processor_idle.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/slab.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/acpi.h>
  38. #include <linux/dmi.h>
  39. #include <linux/moduleparam.h>
  40. #include <linux/sched.h> /* need_resched() */
  41. #include <linux/pm_qos_params.h>
  42. #include <linux/clockchips.h>
  43. #include <linux/cpuidle.h>
  44. #include <linux/irqflags.h>
  45. /*
  46. * Include the apic definitions for x86 to have the APIC timer related defines
  47. * available also for UP (on SMP it gets magically included via linux/smp.h).
  48. * asm/acpi.h is not an option, as it would require more include magic. Also
  49. * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  50. */
  51. #ifdef CONFIG_X86
  52. #include <asm/apic.h>
  53. #endif
  54. #include <asm/io.h>
  55. #include <asm/uaccess.h>
  56. #include <acpi/acpi_bus.h>
  57. #include <acpi/processor.h>
  58. #include <asm/processor.h>
  59. #define PREFIX "ACPI: "
  60. #define ACPI_PROCESSOR_CLASS "processor"
  61. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  62. ACPI_MODULE_NAME("processor_idle");
  63. #define ACPI_PROCESSOR_FILE_POWER "power"
  64. #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
  65. #define C2_OVERHEAD 1 /* 1us */
  66. #define C3_OVERHEAD 1 /* 1us */
  67. #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
  68. static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  69. module_param(max_cstate, uint, 0000);
  70. static unsigned int nocst __read_mostly;
  71. module_param(nocst, uint, 0000);
  72. static unsigned int latency_factor __read_mostly = 2;
  73. module_param(latency_factor, uint, 0644);
  74. static u64 us_to_pm_timer_ticks(s64 t)
  75. {
  76. return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
  77. }
  78. /*
  79. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  80. * For now disable this. Probably a bug somewhere else.
  81. *
  82. * To skip this limit, boot/load with a large max_cstate limit.
  83. */
  84. static int set_max_cstate(const struct dmi_system_id *id)
  85. {
  86. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  87. return 0;
  88. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  89. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  90. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  91. max_cstate = (long)id->driver_data;
  92. return 0;
  93. }
  94. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  95. callers to only run once -AK */
  96. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  97. { set_max_cstate, "Clevo 5600D", {
  98. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  99. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  100. (void *)2},
  101. { set_max_cstate, "Pavilion zv5000", {
  102. DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  103. DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  104. (void *)1},
  105. { set_max_cstate, "Asus L8400B", {
  106. DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  107. DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  108. (void *)1},
  109. {},
  110. };
  111. /*
  112. * Callers should disable interrupts before the call and enable
  113. * interrupts after return.
  114. */
  115. static void acpi_safe_halt(void)
  116. {
  117. current_thread_info()->status &= ~TS_POLLING;
  118. /*
  119. * TS_POLLING-cleared state must be visible before we
  120. * test NEED_RESCHED:
  121. */
  122. smp_mb();
  123. if (!need_resched()) {
  124. safe_halt();
  125. local_irq_disable();
  126. }
  127. current_thread_info()->status |= TS_POLLING;
  128. }
  129. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  130. /*
  131. * Some BIOS implementations switch to C3 in the published C2 state.
  132. * This seems to be a common problem on AMD boxen, but other vendors
  133. * are affected too. We pick the most conservative approach: we assume
  134. * that the local APIC stops in both C2 and C3.
  135. */
  136. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  137. struct acpi_processor_cx *cx)
  138. {
  139. struct acpi_processor_power *pwr = &pr->power;
  140. u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
  141. if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
  142. return;
  143. if (boot_cpu_has(X86_FEATURE_AMDC1E))
  144. type = ACPI_STATE_C1;
  145. /*
  146. * Check, if one of the previous states already marked the lapic
  147. * unstable
  148. */
  149. if (pwr->timer_broadcast_on_state < state)
  150. return;
  151. if (cx->type >= type)
  152. pr->power.timer_broadcast_on_state = state;
  153. }
  154. static void __lapic_timer_propagate_broadcast(void *arg)
  155. {
  156. struct acpi_processor *pr = (struct acpi_processor *) arg;
  157. unsigned long reason;
  158. reason = pr->power.timer_broadcast_on_state < INT_MAX ?
  159. CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
  160. clockevents_notify(reason, &pr->id);
  161. }
  162. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
  163. {
  164. smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
  165. (void *)pr, 1);
  166. }
  167. /* Power(C) State timer broadcast control */
  168. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  169. struct acpi_processor_cx *cx,
  170. int broadcast)
  171. {
  172. int state = cx - pr->power.states;
  173. if (state >= pr->power.timer_broadcast_on_state) {
  174. unsigned long reason;
  175. reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
  176. CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
  177. clockevents_notify(reason, &pr->id);
  178. }
  179. }
  180. #else
  181. static void lapic_timer_check_state(int state, struct acpi_processor *pr,
  182. struct acpi_processor_cx *cstate) { }
  183. static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
  184. static void lapic_timer_state_broadcast(struct acpi_processor *pr,
  185. struct acpi_processor_cx *cx,
  186. int broadcast)
  187. {
  188. }
  189. #endif
  190. /*
  191. * Suspend / resume control
  192. */
  193. static int acpi_idle_suspend;
  194. static u32 saved_bm_rld;
  195. static void acpi_idle_bm_rld_save(void)
  196. {
  197. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
  198. }
  199. static void acpi_idle_bm_rld_restore(void)
  200. {
  201. u32 resumed_bm_rld;
  202. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
  203. if (resumed_bm_rld != saved_bm_rld)
  204. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
  205. }
  206. int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
  207. {
  208. if (acpi_idle_suspend == 1)
  209. return 0;
  210. acpi_idle_bm_rld_save();
  211. acpi_idle_suspend = 1;
  212. return 0;
  213. }
  214. int acpi_processor_resume(struct acpi_device * device)
  215. {
  216. if (acpi_idle_suspend == 0)
  217. return 0;
  218. acpi_idle_bm_rld_restore();
  219. acpi_idle_suspend = 0;
  220. return 0;
  221. }
  222. #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
  223. static void tsc_check_state(int state)
  224. {
  225. switch (boot_cpu_data.x86_vendor) {
  226. case X86_VENDOR_AMD:
  227. case X86_VENDOR_INTEL:
  228. /*
  229. * AMD Fam10h TSC will tick in all
  230. * C/P/S0/S1 states when this bit is set.
  231. */
  232. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  233. return;
  234. /*FALL THROUGH*/
  235. default:
  236. /* TSC could halt in idle, so notify users */
  237. if (state > ACPI_STATE_C1)
  238. mark_tsc_unstable("TSC halts in idle");
  239. }
  240. }
  241. #else
  242. static void tsc_check_state(int state) { return; }
  243. #endif
  244. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  245. {
  246. if (!pr)
  247. return -EINVAL;
  248. if (!pr->pblk)
  249. return -ENODEV;
  250. /* if info is obtained from pblk/fadt, type equals state */
  251. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  252. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  253. #ifndef CONFIG_HOTPLUG_CPU
  254. /*
  255. * Check for P_LVL2_UP flag before entering C2 and above on
  256. * an SMP system.
  257. */
  258. if ((num_online_cpus() > 1) &&
  259. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  260. return -ENODEV;
  261. #endif
  262. /* determine C2 and C3 address from pblk */
  263. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  264. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  265. /* determine latencies from FADT */
  266. pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
  267. pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
  268. /*
  269. * FADT specified C2 latency must be less than or equal to
  270. * 100 microseconds.
  271. */
  272. if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  273. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  274. "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
  275. /* invalidate C2 */
  276. pr->power.states[ACPI_STATE_C2].address = 0;
  277. }
  278. /*
  279. * FADT supplied C3 latency must be less than or equal to
  280. * 1000 microseconds.
  281. */
  282. if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  283. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  284. "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
  285. /* invalidate C3 */
  286. pr->power.states[ACPI_STATE_C3].address = 0;
  287. }
  288. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  289. "lvl2[0x%08x] lvl3[0x%08x]\n",
  290. pr->power.states[ACPI_STATE_C2].address,
  291. pr->power.states[ACPI_STATE_C3].address));
  292. return 0;
  293. }
  294. static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
  295. {
  296. if (!pr->power.states[ACPI_STATE_C1].valid) {
  297. /* set the first C-State to C1 */
  298. /* all processors need to support C1 */
  299. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  300. pr->power.states[ACPI_STATE_C1].valid = 1;
  301. pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
  302. }
  303. /* the C0 state only exists as a filler in our array */
  304. pr->power.states[ACPI_STATE_C0].valid = 1;
  305. return 0;
  306. }
  307. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  308. {
  309. acpi_status status = 0;
  310. u64 count;
  311. int current_count;
  312. int i;
  313. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  314. union acpi_object *cst;
  315. if (nocst)
  316. return -ENODEV;
  317. current_count = 0;
  318. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  319. if (ACPI_FAILURE(status)) {
  320. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  321. return -ENODEV;
  322. }
  323. cst = buffer.pointer;
  324. /* There must be at least 2 elements */
  325. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  326. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  327. status = -EFAULT;
  328. goto end;
  329. }
  330. count = cst->package.elements[0].integer.value;
  331. /* Validate number of power states. */
  332. if (count < 1 || count != cst->package.count - 1) {
  333. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  334. status = -EFAULT;
  335. goto end;
  336. }
  337. /* Tell driver that at least _CST is supported. */
  338. pr->flags.has_cst = 1;
  339. for (i = 1; i <= count; i++) {
  340. union acpi_object *element;
  341. union acpi_object *obj;
  342. struct acpi_power_register *reg;
  343. struct acpi_processor_cx cx;
  344. memset(&cx, 0, sizeof(cx));
  345. element = &(cst->package.elements[i]);
  346. if (element->type != ACPI_TYPE_PACKAGE)
  347. continue;
  348. if (element->package.count != 4)
  349. continue;
  350. obj = &(element->package.elements[0]);
  351. if (obj->type != ACPI_TYPE_BUFFER)
  352. continue;
  353. reg = (struct acpi_power_register *)obj->buffer.pointer;
  354. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  355. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  356. continue;
  357. /* There should be an easy way to extract an integer... */
  358. obj = &(element->package.elements[1]);
  359. if (obj->type != ACPI_TYPE_INTEGER)
  360. continue;
  361. cx.type = obj->integer.value;
  362. /*
  363. * Some buggy BIOSes won't list C1 in _CST -
  364. * Let acpi_processor_get_power_info_default() handle them later
  365. */
  366. if (i == 1 && cx.type != ACPI_STATE_C1)
  367. current_count++;
  368. cx.address = reg->address;
  369. cx.index = current_count + 1;
  370. cx.entry_method = ACPI_CSTATE_SYSTEMIO;
  371. if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
  372. if (acpi_processor_ffh_cstate_probe
  373. (pr->id, &cx, reg) == 0) {
  374. cx.entry_method = ACPI_CSTATE_FFH;
  375. } else if (cx.type == ACPI_STATE_C1) {
  376. /*
  377. * C1 is a special case where FIXED_HARDWARE
  378. * can be handled in non-MWAIT way as well.
  379. * In that case, save this _CST entry info.
  380. * Otherwise, ignore this info and continue.
  381. */
  382. cx.entry_method = ACPI_CSTATE_HALT;
  383. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  384. } else {
  385. continue;
  386. }
  387. if (cx.type == ACPI_STATE_C1 &&
  388. (idle_halt || idle_nomwait)) {
  389. /*
  390. * In most cases the C1 space_id obtained from
  391. * _CST object is FIXED_HARDWARE access mode.
  392. * But when the option of idle=halt is added,
  393. * the entry_method type should be changed from
  394. * CSTATE_FFH to CSTATE_HALT.
  395. * When the option of idle=nomwait is added,
  396. * the C1 entry_method type should be
  397. * CSTATE_HALT.
  398. */
  399. cx.entry_method = ACPI_CSTATE_HALT;
  400. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
  401. }
  402. } else {
  403. snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
  404. cx.address);
  405. }
  406. if (cx.type == ACPI_STATE_C1) {
  407. cx.valid = 1;
  408. }
  409. obj = &(element->package.elements[2]);
  410. if (obj->type != ACPI_TYPE_INTEGER)
  411. continue;
  412. cx.latency = obj->integer.value;
  413. obj = &(element->package.elements[3]);
  414. if (obj->type != ACPI_TYPE_INTEGER)
  415. continue;
  416. cx.power = obj->integer.value;
  417. current_count++;
  418. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  419. /*
  420. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  421. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  422. */
  423. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  424. printk(KERN_WARNING
  425. "Limiting number of power states to max (%d)\n",
  426. ACPI_PROCESSOR_MAX_POWER);
  427. printk(KERN_WARNING
  428. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  429. break;
  430. }
  431. }
  432. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  433. current_count));
  434. /* Validate number of power states discovered */
  435. if (current_count < 2)
  436. status = -EFAULT;
  437. end:
  438. kfree(buffer.pointer);
  439. return status;
  440. }
  441. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  442. struct acpi_processor_cx *cx)
  443. {
  444. static int bm_check_flag = -1;
  445. static int bm_control_flag = -1;
  446. if (!cx->address)
  447. return;
  448. /*
  449. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  450. * DMA transfers are used by any ISA device to avoid livelock.
  451. * Note that we could disable Type-F DMA (as recommended by
  452. * the erratum), but this is known to disrupt certain ISA
  453. * devices thus we take the conservative approach.
  454. */
  455. else if (errata.piix4.fdma) {
  456. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  457. "C3 not supported on PIIX4 with Type-F DMA\n"));
  458. return;
  459. }
  460. /* All the logic here assumes flags.bm_check is same across all CPUs */
  461. if (bm_check_flag == -1) {
  462. /* Determine whether bm_check is needed based on CPU */
  463. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  464. bm_check_flag = pr->flags.bm_check;
  465. bm_control_flag = pr->flags.bm_control;
  466. } else {
  467. pr->flags.bm_check = bm_check_flag;
  468. pr->flags.bm_control = bm_control_flag;
  469. }
  470. if (pr->flags.bm_check) {
  471. if (!pr->flags.bm_control) {
  472. if (pr->flags.has_cst != 1) {
  473. /* bus mastering control is necessary */
  474. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  475. "C3 support requires BM control\n"));
  476. return;
  477. } else {
  478. /* Here we enter C3 without bus mastering */
  479. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  480. "C3 support without BM control\n"));
  481. }
  482. }
  483. } else {
  484. /*
  485. * WBINVD should be set in fadt, for C3 state to be
  486. * supported on when bm_check is not required.
  487. */
  488. if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
  489. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  490. "Cache invalidation should work properly"
  491. " for C3 to be enabled on SMP systems\n"));
  492. return;
  493. }
  494. }
  495. /*
  496. * Otherwise we've met all of our C3 requirements.
  497. * Normalize the C3 latency to expidite policy. Enable
  498. * checking of bus mastering status (bm_check) so we can
  499. * use this in our C3 policy
  500. */
  501. cx->valid = 1;
  502. cx->latency_ticks = cx->latency;
  503. /*
  504. * On older chipsets, BM_RLD needs to be set
  505. * in order for Bus Master activity to wake the
  506. * system from C3. Newer chipsets handle DMA
  507. * during C3 automatically and BM_RLD is a NOP.
  508. * In either case, the proper way to
  509. * handle BM_RLD is to set it and leave it set.
  510. */
  511. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
  512. return;
  513. }
  514. static int acpi_processor_power_verify(struct acpi_processor *pr)
  515. {
  516. unsigned int i;
  517. unsigned int working = 0;
  518. pr->power.timer_broadcast_on_state = INT_MAX;
  519. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  520. struct acpi_processor_cx *cx = &pr->power.states[i];
  521. switch (cx->type) {
  522. case ACPI_STATE_C1:
  523. cx->valid = 1;
  524. break;
  525. case ACPI_STATE_C2:
  526. if (!cx->address)
  527. break;
  528. cx->valid = 1;
  529. cx->latency_ticks = cx->latency; /* Normalize latency */
  530. break;
  531. case ACPI_STATE_C3:
  532. acpi_processor_power_verify_c3(pr, cx);
  533. break;
  534. }
  535. if (!cx->valid)
  536. continue;
  537. lapic_timer_check_state(i, pr, cx);
  538. tsc_check_state(cx->type);
  539. working++;
  540. }
  541. lapic_timer_propagate_broadcast(pr);
  542. return (working);
  543. }
  544. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  545. {
  546. unsigned int i;
  547. int result;
  548. /* NOTE: the idle thread may not be running while calling
  549. * this function */
  550. /* Zero initialize all the C-states info. */
  551. memset(pr->power.states, 0, sizeof(pr->power.states));
  552. result = acpi_processor_get_power_info_cst(pr);
  553. if (result == -ENODEV)
  554. result = acpi_processor_get_power_info_fadt(pr);
  555. if (result)
  556. return result;
  557. acpi_processor_get_power_info_default(pr);
  558. pr->power.count = acpi_processor_power_verify(pr);
  559. /*
  560. * if one state of type C2 or C3 is available, mark this
  561. * CPU as being "idle manageable"
  562. */
  563. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  564. if (pr->power.states[i].valid) {
  565. pr->power.count = i;
  566. if (pr->power.states[i].type >= ACPI_STATE_C2)
  567. pr->flags.power = 1;
  568. }
  569. }
  570. return 0;
  571. }
  572. #ifdef CONFIG_ACPI_PROCFS
  573. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  574. {
  575. struct acpi_processor *pr = seq->private;
  576. unsigned int i;
  577. if (!pr)
  578. goto end;
  579. seq_printf(seq, "active state: C%zd\n"
  580. "max_cstate: C%d\n"
  581. "maximum allowed latency: %d usec\n",
  582. pr->power.state ? pr->power.state - pr->power.states : 0,
  583. max_cstate, pm_qos_request(PM_QOS_CPU_DMA_LATENCY));
  584. seq_puts(seq, "states:\n");
  585. for (i = 1; i <= pr->power.count; i++) {
  586. seq_printf(seq, " %cC%d: ",
  587. (&pr->power.states[i] ==
  588. pr->power.state ? '*' : ' '), i);
  589. if (!pr->power.states[i].valid) {
  590. seq_puts(seq, "<not supported>\n");
  591. continue;
  592. }
  593. switch (pr->power.states[i].type) {
  594. case ACPI_STATE_C1:
  595. seq_printf(seq, "type[C1] ");
  596. break;
  597. case ACPI_STATE_C2:
  598. seq_printf(seq, "type[C2] ");
  599. break;
  600. case ACPI_STATE_C3:
  601. seq_printf(seq, "type[C3] ");
  602. break;
  603. default:
  604. seq_printf(seq, "type[--] ");
  605. break;
  606. }
  607. seq_puts(seq, "promotion[--] ");
  608. seq_puts(seq, "demotion[--] ");
  609. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020Lu]\n",
  610. pr->power.states[i].latency,
  611. pr->power.states[i].usage,
  612. us_to_pm_timer_ticks(pr->power.states[i].time));
  613. }
  614. end:
  615. return 0;
  616. }
  617. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  618. {
  619. return single_open(file, acpi_processor_power_seq_show,
  620. PDE(inode)->data);
  621. }
  622. static const struct file_operations acpi_processor_power_fops = {
  623. .owner = THIS_MODULE,
  624. .open = acpi_processor_power_open_fs,
  625. .read = seq_read,
  626. .llseek = seq_lseek,
  627. .release = single_release,
  628. };
  629. #endif
  630. /**
  631. * acpi_idle_bm_check - checks if bus master activity was detected
  632. */
  633. static int acpi_idle_bm_check(void)
  634. {
  635. u32 bm_status = 0;
  636. acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
  637. if (bm_status)
  638. acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
  639. /*
  640. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  641. * the true state of bus mastering activity; forcing us to
  642. * manually check the BMIDEA bit of each IDE channel.
  643. */
  644. else if (errata.piix4.bmisx) {
  645. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  646. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  647. bm_status = 1;
  648. }
  649. return bm_status;
  650. }
  651. /**
  652. * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
  653. * @cx: cstate data
  654. *
  655. * Caller disables interrupt before call and enables interrupt after return.
  656. */
  657. static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
  658. {
  659. /* Don't trace irqs off for idle */
  660. stop_critical_timings();
  661. if (cx->entry_method == ACPI_CSTATE_FFH) {
  662. /* Call into architectural FFH based C-state */
  663. acpi_processor_ffh_cstate_enter(cx);
  664. } else if (cx->entry_method == ACPI_CSTATE_HALT) {
  665. acpi_safe_halt();
  666. } else {
  667. int unused;
  668. /* IO port based C-state */
  669. inb(cx->address);
  670. /* Dummy wait op - must do something useless after P_LVL2 read
  671. because chipsets cannot guarantee that STPCLK# signal
  672. gets asserted in time to freeze execution properly. */
  673. unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
  674. }
  675. start_critical_timings();
  676. }
  677. /**
  678. * acpi_idle_enter_c1 - enters an ACPI C1 state-type
  679. * @dev: the target CPU
  680. * @state: the state data
  681. *
  682. * This is equivalent to the HALT instruction.
  683. */
  684. static int acpi_idle_enter_c1(struct cpuidle_device *dev,
  685. struct cpuidle_state *state)
  686. {
  687. ktime_t kt1, kt2;
  688. s64 idle_time;
  689. struct acpi_processor *pr;
  690. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  691. pr = __get_cpu_var(processors);
  692. if (unlikely(!pr))
  693. return 0;
  694. local_irq_disable();
  695. /* Do not access any ACPI IO ports in suspend path */
  696. if (acpi_idle_suspend) {
  697. local_irq_enable();
  698. cpu_relax();
  699. return 0;
  700. }
  701. lapic_timer_state_broadcast(pr, cx, 1);
  702. kt1 = ktime_get_real();
  703. acpi_idle_do_entry(cx);
  704. kt2 = ktime_get_real();
  705. idle_time = ktime_to_us(ktime_sub(kt2, kt1));
  706. local_irq_enable();
  707. cx->usage++;
  708. lapic_timer_state_broadcast(pr, cx, 0);
  709. return idle_time;
  710. }
  711. /**
  712. * acpi_idle_enter_simple - enters an ACPI state without BM handling
  713. * @dev: the target CPU
  714. * @state: the state data
  715. */
  716. static int acpi_idle_enter_simple(struct cpuidle_device *dev,
  717. struct cpuidle_state *state)
  718. {
  719. struct acpi_processor *pr;
  720. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  721. ktime_t kt1, kt2;
  722. s64 idle_time_ns;
  723. s64 idle_time;
  724. pr = __get_cpu_var(processors);
  725. if (unlikely(!pr))
  726. return 0;
  727. if (acpi_idle_suspend)
  728. return(acpi_idle_enter_c1(dev, state));
  729. local_irq_disable();
  730. if (cx->entry_method != ACPI_CSTATE_FFH) {
  731. current_thread_info()->status &= ~TS_POLLING;
  732. /*
  733. * TS_POLLING-cleared state must be visible before we test
  734. * NEED_RESCHED:
  735. */
  736. smp_mb();
  737. if (unlikely(need_resched())) {
  738. current_thread_info()->status |= TS_POLLING;
  739. local_irq_enable();
  740. return 0;
  741. }
  742. }
  743. /*
  744. * Must be done before busmaster disable as we might need to
  745. * access HPET !
  746. */
  747. lapic_timer_state_broadcast(pr, cx, 1);
  748. if (cx->type == ACPI_STATE_C3)
  749. ACPI_FLUSH_CPU_CACHE();
  750. kt1 = ktime_get_real();
  751. /* Tell the scheduler that we are going deep-idle: */
  752. sched_clock_idle_sleep_event();
  753. acpi_idle_do_entry(cx);
  754. kt2 = ktime_get_real();
  755. idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
  756. idle_time = idle_time_ns;
  757. do_div(idle_time, NSEC_PER_USEC);
  758. /* Tell the scheduler how much we idled: */
  759. sched_clock_idle_wakeup_event(idle_time_ns);
  760. local_irq_enable();
  761. if (cx->entry_method != ACPI_CSTATE_FFH)
  762. current_thread_info()->status |= TS_POLLING;
  763. cx->usage++;
  764. lapic_timer_state_broadcast(pr, cx, 0);
  765. cx->time += idle_time;
  766. return idle_time;
  767. }
  768. static int c3_cpu_count;
  769. static DEFINE_SPINLOCK(c3_lock);
  770. /**
  771. * acpi_idle_enter_bm - enters C3 with proper BM handling
  772. * @dev: the target CPU
  773. * @state: the state data
  774. *
  775. * If BM is detected, the deepest non-C3 idle state is entered instead.
  776. */
  777. static int acpi_idle_enter_bm(struct cpuidle_device *dev,
  778. struct cpuidle_state *state)
  779. {
  780. struct acpi_processor *pr;
  781. struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
  782. ktime_t kt1, kt2;
  783. s64 idle_time_ns;
  784. s64 idle_time;
  785. pr = __get_cpu_var(processors);
  786. if (unlikely(!pr))
  787. return 0;
  788. if (acpi_idle_suspend)
  789. return(acpi_idle_enter_c1(dev, state));
  790. if (acpi_idle_bm_check()) {
  791. if (dev->safe_state) {
  792. dev->last_state = dev->safe_state;
  793. return dev->safe_state->enter(dev, dev->safe_state);
  794. } else {
  795. local_irq_disable();
  796. acpi_safe_halt();
  797. local_irq_enable();
  798. return 0;
  799. }
  800. }
  801. local_irq_disable();
  802. if (cx->entry_method != ACPI_CSTATE_FFH) {
  803. current_thread_info()->status &= ~TS_POLLING;
  804. /*
  805. * TS_POLLING-cleared state must be visible before we test
  806. * NEED_RESCHED:
  807. */
  808. smp_mb();
  809. if (unlikely(need_resched())) {
  810. current_thread_info()->status |= TS_POLLING;
  811. local_irq_enable();
  812. return 0;
  813. }
  814. }
  815. acpi_unlazy_tlb(smp_processor_id());
  816. /* Tell the scheduler that we are going deep-idle: */
  817. sched_clock_idle_sleep_event();
  818. /*
  819. * Must be done before busmaster disable as we might need to
  820. * access HPET !
  821. */
  822. lapic_timer_state_broadcast(pr, cx, 1);
  823. kt1 = ktime_get_real();
  824. /*
  825. * disable bus master
  826. * bm_check implies we need ARB_DIS
  827. * !bm_check implies we need cache flush
  828. * bm_control implies whether we can do ARB_DIS
  829. *
  830. * That leaves a case where bm_check is set and bm_control is
  831. * not set. In that case we cannot do much, we enter C3
  832. * without doing anything.
  833. */
  834. if (pr->flags.bm_check && pr->flags.bm_control) {
  835. spin_lock(&c3_lock);
  836. c3_cpu_count++;
  837. /* Disable bus master arbitration when all CPUs are in C3 */
  838. if (c3_cpu_count == num_online_cpus())
  839. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
  840. spin_unlock(&c3_lock);
  841. } else if (!pr->flags.bm_check) {
  842. ACPI_FLUSH_CPU_CACHE();
  843. }
  844. acpi_idle_do_entry(cx);
  845. /* Re-enable bus master arbitration */
  846. if (pr->flags.bm_check && pr->flags.bm_control) {
  847. spin_lock(&c3_lock);
  848. acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
  849. c3_cpu_count--;
  850. spin_unlock(&c3_lock);
  851. }
  852. kt2 = ktime_get_real();
  853. idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
  854. idle_time = idle_time_ns;
  855. do_div(idle_time, NSEC_PER_USEC);
  856. /* Tell the scheduler how much we idled: */
  857. sched_clock_idle_wakeup_event(idle_time_ns);
  858. local_irq_enable();
  859. if (cx->entry_method != ACPI_CSTATE_FFH)
  860. current_thread_info()->status |= TS_POLLING;
  861. cx->usage++;
  862. lapic_timer_state_broadcast(pr, cx, 0);
  863. cx->time += idle_time;
  864. return idle_time;
  865. }
  866. struct cpuidle_driver acpi_idle_driver = {
  867. .name = "acpi_idle",
  868. .owner = THIS_MODULE,
  869. };
  870. /**
  871. * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
  872. * @pr: the ACPI processor
  873. */
  874. static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
  875. {
  876. int i, count = CPUIDLE_DRIVER_STATE_START;
  877. struct acpi_processor_cx *cx;
  878. struct cpuidle_state *state;
  879. struct cpuidle_device *dev = &pr->power.dev;
  880. if (!pr->flags.power_setup_done)
  881. return -EINVAL;
  882. if (pr->flags.power == 0) {
  883. return -EINVAL;
  884. }
  885. dev->cpu = pr->id;
  886. for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
  887. dev->states[i].name[0] = '\0';
  888. dev->states[i].desc[0] = '\0';
  889. }
  890. if (max_cstate == 0)
  891. max_cstate = 1;
  892. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
  893. cx = &pr->power.states[i];
  894. state = &dev->states[count];
  895. if (!cx->valid)
  896. continue;
  897. #ifdef CONFIG_HOTPLUG_CPU
  898. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  899. !pr->flags.has_cst &&
  900. !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
  901. continue;
  902. #endif
  903. cpuidle_set_statedata(state, cx);
  904. snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
  905. strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
  906. state->exit_latency = cx->latency;
  907. state->target_residency = cx->latency * latency_factor;
  908. state->power_usage = cx->power;
  909. state->flags = 0;
  910. switch (cx->type) {
  911. case ACPI_STATE_C1:
  912. state->flags |= CPUIDLE_FLAG_SHALLOW;
  913. if (cx->entry_method == ACPI_CSTATE_FFH)
  914. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  915. state->enter = acpi_idle_enter_c1;
  916. dev->safe_state = state;
  917. break;
  918. case ACPI_STATE_C2:
  919. state->flags |= CPUIDLE_FLAG_BALANCED;
  920. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  921. state->enter = acpi_idle_enter_simple;
  922. dev->safe_state = state;
  923. break;
  924. case ACPI_STATE_C3:
  925. state->flags |= CPUIDLE_FLAG_DEEP;
  926. state->flags |= CPUIDLE_FLAG_TIME_VALID;
  927. state->flags |= CPUIDLE_FLAG_CHECK_BM;
  928. state->enter = pr->flags.bm_check ?
  929. acpi_idle_enter_bm :
  930. acpi_idle_enter_simple;
  931. break;
  932. }
  933. count++;
  934. if (count == CPUIDLE_STATE_MAX)
  935. break;
  936. }
  937. dev->state_count = count;
  938. if (!count)
  939. return -EINVAL;
  940. return 0;
  941. }
  942. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  943. {
  944. int ret = 0;
  945. if (boot_option_idle_override)
  946. return 0;
  947. if (!pr)
  948. return -EINVAL;
  949. if (nocst) {
  950. return -ENODEV;
  951. }
  952. if (!pr->flags.power_setup_done)
  953. return -ENODEV;
  954. cpuidle_pause_and_lock();
  955. cpuidle_disable_device(&pr->power.dev);
  956. acpi_processor_get_power_info(pr);
  957. if (pr->flags.power) {
  958. acpi_processor_setup_cpuidle(pr);
  959. ret = cpuidle_enable_device(&pr->power.dev);
  960. }
  961. cpuidle_resume_and_unlock();
  962. return ret;
  963. }
  964. int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
  965. struct acpi_device *device)
  966. {
  967. acpi_status status = 0;
  968. static int first_run;
  969. #ifdef CONFIG_ACPI_PROCFS
  970. struct proc_dir_entry *entry = NULL;
  971. #endif
  972. if (boot_option_idle_override)
  973. return 0;
  974. if (!first_run) {
  975. if (idle_halt) {
  976. /*
  977. * When the boot option of "idle=halt" is added, halt
  978. * is used for CPU IDLE.
  979. * In such case C2/C3 is meaningless. So the max_cstate
  980. * is set to one.
  981. */
  982. max_cstate = 1;
  983. }
  984. dmi_check_system(processor_power_dmi_table);
  985. max_cstate = acpi_processor_cstate_check(max_cstate);
  986. if (max_cstate < ACPI_C_STATES_MAX)
  987. printk(KERN_NOTICE
  988. "ACPI: processor limited to max C-state %d\n",
  989. max_cstate);
  990. first_run++;
  991. }
  992. if (!pr)
  993. return -EINVAL;
  994. if (acpi_gbl_FADT.cst_control && !nocst) {
  995. status =
  996. acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
  997. if (ACPI_FAILURE(status)) {
  998. ACPI_EXCEPTION((AE_INFO, status,
  999. "Notifying BIOS of _CST ability failed"));
  1000. }
  1001. }
  1002. acpi_processor_get_power_info(pr);
  1003. pr->flags.power_setup_done = 1;
  1004. /*
  1005. * Install the idle handler if processor power management is supported.
  1006. * Note that we use previously set idle handler will be used on
  1007. * platforms that only support C1.
  1008. */
  1009. if (pr->flags.power) {
  1010. acpi_processor_setup_cpuidle(pr);
  1011. if (cpuidle_register_device(&pr->power.dev))
  1012. return -EIO;
  1013. }
  1014. #ifdef CONFIG_ACPI_PROCFS
  1015. /* 'power' [R] */
  1016. entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
  1017. S_IRUGO, acpi_device_dir(device),
  1018. &acpi_processor_power_fops,
  1019. acpi_driver_data(device));
  1020. if (!entry)
  1021. return -EIO;
  1022. #endif
  1023. return 0;
  1024. }
  1025. int acpi_processor_power_exit(struct acpi_processor *pr,
  1026. struct acpi_device *device)
  1027. {
  1028. if (boot_option_idle_override)
  1029. return 0;
  1030. cpuidle_unregister_device(&pr->power.dev);
  1031. pr->flags.power_setup_done = 0;
  1032. #ifdef CONFIG_ACPI_PROCFS
  1033. if (acpi_device_dir(device))
  1034. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  1035. acpi_device_dir(device));
  1036. #endif
  1037. return 0;
  1038. }