kvm_main.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_arch_ops *kvm_arch_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "request_irq", STAT_OFFSET(request_irq_exits) },
  70. { "irq_exits", STAT_OFFSET(irq_exits) },
  71. { "light_exits", STAT_OFFSET(light_exits) },
  72. { "efer_reload", STAT_OFFSET(efer_reload) },
  73. { NULL }
  74. };
  75. static struct dentry *debugfs_dir;
  76. #define MAX_IO_MSRS 256
  77. #define CR0_RESERVED_BITS \
  78. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  79. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  80. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  81. #define CR4_RESERVED_BITS \
  82. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  83. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  84. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  86. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  87. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  88. #ifdef CONFIG_X86_64
  89. // LDT or TSS descriptor in the GDT. 16 bytes.
  90. struct segment_descriptor_64 {
  91. struct segment_descriptor s;
  92. u32 base_higher;
  93. u32 pad_zero;
  94. };
  95. #endif
  96. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  97. unsigned long arg);
  98. unsigned long segment_base(u16 selector)
  99. {
  100. struct descriptor_table gdt;
  101. struct segment_descriptor *d;
  102. unsigned long table_base;
  103. typedef unsigned long ul;
  104. unsigned long v;
  105. if (selector == 0)
  106. return 0;
  107. asm ("sgdt %0" : "=m"(gdt));
  108. table_base = gdt.base;
  109. if (selector & 4) { /* from ldt */
  110. u16 ldt_selector;
  111. asm ("sldt %0" : "=g"(ldt_selector));
  112. table_base = segment_base(ldt_selector);
  113. }
  114. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  115. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  116. #ifdef CONFIG_X86_64
  117. if (d->system == 0
  118. && (d->type == 2 || d->type == 9 || d->type == 11))
  119. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  120. #endif
  121. return v;
  122. }
  123. EXPORT_SYMBOL_GPL(segment_base);
  124. static inline int valid_vcpu(int n)
  125. {
  126. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  127. }
  128. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  129. {
  130. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  131. return;
  132. vcpu->guest_fpu_loaded = 1;
  133. fx_save(&vcpu->host_fx_image);
  134. fx_restore(&vcpu->guest_fx_image);
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  137. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  138. {
  139. if (!vcpu->guest_fpu_loaded)
  140. return;
  141. vcpu->guest_fpu_loaded = 0;
  142. fx_save(&vcpu->guest_fx_image);
  143. fx_restore(&vcpu->host_fx_image);
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  146. /*
  147. * Switches to specified vcpu, until a matching vcpu_put()
  148. */
  149. static void vcpu_load(struct kvm_vcpu *vcpu)
  150. {
  151. int cpu;
  152. mutex_lock(&vcpu->mutex);
  153. cpu = get_cpu();
  154. preempt_notifier_register(&vcpu->preempt_notifier);
  155. kvm_arch_ops->vcpu_load(vcpu, cpu);
  156. put_cpu();
  157. }
  158. static void vcpu_put(struct kvm_vcpu *vcpu)
  159. {
  160. preempt_disable();
  161. kvm_arch_ops->vcpu_put(vcpu);
  162. preempt_notifier_unregister(&vcpu->preempt_notifier);
  163. preempt_enable();
  164. mutex_unlock(&vcpu->mutex);
  165. }
  166. static void ack_flush(void *_completed)
  167. {
  168. atomic_t *completed = _completed;
  169. atomic_inc(completed);
  170. }
  171. void kvm_flush_remote_tlbs(struct kvm *kvm)
  172. {
  173. int i, cpu, needed;
  174. cpumask_t cpus;
  175. struct kvm_vcpu *vcpu;
  176. atomic_t completed;
  177. atomic_set(&completed, 0);
  178. cpus_clear(cpus);
  179. needed = 0;
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. if (!cpu_isset(cpu, cpus)) {
  189. cpu_set(cpu, cpus);
  190. ++needed;
  191. }
  192. }
  193. /*
  194. * We really want smp_call_function_mask() here. But that's not
  195. * available, so ipi all cpus in parallel and wait for them
  196. * to complete.
  197. */
  198. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  199. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  200. while (atomic_read(&completed) != needed) {
  201. cpu_relax();
  202. barrier();
  203. }
  204. }
  205. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  206. {
  207. struct page *page;
  208. int r;
  209. mutex_init(&vcpu->mutex);
  210. vcpu->cpu = -1;
  211. vcpu->mmu.root_hpa = INVALID_PAGE;
  212. vcpu->kvm = kvm;
  213. vcpu->vcpu_id = id;
  214. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  215. if (!page) {
  216. r = -ENOMEM;
  217. goto fail;
  218. }
  219. vcpu->run = page_address(page);
  220. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  221. if (!page) {
  222. r = -ENOMEM;
  223. goto fail_free_run;
  224. }
  225. vcpu->pio_data = page_address(page);
  226. r = kvm_mmu_create(vcpu);
  227. if (r < 0)
  228. goto fail_free_pio_data;
  229. return 0;
  230. fail_free_pio_data:
  231. free_page((unsigned long)vcpu->pio_data);
  232. fail_free_run:
  233. free_page((unsigned long)vcpu->run);
  234. fail:
  235. return -ENOMEM;
  236. }
  237. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  238. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  239. {
  240. kvm_mmu_destroy(vcpu);
  241. free_page((unsigned long)vcpu->pio_data);
  242. free_page((unsigned long)vcpu->run);
  243. }
  244. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  245. static struct kvm *kvm_create_vm(void)
  246. {
  247. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  248. if (!kvm)
  249. return ERR_PTR(-ENOMEM);
  250. kvm_io_bus_init(&kvm->pio_bus);
  251. mutex_init(&kvm->lock);
  252. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  253. kvm_io_bus_init(&kvm->mmio_bus);
  254. spin_lock(&kvm_lock);
  255. list_add(&kvm->vm_list, &vm_list);
  256. spin_unlock(&kvm_lock);
  257. return kvm;
  258. }
  259. /*
  260. * Free any memory in @free but not in @dont.
  261. */
  262. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  263. struct kvm_memory_slot *dont)
  264. {
  265. int i;
  266. if (!dont || free->phys_mem != dont->phys_mem)
  267. if (free->phys_mem) {
  268. for (i = 0; i < free->npages; ++i)
  269. if (free->phys_mem[i])
  270. __free_page(free->phys_mem[i]);
  271. vfree(free->phys_mem);
  272. }
  273. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  274. vfree(free->dirty_bitmap);
  275. free->phys_mem = NULL;
  276. free->npages = 0;
  277. free->dirty_bitmap = NULL;
  278. }
  279. static void kvm_free_physmem(struct kvm *kvm)
  280. {
  281. int i;
  282. for (i = 0; i < kvm->nmemslots; ++i)
  283. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  284. }
  285. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  286. {
  287. int i;
  288. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  289. if (vcpu->pio.guest_pages[i]) {
  290. __free_page(vcpu->pio.guest_pages[i]);
  291. vcpu->pio.guest_pages[i] = NULL;
  292. }
  293. }
  294. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  295. {
  296. vcpu_load(vcpu);
  297. kvm_mmu_unload(vcpu);
  298. vcpu_put(vcpu);
  299. }
  300. static void kvm_free_vcpus(struct kvm *kvm)
  301. {
  302. unsigned int i;
  303. /*
  304. * Unpin any mmu pages first.
  305. */
  306. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  307. if (kvm->vcpus[i])
  308. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  310. if (kvm->vcpus[i]) {
  311. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  312. kvm->vcpus[i] = NULL;
  313. }
  314. }
  315. }
  316. static void kvm_destroy_vm(struct kvm *kvm)
  317. {
  318. spin_lock(&kvm_lock);
  319. list_del(&kvm->vm_list);
  320. spin_unlock(&kvm_lock);
  321. kvm_io_bus_destroy(&kvm->pio_bus);
  322. kvm_io_bus_destroy(&kvm->mmio_bus);
  323. kfree(kvm->vpic);
  324. kvm_free_vcpus(kvm);
  325. kvm_free_physmem(kvm);
  326. kfree(kvm);
  327. }
  328. static int kvm_vm_release(struct inode *inode, struct file *filp)
  329. {
  330. struct kvm *kvm = filp->private_data;
  331. kvm_destroy_vm(kvm);
  332. return 0;
  333. }
  334. static void inject_gp(struct kvm_vcpu *vcpu)
  335. {
  336. kvm_arch_ops->inject_gp(vcpu, 0);
  337. }
  338. /*
  339. * Load the pae pdptrs. Return true is they are all valid.
  340. */
  341. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  342. {
  343. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  344. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  345. int i;
  346. u64 *pdpt;
  347. int ret;
  348. struct page *page;
  349. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  350. mutex_lock(&vcpu->kvm->lock);
  351. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  352. if (!page) {
  353. ret = 0;
  354. goto out;
  355. }
  356. pdpt = kmap_atomic(page, KM_USER0);
  357. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  358. kunmap_atomic(pdpt, KM_USER0);
  359. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  360. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  361. ret = 0;
  362. goto out;
  363. }
  364. }
  365. ret = 1;
  366. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  367. out:
  368. mutex_unlock(&vcpu->kvm->lock);
  369. return ret;
  370. }
  371. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  372. {
  373. if (cr0 & CR0_RESERVED_BITS) {
  374. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  375. cr0, vcpu->cr0);
  376. inject_gp(vcpu);
  377. return;
  378. }
  379. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  380. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  381. inject_gp(vcpu);
  382. return;
  383. }
  384. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  385. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  386. "and a clear PE flag\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  391. #ifdef CONFIG_X86_64
  392. if ((vcpu->shadow_efer & EFER_LME)) {
  393. int cs_db, cs_l;
  394. if (!is_pae(vcpu)) {
  395. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  396. "in long mode while PAE is disabled\n");
  397. inject_gp(vcpu);
  398. return;
  399. }
  400. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  401. if (cs_l) {
  402. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  403. "in long mode while CS.L == 1\n");
  404. inject_gp(vcpu);
  405. return;
  406. }
  407. } else
  408. #endif
  409. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  410. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  411. "reserved bits\n");
  412. inject_gp(vcpu);
  413. return;
  414. }
  415. }
  416. kvm_arch_ops->set_cr0(vcpu, cr0);
  417. vcpu->cr0 = cr0;
  418. mutex_lock(&vcpu->kvm->lock);
  419. kvm_mmu_reset_context(vcpu);
  420. mutex_unlock(&vcpu->kvm->lock);
  421. return;
  422. }
  423. EXPORT_SYMBOL_GPL(set_cr0);
  424. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  425. {
  426. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  427. }
  428. EXPORT_SYMBOL_GPL(lmsw);
  429. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  430. {
  431. if (cr4 & CR4_RESERVED_BITS) {
  432. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  433. inject_gp(vcpu);
  434. return;
  435. }
  436. if (is_long_mode(vcpu)) {
  437. if (!(cr4 & X86_CR4_PAE)) {
  438. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  439. "in long mode\n");
  440. inject_gp(vcpu);
  441. return;
  442. }
  443. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  444. && !load_pdptrs(vcpu, vcpu->cr3)) {
  445. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  446. inject_gp(vcpu);
  447. return;
  448. }
  449. if (cr4 & X86_CR4_VMXE) {
  450. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  451. inject_gp(vcpu);
  452. return;
  453. }
  454. kvm_arch_ops->set_cr4(vcpu, cr4);
  455. mutex_lock(&vcpu->kvm->lock);
  456. kvm_mmu_reset_context(vcpu);
  457. mutex_unlock(&vcpu->kvm->lock);
  458. }
  459. EXPORT_SYMBOL_GPL(set_cr4);
  460. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  461. {
  462. if (is_long_mode(vcpu)) {
  463. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  464. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  465. inject_gp(vcpu);
  466. return;
  467. }
  468. } else {
  469. if (is_pae(vcpu)) {
  470. if (cr3 & CR3_PAE_RESERVED_BITS) {
  471. printk(KERN_DEBUG
  472. "set_cr3: #GP, reserved bits\n");
  473. inject_gp(vcpu);
  474. return;
  475. }
  476. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  477. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  478. "reserved bits\n");
  479. inject_gp(vcpu);
  480. return;
  481. }
  482. } else {
  483. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  484. printk(KERN_DEBUG
  485. "set_cr3: #GP, reserved bits\n");
  486. inject_gp(vcpu);
  487. return;
  488. }
  489. }
  490. }
  491. mutex_lock(&vcpu->kvm->lock);
  492. /*
  493. * Does the new cr3 value map to physical memory? (Note, we
  494. * catch an invalid cr3 even in real-mode, because it would
  495. * cause trouble later on when we turn on paging anyway.)
  496. *
  497. * A real CPU would silently accept an invalid cr3 and would
  498. * attempt to use it - with largely undefined (and often hard
  499. * to debug) behavior on the guest side.
  500. */
  501. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  502. inject_gp(vcpu);
  503. else {
  504. vcpu->cr3 = cr3;
  505. vcpu->mmu.new_cr3(vcpu);
  506. }
  507. mutex_unlock(&vcpu->kvm->lock);
  508. }
  509. EXPORT_SYMBOL_GPL(set_cr3);
  510. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  511. {
  512. if (cr8 & CR8_RESERVED_BITS) {
  513. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  514. inject_gp(vcpu);
  515. return;
  516. }
  517. vcpu->cr8 = cr8;
  518. }
  519. EXPORT_SYMBOL_GPL(set_cr8);
  520. void fx_init(struct kvm_vcpu *vcpu)
  521. {
  522. unsigned after_mxcsr_mask;
  523. /* Initialize guest FPU by resetting ours and saving into guest's */
  524. preempt_disable();
  525. fx_save(&vcpu->host_fx_image);
  526. fpu_init();
  527. fx_save(&vcpu->guest_fx_image);
  528. fx_restore(&vcpu->host_fx_image);
  529. preempt_enable();
  530. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  531. vcpu->guest_fx_image.mxcsr = 0x1f80;
  532. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  533. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  534. }
  535. EXPORT_SYMBOL_GPL(fx_init);
  536. /*
  537. * Allocate some memory and give it an address in the guest physical address
  538. * space.
  539. *
  540. * Discontiguous memory is allowed, mostly for framebuffers.
  541. */
  542. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  543. struct kvm_memory_region *mem)
  544. {
  545. int r;
  546. gfn_t base_gfn;
  547. unsigned long npages;
  548. unsigned long i;
  549. struct kvm_memory_slot *memslot;
  550. struct kvm_memory_slot old, new;
  551. int memory_config_version;
  552. r = -EINVAL;
  553. /* General sanity checks */
  554. if (mem->memory_size & (PAGE_SIZE - 1))
  555. goto out;
  556. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  557. goto out;
  558. if (mem->slot >= KVM_MEMORY_SLOTS)
  559. goto out;
  560. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  561. goto out;
  562. memslot = &kvm->memslots[mem->slot];
  563. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  564. npages = mem->memory_size >> PAGE_SHIFT;
  565. if (!npages)
  566. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  567. raced:
  568. mutex_lock(&kvm->lock);
  569. memory_config_version = kvm->memory_config_version;
  570. new = old = *memslot;
  571. new.base_gfn = base_gfn;
  572. new.npages = npages;
  573. new.flags = mem->flags;
  574. /* Disallow changing a memory slot's size. */
  575. r = -EINVAL;
  576. if (npages && old.npages && npages != old.npages)
  577. goto out_unlock;
  578. /* Check for overlaps */
  579. r = -EEXIST;
  580. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  581. struct kvm_memory_slot *s = &kvm->memslots[i];
  582. if (s == memslot)
  583. continue;
  584. if (!((base_gfn + npages <= s->base_gfn) ||
  585. (base_gfn >= s->base_gfn + s->npages)))
  586. goto out_unlock;
  587. }
  588. /*
  589. * Do memory allocations outside lock. memory_config_version will
  590. * detect any races.
  591. */
  592. mutex_unlock(&kvm->lock);
  593. /* Deallocate if slot is being removed */
  594. if (!npages)
  595. new.phys_mem = NULL;
  596. /* Free page dirty bitmap if unneeded */
  597. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  598. new.dirty_bitmap = NULL;
  599. r = -ENOMEM;
  600. /* Allocate if a slot is being created */
  601. if (npages && !new.phys_mem) {
  602. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  603. if (!new.phys_mem)
  604. goto out_free;
  605. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  606. for (i = 0; i < npages; ++i) {
  607. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  608. | __GFP_ZERO);
  609. if (!new.phys_mem[i])
  610. goto out_free;
  611. set_page_private(new.phys_mem[i],0);
  612. }
  613. }
  614. /* Allocate page dirty bitmap if needed */
  615. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  616. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  617. new.dirty_bitmap = vmalloc(dirty_bytes);
  618. if (!new.dirty_bitmap)
  619. goto out_free;
  620. memset(new.dirty_bitmap, 0, dirty_bytes);
  621. }
  622. mutex_lock(&kvm->lock);
  623. if (memory_config_version != kvm->memory_config_version) {
  624. mutex_unlock(&kvm->lock);
  625. kvm_free_physmem_slot(&new, &old);
  626. goto raced;
  627. }
  628. r = -EAGAIN;
  629. if (kvm->busy)
  630. goto out_unlock;
  631. if (mem->slot >= kvm->nmemslots)
  632. kvm->nmemslots = mem->slot + 1;
  633. *memslot = new;
  634. ++kvm->memory_config_version;
  635. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  636. kvm_flush_remote_tlbs(kvm);
  637. mutex_unlock(&kvm->lock);
  638. kvm_free_physmem_slot(&old, &new);
  639. return 0;
  640. out_unlock:
  641. mutex_unlock(&kvm->lock);
  642. out_free:
  643. kvm_free_physmem_slot(&new, &old);
  644. out:
  645. return r;
  646. }
  647. /*
  648. * Get (and clear) the dirty memory log for a memory slot.
  649. */
  650. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  651. struct kvm_dirty_log *log)
  652. {
  653. struct kvm_memory_slot *memslot;
  654. int r, i;
  655. int n;
  656. unsigned long any = 0;
  657. mutex_lock(&kvm->lock);
  658. /*
  659. * Prevent changes to guest memory configuration even while the lock
  660. * is not taken.
  661. */
  662. ++kvm->busy;
  663. mutex_unlock(&kvm->lock);
  664. r = -EINVAL;
  665. if (log->slot >= KVM_MEMORY_SLOTS)
  666. goto out;
  667. memslot = &kvm->memslots[log->slot];
  668. r = -ENOENT;
  669. if (!memslot->dirty_bitmap)
  670. goto out;
  671. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  672. for (i = 0; !any && i < n/sizeof(long); ++i)
  673. any = memslot->dirty_bitmap[i];
  674. r = -EFAULT;
  675. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  676. goto out;
  677. /* If nothing is dirty, don't bother messing with page tables. */
  678. if (any) {
  679. mutex_lock(&kvm->lock);
  680. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  681. kvm_flush_remote_tlbs(kvm);
  682. memset(memslot->dirty_bitmap, 0, n);
  683. mutex_unlock(&kvm->lock);
  684. }
  685. r = 0;
  686. out:
  687. mutex_lock(&kvm->lock);
  688. --kvm->busy;
  689. mutex_unlock(&kvm->lock);
  690. return r;
  691. }
  692. /*
  693. * Set a new alias region. Aliases map a portion of physical memory into
  694. * another portion. This is useful for memory windows, for example the PC
  695. * VGA region.
  696. */
  697. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  698. struct kvm_memory_alias *alias)
  699. {
  700. int r, n;
  701. struct kvm_mem_alias *p;
  702. r = -EINVAL;
  703. /* General sanity checks */
  704. if (alias->memory_size & (PAGE_SIZE - 1))
  705. goto out;
  706. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  707. goto out;
  708. if (alias->slot >= KVM_ALIAS_SLOTS)
  709. goto out;
  710. if (alias->guest_phys_addr + alias->memory_size
  711. < alias->guest_phys_addr)
  712. goto out;
  713. if (alias->target_phys_addr + alias->memory_size
  714. < alias->target_phys_addr)
  715. goto out;
  716. mutex_lock(&kvm->lock);
  717. p = &kvm->aliases[alias->slot];
  718. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  719. p->npages = alias->memory_size >> PAGE_SHIFT;
  720. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  721. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  722. if (kvm->aliases[n - 1].npages)
  723. break;
  724. kvm->naliases = n;
  725. kvm_mmu_zap_all(kvm);
  726. mutex_unlock(&kvm->lock);
  727. return 0;
  728. out:
  729. return r;
  730. }
  731. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  732. {
  733. int i;
  734. struct kvm_mem_alias *alias;
  735. for (i = 0; i < kvm->naliases; ++i) {
  736. alias = &kvm->aliases[i];
  737. if (gfn >= alias->base_gfn
  738. && gfn < alias->base_gfn + alias->npages)
  739. return alias->target_gfn + gfn - alias->base_gfn;
  740. }
  741. return gfn;
  742. }
  743. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  744. {
  745. int i;
  746. for (i = 0; i < kvm->nmemslots; ++i) {
  747. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  748. if (gfn >= memslot->base_gfn
  749. && gfn < memslot->base_gfn + memslot->npages)
  750. return memslot;
  751. }
  752. return NULL;
  753. }
  754. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  755. {
  756. gfn = unalias_gfn(kvm, gfn);
  757. return __gfn_to_memslot(kvm, gfn);
  758. }
  759. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  760. {
  761. struct kvm_memory_slot *slot;
  762. gfn = unalias_gfn(kvm, gfn);
  763. slot = __gfn_to_memslot(kvm, gfn);
  764. if (!slot)
  765. return NULL;
  766. return slot->phys_mem[gfn - slot->base_gfn];
  767. }
  768. EXPORT_SYMBOL_GPL(gfn_to_page);
  769. /* WARNING: Does not work on aliased pages. */
  770. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  771. {
  772. struct kvm_memory_slot *memslot;
  773. memslot = __gfn_to_memslot(kvm, gfn);
  774. if (memslot && memslot->dirty_bitmap) {
  775. unsigned long rel_gfn = gfn - memslot->base_gfn;
  776. /* avoid RMW */
  777. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  778. set_bit(rel_gfn, memslot->dirty_bitmap);
  779. }
  780. }
  781. int emulator_read_std(unsigned long addr,
  782. void *val,
  783. unsigned int bytes,
  784. struct kvm_vcpu *vcpu)
  785. {
  786. void *data = val;
  787. while (bytes) {
  788. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  789. unsigned offset = addr & (PAGE_SIZE-1);
  790. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  791. unsigned long pfn;
  792. struct page *page;
  793. void *page_virt;
  794. if (gpa == UNMAPPED_GVA)
  795. return X86EMUL_PROPAGATE_FAULT;
  796. pfn = gpa >> PAGE_SHIFT;
  797. page = gfn_to_page(vcpu->kvm, pfn);
  798. if (!page)
  799. return X86EMUL_UNHANDLEABLE;
  800. page_virt = kmap_atomic(page, KM_USER0);
  801. memcpy(data, page_virt + offset, tocopy);
  802. kunmap_atomic(page_virt, KM_USER0);
  803. bytes -= tocopy;
  804. data += tocopy;
  805. addr += tocopy;
  806. }
  807. return X86EMUL_CONTINUE;
  808. }
  809. EXPORT_SYMBOL_GPL(emulator_read_std);
  810. static int emulator_write_std(unsigned long addr,
  811. const void *val,
  812. unsigned int bytes,
  813. struct kvm_vcpu *vcpu)
  814. {
  815. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  816. return X86EMUL_UNHANDLEABLE;
  817. }
  818. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  819. gpa_t addr)
  820. {
  821. /*
  822. * Note that its important to have this wrapper function because
  823. * in the very near future we will be checking for MMIOs against
  824. * the LAPIC as well as the general MMIO bus
  825. */
  826. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  827. }
  828. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  829. gpa_t addr)
  830. {
  831. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  832. }
  833. static int emulator_read_emulated(unsigned long addr,
  834. void *val,
  835. unsigned int bytes,
  836. struct kvm_vcpu *vcpu)
  837. {
  838. struct kvm_io_device *mmio_dev;
  839. gpa_t gpa;
  840. if (vcpu->mmio_read_completed) {
  841. memcpy(val, vcpu->mmio_data, bytes);
  842. vcpu->mmio_read_completed = 0;
  843. return X86EMUL_CONTINUE;
  844. } else if (emulator_read_std(addr, val, bytes, vcpu)
  845. == X86EMUL_CONTINUE)
  846. return X86EMUL_CONTINUE;
  847. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  848. if (gpa == UNMAPPED_GVA)
  849. return X86EMUL_PROPAGATE_FAULT;
  850. /*
  851. * Is this MMIO handled locally?
  852. */
  853. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  854. if (mmio_dev) {
  855. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  856. return X86EMUL_CONTINUE;
  857. }
  858. vcpu->mmio_needed = 1;
  859. vcpu->mmio_phys_addr = gpa;
  860. vcpu->mmio_size = bytes;
  861. vcpu->mmio_is_write = 0;
  862. return X86EMUL_UNHANDLEABLE;
  863. }
  864. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  865. const void *val, int bytes)
  866. {
  867. struct page *page;
  868. void *virt;
  869. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  870. return 0;
  871. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  872. if (!page)
  873. return 0;
  874. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  875. virt = kmap_atomic(page, KM_USER0);
  876. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  877. memcpy(virt + offset_in_page(gpa), val, bytes);
  878. kunmap_atomic(virt, KM_USER0);
  879. return 1;
  880. }
  881. static int emulator_write_emulated_onepage(unsigned long addr,
  882. const void *val,
  883. unsigned int bytes,
  884. struct kvm_vcpu *vcpu)
  885. {
  886. struct kvm_io_device *mmio_dev;
  887. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  888. if (gpa == UNMAPPED_GVA) {
  889. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  890. return X86EMUL_PROPAGATE_FAULT;
  891. }
  892. if (emulator_write_phys(vcpu, gpa, val, bytes))
  893. return X86EMUL_CONTINUE;
  894. /*
  895. * Is this MMIO handled locally?
  896. */
  897. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  898. if (mmio_dev) {
  899. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  900. return X86EMUL_CONTINUE;
  901. }
  902. vcpu->mmio_needed = 1;
  903. vcpu->mmio_phys_addr = gpa;
  904. vcpu->mmio_size = bytes;
  905. vcpu->mmio_is_write = 1;
  906. memcpy(vcpu->mmio_data, val, bytes);
  907. return X86EMUL_CONTINUE;
  908. }
  909. int emulator_write_emulated(unsigned long addr,
  910. const void *val,
  911. unsigned int bytes,
  912. struct kvm_vcpu *vcpu)
  913. {
  914. /* Crossing a page boundary? */
  915. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  916. int rc, now;
  917. now = -addr & ~PAGE_MASK;
  918. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  919. if (rc != X86EMUL_CONTINUE)
  920. return rc;
  921. addr += now;
  922. val += now;
  923. bytes -= now;
  924. }
  925. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  926. }
  927. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  928. static int emulator_cmpxchg_emulated(unsigned long addr,
  929. const void *old,
  930. const void *new,
  931. unsigned int bytes,
  932. struct kvm_vcpu *vcpu)
  933. {
  934. static int reported;
  935. if (!reported) {
  936. reported = 1;
  937. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  938. }
  939. return emulator_write_emulated(addr, new, bytes, vcpu);
  940. }
  941. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  942. {
  943. return kvm_arch_ops->get_segment_base(vcpu, seg);
  944. }
  945. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  946. {
  947. return X86EMUL_CONTINUE;
  948. }
  949. int emulate_clts(struct kvm_vcpu *vcpu)
  950. {
  951. unsigned long cr0;
  952. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  953. kvm_arch_ops->set_cr0(vcpu, cr0);
  954. return X86EMUL_CONTINUE;
  955. }
  956. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  957. {
  958. struct kvm_vcpu *vcpu = ctxt->vcpu;
  959. switch (dr) {
  960. case 0 ... 3:
  961. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  962. return X86EMUL_CONTINUE;
  963. default:
  964. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  965. return X86EMUL_UNHANDLEABLE;
  966. }
  967. }
  968. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  969. {
  970. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  971. int exception;
  972. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  973. if (exception) {
  974. /* FIXME: better handling */
  975. return X86EMUL_UNHANDLEABLE;
  976. }
  977. return X86EMUL_CONTINUE;
  978. }
  979. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  980. {
  981. static int reported;
  982. u8 opcodes[4];
  983. unsigned long rip = ctxt->vcpu->rip;
  984. unsigned long rip_linear;
  985. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  986. if (reported)
  987. return;
  988. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  989. printk(KERN_ERR "emulation failed but !mmio_needed?"
  990. " rip %lx %02x %02x %02x %02x\n",
  991. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  992. reported = 1;
  993. }
  994. struct x86_emulate_ops emulate_ops = {
  995. .read_std = emulator_read_std,
  996. .write_std = emulator_write_std,
  997. .read_emulated = emulator_read_emulated,
  998. .write_emulated = emulator_write_emulated,
  999. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1000. };
  1001. int emulate_instruction(struct kvm_vcpu *vcpu,
  1002. struct kvm_run *run,
  1003. unsigned long cr2,
  1004. u16 error_code)
  1005. {
  1006. struct x86_emulate_ctxt emulate_ctxt;
  1007. int r;
  1008. int cs_db, cs_l;
  1009. vcpu->mmio_fault_cr2 = cr2;
  1010. kvm_arch_ops->cache_regs(vcpu);
  1011. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1012. emulate_ctxt.vcpu = vcpu;
  1013. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1014. emulate_ctxt.cr2 = cr2;
  1015. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1016. ? X86EMUL_MODE_REAL : cs_l
  1017. ? X86EMUL_MODE_PROT64 : cs_db
  1018. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1019. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1020. emulate_ctxt.cs_base = 0;
  1021. emulate_ctxt.ds_base = 0;
  1022. emulate_ctxt.es_base = 0;
  1023. emulate_ctxt.ss_base = 0;
  1024. } else {
  1025. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1026. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1027. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1028. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1029. }
  1030. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1031. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1032. vcpu->mmio_is_write = 0;
  1033. vcpu->pio.string = 0;
  1034. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1035. if (vcpu->pio.string)
  1036. return EMULATE_DO_MMIO;
  1037. if ((r || vcpu->mmio_is_write) && run) {
  1038. run->exit_reason = KVM_EXIT_MMIO;
  1039. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1040. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1041. run->mmio.len = vcpu->mmio_size;
  1042. run->mmio.is_write = vcpu->mmio_is_write;
  1043. }
  1044. if (r) {
  1045. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1046. return EMULATE_DONE;
  1047. if (!vcpu->mmio_needed) {
  1048. report_emulation_failure(&emulate_ctxt);
  1049. return EMULATE_FAIL;
  1050. }
  1051. return EMULATE_DO_MMIO;
  1052. }
  1053. kvm_arch_ops->decache_regs(vcpu);
  1054. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1055. if (vcpu->mmio_is_write) {
  1056. vcpu->mmio_needed = 0;
  1057. return EMULATE_DO_MMIO;
  1058. }
  1059. return EMULATE_DONE;
  1060. }
  1061. EXPORT_SYMBOL_GPL(emulate_instruction);
  1062. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1063. {
  1064. if (vcpu->irq_summary ||
  1065. (irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu)))
  1066. return 1;
  1067. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1068. ++vcpu->stat.halt_exits;
  1069. return 0;
  1070. }
  1071. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1072. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1073. {
  1074. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1075. kvm_arch_ops->cache_regs(vcpu);
  1076. ret = -KVM_EINVAL;
  1077. #ifdef CONFIG_X86_64
  1078. if (is_long_mode(vcpu)) {
  1079. nr = vcpu->regs[VCPU_REGS_RAX];
  1080. a0 = vcpu->regs[VCPU_REGS_RDI];
  1081. a1 = vcpu->regs[VCPU_REGS_RSI];
  1082. a2 = vcpu->regs[VCPU_REGS_RDX];
  1083. a3 = vcpu->regs[VCPU_REGS_RCX];
  1084. a4 = vcpu->regs[VCPU_REGS_R8];
  1085. a5 = vcpu->regs[VCPU_REGS_R9];
  1086. } else
  1087. #endif
  1088. {
  1089. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1090. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1091. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1092. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1093. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1094. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1095. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1096. }
  1097. switch (nr) {
  1098. default:
  1099. run->hypercall.nr = nr;
  1100. run->hypercall.args[0] = a0;
  1101. run->hypercall.args[1] = a1;
  1102. run->hypercall.args[2] = a2;
  1103. run->hypercall.args[3] = a3;
  1104. run->hypercall.args[4] = a4;
  1105. run->hypercall.args[5] = a5;
  1106. run->hypercall.ret = ret;
  1107. run->hypercall.longmode = is_long_mode(vcpu);
  1108. kvm_arch_ops->decache_regs(vcpu);
  1109. return 0;
  1110. }
  1111. vcpu->regs[VCPU_REGS_RAX] = ret;
  1112. kvm_arch_ops->decache_regs(vcpu);
  1113. return 1;
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1116. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1117. {
  1118. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1119. }
  1120. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1121. {
  1122. struct descriptor_table dt = { limit, base };
  1123. kvm_arch_ops->set_gdt(vcpu, &dt);
  1124. }
  1125. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1126. {
  1127. struct descriptor_table dt = { limit, base };
  1128. kvm_arch_ops->set_idt(vcpu, &dt);
  1129. }
  1130. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1131. unsigned long *rflags)
  1132. {
  1133. lmsw(vcpu, msw);
  1134. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1135. }
  1136. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1137. {
  1138. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1139. switch (cr) {
  1140. case 0:
  1141. return vcpu->cr0;
  1142. case 2:
  1143. return vcpu->cr2;
  1144. case 3:
  1145. return vcpu->cr3;
  1146. case 4:
  1147. return vcpu->cr4;
  1148. default:
  1149. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1150. return 0;
  1151. }
  1152. }
  1153. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1154. unsigned long *rflags)
  1155. {
  1156. switch (cr) {
  1157. case 0:
  1158. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1159. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1160. break;
  1161. case 2:
  1162. vcpu->cr2 = val;
  1163. break;
  1164. case 3:
  1165. set_cr3(vcpu, val);
  1166. break;
  1167. case 4:
  1168. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1169. break;
  1170. default:
  1171. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1172. }
  1173. }
  1174. /*
  1175. * Register the para guest with the host:
  1176. */
  1177. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1178. {
  1179. struct kvm_vcpu_para_state *para_state;
  1180. hpa_t para_state_hpa, hypercall_hpa;
  1181. struct page *para_state_page;
  1182. unsigned char *hypercall;
  1183. gpa_t hypercall_gpa;
  1184. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1185. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1186. /*
  1187. * Needs to be page aligned:
  1188. */
  1189. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1190. goto err_gp;
  1191. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1192. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1193. if (is_error_hpa(para_state_hpa))
  1194. goto err_gp;
  1195. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1196. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1197. para_state = kmap(para_state_page);
  1198. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1199. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1200. para_state->host_version = KVM_PARA_API_VERSION;
  1201. /*
  1202. * We cannot support guests that try to register themselves
  1203. * with a newer API version than the host supports:
  1204. */
  1205. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1206. para_state->ret = -KVM_EINVAL;
  1207. goto err_kunmap_skip;
  1208. }
  1209. hypercall_gpa = para_state->hypercall_gpa;
  1210. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1211. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1212. if (is_error_hpa(hypercall_hpa)) {
  1213. para_state->ret = -KVM_EINVAL;
  1214. goto err_kunmap_skip;
  1215. }
  1216. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1217. vcpu->para_state_page = para_state_page;
  1218. vcpu->para_state_gpa = para_state_gpa;
  1219. vcpu->hypercall_gpa = hypercall_gpa;
  1220. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1221. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1222. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1223. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1224. kunmap_atomic(hypercall, KM_USER1);
  1225. para_state->ret = 0;
  1226. err_kunmap_skip:
  1227. kunmap(para_state_page);
  1228. return 0;
  1229. err_gp:
  1230. return 1;
  1231. }
  1232. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1233. {
  1234. u64 data;
  1235. switch (msr) {
  1236. case 0xc0010010: /* SYSCFG */
  1237. case 0xc0010015: /* HWCR */
  1238. case MSR_IA32_PLATFORM_ID:
  1239. case MSR_IA32_P5_MC_ADDR:
  1240. case MSR_IA32_P5_MC_TYPE:
  1241. case MSR_IA32_MC0_CTL:
  1242. case MSR_IA32_MCG_STATUS:
  1243. case MSR_IA32_MCG_CAP:
  1244. case MSR_IA32_MC0_MISC:
  1245. case MSR_IA32_MC0_MISC+4:
  1246. case MSR_IA32_MC0_MISC+8:
  1247. case MSR_IA32_MC0_MISC+12:
  1248. case MSR_IA32_MC0_MISC+16:
  1249. case MSR_IA32_UCODE_REV:
  1250. case MSR_IA32_PERF_STATUS:
  1251. case MSR_IA32_EBL_CR_POWERON:
  1252. /* MTRR registers */
  1253. case 0xfe:
  1254. case 0x200 ... 0x2ff:
  1255. data = 0;
  1256. break;
  1257. case 0xcd: /* fsb frequency */
  1258. data = 3;
  1259. break;
  1260. case MSR_IA32_APICBASE:
  1261. data = vcpu->apic_base;
  1262. break;
  1263. case MSR_IA32_MISC_ENABLE:
  1264. data = vcpu->ia32_misc_enable_msr;
  1265. break;
  1266. #ifdef CONFIG_X86_64
  1267. case MSR_EFER:
  1268. data = vcpu->shadow_efer;
  1269. break;
  1270. #endif
  1271. default:
  1272. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1273. return 1;
  1274. }
  1275. *pdata = data;
  1276. return 0;
  1277. }
  1278. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1279. /*
  1280. * Reads an msr value (of 'msr_index') into 'pdata'.
  1281. * Returns 0 on success, non-0 otherwise.
  1282. * Assumes vcpu_load() was already called.
  1283. */
  1284. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1285. {
  1286. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1287. }
  1288. #ifdef CONFIG_X86_64
  1289. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1290. {
  1291. if (efer & EFER_RESERVED_BITS) {
  1292. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1293. efer);
  1294. inject_gp(vcpu);
  1295. return;
  1296. }
  1297. if (is_paging(vcpu)
  1298. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1299. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1300. inject_gp(vcpu);
  1301. return;
  1302. }
  1303. kvm_arch_ops->set_efer(vcpu, efer);
  1304. efer &= ~EFER_LMA;
  1305. efer |= vcpu->shadow_efer & EFER_LMA;
  1306. vcpu->shadow_efer = efer;
  1307. }
  1308. #endif
  1309. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1310. {
  1311. switch (msr) {
  1312. #ifdef CONFIG_X86_64
  1313. case MSR_EFER:
  1314. set_efer(vcpu, data);
  1315. break;
  1316. #endif
  1317. case MSR_IA32_MC0_STATUS:
  1318. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1319. __FUNCTION__, data);
  1320. break;
  1321. case MSR_IA32_MCG_STATUS:
  1322. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1323. __FUNCTION__, data);
  1324. break;
  1325. case MSR_IA32_UCODE_REV:
  1326. case MSR_IA32_UCODE_WRITE:
  1327. case 0x200 ... 0x2ff: /* MTRRs */
  1328. break;
  1329. case MSR_IA32_APICBASE:
  1330. vcpu->apic_base = data;
  1331. break;
  1332. case MSR_IA32_MISC_ENABLE:
  1333. vcpu->ia32_misc_enable_msr = data;
  1334. break;
  1335. /*
  1336. * This is the 'probe whether the host is KVM' logic:
  1337. */
  1338. case MSR_KVM_API_MAGIC:
  1339. return vcpu_register_para(vcpu, data);
  1340. default:
  1341. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1342. return 1;
  1343. }
  1344. return 0;
  1345. }
  1346. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1347. /*
  1348. * Writes msr value into into the appropriate "register".
  1349. * Returns 0 on success, non-0 otherwise.
  1350. * Assumes vcpu_load() was already called.
  1351. */
  1352. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1353. {
  1354. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1355. }
  1356. void kvm_resched(struct kvm_vcpu *vcpu)
  1357. {
  1358. if (!need_resched())
  1359. return;
  1360. cond_resched();
  1361. }
  1362. EXPORT_SYMBOL_GPL(kvm_resched);
  1363. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1364. {
  1365. int i;
  1366. u32 function;
  1367. struct kvm_cpuid_entry *e, *best;
  1368. kvm_arch_ops->cache_regs(vcpu);
  1369. function = vcpu->regs[VCPU_REGS_RAX];
  1370. vcpu->regs[VCPU_REGS_RAX] = 0;
  1371. vcpu->regs[VCPU_REGS_RBX] = 0;
  1372. vcpu->regs[VCPU_REGS_RCX] = 0;
  1373. vcpu->regs[VCPU_REGS_RDX] = 0;
  1374. best = NULL;
  1375. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1376. e = &vcpu->cpuid_entries[i];
  1377. if (e->function == function) {
  1378. best = e;
  1379. break;
  1380. }
  1381. /*
  1382. * Both basic or both extended?
  1383. */
  1384. if (((e->function ^ function) & 0x80000000) == 0)
  1385. if (!best || e->function > best->function)
  1386. best = e;
  1387. }
  1388. if (best) {
  1389. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1390. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1391. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1392. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1393. }
  1394. kvm_arch_ops->decache_regs(vcpu);
  1395. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1396. }
  1397. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1398. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1399. {
  1400. void *p = vcpu->pio_data;
  1401. void *q;
  1402. unsigned bytes;
  1403. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1404. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1405. PAGE_KERNEL);
  1406. if (!q) {
  1407. free_pio_guest_pages(vcpu);
  1408. return -ENOMEM;
  1409. }
  1410. q += vcpu->pio.guest_page_offset;
  1411. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1412. if (vcpu->pio.in)
  1413. memcpy(q, p, bytes);
  1414. else
  1415. memcpy(p, q, bytes);
  1416. q -= vcpu->pio.guest_page_offset;
  1417. vunmap(q);
  1418. free_pio_guest_pages(vcpu);
  1419. return 0;
  1420. }
  1421. static int complete_pio(struct kvm_vcpu *vcpu)
  1422. {
  1423. struct kvm_pio_request *io = &vcpu->pio;
  1424. long delta;
  1425. int r;
  1426. kvm_arch_ops->cache_regs(vcpu);
  1427. if (!io->string) {
  1428. if (io->in)
  1429. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1430. io->size);
  1431. } else {
  1432. if (io->in) {
  1433. r = pio_copy_data(vcpu);
  1434. if (r) {
  1435. kvm_arch_ops->cache_regs(vcpu);
  1436. return r;
  1437. }
  1438. }
  1439. delta = 1;
  1440. if (io->rep) {
  1441. delta *= io->cur_count;
  1442. /*
  1443. * The size of the register should really depend on
  1444. * current address size.
  1445. */
  1446. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1447. }
  1448. if (io->down)
  1449. delta = -delta;
  1450. delta *= io->size;
  1451. if (io->in)
  1452. vcpu->regs[VCPU_REGS_RDI] += delta;
  1453. else
  1454. vcpu->regs[VCPU_REGS_RSI] += delta;
  1455. }
  1456. kvm_arch_ops->decache_regs(vcpu);
  1457. io->count -= io->cur_count;
  1458. io->cur_count = 0;
  1459. if (!io->count)
  1460. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1461. return 0;
  1462. }
  1463. static void kernel_pio(struct kvm_io_device *pio_dev,
  1464. struct kvm_vcpu *vcpu,
  1465. void *pd)
  1466. {
  1467. /* TODO: String I/O for in kernel device */
  1468. if (vcpu->pio.in)
  1469. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1470. vcpu->pio.size,
  1471. pd);
  1472. else
  1473. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1474. vcpu->pio.size,
  1475. pd);
  1476. }
  1477. static void pio_string_write(struct kvm_io_device *pio_dev,
  1478. struct kvm_vcpu *vcpu)
  1479. {
  1480. struct kvm_pio_request *io = &vcpu->pio;
  1481. void *pd = vcpu->pio_data;
  1482. int i;
  1483. for (i = 0; i < io->cur_count; i++) {
  1484. kvm_iodevice_write(pio_dev, io->port,
  1485. io->size,
  1486. pd);
  1487. pd += io->size;
  1488. }
  1489. }
  1490. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1491. int size, unsigned port)
  1492. {
  1493. struct kvm_io_device *pio_dev;
  1494. vcpu->run->exit_reason = KVM_EXIT_IO;
  1495. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1496. vcpu->run->io.size = vcpu->pio.size = size;
  1497. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1498. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1499. vcpu->run->io.port = vcpu->pio.port = port;
  1500. vcpu->pio.in = in;
  1501. vcpu->pio.string = 0;
  1502. vcpu->pio.down = 0;
  1503. vcpu->pio.guest_page_offset = 0;
  1504. vcpu->pio.rep = 0;
  1505. kvm_arch_ops->cache_regs(vcpu);
  1506. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1507. kvm_arch_ops->decache_regs(vcpu);
  1508. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1509. if (pio_dev) {
  1510. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1511. complete_pio(vcpu);
  1512. return 1;
  1513. }
  1514. return 0;
  1515. }
  1516. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1517. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1518. int size, unsigned long count, int down,
  1519. gva_t address, int rep, unsigned port)
  1520. {
  1521. unsigned now, in_page;
  1522. int i, ret = 0;
  1523. int nr_pages = 1;
  1524. struct page *page;
  1525. struct kvm_io_device *pio_dev;
  1526. vcpu->run->exit_reason = KVM_EXIT_IO;
  1527. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1528. vcpu->run->io.size = vcpu->pio.size = size;
  1529. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1530. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1531. vcpu->run->io.port = vcpu->pio.port = port;
  1532. vcpu->pio.in = in;
  1533. vcpu->pio.string = 1;
  1534. vcpu->pio.down = down;
  1535. vcpu->pio.guest_page_offset = offset_in_page(address);
  1536. vcpu->pio.rep = rep;
  1537. if (!count) {
  1538. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1539. return 1;
  1540. }
  1541. if (!down)
  1542. in_page = PAGE_SIZE - offset_in_page(address);
  1543. else
  1544. in_page = offset_in_page(address) + size;
  1545. now = min(count, (unsigned long)in_page / size);
  1546. if (!now) {
  1547. /*
  1548. * String I/O straddles page boundary. Pin two guest pages
  1549. * so that we satisfy atomicity constraints. Do just one
  1550. * transaction to avoid complexity.
  1551. */
  1552. nr_pages = 2;
  1553. now = 1;
  1554. }
  1555. if (down) {
  1556. /*
  1557. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1558. */
  1559. pr_unimpl(vcpu, "guest string pio down\n");
  1560. inject_gp(vcpu);
  1561. return 1;
  1562. }
  1563. vcpu->run->io.count = now;
  1564. vcpu->pio.cur_count = now;
  1565. for (i = 0; i < nr_pages; ++i) {
  1566. mutex_lock(&vcpu->kvm->lock);
  1567. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1568. if (page)
  1569. get_page(page);
  1570. vcpu->pio.guest_pages[i] = page;
  1571. mutex_unlock(&vcpu->kvm->lock);
  1572. if (!page) {
  1573. inject_gp(vcpu);
  1574. free_pio_guest_pages(vcpu);
  1575. return 1;
  1576. }
  1577. }
  1578. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1579. if (!vcpu->pio.in) {
  1580. /* string PIO write */
  1581. ret = pio_copy_data(vcpu);
  1582. if (ret >= 0 && pio_dev) {
  1583. pio_string_write(pio_dev, vcpu);
  1584. complete_pio(vcpu);
  1585. if (vcpu->pio.count == 0)
  1586. ret = 1;
  1587. }
  1588. } else if (pio_dev)
  1589. pr_unimpl(vcpu, "no string pio read support yet, "
  1590. "port %x size %d count %ld\n",
  1591. port, size, count);
  1592. return ret;
  1593. }
  1594. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1595. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1596. {
  1597. int r;
  1598. sigset_t sigsaved;
  1599. vcpu_load(vcpu);
  1600. if (vcpu->sigset_active)
  1601. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1602. /* re-sync apic's tpr */
  1603. vcpu->cr8 = kvm_run->cr8;
  1604. if (vcpu->pio.cur_count) {
  1605. r = complete_pio(vcpu);
  1606. if (r)
  1607. goto out;
  1608. }
  1609. if (vcpu->mmio_needed) {
  1610. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1611. vcpu->mmio_read_completed = 1;
  1612. vcpu->mmio_needed = 0;
  1613. r = emulate_instruction(vcpu, kvm_run,
  1614. vcpu->mmio_fault_cr2, 0);
  1615. if (r == EMULATE_DO_MMIO) {
  1616. /*
  1617. * Read-modify-write. Back to userspace.
  1618. */
  1619. r = 0;
  1620. goto out;
  1621. }
  1622. }
  1623. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1624. kvm_arch_ops->cache_regs(vcpu);
  1625. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1626. kvm_arch_ops->decache_regs(vcpu);
  1627. }
  1628. r = kvm_arch_ops->run(vcpu, kvm_run);
  1629. out:
  1630. if (vcpu->sigset_active)
  1631. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1632. vcpu_put(vcpu);
  1633. return r;
  1634. }
  1635. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1636. struct kvm_regs *regs)
  1637. {
  1638. vcpu_load(vcpu);
  1639. kvm_arch_ops->cache_regs(vcpu);
  1640. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1641. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1642. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1643. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1644. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1645. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1646. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1647. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1648. #ifdef CONFIG_X86_64
  1649. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1650. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1651. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1652. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1653. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1654. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1655. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1656. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1657. #endif
  1658. regs->rip = vcpu->rip;
  1659. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1660. /*
  1661. * Don't leak debug flags in case they were set for guest debugging
  1662. */
  1663. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1664. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1665. vcpu_put(vcpu);
  1666. return 0;
  1667. }
  1668. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1669. struct kvm_regs *regs)
  1670. {
  1671. vcpu_load(vcpu);
  1672. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1673. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1674. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1675. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1676. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1677. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1678. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1679. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1680. #ifdef CONFIG_X86_64
  1681. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1682. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1683. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1684. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1685. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1686. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1687. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1688. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1689. #endif
  1690. vcpu->rip = regs->rip;
  1691. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1692. kvm_arch_ops->decache_regs(vcpu);
  1693. vcpu_put(vcpu);
  1694. return 0;
  1695. }
  1696. static void get_segment(struct kvm_vcpu *vcpu,
  1697. struct kvm_segment *var, int seg)
  1698. {
  1699. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1700. }
  1701. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1702. struct kvm_sregs *sregs)
  1703. {
  1704. struct descriptor_table dt;
  1705. vcpu_load(vcpu);
  1706. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1707. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1708. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1709. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1710. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1711. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1712. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1713. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1714. kvm_arch_ops->get_idt(vcpu, &dt);
  1715. sregs->idt.limit = dt.limit;
  1716. sregs->idt.base = dt.base;
  1717. kvm_arch_ops->get_gdt(vcpu, &dt);
  1718. sregs->gdt.limit = dt.limit;
  1719. sregs->gdt.base = dt.base;
  1720. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1721. sregs->cr0 = vcpu->cr0;
  1722. sregs->cr2 = vcpu->cr2;
  1723. sregs->cr3 = vcpu->cr3;
  1724. sregs->cr4 = vcpu->cr4;
  1725. sregs->cr8 = vcpu->cr8;
  1726. sregs->efer = vcpu->shadow_efer;
  1727. sregs->apic_base = vcpu->apic_base;
  1728. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1729. sizeof sregs->interrupt_bitmap);
  1730. vcpu_put(vcpu);
  1731. return 0;
  1732. }
  1733. static void set_segment(struct kvm_vcpu *vcpu,
  1734. struct kvm_segment *var, int seg)
  1735. {
  1736. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1737. }
  1738. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1739. struct kvm_sregs *sregs)
  1740. {
  1741. int mmu_reset_needed = 0;
  1742. int i;
  1743. struct descriptor_table dt;
  1744. vcpu_load(vcpu);
  1745. dt.limit = sregs->idt.limit;
  1746. dt.base = sregs->idt.base;
  1747. kvm_arch_ops->set_idt(vcpu, &dt);
  1748. dt.limit = sregs->gdt.limit;
  1749. dt.base = sregs->gdt.base;
  1750. kvm_arch_ops->set_gdt(vcpu, &dt);
  1751. vcpu->cr2 = sregs->cr2;
  1752. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1753. vcpu->cr3 = sregs->cr3;
  1754. vcpu->cr8 = sregs->cr8;
  1755. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1756. #ifdef CONFIG_X86_64
  1757. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1758. #endif
  1759. vcpu->apic_base = sregs->apic_base;
  1760. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1761. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1762. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1763. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1764. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1765. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1766. load_pdptrs(vcpu, vcpu->cr3);
  1767. if (mmu_reset_needed)
  1768. kvm_mmu_reset_context(vcpu);
  1769. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1770. sizeof vcpu->irq_pending);
  1771. vcpu->irq_summary = 0;
  1772. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1773. if (vcpu->irq_pending[i])
  1774. __set_bit(i, &vcpu->irq_summary);
  1775. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1776. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1777. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1778. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1779. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1780. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1781. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1782. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1783. vcpu_put(vcpu);
  1784. return 0;
  1785. }
  1786. /*
  1787. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1788. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1789. *
  1790. * This list is modified at module load time to reflect the
  1791. * capabilities of the host cpu.
  1792. */
  1793. static u32 msrs_to_save[] = {
  1794. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1795. MSR_K6_STAR,
  1796. #ifdef CONFIG_X86_64
  1797. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1798. #endif
  1799. MSR_IA32_TIME_STAMP_COUNTER,
  1800. };
  1801. static unsigned num_msrs_to_save;
  1802. static u32 emulated_msrs[] = {
  1803. MSR_IA32_MISC_ENABLE,
  1804. };
  1805. static __init void kvm_init_msr_list(void)
  1806. {
  1807. u32 dummy[2];
  1808. unsigned i, j;
  1809. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1810. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1811. continue;
  1812. if (j < i)
  1813. msrs_to_save[j] = msrs_to_save[i];
  1814. j++;
  1815. }
  1816. num_msrs_to_save = j;
  1817. }
  1818. /*
  1819. * Adapt set_msr() to msr_io()'s calling convention
  1820. */
  1821. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1822. {
  1823. return kvm_set_msr(vcpu, index, *data);
  1824. }
  1825. /*
  1826. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1827. *
  1828. * @return number of msrs set successfully.
  1829. */
  1830. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1831. struct kvm_msr_entry *entries,
  1832. int (*do_msr)(struct kvm_vcpu *vcpu,
  1833. unsigned index, u64 *data))
  1834. {
  1835. int i;
  1836. vcpu_load(vcpu);
  1837. for (i = 0; i < msrs->nmsrs; ++i)
  1838. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1839. break;
  1840. vcpu_put(vcpu);
  1841. return i;
  1842. }
  1843. /*
  1844. * Read or write a bunch of msrs. Parameters are user addresses.
  1845. *
  1846. * @return number of msrs set successfully.
  1847. */
  1848. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1849. int (*do_msr)(struct kvm_vcpu *vcpu,
  1850. unsigned index, u64 *data),
  1851. int writeback)
  1852. {
  1853. struct kvm_msrs msrs;
  1854. struct kvm_msr_entry *entries;
  1855. int r, n;
  1856. unsigned size;
  1857. r = -EFAULT;
  1858. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1859. goto out;
  1860. r = -E2BIG;
  1861. if (msrs.nmsrs >= MAX_IO_MSRS)
  1862. goto out;
  1863. r = -ENOMEM;
  1864. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1865. entries = vmalloc(size);
  1866. if (!entries)
  1867. goto out;
  1868. r = -EFAULT;
  1869. if (copy_from_user(entries, user_msrs->entries, size))
  1870. goto out_free;
  1871. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1872. if (r < 0)
  1873. goto out_free;
  1874. r = -EFAULT;
  1875. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1876. goto out_free;
  1877. r = n;
  1878. out_free:
  1879. vfree(entries);
  1880. out:
  1881. return r;
  1882. }
  1883. /*
  1884. * Translate a guest virtual address to a guest physical address.
  1885. */
  1886. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1887. struct kvm_translation *tr)
  1888. {
  1889. unsigned long vaddr = tr->linear_address;
  1890. gpa_t gpa;
  1891. vcpu_load(vcpu);
  1892. mutex_lock(&vcpu->kvm->lock);
  1893. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1894. tr->physical_address = gpa;
  1895. tr->valid = gpa != UNMAPPED_GVA;
  1896. tr->writeable = 1;
  1897. tr->usermode = 0;
  1898. mutex_unlock(&vcpu->kvm->lock);
  1899. vcpu_put(vcpu);
  1900. return 0;
  1901. }
  1902. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1903. struct kvm_interrupt *irq)
  1904. {
  1905. if (irq->irq < 0 || irq->irq >= 256)
  1906. return -EINVAL;
  1907. vcpu_load(vcpu);
  1908. set_bit(irq->irq, vcpu->irq_pending);
  1909. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1910. vcpu_put(vcpu);
  1911. return 0;
  1912. }
  1913. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1914. struct kvm_debug_guest *dbg)
  1915. {
  1916. int r;
  1917. vcpu_load(vcpu);
  1918. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1919. vcpu_put(vcpu);
  1920. return r;
  1921. }
  1922. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1923. unsigned long address,
  1924. int *type)
  1925. {
  1926. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1927. unsigned long pgoff;
  1928. struct page *page;
  1929. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1930. if (pgoff == 0)
  1931. page = virt_to_page(vcpu->run);
  1932. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1933. page = virt_to_page(vcpu->pio_data);
  1934. else
  1935. return NOPAGE_SIGBUS;
  1936. get_page(page);
  1937. if (type != NULL)
  1938. *type = VM_FAULT_MINOR;
  1939. return page;
  1940. }
  1941. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1942. .nopage = kvm_vcpu_nopage,
  1943. };
  1944. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1945. {
  1946. vma->vm_ops = &kvm_vcpu_vm_ops;
  1947. return 0;
  1948. }
  1949. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1950. {
  1951. struct kvm_vcpu *vcpu = filp->private_data;
  1952. fput(vcpu->kvm->filp);
  1953. return 0;
  1954. }
  1955. static struct file_operations kvm_vcpu_fops = {
  1956. .release = kvm_vcpu_release,
  1957. .unlocked_ioctl = kvm_vcpu_ioctl,
  1958. .compat_ioctl = kvm_vcpu_ioctl,
  1959. .mmap = kvm_vcpu_mmap,
  1960. };
  1961. /*
  1962. * Allocates an inode for the vcpu.
  1963. */
  1964. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1965. {
  1966. int fd, r;
  1967. struct inode *inode;
  1968. struct file *file;
  1969. r = anon_inode_getfd(&fd, &inode, &file,
  1970. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1971. if (r)
  1972. return r;
  1973. atomic_inc(&vcpu->kvm->filp->f_count);
  1974. return fd;
  1975. }
  1976. /*
  1977. * Creates some virtual cpus. Good luck creating more than one.
  1978. */
  1979. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1980. {
  1981. int r;
  1982. struct kvm_vcpu *vcpu;
  1983. if (!valid_vcpu(n))
  1984. return -EINVAL;
  1985. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  1986. if (IS_ERR(vcpu))
  1987. return PTR_ERR(vcpu);
  1988. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1989. /* We do fxsave: this must be aligned. */
  1990. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1991. vcpu_load(vcpu);
  1992. r = kvm_mmu_setup(vcpu);
  1993. vcpu_put(vcpu);
  1994. if (r < 0)
  1995. goto free_vcpu;
  1996. mutex_lock(&kvm->lock);
  1997. if (kvm->vcpus[n]) {
  1998. r = -EEXIST;
  1999. mutex_unlock(&kvm->lock);
  2000. goto mmu_unload;
  2001. }
  2002. kvm->vcpus[n] = vcpu;
  2003. mutex_unlock(&kvm->lock);
  2004. /* Now it's all set up, let userspace reach it */
  2005. r = create_vcpu_fd(vcpu);
  2006. if (r < 0)
  2007. goto unlink;
  2008. return r;
  2009. unlink:
  2010. mutex_lock(&kvm->lock);
  2011. kvm->vcpus[n] = NULL;
  2012. mutex_unlock(&kvm->lock);
  2013. mmu_unload:
  2014. vcpu_load(vcpu);
  2015. kvm_mmu_unload(vcpu);
  2016. vcpu_put(vcpu);
  2017. free_vcpu:
  2018. kvm_arch_ops->vcpu_free(vcpu);
  2019. return r;
  2020. }
  2021. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2022. {
  2023. u64 efer;
  2024. int i;
  2025. struct kvm_cpuid_entry *e, *entry;
  2026. rdmsrl(MSR_EFER, efer);
  2027. entry = NULL;
  2028. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2029. e = &vcpu->cpuid_entries[i];
  2030. if (e->function == 0x80000001) {
  2031. entry = e;
  2032. break;
  2033. }
  2034. }
  2035. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2036. entry->edx &= ~(1 << 20);
  2037. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2038. }
  2039. }
  2040. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2041. struct kvm_cpuid *cpuid,
  2042. struct kvm_cpuid_entry __user *entries)
  2043. {
  2044. int r;
  2045. r = -E2BIG;
  2046. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2047. goto out;
  2048. r = -EFAULT;
  2049. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2050. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2051. goto out;
  2052. vcpu->cpuid_nent = cpuid->nent;
  2053. cpuid_fix_nx_cap(vcpu);
  2054. return 0;
  2055. out:
  2056. return r;
  2057. }
  2058. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2059. {
  2060. if (sigset) {
  2061. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2062. vcpu->sigset_active = 1;
  2063. vcpu->sigset = *sigset;
  2064. } else
  2065. vcpu->sigset_active = 0;
  2066. return 0;
  2067. }
  2068. /*
  2069. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2070. * we have asm/x86/processor.h
  2071. */
  2072. struct fxsave {
  2073. u16 cwd;
  2074. u16 swd;
  2075. u16 twd;
  2076. u16 fop;
  2077. u64 rip;
  2078. u64 rdp;
  2079. u32 mxcsr;
  2080. u32 mxcsr_mask;
  2081. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2082. #ifdef CONFIG_X86_64
  2083. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2084. #else
  2085. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2086. #endif
  2087. };
  2088. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2089. {
  2090. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2091. vcpu_load(vcpu);
  2092. memcpy(fpu->fpr, fxsave->st_space, 128);
  2093. fpu->fcw = fxsave->cwd;
  2094. fpu->fsw = fxsave->swd;
  2095. fpu->ftwx = fxsave->twd;
  2096. fpu->last_opcode = fxsave->fop;
  2097. fpu->last_ip = fxsave->rip;
  2098. fpu->last_dp = fxsave->rdp;
  2099. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2100. vcpu_put(vcpu);
  2101. return 0;
  2102. }
  2103. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2104. {
  2105. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2106. vcpu_load(vcpu);
  2107. memcpy(fxsave->st_space, fpu->fpr, 128);
  2108. fxsave->cwd = fpu->fcw;
  2109. fxsave->swd = fpu->fsw;
  2110. fxsave->twd = fpu->ftwx;
  2111. fxsave->fop = fpu->last_opcode;
  2112. fxsave->rip = fpu->last_ip;
  2113. fxsave->rdp = fpu->last_dp;
  2114. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2115. vcpu_put(vcpu);
  2116. return 0;
  2117. }
  2118. static long kvm_vcpu_ioctl(struct file *filp,
  2119. unsigned int ioctl, unsigned long arg)
  2120. {
  2121. struct kvm_vcpu *vcpu = filp->private_data;
  2122. void __user *argp = (void __user *)arg;
  2123. int r = -EINVAL;
  2124. switch (ioctl) {
  2125. case KVM_RUN:
  2126. r = -EINVAL;
  2127. if (arg)
  2128. goto out;
  2129. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2130. break;
  2131. case KVM_GET_REGS: {
  2132. struct kvm_regs kvm_regs;
  2133. memset(&kvm_regs, 0, sizeof kvm_regs);
  2134. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2135. if (r)
  2136. goto out;
  2137. r = -EFAULT;
  2138. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2139. goto out;
  2140. r = 0;
  2141. break;
  2142. }
  2143. case KVM_SET_REGS: {
  2144. struct kvm_regs kvm_regs;
  2145. r = -EFAULT;
  2146. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2147. goto out;
  2148. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2149. if (r)
  2150. goto out;
  2151. r = 0;
  2152. break;
  2153. }
  2154. case KVM_GET_SREGS: {
  2155. struct kvm_sregs kvm_sregs;
  2156. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2157. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2158. if (r)
  2159. goto out;
  2160. r = -EFAULT;
  2161. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2162. goto out;
  2163. r = 0;
  2164. break;
  2165. }
  2166. case KVM_SET_SREGS: {
  2167. struct kvm_sregs kvm_sregs;
  2168. r = -EFAULT;
  2169. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2170. goto out;
  2171. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2172. if (r)
  2173. goto out;
  2174. r = 0;
  2175. break;
  2176. }
  2177. case KVM_TRANSLATE: {
  2178. struct kvm_translation tr;
  2179. r = -EFAULT;
  2180. if (copy_from_user(&tr, argp, sizeof tr))
  2181. goto out;
  2182. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2183. if (r)
  2184. goto out;
  2185. r = -EFAULT;
  2186. if (copy_to_user(argp, &tr, sizeof tr))
  2187. goto out;
  2188. r = 0;
  2189. break;
  2190. }
  2191. case KVM_INTERRUPT: {
  2192. struct kvm_interrupt irq;
  2193. r = -EFAULT;
  2194. if (copy_from_user(&irq, argp, sizeof irq))
  2195. goto out;
  2196. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2197. if (r)
  2198. goto out;
  2199. r = 0;
  2200. break;
  2201. }
  2202. case KVM_DEBUG_GUEST: {
  2203. struct kvm_debug_guest dbg;
  2204. r = -EFAULT;
  2205. if (copy_from_user(&dbg, argp, sizeof dbg))
  2206. goto out;
  2207. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2208. if (r)
  2209. goto out;
  2210. r = 0;
  2211. break;
  2212. }
  2213. case KVM_GET_MSRS:
  2214. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2215. break;
  2216. case KVM_SET_MSRS:
  2217. r = msr_io(vcpu, argp, do_set_msr, 0);
  2218. break;
  2219. case KVM_SET_CPUID: {
  2220. struct kvm_cpuid __user *cpuid_arg = argp;
  2221. struct kvm_cpuid cpuid;
  2222. r = -EFAULT;
  2223. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2224. goto out;
  2225. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2226. if (r)
  2227. goto out;
  2228. break;
  2229. }
  2230. case KVM_SET_SIGNAL_MASK: {
  2231. struct kvm_signal_mask __user *sigmask_arg = argp;
  2232. struct kvm_signal_mask kvm_sigmask;
  2233. sigset_t sigset, *p;
  2234. p = NULL;
  2235. if (argp) {
  2236. r = -EFAULT;
  2237. if (copy_from_user(&kvm_sigmask, argp,
  2238. sizeof kvm_sigmask))
  2239. goto out;
  2240. r = -EINVAL;
  2241. if (kvm_sigmask.len != sizeof sigset)
  2242. goto out;
  2243. r = -EFAULT;
  2244. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2245. sizeof sigset))
  2246. goto out;
  2247. p = &sigset;
  2248. }
  2249. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2250. break;
  2251. }
  2252. case KVM_GET_FPU: {
  2253. struct kvm_fpu fpu;
  2254. memset(&fpu, 0, sizeof fpu);
  2255. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2256. if (r)
  2257. goto out;
  2258. r = -EFAULT;
  2259. if (copy_to_user(argp, &fpu, sizeof fpu))
  2260. goto out;
  2261. r = 0;
  2262. break;
  2263. }
  2264. case KVM_SET_FPU: {
  2265. struct kvm_fpu fpu;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&fpu, argp, sizeof fpu))
  2268. goto out;
  2269. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2270. if (r)
  2271. goto out;
  2272. r = 0;
  2273. break;
  2274. }
  2275. default:
  2276. ;
  2277. }
  2278. out:
  2279. return r;
  2280. }
  2281. static long kvm_vm_ioctl(struct file *filp,
  2282. unsigned int ioctl, unsigned long arg)
  2283. {
  2284. struct kvm *kvm = filp->private_data;
  2285. void __user *argp = (void __user *)arg;
  2286. int r = -EINVAL;
  2287. switch (ioctl) {
  2288. case KVM_CREATE_VCPU:
  2289. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2290. if (r < 0)
  2291. goto out;
  2292. break;
  2293. case KVM_SET_MEMORY_REGION: {
  2294. struct kvm_memory_region kvm_mem;
  2295. r = -EFAULT;
  2296. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2297. goto out;
  2298. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2299. if (r)
  2300. goto out;
  2301. break;
  2302. }
  2303. case KVM_GET_DIRTY_LOG: {
  2304. struct kvm_dirty_log log;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&log, argp, sizeof log))
  2307. goto out;
  2308. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2309. if (r)
  2310. goto out;
  2311. break;
  2312. }
  2313. case KVM_SET_MEMORY_ALIAS: {
  2314. struct kvm_memory_alias alias;
  2315. r = -EFAULT;
  2316. if (copy_from_user(&alias, argp, sizeof alias))
  2317. goto out;
  2318. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2319. if (r)
  2320. goto out;
  2321. break;
  2322. }
  2323. case KVM_CREATE_IRQCHIP:
  2324. r = -ENOMEM;
  2325. kvm->vpic = kvm_create_pic(kvm);
  2326. if (kvm->vpic)
  2327. r = 0;
  2328. else
  2329. goto out;
  2330. break;
  2331. case KVM_IRQ_LINE: {
  2332. struct kvm_irq_level irq_event;
  2333. r = -EFAULT;
  2334. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2335. goto out;
  2336. if (irqchip_in_kernel(kvm)) {
  2337. if (irq_event.irq < 16)
  2338. kvm_pic_set_irq(pic_irqchip(kvm),
  2339. irq_event.irq,
  2340. irq_event.level);
  2341. /* TODO: IOAPIC */
  2342. r = 0;
  2343. }
  2344. break;
  2345. }
  2346. default:
  2347. ;
  2348. }
  2349. out:
  2350. return r;
  2351. }
  2352. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2353. unsigned long address,
  2354. int *type)
  2355. {
  2356. struct kvm *kvm = vma->vm_file->private_data;
  2357. unsigned long pgoff;
  2358. struct page *page;
  2359. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2360. page = gfn_to_page(kvm, pgoff);
  2361. if (!page)
  2362. return NOPAGE_SIGBUS;
  2363. get_page(page);
  2364. if (type != NULL)
  2365. *type = VM_FAULT_MINOR;
  2366. return page;
  2367. }
  2368. static struct vm_operations_struct kvm_vm_vm_ops = {
  2369. .nopage = kvm_vm_nopage,
  2370. };
  2371. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2372. {
  2373. vma->vm_ops = &kvm_vm_vm_ops;
  2374. return 0;
  2375. }
  2376. static struct file_operations kvm_vm_fops = {
  2377. .release = kvm_vm_release,
  2378. .unlocked_ioctl = kvm_vm_ioctl,
  2379. .compat_ioctl = kvm_vm_ioctl,
  2380. .mmap = kvm_vm_mmap,
  2381. };
  2382. static int kvm_dev_ioctl_create_vm(void)
  2383. {
  2384. int fd, r;
  2385. struct inode *inode;
  2386. struct file *file;
  2387. struct kvm *kvm;
  2388. kvm = kvm_create_vm();
  2389. if (IS_ERR(kvm))
  2390. return PTR_ERR(kvm);
  2391. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2392. if (r) {
  2393. kvm_destroy_vm(kvm);
  2394. return r;
  2395. }
  2396. kvm->filp = file;
  2397. return fd;
  2398. }
  2399. static long kvm_dev_ioctl(struct file *filp,
  2400. unsigned int ioctl, unsigned long arg)
  2401. {
  2402. void __user *argp = (void __user *)arg;
  2403. long r = -EINVAL;
  2404. switch (ioctl) {
  2405. case KVM_GET_API_VERSION:
  2406. r = -EINVAL;
  2407. if (arg)
  2408. goto out;
  2409. r = KVM_API_VERSION;
  2410. break;
  2411. case KVM_CREATE_VM:
  2412. r = -EINVAL;
  2413. if (arg)
  2414. goto out;
  2415. r = kvm_dev_ioctl_create_vm();
  2416. break;
  2417. case KVM_GET_MSR_INDEX_LIST: {
  2418. struct kvm_msr_list __user *user_msr_list = argp;
  2419. struct kvm_msr_list msr_list;
  2420. unsigned n;
  2421. r = -EFAULT;
  2422. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2423. goto out;
  2424. n = msr_list.nmsrs;
  2425. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2426. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2427. goto out;
  2428. r = -E2BIG;
  2429. if (n < num_msrs_to_save)
  2430. goto out;
  2431. r = -EFAULT;
  2432. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2433. num_msrs_to_save * sizeof(u32)))
  2434. goto out;
  2435. if (copy_to_user(user_msr_list->indices
  2436. + num_msrs_to_save * sizeof(u32),
  2437. &emulated_msrs,
  2438. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2439. goto out;
  2440. r = 0;
  2441. break;
  2442. }
  2443. case KVM_CHECK_EXTENSION: {
  2444. int ext = (long)argp;
  2445. switch (ext) {
  2446. case KVM_CAP_IRQCHIP:
  2447. r = 1;
  2448. break;
  2449. default:
  2450. r = 0;
  2451. break;
  2452. }
  2453. break;
  2454. }
  2455. case KVM_GET_VCPU_MMAP_SIZE:
  2456. r = -EINVAL;
  2457. if (arg)
  2458. goto out;
  2459. r = 2 * PAGE_SIZE;
  2460. break;
  2461. default:
  2462. ;
  2463. }
  2464. out:
  2465. return r;
  2466. }
  2467. static struct file_operations kvm_chardev_ops = {
  2468. .unlocked_ioctl = kvm_dev_ioctl,
  2469. .compat_ioctl = kvm_dev_ioctl,
  2470. };
  2471. static struct miscdevice kvm_dev = {
  2472. KVM_MINOR,
  2473. "kvm",
  2474. &kvm_chardev_ops,
  2475. };
  2476. /*
  2477. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2478. * cached on it.
  2479. */
  2480. static void decache_vcpus_on_cpu(int cpu)
  2481. {
  2482. struct kvm *vm;
  2483. struct kvm_vcpu *vcpu;
  2484. int i;
  2485. spin_lock(&kvm_lock);
  2486. list_for_each_entry(vm, &vm_list, vm_list)
  2487. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2488. vcpu = vm->vcpus[i];
  2489. if (!vcpu)
  2490. continue;
  2491. /*
  2492. * If the vcpu is locked, then it is running on some
  2493. * other cpu and therefore it is not cached on the
  2494. * cpu in question.
  2495. *
  2496. * If it's not locked, check the last cpu it executed
  2497. * on.
  2498. */
  2499. if (mutex_trylock(&vcpu->mutex)) {
  2500. if (vcpu->cpu == cpu) {
  2501. kvm_arch_ops->vcpu_decache(vcpu);
  2502. vcpu->cpu = -1;
  2503. }
  2504. mutex_unlock(&vcpu->mutex);
  2505. }
  2506. }
  2507. spin_unlock(&kvm_lock);
  2508. }
  2509. static void hardware_enable(void *junk)
  2510. {
  2511. int cpu = raw_smp_processor_id();
  2512. if (cpu_isset(cpu, cpus_hardware_enabled))
  2513. return;
  2514. cpu_set(cpu, cpus_hardware_enabled);
  2515. kvm_arch_ops->hardware_enable(NULL);
  2516. }
  2517. static void hardware_disable(void *junk)
  2518. {
  2519. int cpu = raw_smp_processor_id();
  2520. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2521. return;
  2522. cpu_clear(cpu, cpus_hardware_enabled);
  2523. decache_vcpus_on_cpu(cpu);
  2524. kvm_arch_ops->hardware_disable(NULL);
  2525. }
  2526. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2527. void *v)
  2528. {
  2529. int cpu = (long)v;
  2530. switch (val) {
  2531. case CPU_DYING:
  2532. case CPU_DYING_FROZEN:
  2533. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2534. cpu);
  2535. hardware_disable(NULL);
  2536. break;
  2537. case CPU_UP_CANCELED:
  2538. case CPU_UP_CANCELED_FROZEN:
  2539. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2540. cpu);
  2541. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2542. break;
  2543. case CPU_ONLINE:
  2544. case CPU_ONLINE_FROZEN:
  2545. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2546. cpu);
  2547. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2548. break;
  2549. }
  2550. return NOTIFY_OK;
  2551. }
  2552. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2553. void *v)
  2554. {
  2555. if (val == SYS_RESTART) {
  2556. /*
  2557. * Some (well, at least mine) BIOSes hang on reboot if
  2558. * in vmx root mode.
  2559. */
  2560. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2561. on_each_cpu(hardware_disable, NULL, 0, 1);
  2562. }
  2563. return NOTIFY_OK;
  2564. }
  2565. static struct notifier_block kvm_reboot_notifier = {
  2566. .notifier_call = kvm_reboot,
  2567. .priority = 0,
  2568. };
  2569. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2570. {
  2571. memset(bus, 0, sizeof(*bus));
  2572. }
  2573. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2574. {
  2575. int i;
  2576. for (i = 0; i < bus->dev_count; i++) {
  2577. struct kvm_io_device *pos = bus->devs[i];
  2578. kvm_iodevice_destructor(pos);
  2579. }
  2580. }
  2581. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2582. {
  2583. int i;
  2584. for (i = 0; i < bus->dev_count; i++) {
  2585. struct kvm_io_device *pos = bus->devs[i];
  2586. if (pos->in_range(pos, addr))
  2587. return pos;
  2588. }
  2589. return NULL;
  2590. }
  2591. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2592. {
  2593. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2594. bus->devs[bus->dev_count++] = dev;
  2595. }
  2596. static struct notifier_block kvm_cpu_notifier = {
  2597. .notifier_call = kvm_cpu_hotplug,
  2598. .priority = 20, /* must be > scheduler priority */
  2599. };
  2600. static u64 stat_get(void *_offset)
  2601. {
  2602. unsigned offset = (long)_offset;
  2603. u64 total = 0;
  2604. struct kvm *kvm;
  2605. struct kvm_vcpu *vcpu;
  2606. int i;
  2607. spin_lock(&kvm_lock);
  2608. list_for_each_entry(kvm, &vm_list, vm_list)
  2609. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2610. vcpu = kvm->vcpus[i];
  2611. if (vcpu)
  2612. total += *(u32 *)((void *)vcpu + offset);
  2613. }
  2614. spin_unlock(&kvm_lock);
  2615. return total;
  2616. }
  2617. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2618. static __init void kvm_init_debug(void)
  2619. {
  2620. struct kvm_stats_debugfs_item *p;
  2621. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2622. for (p = debugfs_entries; p->name; ++p)
  2623. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2624. (void *)(long)p->offset,
  2625. &stat_fops);
  2626. }
  2627. static void kvm_exit_debug(void)
  2628. {
  2629. struct kvm_stats_debugfs_item *p;
  2630. for (p = debugfs_entries; p->name; ++p)
  2631. debugfs_remove(p->dentry);
  2632. debugfs_remove(debugfs_dir);
  2633. }
  2634. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2635. {
  2636. hardware_disable(NULL);
  2637. return 0;
  2638. }
  2639. static int kvm_resume(struct sys_device *dev)
  2640. {
  2641. hardware_enable(NULL);
  2642. return 0;
  2643. }
  2644. static struct sysdev_class kvm_sysdev_class = {
  2645. set_kset_name("kvm"),
  2646. .suspend = kvm_suspend,
  2647. .resume = kvm_resume,
  2648. };
  2649. static struct sys_device kvm_sysdev = {
  2650. .id = 0,
  2651. .cls = &kvm_sysdev_class,
  2652. };
  2653. hpa_t bad_page_address;
  2654. static inline
  2655. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2656. {
  2657. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2658. }
  2659. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2660. {
  2661. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2662. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2663. }
  2664. static void kvm_sched_out(struct preempt_notifier *pn,
  2665. struct task_struct *next)
  2666. {
  2667. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2668. kvm_arch_ops->vcpu_put(vcpu);
  2669. }
  2670. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2671. struct module *module)
  2672. {
  2673. int r;
  2674. int cpu;
  2675. if (kvm_arch_ops) {
  2676. printk(KERN_ERR "kvm: already loaded the other module\n");
  2677. return -EEXIST;
  2678. }
  2679. if (!ops->cpu_has_kvm_support()) {
  2680. printk(KERN_ERR "kvm: no hardware support\n");
  2681. return -EOPNOTSUPP;
  2682. }
  2683. if (ops->disabled_by_bios()) {
  2684. printk(KERN_ERR "kvm: disabled by bios\n");
  2685. return -EOPNOTSUPP;
  2686. }
  2687. kvm_arch_ops = ops;
  2688. r = kvm_arch_ops->hardware_setup();
  2689. if (r < 0)
  2690. goto out;
  2691. for_each_online_cpu(cpu) {
  2692. smp_call_function_single(cpu,
  2693. kvm_arch_ops->check_processor_compatibility,
  2694. &r, 0, 1);
  2695. if (r < 0)
  2696. goto out_free_0;
  2697. }
  2698. on_each_cpu(hardware_enable, NULL, 0, 1);
  2699. r = register_cpu_notifier(&kvm_cpu_notifier);
  2700. if (r)
  2701. goto out_free_1;
  2702. register_reboot_notifier(&kvm_reboot_notifier);
  2703. r = sysdev_class_register(&kvm_sysdev_class);
  2704. if (r)
  2705. goto out_free_2;
  2706. r = sysdev_register(&kvm_sysdev);
  2707. if (r)
  2708. goto out_free_3;
  2709. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2710. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2711. __alignof__(struct kvm_vcpu), 0, 0);
  2712. if (!kvm_vcpu_cache) {
  2713. r = -ENOMEM;
  2714. goto out_free_4;
  2715. }
  2716. kvm_chardev_ops.owner = module;
  2717. r = misc_register(&kvm_dev);
  2718. if (r) {
  2719. printk (KERN_ERR "kvm: misc device register failed\n");
  2720. goto out_free;
  2721. }
  2722. kvm_preempt_ops.sched_in = kvm_sched_in;
  2723. kvm_preempt_ops.sched_out = kvm_sched_out;
  2724. return r;
  2725. out_free:
  2726. kmem_cache_destroy(kvm_vcpu_cache);
  2727. out_free_4:
  2728. sysdev_unregister(&kvm_sysdev);
  2729. out_free_3:
  2730. sysdev_class_unregister(&kvm_sysdev_class);
  2731. out_free_2:
  2732. unregister_reboot_notifier(&kvm_reboot_notifier);
  2733. unregister_cpu_notifier(&kvm_cpu_notifier);
  2734. out_free_1:
  2735. on_each_cpu(hardware_disable, NULL, 0, 1);
  2736. out_free_0:
  2737. kvm_arch_ops->hardware_unsetup();
  2738. out:
  2739. kvm_arch_ops = NULL;
  2740. return r;
  2741. }
  2742. void kvm_exit_arch(void)
  2743. {
  2744. misc_deregister(&kvm_dev);
  2745. kmem_cache_destroy(kvm_vcpu_cache);
  2746. sysdev_unregister(&kvm_sysdev);
  2747. sysdev_class_unregister(&kvm_sysdev_class);
  2748. unregister_reboot_notifier(&kvm_reboot_notifier);
  2749. unregister_cpu_notifier(&kvm_cpu_notifier);
  2750. on_each_cpu(hardware_disable, NULL, 0, 1);
  2751. kvm_arch_ops->hardware_unsetup();
  2752. kvm_arch_ops = NULL;
  2753. }
  2754. static __init int kvm_init(void)
  2755. {
  2756. static struct page *bad_page;
  2757. int r;
  2758. r = kvm_mmu_module_init();
  2759. if (r)
  2760. goto out4;
  2761. kvm_init_debug();
  2762. kvm_init_msr_list();
  2763. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2764. r = -ENOMEM;
  2765. goto out;
  2766. }
  2767. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2768. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2769. return 0;
  2770. out:
  2771. kvm_exit_debug();
  2772. kvm_mmu_module_exit();
  2773. out4:
  2774. return r;
  2775. }
  2776. static __exit void kvm_exit(void)
  2777. {
  2778. kvm_exit_debug();
  2779. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2780. kvm_mmu_module_exit();
  2781. }
  2782. module_init(kvm_init)
  2783. module_exit(kvm_exit)
  2784. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2785. EXPORT_SYMBOL_GPL(kvm_exit_arch);