.
  894. */
  895. static int at_context_queue_packet(struct context *ctx,
  896. struct fw_packet *packet)
  897. {
  898. struct fw_ohci *ohci = ctx->ohci;
  899. dma_addr_t d_bus, uninitialized_var(payload_bus);
  900. struct driver_data *driver_data;
  901. struct descriptor *d, *last;
  902. __le32 *header;
  903. int z, tcode;
  904. u32 reg;
  905. d = context_get_descriptors(ctx, 4, &d_bus);
  906. if (d == NULL) {
  907. packet->ack = RCODE_SEND_ERROR;
  908. return -1;
  909. }
  910. d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
  911. d[0].res_count = cpu_to_le16(packet->timestamp);
  912. /*
  913. * The DMA format for asyncronous link packets is different
  914. * from the IEEE1394 layout, so shift the fields around
  915. * accordingly. If header_length is 8, it's a PHY packet, to
  916. * which we need to prepend an extra quadlet.
  917. */
  918. header = (__le32 *) &d[1];
  919. switch (packet->header_length) {
  920. case 16:
  921. case 12:
  922. header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
  923. (packet->speed << 16));
  924. header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
  925. (packet->header[0] & 0xffff0000));
  926. header[2] = cpu_to_le32(packet->header[2]);
  927. tcode = (packet->header[0] >> 4) & 0x0f;
  928. if (TCODE_IS_BLOCK_PACKET(tcode))
  929. header[3] = cpu_to_le32(packet->header[3]);
  930. else
  931. header[3] = (__force __le32) packet->header[3];
  932. d[0].req_count = cpu_to_le16(packet->header_length);
  933. break;
  934. case 8:
  935. header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
  936. (packet->speed << 16));
  937. header[1] = cpu_to_le32(packet->header[0]);
  938. header[2] = cpu_to_le32(packet->header[1]);
  939. d[0].req_count = cpu_to_le16(12);
  940. if (is_ping_packet(packet->header))
  941. d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
  942. break;
  943. case 4:
  944. header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
  945. (packet->speed << 16));
  946. header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
  947. d[0].req_count = cpu_to_le16(8);
  948. break;
  949. default:
  950. /* BUG(); */
  951. packet->ack = RCODE_SEND_ERROR;
  952. return -1;
  953. }
  954. driver_data = (struct driver_data *) &d[3];
  955. driver_data->packet = packet;
  956. packet->driver_data = driver_data;
  957. if (packet->payload_length > 0) {
  958. payload_bus =
  959. dma_map_single(ohci->card.device, packet->payload,
  960. packet->payload_length, DMA_TO_DEVICE);
  961. if (dma_mapping_error(ohci->card.device, payload_bus)) {
  962. packet->ack = RCODE_SEND_ERROR;
  963. return -1;
  964. }
  965. packet->payload_bus = payload_bus;
  966. packet->payload_mapped = true;
  967. d[2].req_count = cpu_to_le16(packet->payload_length);
  968. d[2].data_address = cpu_to_le32(payload_bus);
  969. last = &d[2];
  970. z = 3;
  971. } else {
  972. last = &d[0];
  973. z = 2;
  974. }
  975. last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
  976. DESCRIPTOR_IRQ_ALWAYS |
  977. DESCRIPTOR_BRANCH_ALWAYS);
  978. /*
  979. * If the controller and packet generations don't match, we need to
  980. * bail out and try again. If IntEvent.busReset is set, the AT context
  981. * is halted, so appending to the context and trying to run it is
  982. * futile. Most controllers do the right thing and just flush the AT
  983. * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
  984. * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
  985. * up stalling out. So we just bail out in software and try again
  986. * later, and everyone is happy.
  987. * FIXME: Document how the locking works.
  988. */
  989. if (ohci->generation != packet->generation ||
  990. reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
  991. if (packet->payload_mapped)
  992. dma_unmap_single(ohci->card.device, payload_bus,
  993. packet->payload_length, DMA_TO_DEVICE);
  994. packet->ack = RCODE_GENERATION;
  995. return -1;
  996. }
  997. context_append(ctx, d, z, 4 - z);
  998. /* If the context isn't already running, start it up. */
  999. reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
  1000. if ((reg & CONTEXT_RUN) == 0)
  1001. context_run(ctx, 0);
  1002. return 0;
  1003. }
  1004. static int handle_at_packet(struct context *context,
  1005. struct descriptor *d,
  1006. struct descriptor *last)
  1007. {
  1008. struct driver_data *driver_data;
  1009. struct fw_packet *packet;
  1010. struct fw_ohci *ohci = context->ohci;
  1011. int evt;
  1012. if (last->transfer_status == 0)
  1013. /* This descriptor isn't done yet, stop iteration. */
  1014. return 0;
  1015. driver_data = (struct driver_data *) &d[3];
  1016. packet = driver_data->packet;
  1017. if (packet == NULL)
  1018. /* This packet was cancelled, just continue. */
  1019. return 1;
  1020. if (packet->payload_mapped)
  1021. dma_unmap_single(ohci->card.device, packet->payload_bus,
  1022. packet->payload_length, DMA_TO_DEVICE);
  1023. evt = le16_to_cpu(last->transfer_status) & 0x1f;
  1024. packet->timestamp = le16_to_cpu(last->res_count);
  1025. log_ar_at_event('T', packet->speed, packet->header, evt);
  1026. switch (evt) {
  1027. case OHCI1394_evt_timeout:
  1028. /* Async response transmit timed out. */
  1029. packet->ack = RCODE_CANCELLED;
  1030. break;
  1031. case OHCI1394_evt_flushed:
  1032. /*
  1033. * The packet was flushed should give same error as
  1034. * when we try to use a stale generation count.
  1035. */
  1036. packet->ack = RCODE_GENERATION;
  1037. break;
  1038. case OHCI1394_evt_missing_ack:
  1039. /*
  1040. * Using a valid (current) generation count, but the
  1041. * node is not on the bus or not sending acks.
  1042. */
  1043. packet->ack = RCODE_NO_ACK;
  1044. break;
  1045. case ACK_COMPLETE + 0x10:
  1046. case ACK_PENDING + 0x10:
  1047. case ACK_BUSY_X + 0x10:
  1048. case ACK_BUSY_A + 0x10:
  1049. case ACK_BUSY_B + 0x10:
  1050. case ACK_DATA_ERROR + 0x10:
  1051. case ACK_TYPE_ERROR + 0x10:
  1052. packet->ack = evt - 0x10;
  1053. break;
  1054. default:
  1055. packet->ack = RCODE_SEND_ERROR;
  1056. break;
  1057. }
  1058. packet->callback(packet, &ohci->card, packet->ack);
  1059. return 1;
  1060. }
  1061. #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
  1062. #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
  1063. #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
  1064. #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
  1065. #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
  1066. static void handle_local_rom(struct fw_ohci *ohci,
  1067. struct fw_packet *packet, u32 csr)
  1068. {
  1069. struct fw_packet response;
  1070. int tcode, length, i;
  1071. tcode = HEADER_GET_TCODE(packet->header[0]);
  1072. if (TCODE_IS_BLOCK_PACKET(tcode))
  1073. length = HEADER_GET_DATA_LENGTH(packet->header[3]);
  1074. else
  1075. length = 4;
  1076. i = csr - CSR_CONFIG_ROM;
  1077. if (i + length > CONFIG_ROM_SIZE) {
  1078. fw_fill_response(&response, packet->header,
  1079. RCODE_ADDRESS_ERROR, NULL, 0);
  1080. } else if (!TCODE_IS_READ_REQUEST(tcode)) {
  1081. fw_fill_response(&response, packet->header,
  1082. RCODE_TYPE_ERROR, NULL, 0);
  1083. } else {
  1084. fw_fill_response(&response, packet->header, RCODE_COMPLETE,
  1085. (void *) ohci->config_rom + i, length);
  1086. }
  1087. fw_core_handle_response(&ohci->card, &response);
  1088. }
  1089. static void handle_local_lock(struct fw_ohci *ohci,
  1090. struct fw_packet *packet, u32 csr)
  1091. {
  1092. struct fw_packet response;
  1093. int tcode, length, ext_tcode, sel, try;
  1094. __be32 *payload, lock_old;
  1095. u32 lock_arg, lock_data;
  1096. tcode = HEADER_GET_TCODE(packet->header[0]);
  1097. length = HEADER_GET_DATA_LENGTH(packet->header[3]);
  1098. payload = packet->payload;
  1099. ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
  1100. if (tcode == TCODE_LOCK_REQUEST &&
  1101. ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
  1102. lock_arg = be32_to_cpu(payload[0]);
  1103. lock_data = be32_to_cpu(payload[1]);
  1104. } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
  1105. lock_arg = 0;
  1106. lock_data = 0;
  1107. } else {
  1108. fw_fill_response(&response, packet->header,
  1109. RCODE_TYPE_ERROR, NULL, 0);
  1110. goto out;
  1111. }
  1112. sel = (csr - CSR_BUS_MANAGER_ID) / 4;
  1113. reg_write(ohci, OHCI1394_CSRData, lock_data);
  1114. reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
  1115. reg_write(ohci, OHCI1394_CSRControl, sel);
  1116. for (try = 0; try < 20; try++)
  1117. if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
  1118. lock_old = cpu_to_be32(reg_read(ohci,
  1119. OHCI1394_CSRData));
  1120. fw_fill_response(&response, packet->header,
  1121. RCODE_COMPLETE,
  1122. &lock_old, sizeof(lock_old));
  1123. goto out;
  1124. }
  1125. fw_error("swap not done (CSR lock timeout)\n");
  1126. fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
  1127. out:
  1128. fw_core_handle_response(&ohci->card, &response);
  1129. }
  1130. static void handle_local_request(struct context *ctx, struct fw_packet *packet)
  1131. {
  1132. u64 offset, csr;
  1133. if (ctx == &ctx->ohci->at_request_ctx) {
  1134. packet->ack = ACK_PENDING;
  1135. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1136. }
  1137. offset =
  1138. ((unsigned long long)
  1139. HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
  1140. packet->header[2];
  1141. csr = offset - CSR_REGISTER_BASE;
  1142. /* Handle config rom reads. */
  1143. if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
  1144. handle_local_rom(ctx->ohci, packet, csr);
  1145. else switch (csr) {
  1146. case CSR_BUS_MANAGER_ID:
  1147. case CSR_BANDWIDTH_AVAILABLE:
  1148. case CSR_CHANNELS_AVAILABLE_HI:
  1149. case CSR_CHANNELS_AVAILABLE_LO:
  1150. handle_local_lock(ctx->ohci, packet, csr);
  1151. break;
  1152. default:
  1153. if (ctx == &ctx->ohci->at_request_ctx)
  1154. fw_core_handle_request(&ctx->ohci->card, packet);
  1155. else
  1156. fw_core_handle_response(&ctx->ohci->card, packet);
  1157. break;
  1158. }
  1159. if (ctx == &ctx->ohci->at_response_ctx) {
  1160. packet->ack = ACK_COMPLETE;
  1161. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1162. }
  1163. }
  1164. static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
  1165. {
  1166. unsigned long flags;
  1167. int ret;
  1168. spin_lock_irqsave(&ctx->ohci->lock, flags);
  1169. if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
  1170. ctx->ohci->generation == packet->generation) {
  1171. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  1172. handle_local_request(ctx, packet);
  1173. return;
  1174. }
  1175. ret = at_context_queue_packet(ctx, packet);
  1176. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  1177. if (ret < 0)
  1178. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1179. }
  1180. static u32 cycle_timer_ticks(u32 cycle_timer)
  1181. {
  1182. u32 ticks;
  1183. ticks = cycle_timer & 0xfff;
  1184. ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
  1185. ticks += (3072 * 8000) * (cycle_timer >> 25);
  1186. return ticks;
  1187. }
  1188. /*
  1189. * Some controllers exhibit one or more of the following bugs when updating the
  1190. * iso cycle timer register:
  1191. * - When the lowest six bits are wrapping around to zero, a read that happens
  1192. * at the same time will return garbage in the lowest ten bits.
  1193. * - When the cycleOffset field wraps around to zero, the cycleCount field is
  1194. * not incremented for about 60 ns.
  1195. * - Occasionally, the entire register reads zero.
  1196. *
  1197. * To catch these, we read the register three times and ensure that the
  1198. * difference between each two consecutive reads is approximately the same, i.e.
  1199. * less than twice the other. Furthermore, any negative difference indicates an
  1200. * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
  1201. * execute, so we have enough precision to compute the ratio of the differences.)
  1202. */
  1203. static u32 get_cycle_time(struct fw_ohci *ohci)
  1204. {
  1205. u32 c0, c1, c2;
  1206. u32 t0, t1, t2;
  1207. s32 diff01, diff12;
  1208. int i;
  1209. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1210. if (ohci->quirks & QUIRK_CYCLE_TIMER) {
  1211. i = 0;
  1212. c1 = c2;
  1213. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1214. do {
  1215. c0 = c1;
  1216. c1 = c2;
  1217. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1218. t0 = cycle_timer_ticks(c0);
  1219. t1 = cycle_timer_ticks(c1);
  1220. t2 = cycle_timer_ticks(c2);
  1221. diff01 = t1 - t0;
  1222. diff12 = t2 - t1;
  1223. } while ((diff01 <= 0 || diff12 <= 0 ||
  1224. diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
  1225. && i++ < 20);
  1226. }
  1227. return c2;
  1228. }
  1229. /*
  1230. * This function has to be called at least every 64 seconds. The bus_time
  1231. * field stores not only the upper 25 bits of the BUS_TIME register but also
  1232. * the most significant bit of the cycle timer in bit 6 so that we can detect
  1233. * changes in this bit.
  1234. */
  1235. static u32 update_bus_time(struct fw_ohci *ohci)
  1236. {
  1237. u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
  1238. if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
  1239. ohci->bus_time += 0x40;
  1240. return ohci->bus_time | cycle_time_seconds;
  1241. }
  1242. static void bus_reset_tasklet(unsigned long data)
  1243. {
  1244. struct fw_ohci *ohci = (struct fw_ohci *)data;
  1245. int self_id_count, i, j, reg;
  1246. int generation, new_generation;
  1247. unsigned long flags;
  1248. void *free_rom = NULL;
  1249. dma_addr_t free_rom_bus = 0;
  1250. bool is_new_root;
  1251. reg = reg_read(ohci, OHCI1394_NodeID);
  1252. if (!(reg & OHCI1394_NodeID_idValid)) {
  1253. fw_notify("node ID not valid, new bus reset in progress\n");
  1254. return;
  1255. }
  1256. if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
  1257. fw_notify("malconfigured bus\n");
  1258. return;
  1259. }
  1260. ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
  1261. OHCI1394_NodeID_nodeNumber);
  1262. is_new_root = (reg & OHCI1394_NodeID_root) != 0;
  1263. if (!(ohci->is_root && is_new_root))
  1264. reg_write(ohci, OHCI1394_LinkControlSet,
  1265. OHCI1394_LinkControl_cycleMaster);
  1266. ohci->is_root = is_new_root;
  1267. reg = reg_read(ohci, OHCI1394_SelfIDCount);
  1268. if (reg & OHCI1394_SelfIDCount_selfIDError) {
  1269. fw_notify("inconsistent self IDs\n");
  1270. return;
  1271. }
  1272. /*
  1273. * The count in the SelfIDCount register is the number of
  1274. * bytes in the self ID receive buffer. Since we also receive
  1275. * the inverted quadlets and a header quadlet, we shift one
  1276. * bit extra to get the actual number of self IDs.
  1277. */
  1278. self_id_count = (reg >> 3) & 0xff;
  1279. if (self_id_count == 0 || self_id_count > 252) {
  1280. fw_notify("inconsistent self IDs\n");
  1281. return;
  1282. }
  1283. generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
  1284. rmb();
  1285. for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
  1286. if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
  1287. fw_notify("inconsistent self IDs\n");
  1288. return;
  1289. }
  1290. ohci->self_id_buffer[j] =
  1291. cond_le32_to_cpu(ohci->self_id_cpu[i]);
  1292. }
  1293. rmb();
  1294. /*
  1295. * Check the consistency of the self IDs we just read. The
  1296. * problem we face is that a new bus reset can start while we
  1297. * read out the self IDs from the DMA buffer. If this happens,
  1298. * the DMA buffer will be overwritten with new self IDs and we
  1299. * will read out inconsistent data. The OHCI specification
  1300. * (section 11.2) recommends a technique similar to
  1301. * linux/seqlock.h, where we remember the generation of the
  1302. * self IDs in the buffer before reading them out and compare
  1303. * it to the current generation after reading them out. If
  1304. * the two generations match we know we have a consistent set
  1305. * of self IDs.
  1306. */
  1307. new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
  1308. if (new_generation != generation) {
  1309. fw_notify("recursive bus reset detected, "
  1310. "discarding self ids\n");
  1311. return;
  1312. }
  1313. /* FIXME: Document how the locking works. */
  1314. spin_lock_irqsave(&ohci->lock, flags);
  1315. ohci->generation = generation;
  1316. context_stop(&ohci->at_request_ctx);
  1317. context_stop(&ohci->at_response_ctx);
  1318. reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
  1319. if (ohci->quirks & QUIRK_RESET_PACKET)
  1320. ohci->request_generation = generation;
  1321. /*
  1322. * This next bit is unrelated to the AT context stuff but we
  1323. * have to do it under the spinlock also. If a new config rom
  1324. * was set up before this reset, the old one is now no longer
  1325. * in use and we can free it. Update the config rom pointers
  1326. * to point to the current config rom and clear the
  1327. * next_config_rom pointer so a new update can take place.
  1328. */
  1329. if (ohci->next_config_rom != NULL) {
  1330. if (ohci->next_config_rom != ohci->config_rom) {
  1331. free_rom = ohci->config_rom;
  1332. free_rom_bus = ohci->config_rom_bus;
  1333. }
  1334. ohci->config_rom = ohci->next_config_rom;
  1335. ohci->config_rom_bus = ohci->next_config_rom_bus;
  1336. ohci->next_config_rom = NULL;
  1337. /*
  1338. * Restore config_rom image and manually update
  1339. * config_rom registers. Writing the header quadlet
  1340. * will indicate that the config rom is ready, so we
  1341. * do that last.
  1342. */
  1343. reg_write(ohci, OHCI1394_BusOptions,
  1344. be32_to_cpu(ohci->config_rom[2]));
  1345. ohci->config_rom[0] = ohci->next_header;
  1346. reg_write(ohci, OHCI1394_ConfigROMhdr,
  1347. be32_to_cpu(ohci->next_header));
  1348. }
  1349. #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
  1350. reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
  1351. reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
  1352. #endif
  1353. spin_unlock_irqrestore(&ohci->lock, flags);
  1354. if (free_rom)
  1355. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1356. free_rom, free_rom_bus);
  1357. log_selfids(ohci->node_id, generation,
  1358. self_id_count, ohci->self_id_buffer);
  1359. fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
  1360. self_id_count, ohci->self_id_buffer,
  1361. ohci->csr_state_setclear_abdicate);
  1362. ohci->csr_state_setclear_abdicate = false;
  1363. }
  1364. static irqreturn_t irq_handler(int irq, void *data)
  1365. {
  1366. struct fw_ohci *ohci = data;
  1367. u32 event, iso_event;
  1368. int i;
  1369. event = reg_read(ohci, OHCI1394_IntEventClear);
  1370. if (!event || !~event)
  1371. return IRQ_NONE;
  1372. /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
  1373. reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
  1374. log_irqs(event);
  1375. if (event & OHCI1394_selfIDComplete)
  1376. tasklet_schedule(&ohci->bus_reset_tasklet);
  1377. if (event & OHCI1394_RQPkt)
  1378. tasklet_schedule(&ohci->ar_request_ctx.tasklet);
  1379. if (event & OHCI1394_RSPkt)
  1380. tasklet_schedule(&ohci->ar_response_ctx.tasklet);
  1381. if (event & OHCI1394_reqTxComplete)
  1382. tasklet_schedule(&ohci->at_request_ctx.tasklet);
  1383. if (event & OHCI1394_respTxComplete)
  1384. tasklet_schedule(&ohci->at_response_ctx.tasklet);
  1385. iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
  1386. reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
  1387. while (iso_event) {
  1388. i = ffs(iso_event) - 1;
  1389. tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
  1390. iso_event &= ~(1 << i);
  1391. }
  1392. iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
  1393. reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
  1394. while (iso_event) {
  1395. i = ffs(iso_event) - 1;
  1396. tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
  1397. iso_event &= ~(1 << i);
  1398. }
  1399. if (unlikely(event & OHCI1394_regAccessFail))
  1400. fw_error("Register access failure - "
  1401. "please notify linux1394-devel@lists.sf.net\n");
  1402. if (unlikely(event & OHCI1394_postedWriteErr))
  1403. fw_error("PCI posted write error\n");
  1404. if (unlikely(event & OHCI1394_cycleTooLong)) {
  1405. if (printk_ratelimit())
  1406. fw_notify("isochronous cycle too long\n");
  1407. reg_write(ohci, OHCI1394_LinkControlSet,
  1408. OHCI1394_LinkControl_cycleMaster);
  1409. }
  1410. if (unlikely(event & OHCI1394_cycleInconsistent)) {
  1411. /*
  1412. * We need to clear this event bit in order to make
  1413. * cycleMatch isochronous I/O work. In theory we should
  1414. * stop active cycleMatch iso contexts now and restart
  1415. * them at least two cycles later. (FIXME?)
  1416. */
  1417. if (printk_ratelimit())
  1418. fw_notify("isochronous cycle inconsistent\n");
  1419. }
  1420. if (event & OHCI1394_cycle64Seconds) {
  1421. spin_lock(&ohci->lock);
  1422. update_bus_time(ohci);
  1423. spin_unlock(&ohci->lock);
  1424. }
  1425. return IRQ_HANDLED;
  1426. }
  1427. static int software_reset(struct fw_ohci *ohci)
  1428. {
  1429. int i;
  1430. reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
  1431. for (i = 0; i < OHCI_LOOP_COUNT; i++) {
  1432. if ((reg_read(ohci, OHCI1394_HCControlSet) &
  1433. OHCI1394_HCControl_softReset) == 0)
  1434. return 0;
  1435. msleep(1);
  1436. }
  1437. return -EBUSY;
  1438. }
  1439. static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
  1440. {
  1441. size_t size = length * 4;
  1442. memcpy(dest, src, size);
  1443. if (size < CONFIG_ROM_SIZE)
  1444. memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
  1445. }
  1446. static int configure_1394a_enhancements(struct fw_ohci *ohci)
  1447. {
  1448. bool enable_1394a;
  1449. int ret, clear, set, offset;
  1450. /* Check if the driver should configure link and PHY. */
  1451. if (!(reg_read(ohci, OHCI1394_HCControlSet) &
  1452. OHCI1394_HCControl_programPhyEnable))
  1453. return 0;
  1454. /* Paranoia: check whether the PHY supports 1394a, too. */
  1455. enable_1394a = false;
  1456. ret = read_phy_reg(ohci, 2);
  1457. if (ret < 0)
  1458. return ret;
  1459. if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
  1460. ret = read_paged_phy_reg(ohci, 1, 8);
  1461. if (ret < 0)
  1462. return ret;
  1463. if (ret >= 1)
  1464. enable_1394a = true;
  1465. }
  1466. if (ohci->quirks & QUIRK_NO_1394A)
  1467. enable_1394a = false;
  1468. /* Configure PHY and link consistently. */
  1469. if (enable_1394a) {
  1470. clear = 0;
  1471. set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
  1472. } else {
  1473. clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
  1474. set = 0;
  1475. }
  1476. ret = update_phy_reg(ohci, 5, clear, set);
  1477. if (ret < 0)
  1478. return ret;
  1479. if (enable_1394a)
  1480. offset = OHCI1394_HCControlSet;
  1481. else
  1482. offset = OHCI1394_HCControlClear;
  1483. reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
  1484. /* Clean up: configuration has been taken care of. */
  1485. reg_write(ohci, OHCI1394_HCControlClear,
  1486. OHCI1394_HCControl_programPhyEnable);
  1487. return 0;
  1488. }
  1489. static int ohci_enable(struct fw_card *card,
  1490. const __be32 *config_rom, size_t length)
  1491. {
  1492. struct fw_ohci *ohci = fw_ohci(card);
  1493. struct pci_dev *dev = to_pci_dev(card->device);
  1494. u32 lps, seconds, version, irqs;
  1495. int i, ret;
  1496. if (software_reset(ohci)) {
  1497. fw_error("Failed to reset ohci card.\n");
  1498. return -EBUSY;
  1499. }
  1500. /*
  1501. * Now enable LPS, which we need in order to start accessing
  1502. * most of the registers. In fact, on some cards (ALI M5251),
  1503. * accessing registers in the SClk domain without LPS enabled
  1504. * will lock up the machine. Wait 50msec to make sure we have
  1505. * full link enabled. However, with some cards (well, at least
  1506. * a JMicron PCIe card), we have to try again sometimes.
  1507. */
  1508. reg_write(ohci, OHCI1394_HCControlSet,
  1509. OHCI1394_HCControl_LPS |
  1510. OHCI1394_HCControl_postedWriteEnable);
  1511. flush_writes(ohci);
  1512. for (lps = 0, i = 0; !lps && i < 3; i++) {
  1513. msleep(50);
  1514. lps = reg_read(ohci, OHCI1394_HCControlSet) &
  1515. OHCI1394_HCControl_LPS;
  1516. }
  1517. if (!lps) {
  1518. fw_error("Failed to set Link Power Status\n");
  1519. return -EIO;
  1520. }
  1521. reg_write(ohci, OHCI1394_HCControlClear,
  1522. OHCI1394_HCControl_noByteSwapData);
  1523. reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
  1524. reg_write(ohci, OHCI1394_LinkControlSet,
  1525. OHCI1394_LinkControl_rcvSelfID |
  1526. OHCI1394_LinkControl_rcvPhyPkt |
  1527. OHCI1394_LinkControl_cycleTimerEnable |
  1528. OHCI1394_LinkControl_cycleMaster);
  1529. reg_write(ohci, OHCI1394_ATRetries,
  1530. OHCI1394_MAX_AT_REQ_RETRIES |
  1531. (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
  1532. (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
  1533. (200 << 16));
  1534. seconds = lower_32_bits(get_seconds());
  1535. reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
  1536. ohci->bus_time = seconds & ~0x3f;
  1537. version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
  1538. if (version >= OHCI_VERSION_1_1) {
  1539. reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
  1540. 0xfffffffe);
  1541. card->broadcast_channel_auto_allocated = true;
  1542. }
  1543. /* Get implemented bits of the priority arbitration request counter. */
  1544. reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
  1545. ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
  1546. reg_write(ohci, OHCI1394_FairnessControl, 0);
  1547. card->priority_budget_implemented = ohci->pri_req_max != 0;
  1548. ar_context_run(&ohci->ar_request_ctx);
  1549. ar_context_run(&ohci->ar_response_ctx);
  1550. reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
  1551. reg_write(ohci, OHCI1394_IntEventClear, ~0);
  1552. reg_write(ohci, OHCI1394_IntMaskClear, ~0);
  1553. ret = configure_1394a_enhancements(ohci);
  1554. if (ret < 0)
  1555. return ret;
  1556. /* Activate link_on bit and contender bit in our self ID packets.*/
  1557. ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
  1558. if (ret < 0)
  1559. return ret;
  1560. /*
  1561. * When the link is not yet enabled, the atomic config rom
  1562. * update mechanism described below in ohci_set_config_rom()
  1563. * is not active. We have to update ConfigRomHeader and
  1564. * BusOptions manually, and the write to ConfigROMmap takes
  1565. * effect immediately. We tie this to the enabling of the
  1566. * link, so we have a valid config rom before enabling - the
  1567. * OHCI requires that ConfigROMhdr and BusOptions have valid
  1568. * values before enabling.
  1569. *
  1570. * However, when the ConfigROMmap is written, some controllers
  1571. * always read back quadlets 0 and 2 from the config rom to
  1572. * the ConfigRomHeader and BusOptions registers on bus reset.
  1573. * They shouldn't do that in this initial case where the link
  1574. * isn't enabled. This means we have to use the same
  1575. * workaround here, setting the bus header to 0 and then write
  1576. * the right values in the bus reset tasklet.
  1577. */
  1578. if (config_rom) {
  1579. ohci->next_config_rom =
  1580. dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1581. &ohci->next_config_rom_bus,
  1582. GFP_KERNEL);
  1583. if (ohci->next_config_rom == NULL)
  1584. return -ENOMEM;
  1585. copy_config_rom(ohci->next_config_rom, config_rom, length);
  1586. } else {
  1587. /*
  1588. * In the suspend case, config_rom is NULL, which
  1589. * means that we just reuse the old config rom.
  1590. */
  1591. ohci->next_config_rom = ohci->config_rom;
  1592. ohci->next_config_rom_bus = ohci->config_rom_bus;
  1593. }
  1594. ohci->next_header = ohci->next_config_rom[0];
  1595. ohci->next_config_rom[0] = 0;
  1596. reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
  1597. reg_write(ohci, OHCI1394_BusOptions,
  1598. be32_to_cpu(ohci->next_config_rom[2]));
  1599. reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
  1600. reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
  1601. if (!(ohci->quirks & QUIRK_NO_MSI))
  1602. pci_enable_msi(dev);
  1603. if (request_irq(dev->irq, irq_handler,
  1604. pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
  1605. ohci_driver_name, ohci)) {
  1606. fw_error("Failed to allocate interrupt %d.\n", dev->irq);
  1607. pci_disable_msi(dev);
  1608. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1609. ohci->config_rom, ohci->config_rom_bus);
  1610. return -EIO;
  1611. }
  1612. irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
  1613. OHCI1394_RQPkt | OHCI1394_RSPkt |
  1614. OHCI1394_isochTx | OHCI1394_isochRx |
  1615. OHCI1394_postedWriteErr |
  1616. OHCI1394_selfIDComplete |
  1617. OHCI1394_regAccessFail |
  1618. OHCI1394_cycle64Seconds |
  1619. OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
  1620. OHCI1394_masterIntEnable;
  1621. if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
  1622. irqs |= OHCI1394_busReset;
  1623. reg_write(ohci, OHCI1394_IntMaskSet, irqs);
  1624. reg_write(ohci, OHCI1394_HCControlSet,
  1625. OHCI1394_HCControl_linkEnable |
  1626. OHCI1394_HCControl_BIBimageValid);
  1627. flush_writes(ohci);
  1628. /* We are ready to go, reset bus to finish initialization. */
  1629. fw_schedule_bus_reset(&ohci->card, false, true);
  1630. return 0;
  1631. }
  1632. static int ohci_set_config_rom(struct fw_card *card,
  1633. const __be32 *config_rom, size_t length)
  1634. {
  1635. struct fw_ohci *ohci;
  1636. unsigned long flags;
  1637. int ret = -EBUSY;
  1638. __be32 *next_config_rom;
  1639. dma_addr_t uninitialized_var(next_config_rom_bus);
  1640. ohci = fw_ohci(card);
  1641. /*
  1642. * When the OHCI controller is enabled, the config rom update
  1643. * mechanism is a bit tricky, but easy enough to use. See
  1644. * section 5.5.6 in the OHCI specification.
  1645. *
  1646. * The OHCI controller caches the new config rom address in a
  1647. * shadow register (ConfigROMmapNext) and needs a bus reset
  1648. * for the changes to take place. When the bus reset is
  1649. * detected, the controller loads the new values for the
  1650. * ConfigRomHeader and BusOptions registers from the specified
  1651. * config rom and loads ConfigROMmap from the ConfigROMmapNext
  1652. * shadow register. All automatically and atomically.
  1653. *
  1654. * Now, there's a twist to this story. The automatic load of
  1655. * ConfigRomHeader and BusOptions doesn't honor the
  1656. * noByteSwapData bit, so with a be32 config rom, the
  1657. * controller will load be32 values in to these registers
  1658. * during the atomic update, even on litte endian
  1659. * architectures. The workaround we use is to put a 0 in the
  1660. * header quadlet; 0 is endian agnostic and means that the
  1661. * config rom isn't ready yet. In the bus reset tasklet we
  1662. * then set up the real values for the two registers.
  1663. *
  1664. * We use ohci->lock to avoid racing with the code that sets
  1665. * ohci->next_config_rom to NULL (see bus_reset_tasklet).
  1666. */
  1667. next_config_rom =
  1668. dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1669. &next_config_rom_bus, GFP_KERNEL);
  1670. if (next_config_rom == NULL)
  1671. return -ENOMEM;
  1672. spin_lock_irqsave(&ohci->lock, flags);
  1673. if (ohci->next_config_rom == NULL) {
  1674. ohci->next_config_rom = next_config_rom;
  1675. ohci->next_config_rom_bus = next_config_rom_bus;
  1676. copy_config_rom(ohci->next_config_rom, config_rom, length);
  1677. ohci->next_header = config_rom[0];
  1678. ohci->next_config_rom[0] = 0;
  1679. reg_write(ohci, OHCI1394_ConfigROMmap,
  1680. ohci->next_config_rom_bus);
  1681. ret = 0;
  1682. }
  1683. spin_unlock_irqrestore(&ohci->lock, flags);
  1684. /*
  1685. * Now initiate a bus reset to have the changes take
  1686. * effect. We clean up the old config rom memory and DMA
  1687. * mappings in the bus reset tasklet, since the OHCI
  1688. * controller could need to access it before the bus reset
  1689. * takes effect.
  1690. */
  1691. if (ret == 0)
  1692. fw_schedule_bus_reset(&ohci->card, true, true);
  1693. else
  1694. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1695. next_config_rom, next_config_rom_bus);
  1696. return ret;
  1697. }
  1698. static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
  1699. {
  1700. struct fw_ohci *ohci = fw_ohci(card);
  1701. at_context_transmit(&ohci->at_request_ctx, packet);
  1702. }
  1703. static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
  1704. {
  1705. struct fw_ohci *ohci = fw_ohci(card);
  1706. at_context_transmit(&ohci->at_response_ctx, packet);
  1707. }
  1708. static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
  1709. {
  1710. struct fw_ohci *ohci = fw_ohci(card);
  1711. struct context *ctx = &ohci->at_request_ctx;
  1712. struct driver_data *driver_data = packet->driver_data;
  1713. int ret = -ENOENT;
  1714. tasklet_disable(&ctx->tasklet);
  1715. if (packet->ack != 0)
  1716. goto out;
  1717. if (packet->payload_mapped)
  1718. dma_unmap_single(ohci->card.device, packet->payload_bus,
  1719. packet->payload_length, DMA_TO_DEVICE);
  1720. log_ar_at_event('T', packet->speed, packet->header, 0x20);
  1721. driver_data->packet = NULL;
  1722. packet->ack = RCODE_CANCELLED;
  1723. packet->callback(packet, &ohci->card, packet->ack);
  1724. ret = 0;
  1725. out:
  1726. tasklet_enable(&ctx->tasklet);
  1727. return ret;
  1728. }
  1729. static int ohci_enable_phys_dma(struct fw_card *card,
  1730. int node_id, int generation)
  1731. {
  1732. #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
  1733. return 0;
  1734. #else
  1735. struct fw_ohci *ohci = fw_ohci(card);
  1736. unsigned long flags;
  1737. int n, ret = 0;
  1738. /*
  1739. * FIXME: Make sure this bitmask is cleared when we clear the busReset
  1740. * interrupt bit. Clear physReqResourceAllBuses on bus reset.
  1741. */
  1742. spin_lock_irqsave(&ohci->lock, flags);
  1743. if (ohci->generation != generation) {
  1744. ret = -ESTALE;
  1745. goto out;
  1746. }
  1747. /*
  1748. * Note, if the node ID contains a non-local bus ID, physical DMA is
  1749. * enabled for _all_ nodes on remote buses.
  1750. */
  1751. n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
  1752. if (n < 32)
  1753. reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
  1754. else
  1755. reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
  1756. flush_writes(ohci);
  1757. out:
  1758. spin_unlock_irqrestore(&ohci->lock, flags);
  1759. return ret;
  1760. #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
  1761. }
  1762. static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
  1763. {
  1764. struct fw_ohci *ohci = fw_ohci(card);
  1765. unsigned long flags;
  1766. u32 value;
  1767. switch (csr_offset) {
  1768. case CSR_STATE_CLEAR:
  1769. case CSR_STATE_SET:
  1770. if (ohci->is_root &&
  1771. (reg_read(ohci, OHCI1394_LinkControlSet) &
  1772. OHCI1394_LinkControl_cycleMaster))
  1773. value = CSR_STATE_BIT_CMSTR;
  1774. else
  1775. value = 0;
  1776. if (ohci->csr_state_setclear_abdicate)
  1777. value |= CSR_STATE_BIT_ABDICATE;
  1778. return value;
  1779. case CSR_NODE_IDS:
  1780. return reg_read(ohci, OHCI1394_NodeID) << 16;
  1781. case CSR_CYCLE_TIME:
  1782. return get_cycle_time(ohci);
  1783. case CSR_BUS_TIME:
  1784. /*
  1785. * We might be called just after the cycle timer has wrapped
  1786. * around but just before the cycle64Seconds handler, so we
  1787. * better check here, too, if the bus time needs to be updated.
  1788. */
  1789. spin_lock_irqsave(&ohci->lock, flags);
  1790. value = update_bus_time(ohci);
  1791. spin_unlock_irqrestore(&ohci->lock, flags);
  1792. return value;
  1793. case CSR_BUSY_TIMEOUT:
  1794. value = reg_read(ohci, OHCI1394_ATRetries);
  1795. return (value >> 4) & 0x0ffff00f;
  1796. case CSR_PRIORITY_BUDGET:
  1797. return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
  1798. (ohci->pri_req_max << 8);
  1799. default:
  1800. WARN_ON(1);
  1801. return 0;
  1802. }
  1803. }
  1804. static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
  1805. {
  1806. struct fw_ohci *ohci = fw_ohci(card);
  1807. unsigned long flags;
  1808. switch (csr_offset) {
  1809. case CSR_STATE_CLEAR:
  1810. if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
  1811. reg_write(ohci, OHCI1394_LinkControlClear,
  1812. OHCI1394_LinkControl_cycleMaster);
  1813. flush_writes(ohci);
  1814. }
  1815. if (value & CSR_STATE_BIT_ABDICATE)
  1816. ohci->csr_state_setclear_abdicate = false;
  1817. break;
  1818. case CSR_STATE_SET:
  1819. if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
  1820. reg_write(ohci, OHCI1394_LinkControlSet,
  1821. OHCI1394_LinkControl_cycleMaster);
  1822. flush_writes(ohci);
  1823. }
  1824. if (value & CSR_STATE_BIT_ABDICATE)
  1825. ohci->csr_state_setclear_abdicate = true;
  1826. break;
  1827. case CSR_NODE_IDS:
  1828. reg_write(ohci, OHCI1394_NodeID, value >> 16);
  1829. flush_writes(ohci);
  1830. break;
  1831. case CSR_CYCLE_TIME:
  1832. reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
  1833. reg_write(ohci, OHCI1394_IntEventSet,
  1834. OHCI1394_cycleInconsistent);
  1835. flush_writes(ohci);
  1836. break;
  1837. case CSR_BUS_TIME:
  1838. spin_lock_irqsave(&ohci->lock, flags);
  1839. ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
  1840. spin_unlock_irqrestore(&ohci->lock, flags);
  1841. break;
  1842. case CSR_BUSY_TIMEOUT:
  1843. value = (value & 0xf) | ((value & 0xf) << 4) |
  1844. ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
  1845. reg_write(ohci, OHCI1394_ATRetries, value);
  1846. flush_writes(ohci);
  1847. break;
  1848. case CSR_PRIORITY_BUDGET:
  1849. reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
  1850. flush_writes(ohci);
  1851. break;
  1852. default:
  1853. WARN_ON(1);
  1854. break;
  1855. }
  1856. }
  1857. static void copy_iso_headers(struct iso_context *ctx, void *p)
  1858. {
  1859. int i = ctx->header_length;
  1860. if (i + ctx->base.header_size > PAGE_SIZE)
  1861. return;
  1862. /*
  1863. * The iso header is byteswapped to little endian by
  1864. * the controller, but the remaining header quadlets
  1865. * are big endian. We want to present all the headers
  1866. * as big endian, so we have to swap the first quadlet.
  1867. */
  1868. if (ctx->base.header_size > 0)
  1869. *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
  1870. if (ctx->base.header_size > 4)
  1871. *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
  1872. if (ctx->base.header_size > 8)
  1873. memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
  1874. ctx->header_length += ctx->base.header_size;
  1875. }
  1876. static int handle_ir_packet_per_buffer(struct context *context,
  1877. struct descriptor *d,
  1878. struct descriptor *last)
  1879. {
  1880. struct iso_context *ctx =
  1881. container_of(context, struct iso_context, context);
  1882. struct descriptor *pd;
  1883. __le32 *ir_header;
  1884. void *p;
  1885. for (pd = d; pd <= last; pd++)
  1886. if (pd->transfer_status)
  1887. break;
  1888. if (pd > last)
  1889. /* Descriptor(s) not done yet, stop iteration */
  1890. return 0;
  1891. p = last + 1;
  1892. copy_iso_headers(ctx, p);
  1893. if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
  1894. ir_header = (__le32 *) p;
  1895. ctx->base.callback.sc(&ctx->base,
  1896. le32_to_cpu(ir_header[0]) & 0xffff,
  1897. ctx->header_length, ctx->header,
  1898. ctx->base.callback_data);
  1899. ctx->header_length = 0;
  1900. }
  1901. return 1;
  1902. }
  1903. /* d == last because each descriptor block is only a single descriptor. */
  1904. static int handle_ir_buffer_fill(struct context *context,
  1905. struct descriptor *d,
  1906. struct descriptor *last)
  1907. {
  1908. struct iso_context *ctx =
  1909. container_of(context, struct iso_context, context);
  1910. if (!last->transfer_status)
  1911. /* Descriptor(s) not done yet, stop iteration */
  1912. return 0;
  1913. if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
  1914. ctx->base.callback.mc(&ctx->base,
  1915. le32_to_cpu(last->data_address) +
  1916. le16_to_cpu(last->req_count) -
  1917. le16_to_cpu(last->res_count),
  1918. ctx->base.callback_data);
  1919. return 1;
  1920. }
  1921. static int handle_it_packet(struct context *context,
  1922. struct descriptor *d,
  1923. struct descriptor *last)
  1924. {
  1925. struct iso_context *ctx =
  1926. container_of(context, struct iso_context, context);
  1927. int i;
  1928. struct descriptor *pd;
  1929. for (pd = d; pd <= last; pd++)
  1930. if (pd->transfer_status)
  1931. break;
  1932. if (pd > last)
  1933. /* Descriptor(s) not done yet, stop iteration */
  1934. return 0;
  1935. i = ctx->header_length;
  1936. if (i + 4 < PAGE_SIZE) {
  1937. /* Present this value as big-endian to match the receive code */
  1938. *(__be32 *)(ctx->header + i) = cpu_to_be32(
  1939. ((u32)le16_to_cpu(pd->transfer_status) << 16) |
  1940. le16_to_cpu(pd->res_count));
  1941. ctx->header_length += 4;
  1942. }
  1943. if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
  1944. ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
  1945. ctx->header_length, ctx->header,
  1946. ctx->base.callback_data);
  1947. ctx->header_length = 0;
  1948. }
  1949. return 1;
  1950. }
  1951. static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
  1952. {
  1953. u32 hi = channels >> 32, lo = channels;
  1954. reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
  1955. reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
  1956. reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
  1957. reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
  1958. mmiowb();
  1959. ohci->mc_channels = channels;
  1960. }
  1961. static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
  1962. int type, int channel, size_t header_size)
  1963. {
  1964. struct fw_ohci *ohci = fw_ohci(card);
  1965. struct iso_context *uninitialized_var(ctx);
  1966. descriptor_callback_t uninitialized_var(callback);
  1967. u64 *uninitialized_var(channels);
  1968. u32 *uninitialized_var(mask), uninitialized_var(regs);
  1969. unsigned long flags;
  1970. int index, ret = -EBUSY;
  1971. spin_lock_irqsave(&ohci->lock, flags);
  1972. switch (type) {
  1973. case FW_ISO_CONTEXT_TRANSMIT:
  1974. mask = &ohci->it_context_mask;
  1975. callback = handle_it_packet;
  1976. index = ffs(*mask) - 1;
  1977. if (index >= 0) {
  1978. *mask &= ~(1 << index);
  1979. regs = OHCI1394_IsoXmitContextBase(index);
  1980. ctx = &ohci->it_context_list[index];
  1981. }
  1982. break;
  1983. case FW_ISO_CONTEXT_RECEIVE:
  1984. channels = &ohci->ir_context_channels;
  1985. mask = &ohci->ir_context_mask;
  1986. callback = handle_ir_packet_per_buffer;
  1987. index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
  1988. if (index >= 0) {
  1989. *channels &= ~(1ULL << channel);
  1990. *mask &= ~(1 << index);
  1991. regs = OHCI1394_IsoRcvContextBase(index);
  1992. ctx = &ohci->ir_context_list[index];
  1993. }
  1994. break;
  1995. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  1996. mask = &ohci->ir_context_mask;
  1997. callback = handle_ir_buffer_fill;
  1998. index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
  1999. if (index >= 0) {
  2000. ohci->mc_allocated = true;
  2001. *mask &= ~(1 << index);
  2002. regs = OHCI1394_IsoRcvContextBase(index);
  2003. ctx = &ohci->ir_context_list[index];
  2004. }
  2005. break;
  2006. default:
  2007. index = -1;
  2008. ret = -ENOSYS;
  2009. }
  2010. spin_unlock_irqrestore(&ohci->lock, flags);
  2011. if (index < 0)
  2012. return ERR_PTR(ret);
  2013. memset(ctx, 0, sizeof(*ctx));
  2014. ctx->header_length = 0;
  2015. ctx->header = (void *) __get_free_page(GFP_KERNEL);
  2016. if (ctx->header == NULL) {
  2017. ret = -ENOMEM;
  2018. goto out;
  2019. }
  2020. ret = context_init(&ctx->context, ohci, regs, callback);
  2021. if (ret < 0)
  2022. goto out_with_header;
  2023. if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
  2024. set_multichannel_mask(ohci, 0);
  2025. return &ctx->base;
  2026. out_with_header:
  2027. free_page((unsigned long)ctx->header);
  2028. out:
  2029. spin_lock_irqsave(&ohci->lock, flags);
  2030. switch (type) {
  2031. case FW_ISO_CONTEXT_RECEIVE:
  2032. *channels |= 1ULL << channel;
  2033. break;
  2034. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2035. ohci->mc_allocated = false;
  2036. break;
  2037. }
  2038. *mask |= 1 << index;
  2039. spin_unlock_irqrestore(&ohci->lock, flags);
  2040. return ERR_PTR(ret);
  2041. }
  2042. static int ohci_start_iso(struct fw_iso_context *base,
  2043. s32 cycle, u32 sync, u32 tags)
  2044. {
  2045. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2046. struct fw_ohci *ohci = ctx->context.ohci;
  2047. u32 control = IR_CONTEXT_ISOCH_HEADER, match;
  2048. int index;
  2049. switch (ctx->base.type) {
  2050. case FW_ISO_CONTEXT_TRANSMIT:
  2051. index = ctx - ohci->it_context_list;
  2052. match = 0;
  2053. if (cycle >= 0)
  2054. match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
  2055. (cycle & 0x7fff) << 16;
  2056. reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
  2057. reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
  2058. context_run(&ctx->context, match);
  2059. break;
  2060. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2061. control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
  2062. /* fall through */
  2063. case FW_ISO_CONTEXT_RECEIVE:
  2064. index = ctx - ohci->ir_context_list;
  2065. match = (tags << 28) | (sync << 8) | ctx->base.channel;
  2066. if (cycle >= 0) {
  2067. match |= (cycle & 0x07fff) << 12;
  2068. control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
  2069. }
  2070. reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
  2071. reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
  2072. reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
  2073. context_run(&ctx->context, control);
  2074. break;
  2075. }
  2076. return 0;
  2077. }
  2078. static int ohci_stop_iso(struct fw_iso_context *base)
  2079. {
  2080. struct fw_ohci *ohci = fw_ohci(base->card);
  2081. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2082. int index;
  2083. switch (ctx->base.type) {
  2084. case FW_ISO_CONTEXT_TRANSMIT:
  2085. index = ctx - ohci->it_context_list;
  2086. reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
  2087. break;
  2088. case FW_ISO_CONTEXT_RECEIVE:
  2089. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2090. index = ctx - ohci->ir_context_list;
  2091. reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
  2092. break;
  2093. }
  2094. flush_writes(ohci);
  2095. context_stop(&ctx->context);
  2096. return 0;
  2097. }
  2098. static void ohci_free_iso_context(struct fw_iso_context *base)
  2099. {
  2100. struct fw_ohci *ohci = fw_ohci(base->card);
  2101. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2102. unsigned long flags;
  2103. int index;
  2104. ohci_stop_iso(base);
  2105. context_release(&ctx->context);
  2106. free_page((unsigned long)ctx->header);
  2107. spin_lock_irqsave(&ohci->lock, flags);
  2108. switch (base->type) {
  2109. case FW_ISO_CONTEXT_TRANSMIT:
  2110. index = ctx - ohci->it_context_list;
  2111. ohci->it_context_mask |= 1 << index;
  2112. break;
  2113. case FW_ISO_CONTEXT_RECEIVE:
  2114. index = ctx - ohci->ir_context_list;
  2115. ohci->ir_context_mask |= 1 << index;
  2116. ohci->ir_context_channels |= 1ULL << base->channel;
  2117. break;
  2118. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2119. index = ctx - ohci->ir_context_list;
  2120. ohci->ir_context_mask |= 1 << index;
  2121. ohci->ir_context_channels |= ohci->mc_channels;
  2122. ohci->mc_channels = 0;
  2123. ohci->mc_allocated = false;
  2124. break;
  2125. }
  2126. spin_unlock_irqrestore(&ohci->lock, flags);
  2127. }
  2128. static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
  2129. {
  2130. struct fw_ohci *ohci = fw_ohci(base->card);
  2131. unsigned long flags;
  2132. int ret;
  2133. switch (base->type) {
  2134. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2135. spin_lock_irqsave(&ohci->lock, flags);
  2136. /* Don't allow multichannel to grab other contexts' channels. */
  2137. if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
  2138. *channels = ohci->ir_context_channels;
  2139. ret = -EBUSY;
  2140. } else {
  2141. set_multichannel_mask(ohci, *channels);
  2142. ret = 0;
  2143. }
  2144. spin_unlock_irqrestore(&ohci->lock, flags);
  2145. break;
  2146. default:
  2147. ret = -EINVAL;
  2148. }
  2149. return ret;
  2150. }
  2151. static int queue_iso_transmit(struct iso_context *ctx,
  2152. struct fw_iso_packet *packet,
  2153. struct fw_iso_buffer *buffer,
  2154. unsigned long payload)
  2155. {
  2156. struct descriptor *d, *last, *pd;
  2157. struct fw_iso_packet *p;
  2158. __le32 *header;
  2159. dma_addr_t d_bus, page_bus;
  2160. u32 z, header_z, payload_z, irq;
  2161. u32 payload_index, payload_end_index, next_page_index;
  2162. int page, end_page, i, length, offset;
  2163. p = packet;
  2164. payload_index = payload;
  2165. if (p->skip)
  2166. z = 1;
  2167. else
  2168. z = 2;
  2169. if (p->header_length > 0)
  2170. z++;
  2171. /* Determine the first page the payload isn't contained in. */
  2172. end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
  2173. if (p->payload_length > 0)
  2174. payload_z = end_page - (payload_index >> PAGE_SHIFT);
  2175. else
  2176. payload_z = 0;
  2177. z += payload_z;
  2178. /* Get header size in number of descriptors. */
  2179. header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
  2180. d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
  2181. if (d == NULL)
  2182. return -ENOMEM;
  2183. if (!p->skip) {
  2184. d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
  2185. d[0].req_count = cpu_to_le16(8);
  2186. /*
  2187. * Link the skip address to this descriptor itself. This causes
  2188. * a context to skip a cycle whenever lost cycles or FIFO
  2189. * overruns occur, without dropping the data. The application
  2190. * should then decide whether this is an error condition or not.
  2191. * FIXME: Make the context's cycle-lost behaviour configurable?
  2192. */
  2193. d[0].branch_address = cpu_to_le32(d_bus | z);
  2194. header = (__le32 *) &d[1];
  2195. header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
  2196. IT_HEADER_TAG(p->tag) |
  2197. IT_HEADER_TCODE(TCODE_STREAM_DATA) |
  2198. IT_HEADER_CHANNEL(ctx->base.channel) |
  2199. IT_HEADER_SPEED(ctx->base.speed));
  2200. header[1] =
  2201. cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
  2202. p->payload_length));
  2203. }
  2204. if (p->header_length > 0) {
  2205. d[2].req_count = cpu_to_le16(p->header_length);
  2206. d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
  2207. memcpy(&d[z], p->header, p->header_length);
  2208. }
  2209. pd = d + z - payload_z;
  2210. payload_end_index = payload_index + p->payload_length;
  2211. for (i = 0; i < payload_z; i++) {
  2212. page = payload_index >> PAGE_SHIFT;
  2213. offset = payload_index & ~PAGE_MASK;
  2214. next_page_index = (page + 1) << PAGE_SHIFT;
  2215. length =
  2216. min(next_page_index, payload_end_index) - payload_index;
  2217. pd[i].req_count = cpu_to_le16(length);
  2218. page_bus = page_private(buffer->pages[page]);
  2219. pd[i].data_address = cpu_to_le32(page_bus + offset);
  2220. payload_index += length;
  2221. }
  2222. if (p->interrupt)
  2223. irq = DESCRIPTOR_IRQ_ALWAYS;
  2224. else
  2225. irq = DESCRIPTOR_NO_IRQ;
  2226. last = z == 2 ? d : d + z - 1;
  2227. last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
  2228. DESCRIPTOR_STATUS |
  2229. DESCRIPTOR_BRANCH_ALWAYS |
  2230. irq);
  2231. context_append(&ctx->context, d, z, header_z);
  2232. return 0;
  2233. }
  2234. static int queue_iso_packet_per_buffer(struct iso_context *ctx,
  2235. struct fw_iso_packet *packet,
  2236. struct fw_iso_buffer *buffer,
  2237. unsigned long payload)
  2238. {
  2239. struct descriptor *d, *pd;
  2240. dma_addr_t d_bus, page_bus;
  2241. u32 z, header_z, rest;
  2242. int i, j, length;
  2243. int page, offset, packet_count, header_size, payload_per_buffer;
  2244. /*
  2245. * The OHCI controller puts the isochronous header and trailer in the
  2246. * buffer, so we need at least 8 bytes.
  2247. */
  2248. packet_count = packet->header_length / ctx->base.header_size;
  2249. header_size = max(ctx->base.header_size, (size_t)8);
  2250. /* Get header size in number of descriptors. */
  2251. header_z = DIV_ROUND_UP(header_size, sizeof(*d));
  2252. page = payload >> PAGE_SHIFT;
  2253. offset = payload & ~PAGE_MASK;
  2254. payload_per_buffer = packet->payload_length / packet_count;
  2255. for (i = 0; i < packet_count; i++) {
  2256. /* d points to the header descriptor */
  2257. z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
  2258. d = context_get_descriptors(&ctx->context,
  2259. z + header_z, &d_bus);
  2260. if (d == NULL)
  2261. return -ENOMEM;
  2262. d->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2263. DESCRIPTOR_INPUT_MORE);
  2264. if (packet->skip && i == 0)
  2265. d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
  2266. d->req_count = cpu_to_le16(header_size);
  2267. d->res_count = d->req_count;
  2268. d->transfer_status = 0;
  2269. d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
  2270. rest = payload_per_buffer;
  2271. pd = d;
  2272. for (j = 1; j < z; j++) {
  2273. pd++;
  2274. pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2275. DESCRIPTOR_INPUT_MORE);
  2276. if (offset + rest < PAGE_SIZE)
  2277. length = rest;
  2278. else
  2279. length = PAGE_SIZE - offset;
  2280. pd->req_count = cpu_to_le16(length);
  2281. pd->res_count = pd->req_count;
  2282. pd->transfer_status = 0;
  2283. page_bus = page_private(buffer->pages[page]);
  2284. pd->data_address = cpu_to_le32(page_bus + offset);
  2285. offset = (offset + length) & ~PAGE_MASK;
  2286. rest -= length;
  2287. if (offset == 0)
  2288. page++;
  2289. }
  2290. pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2291. DESCRIPTOR_INPUT_LAST |
  2292. DESCRIPTOR_BRANCH_ALWAYS);
  2293. if (packet->interrupt && i == packet_count - 1)
  2294. pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
  2295. context_append(&ctx->context, d, z, header_z);
  2296. }
  2297. return 0;
  2298. }
  2299. static int queue_iso_buffer_fill(struct iso_context *ctx,
  2300. struct fw_iso_packet *packet,
  2301. struct fw_iso_buffer *buffer,
  2302. unsigned long payload)
  2303. {
  2304. struct descriptor *d;
  2305. dma_addr_t d_bus, page_bus;
  2306. int page, offset, rest, z, i, length;
  2307. page = payload >> PAGE_SHIFT;
  2308. offset = payload & ~PAGE_MASK;
  2309. rest = packet->payload_length;
  2310. /* We need one descriptor for each page in the buffer. */
  2311. z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
  2312. if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
  2313. return -EFAULT;
  2314. for (i = 0; i < z; i++) {
  2315. d = context_get_descriptors(&ctx->context, 1, &d_bus);
  2316. if (d == NULL)
  2317. return -ENOMEM;
  2318. d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
  2319. DESCRIPTOR_BRANCH_ALWAYS);
  2320. if (packet->skip && i == 0)
  2321. d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
  2322. if (packet->interrupt && i == z - 1)
  2323. d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
  2324. if (offset + rest < PAGE_SIZE)
  2325. length = rest;
  2326. else
  2327. length = PAGE_SIZE - offset;
  2328. d->req_count = cpu_to_le16(length);
  2329. d->res_count = d->req_count;
  2330. d->transfer_status = 0;
  2331. page_bus = page_private(buffer->pages[page]);
  2332. d->data_address = cpu_to_le32(page_bus + offset);
  2333. rest -= length;
  2334. offset = 0;
  2335. page++;
  2336. context_append(&ctx->context, d, 1, 0);
  2337. }
  2338. return 0;
  2339. }
  2340. static int ohci_queue_iso(struct fw_iso_context *base,
  2341. struct fw_iso_packet *packet,
  2342. struct fw_iso_buffer *buffer,
  2343. unsigned long payload)
  2344. {
  2345. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2346. unsigned long flags;
  2347. int ret = -ENOSYS;
  2348. spin_lock_irqsave(&ctx->context.ohci->lock, flags);
  2349. switch (base->type) {
  2350. case FW_ISO_CONTEXT_TRANSMIT:
  2351. ret = queue_iso_transmit(ctx, packet, buffer, payload);
  2352. break;
  2353. case FW_ISO_CONTEXT_RECEIVE:
  2354. ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
  2355. break;
  2356. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2357. ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
  2358. break;
  2359. }
  2360. spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
  2361. return ret;
  2362. }
  2363. static const struct fw_card_driver ohci_driver = {
  2364. .enable = ohci_enable,
  2365. .read_phy_reg = ohci_read_phy_reg,
  2366. .update_phy_reg = ohci_update_phy_reg,
  2367. .set_config_rom = ohci_set_config_rom,
  2368. .send_request = ohci_send_request,
  2369. .send_response = ohci_send_response,
  2370. .cancel_packet = ohci_cancel_packet,
  2371. .enable_phys_dma = ohci_enable_phys_dma,
  2372. .read_csr = ohci_read_csr,
  2373. .write_csr = ohci_write_csr,
  2374. .allocate_iso_context = ohci_allocate_iso_context,
  2375. .free_iso_context = ohci_free_iso_context,
  2376. .set_iso_channels = ohci_set_iso_channels,
  2377. .queue_iso = ohci_queue_iso,
  2378. .start_iso = ohci_start_iso,
  2379. .stop_iso = ohci_stop_iso,
  2380. };
  2381. #ifdef CONFIG_PPC_PMAC
  2382. static void pmac_ohci_on(struct pci_dev *dev)
  2383. {
  2384. if (machine_is(powermac)) {
  2385. struct device_node *ofn = pci_device_to_OF_node(dev);
  2386. if (ofn) {
  2387. pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
  2388. pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
  2389. }
  2390. }
  2391. }
  2392. static void pmac_ohci_off(struct pci_dev *dev)
  2393. {
  2394. if (machine_is(powermac)) {
  2395. struct device_node *ofn = pci_device_to_OF_node(dev);
  2396. if (ofn) {
  2397. pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
  2398. pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
  2399. }
  2400. }
  2401. }
  2402. #else
  2403. static inline void pmac_ohci_on(struct pci_dev *dev) {}
  2404. static inline void pmac_ohci_off(struct pci_dev *dev) {}
  2405. #endif /* CONFIG_PPC_PMAC */
  2406. static int __devinit pci_probe(struct pci_dev *dev,
  2407. const struct pci_device_id *ent)
  2408. {
  2409. struct fw_ohci *ohci;
  2410. u32 bus_options, max_receive, link_speed, version;
  2411. u64 guid;
  2412. int i, err, n_ir, n_it;
  2413. size_t size;
  2414. ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
  2415. if (ohci == NULL) {
  2416. err = -ENOMEM;
  2417. goto fail;
  2418. }
  2419. fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
  2420. pmac_ohci_on(dev);
  2421. err = pci_enable_device(dev);
  2422. if (err) {
  2423. fw_error("Failed to enable OHCI hardware\n");
  2424. goto fail_free;
  2425. }
  2426. pci_set_master(dev);
  2427. pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
  2428. pci_set_drvdata(dev, ohci);
  2429. spin_lock_init(&ohci->lock);
  2430. mutex_init(&ohci->phy_reg_mutex);
  2431. tasklet_init(&ohci->bus_reset_tasklet,
  2432. bus_reset_tasklet, (unsigned long)ohci);
  2433. err = pci_request_region(dev, 0, ohci_driver_name);
  2434. if (err) {
  2435. fw_error("MMIO resource unavailable\n");
  2436. goto fail_disable;
  2437. }
  2438. ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
  2439. if (ohci->registers == NULL) {
  2440. fw_error("Failed to remap registers\n");
  2441. err = -ENXIO;
  2442. goto fail_iomem;
  2443. }
  2444. for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
  2445. if (ohci_quirks[i].vendor == dev->vendor &&
  2446. (ohci_quirks[i].device == dev->device ||
  2447. ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
  2448. ohci->quirks = ohci_quirks[i].flags;
  2449. break;
  2450. }
  2451. if (param_quirks)
  2452. ohci->quirks = param_quirks;
  2453. ar_context_init(&ohci->ar_request_ctx, ohci,
  2454. OHCI1394_AsReqRcvContextControlSet);
  2455. ar_context_init(&ohci->ar_response_ctx, ohci,
  2456. OHCI1394_AsRspRcvContextControlSet);
  2457. context_init(&ohci->at_request_ctx, ohci,
  2458. OHCI1394_AsReqTrContextControlSet, handle_at_packet);
  2459. context_init(&ohci->at_response_ctx, ohci,
  2460. OHCI1394_AsRspTrContextControlSet, handle_at_packet);
  2461. reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
  2462. ohci->ir_context_channels = ~0ULL;
  2463. ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
  2464. reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
  2465. n_ir = hweight32(ohci->ir_context_mask);
  2466. size = sizeof(struct iso_context) * n_ir;
  2467. ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
  2468. reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
  2469. ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
  2470. reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
  2471. n_it = hweight32(ohci->it_context_mask);
  2472. size = sizeof(struct iso_context) * n_it;
  2473. ohci->it_context_list = kzalloc(size, GFP_KERNEL);
  2474. if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
  2475. err = -ENOMEM;
  2476. goto fail_contexts;
  2477. }
  2478. /* self-id dma buffer allocation */
  2479. ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
  2480. SELF_ID_BUF_SIZE,
  2481. &ohci->self_id_bus,
  2482. GFP_KERNEL);
  2483. if (ohci->self_id_cpu == NULL) {
  2484. err = -ENOMEM;
  2485. goto fail_contexts;
  2486. }
  2487. bus_options = reg_read(ohci, OHCI1394_BusOptions);
  2488. max_receive = (bus_options >> 12) & 0xf;
  2489. link_speed = bus_options & 0x7;
  2490. guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
  2491. reg_read(ohci, OHCI1394_GUIDLo);
  2492. err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
  2493. if (err)
  2494. goto fail_self_id;
  2495. version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
  2496. fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
  2497. "%d IR + %d IT contexts, quirks 0x%x\n",
  2498. dev_name(&dev->dev), version >> 16, version & 0xff,
  2499. n_ir, n_it, ohci->quirks);
  2500. return 0;
  2501. fail_self_id:
  2502. dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
  2503. ohci->self_id_cpu, ohci->self_id_bus);
  2504. fail_contexts:
  2505. kfree(ohci->ir_context_list);
  2506. kfree(ohci->it_context_list);
  2507. context_release(&ohci->at_response_ctx);
  2508. context_release(&ohci->at_request_ctx);
  2509. ar_context_release(&ohci->ar_response_ctx);
  2510. ar_context_release(&ohci->ar_request_ctx);
  2511. pci_iounmap(dev, ohci->registers);
  2512. fail_iomem:
  2513. pci_release_region(dev, 0);
  2514. fail_disable:
  2515. pci_disable_device(dev);
  2516. fail_free:
  2517. kfree(&ohci->card);
  2518. pmac_ohci_off(dev);
  2519. fail:
  2520. if (err == -ENOMEM)
  2521. fw_error("Out of memory\n");
  2522. return err;
  2523. }
  2524. static void pci_remove(struct pci_dev *dev)
  2525. {
  2526. struct fw_ohci *ohci;
  2527. ohci = pci_get_drvdata(dev);
  2528. reg_write(ohci, OHCI1394_IntMaskClear, ~0);
  2529. flush_writes(ohci);
  2530. fw_core_remove_card(&ohci->card);
  2531. /*
  2532. * FIXME: Fail all pending packets here, now that the upper
  2533. * layers can't queue any more.
  2534. */
  2535. software_reset(ohci);
  2536. free_irq(dev->irq, ohci);
  2537. if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
  2538. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  2539. ohci->next_config_rom, ohci->next_config_rom_bus);
  2540. if (ohci->config_rom)
  2541. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  2542. ohci->config_rom, ohci->config_rom_bus);
  2543. dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
  2544. ohci->self_id_cpu, ohci->self_id_bus);
  2545. ar_context_release(&ohci->ar_request_ctx);
  2546. ar_context_release(&ohci->ar_response_ctx);
  2547. context_release(&ohci->at_request_ctx);
  2548. context_release(&ohci->at_response_ctx);
  2549. kfree(ohci->it_context_list);
  2550. kfree(ohci->ir_context_list);
  2551. pci_disable_msi(dev);
  2552. pci_iounmap(dev, ohci->registers);
  2553. pci_release_region(dev, 0);
  2554. pci_disable_device(dev);
  2555. kfree(&ohci->card);
  2556. pmac_ohci_off(dev);
  2557. fw_notify("Removed fw-ohci device.\n");
  2558. }
  2559. #ifdef CONFIG_PM
  2560. static int pci_suspend(struct pci_dev *dev, pm_message_t state)
  2561. {
  2562. struct fw_ohci *ohci = pci_get_drvdata(dev);
  2563. int err;
  2564. software_reset(ohci);
  2565. free_irq(dev->irq, ohci);
  2566. pci_disable_msi(dev);
  2567. err = pci_save_state(dev);
  2568. if (err) {
  2569. fw_error("pci_save_state failed\n");
  2570. return err;
  2571. }
  2572. err = pci_set_power_state(dev, pci_choose_state(dev, state));
  2573. if (err)
  2574. fw_error("pci_set_power_state failed with %d\n", err);
  2575. pmac_ohci_off(dev);
  2576. return 0;
  2577. }
  2578. static int pci_resume(struct pci_dev *dev)
  2579. {
  2580. struct fw_ohci *ohci = pci_get_drvdata(dev);
  2581. int err;
  2582. pmac_ohci_on(dev);
  2583. pci_set_power_state(dev, PCI_D0);
  2584. pci_restore_state(dev);
  2585. err = pci_enable_device(dev);
  2586. if (err) {
  2587. fw_error("pci_enable_device failed\n");
  2588. return err;
  2589. }
  2590. return ohci_enable(&ohci->card, NULL, 0);
  2591. }
  2592. #endif
  2593. static const struct pci_device_id pci_table[] = {
  2594. { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
  2595. { }
  2596. };
  2597. MODULE_DEVICE_TABLE(pci, pci_table);
  2598. static struct pci_driver fw_ohci_pci_driver = {
  2599. .name = ohci_driver_name,
  2600. .id_table = pci_table,
  2601. .probe = pci_probe,
  2602. .remove = pci_remove,
  2603. #ifdef CONFIG_PM
  2604. .resume = pci_resume,
  2605. .suspend = pci_suspend,
  2606. #endif
  2607. };
  2608. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  2609. MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
  2610. MODULE_LICENSE("GPL");
  2611. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  2612. #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
  2613. MODULE_ALIAS("ohci1394");
  2614. #endif
  2615. static int __init fw_ohci_init(void)
  2616. {
  2617. return pci_register_driver(&fw_ohci_pci_driver);
  2618. }
  2619. static void __exit fw_ohci_cleanup(void)
  2620. {
  2621. pci_unregister_driver(&fw_ohci_pci_driver);
  2622. }
  2623. module_init(fw_ohci_init);
  2624. module_exit(fw_ohci_cleanup);