ntp.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957
  1. /*
  2. * NTP state machine interfaces and logic.
  3. *
  4. * This code was mainly moved from kernel/timer.c and kernel/time.c
  5. * Please see those files for relevant copyright info and historical
  6. * changelogs.
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/math64.h>
  14. #include <linux/timex.h>
  15. #include <linux/time.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. /*
  19. * NTP timekeeping variables:
  20. */
  21. /* USER_HZ period (usecs): */
  22. unsigned long tick_usec = TICK_USEC;
  23. /* ACTHZ period (nsecs): */
  24. unsigned long tick_nsec;
  25. u64 tick_length;
  26. static u64 tick_length_base;
  27. static struct hrtimer leap_timer;
  28. #define MAX_TICKADJ 500LL /* usecs */
  29. #define MAX_TICKADJ_SCALED \
  30. (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
  31. /*
  32. * phase-lock loop variables
  33. */
  34. /*
  35. * clock synchronization status
  36. *
  37. * (TIME_ERROR prevents overwriting the CMOS clock)
  38. */
  39. static int time_state = TIME_OK;
  40. /* clock status bits: */
  41. int time_status = STA_UNSYNC;
  42. /* TAI offset (secs): */
  43. static long time_tai;
  44. /* time adjustment (nsecs): */
  45. static s64 time_offset;
  46. /* pll time constant: */
  47. static long time_constant = 2;
  48. /* maximum error (usecs): */
  49. static long time_maxerror = NTP_PHASE_LIMIT;
  50. /* estimated error (usecs): */
  51. static long time_esterror = NTP_PHASE_LIMIT;
  52. /* frequency offset (scaled nsecs/secs): */
  53. static s64 time_freq;
  54. /* time at last adjustment (secs): */
  55. static long time_reftime;
  56. static long time_adjust;
  57. /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
  58. static s64 ntp_tick_adj;
  59. #ifdef CONFIG_NTP_PPS
  60. /*
  61. * The following variables are used when a pulse-per-second (PPS) signal
  62. * is available. They establish the engineering parameters of the clock
  63. * discipline loop when controlled by the PPS signal.
  64. */
  65. #define PPS_VALID 10 /* PPS signal watchdog max (s) */
  66. #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
  67. #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
  68. #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
  69. #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
  70. increase pps_shift or consecutive bad
  71. intervals to decrease it */
  72. #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
  73. static int pps_valid; /* signal watchdog counter */
  74. static long pps_tf[3]; /* phase median filter */
  75. static long pps_jitter; /* current jitter (ns) */
  76. static struct timespec pps_fbase; /* beginning of the last freq interval */
  77. static int pps_shift; /* current interval duration (s) (shift) */
  78. static int pps_intcnt; /* interval counter */
  79. static s64 pps_freq; /* frequency offset (scaled ns/s) */
  80. static long pps_stabil; /* current stability (scaled ns/s) */
  81. /*
  82. * PPS signal quality monitors
  83. */
  84. static long pps_calcnt; /* calibration intervals */
  85. static long pps_jitcnt; /* jitter limit exceeded */
  86. static long pps_stbcnt; /* stability limit exceeded */
  87. static long pps_errcnt; /* calibration errors */
  88. /* PPS kernel consumer compensates the whole phase error immediately.
  89. * Otherwise, reduce the offset by a fixed factor times the time constant.
  90. */
  91. static inline s64 ntp_offset_chunk(s64 offset)
  92. {
  93. if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
  94. return offset;
  95. else
  96. return shift_right(offset, SHIFT_PLL + time_constant);
  97. }
  98. static inline void pps_reset_freq_interval(void)
  99. {
  100. /* the PPS calibration interval may end
  101. surprisingly early */
  102. pps_shift = PPS_INTMIN;
  103. pps_intcnt = 0;
  104. }
  105. /**
  106. * pps_clear - Clears the PPS state variables
  107. *
  108. * Must be called while holding a write on the xtime_lock
  109. */
  110. static inline void pps_clear(void)
  111. {
  112. pps_reset_freq_interval();
  113. pps_tf[0] = 0;
  114. pps_tf[1] = 0;
  115. pps_tf[2] = 0;
  116. pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
  117. pps_freq = 0;
  118. }
  119. /* Decrease pps_valid to indicate that another second has passed since
  120. * the last PPS signal. When it reaches 0, indicate that PPS signal is
  121. * missing.
  122. *
  123. * Must be called while holding a write on the xtime_lock
  124. */
  125. static inline void pps_dec_valid(void)
  126. {
  127. if (pps_valid > 0)
  128. pps_valid--;
  129. else {
  130. time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  131. STA_PPSWANDER | STA_PPSERROR);
  132. pps_clear();
  133. }
  134. }
  135. static inline void pps_set_freq(s64 freq)
  136. {
  137. pps_freq = freq;
  138. }
  139. static inline int is_error_status(int status)
  140. {
  141. return (time_status & (STA_UNSYNC|STA_CLOCKERR))
  142. /* PPS signal lost when either PPS time or
  143. * PPS frequency synchronization requested
  144. */
  145. || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
  146. && !(time_status & STA_PPSSIGNAL))
  147. /* PPS jitter exceeded when
  148. * PPS time synchronization requested */
  149. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  150. == (STA_PPSTIME|STA_PPSJITTER))
  151. /* PPS wander exceeded or calibration error when
  152. * PPS frequency synchronization requested
  153. */
  154. || ((time_status & STA_PPSFREQ)
  155. && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
  156. }
  157. static inline void pps_fill_timex(struct timex *txc)
  158. {
  159. txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
  160. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  161. txc->jitter = pps_jitter;
  162. if (!(time_status & STA_NANO))
  163. txc->jitter /= NSEC_PER_USEC;
  164. txc->shift = pps_shift;
  165. txc->stabil = pps_stabil;
  166. txc->jitcnt = pps_jitcnt;
  167. txc->calcnt = pps_calcnt;
  168. txc->errcnt = pps_errcnt;
  169. txc->stbcnt = pps_stbcnt;
  170. }
  171. #else /* !CONFIG_NTP_PPS */
  172. static inline s64 ntp_offset_chunk(s64 offset)
  173. {
  174. return shift_right(offset, SHIFT_PLL + time_constant);
  175. }
  176. static inline void pps_reset_freq_interval(void) {}
  177. static inline void pps_clear(void) {}
  178. static inline void pps_dec_valid(void) {}
  179. static inline void pps_set_freq(s64 freq) {}
  180. static inline int is_error_status(int status)
  181. {
  182. return status & (STA_UNSYNC|STA_CLOCKERR);
  183. }
  184. static inline void pps_fill_timex(struct timex *txc)
  185. {
  186. /* PPS is not implemented, so these are zero */
  187. txc->ppsfreq = 0;
  188. txc->jitter = 0;
  189. txc->shift = 0;
  190. txc->stabil = 0;
  191. txc->jitcnt = 0;
  192. txc->calcnt = 0;
  193. txc->errcnt = 0;
  194. txc->stbcnt = 0;
  195. }
  196. #endif /* CONFIG_NTP_PPS */
  197. /*
  198. * NTP methods:
  199. */
  200. /*
  201. * Update (tick_length, tick_length_base, tick_nsec), based
  202. * on (tick_usec, ntp_tick_adj, time_freq):
  203. */
  204. static void ntp_update_frequency(void)
  205. {
  206. u64 second_length;
  207. u64 new_base;
  208. second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
  209. << NTP_SCALE_SHIFT;
  210. second_length += ntp_tick_adj;
  211. second_length += time_freq;
  212. tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
  213. new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
  214. /*
  215. * Don't wait for the next second_overflow, apply
  216. * the change to the tick length immediately:
  217. */
  218. tick_length += new_base - tick_length_base;
  219. tick_length_base = new_base;
  220. }
  221. static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
  222. {
  223. time_status &= ~STA_MODE;
  224. if (secs < MINSEC)
  225. return 0;
  226. if (!(time_status & STA_FLL) && (secs <= MAXSEC))
  227. return 0;
  228. time_status |= STA_MODE;
  229. return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
  230. }
  231. static void ntp_update_offset(long offset)
  232. {
  233. s64 freq_adj;
  234. s64 offset64;
  235. long secs;
  236. if (!(time_status & STA_PLL))
  237. return;
  238. if (!(time_status & STA_NANO))
  239. offset *= NSEC_PER_USEC;
  240. /*
  241. * Scale the phase adjustment and
  242. * clamp to the operating range.
  243. */
  244. offset = min(offset, MAXPHASE);
  245. offset = max(offset, -MAXPHASE);
  246. /*
  247. * Select how the frequency is to be controlled
  248. * and in which mode (PLL or FLL).
  249. */
  250. secs = get_seconds() - time_reftime;
  251. if (unlikely(time_status & STA_FREQHOLD))
  252. secs = 0;
  253. time_reftime = get_seconds();
  254. offset64 = offset;
  255. freq_adj = ntp_update_offset_fll(offset64, secs);
  256. /*
  257. * Clamp update interval to reduce PLL gain with low
  258. * sampling rate (e.g. intermittent network connection)
  259. * to avoid instability.
  260. */
  261. if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
  262. secs = 1 << (SHIFT_PLL + 1 + time_constant);
  263. freq_adj += (offset64 * secs) <<
  264. (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
  265. freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
  266. time_freq = max(freq_adj, -MAXFREQ_SCALED);
  267. time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
  268. }
  269. /**
  270. * ntp_clear - Clears the NTP state variables
  271. *
  272. * Must be called while holding a write on the xtime_lock
  273. */
  274. void ntp_clear(void)
  275. {
  276. time_adjust = 0; /* stop active adjtime() */
  277. time_status |= STA_UNSYNC;
  278. time_maxerror = NTP_PHASE_LIMIT;
  279. time_esterror = NTP_PHASE_LIMIT;
  280. ntp_update_frequency();
  281. tick_length = tick_length_base;
  282. time_offset = 0;
  283. /* Clear PPS state variables */
  284. pps_clear();
  285. }
  286. /*
  287. * Leap second processing. If in leap-insert state at the end of the
  288. * day, the system clock is set back one second; if in leap-delete
  289. * state, the system clock is set ahead one second.
  290. */
  291. static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
  292. {
  293. enum hrtimer_restart res = HRTIMER_NORESTART;
  294. write_seqlock(&xtime_lock);
  295. switch (time_state) {
  296. case TIME_OK:
  297. break;
  298. case TIME_INS:
  299. timekeeping_leap_insert(-1);
  300. time_state = TIME_OOP;
  301. printk(KERN_NOTICE
  302. "Clock: inserting leap second 23:59:60 UTC\n");
  303. hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
  304. res = HRTIMER_RESTART;
  305. break;
  306. case TIME_DEL:
  307. timekeeping_leap_insert(1);
  308. time_tai--;
  309. time_state = TIME_WAIT;
  310. printk(KERN_NOTICE
  311. "Clock: deleting leap second 23:59:59 UTC\n");
  312. break;
  313. case TIME_OOP:
  314. time_tai++;
  315. time_state = TIME_WAIT;
  316. /* fall through */
  317. case TIME_WAIT:
  318. if (!(time_status & (STA_INS | STA_DEL)))
  319. time_state = TIME_OK;
  320. break;
  321. }
  322. write_sequnlock(&xtime_lock);
  323. return res;
  324. }
  325. /*
  326. * this routine handles the overflow of the microsecond field
  327. *
  328. * The tricky bits of code to handle the accurate clock support
  329. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  330. * They were originally developed for SUN and DEC kernels.
  331. * All the kudos should go to Dave for this stuff.
  332. */
  333. void second_overflow(void)
  334. {
  335. s64 delta;
  336. /* Bump the maxerror field */
  337. time_maxerror += MAXFREQ / NSEC_PER_USEC;
  338. if (time_maxerror > NTP_PHASE_LIMIT) {
  339. time_maxerror = NTP_PHASE_LIMIT;
  340. time_status |= STA_UNSYNC;
  341. }
  342. /* Compute the phase adjustment for the next second */
  343. tick_length = tick_length_base;
  344. delta = ntp_offset_chunk(time_offset);
  345. time_offset -= delta;
  346. tick_length += delta;
  347. /* Check PPS signal */
  348. pps_dec_valid();
  349. if (!time_adjust)
  350. return;
  351. if (time_adjust > MAX_TICKADJ) {
  352. time_adjust -= MAX_TICKADJ;
  353. tick_length += MAX_TICKADJ_SCALED;
  354. return;
  355. }
  356. if (time_adjust < -MAX_TICKADJ) {
  357. time_adjust += MAX_TICKADJ;
  358. tick_length -= MAX_TICKADJ_SCALED;
  359. return;
  360. }
  361. tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
  362. << NTP_SCALE_SHIFT;
  363. time_adjust = 0;
  364. }
  365. #ifdef CONFIG_GENERIC_CMOS_UPDATE
  366. /* Disable the cmos update - used by virtualization and embedded */
  367. int no_sync_cmos_clock __read_mostly;
  368. static void sync_cmos_clock(struct work_struct *work);
  369. static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
  370. static void sync_cmos_clock(struct work_struct *work)
  371. {
  372. struct timespec now, next;
  373. int fail = 1;
  374. /*
  375. * If we have an externally synchronized Linux clock, then update
  376. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  377. * called as close as possible to 500 ms before the new second starts.
  378. * This code is run on a timer. If the clock is set, that timer
  379. * may not expire at the correct time. Thus, we adjust...
  380. */
  381. if (!ntp_synced()) {
  382. /*
  383. * Not synced, exit, do not restart a timer (if one is
  384. * running, let it run out).
  385. */
  386. return;
  387. }
  388. getnstimeofday(&now);
  389. if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
  390. fail = update_persistent_clock(now);
  391. next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
  392. if (next.tv_nsec <= 0)
  393. next.tv_nsec += NSEC_PER_SEC;
  394. if (!fail)
  395. next.tv_sec = 659;
  396. else
  397. next.tv_sec = 0;
  398. if (next.tv_nsec >= NSEC_PER_SEC) {
  399. next.tv_sec++;
  400. next.tv_nsec -= NSEC_PER_SEC;
  401. }
  402. schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
  403. }
  404. static void notify_cmos_timer(void)
  405. {
  406. if (!no_sync_cmos_clock)
  407. schedule_delayed_work(&sync_cmos_work, 0);
  408. }
  409. #else
  410. static inline void notify_cmos_timer(void) { }
  411. #endif
  412. /*
  413. * Start the leap seconds timer:
  414. */
  415. static inline void ntp_start_leap_timer(struct timespec *ts)
  416. {
  417. long now = ts->tv_sec;
  418. if (time_status & STA_INS) {
  419. time_state = TIME_INS;
  420. now += 86400 - now % 86400;
  421. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  422. return;
  423. }
  424. if (time_status & STA_DEL) {
  425. time_state = TIME_DEL;
  426. now += 86400 - (now + 1) % 86400;
  427. hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
  428. }
  429. }
  430. /*
  431. * Propagate a new txc->status value into the NTP state:
  432. */
  433. static inline void process_adj_status(struct timex *txc, struct timespec *ts)
  434. {
  435. if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
  436. time_state = TIME_OK;
  437. time_status = STA_UNSYNC;
  438. /* restart PPS frequency calibration */
  439. pps_reset_freq_interval();
  440. }
  441. /*
  442. * If we turn on PLL adjustments then reset the
  443. * reference time to current time.
  444. */
  445. if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
  446. time_reftime = get_seconds();
  447. /* only set allowed bits */
  448. time_status &= STA_RONLY;
  449. time_status |= txc->status & ~STA_RONLY;
  450. switch (time_state) {
  451. case TIME_OK:
  452. ntp_start_leap_timer(ts);
  453. break;
  454. case TIME_INS:
  455. case TIME_DEL:
  456. time_state = TIME_OK;
  457. ntp_start_leap_timer(ts);
  458. case TIME_WAIT:
  459. if (!(time_status & (STA_INS | STA_DEL)))
  460. time_state = TIME_OK;
  461. break;
  462. case TIME_OOP:
  463. hrtimer_restart(&leap_timer);
  464. break;
  465. }
  466. }
  467. /*
  468. * Called with the xtime lock held, so we can access and modify
  469. * all the global NTP state:
  470. */
  471. static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
  472. {
  473. if (txc->modes & ADJ_STATUS)
  474. process_adj_status(txc, ts);
  475. if (txc->modes & ADJ_NANO)
  476. time_status |= STA_NANO;
  477. if (txc->modes & ADJ_MICRO)
  478. time_status &= ~STA_NANO;
  479. if (txc->modes & ADJ_FREQUENCY) {
  480. time_freq = txc->freq * PPM_SCALE;
  481. time_freq = min(time_freq, MAXFREQ_SCALED);
  482. time_freq = max(time_freq, -MAXFREQ_SCALED);
  483. /* update pps_freq */
  484. pps_set_freq(time_freq);
  485. }
  486. if (txc->modes & ADJ_MAXERROR)
  487. time_maxerror = txc->maxerror;
  488. if (txc->modes & ADJ_ESTERROR)
  489. time_esterror = txc->esterror;
  490. if (txc->modes & ADJ_TIMECONST) {
  491. time_constant = txc->constant;
  492. if (!(time_status & STA_NANO))
  493. time_constant += 4;
  494. time_constant = min(time_constant, (long)MAXTC);
  495. time_constant = max(time_constant, 0l);
  496. }
  497. if (txc->modes & ADJ_TAI && txc->constant > 0)
  498. time_tai = txc->constant;
  499. if (txc->modes & ADJ_OFFSET)
  500. ntp_update_offset(txc->offset);
  501. if (txc->modes & ADJ_TICK)
  502. tick_usec = txc->tick;
  503. if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
  504. ntp_update_frequency();
  505. }
  506. /*
  507. * adjtimex mainly allows reading (and writing, if superuser) of
  508. * kernel time-keeping variables. used by xntpd.
  509. */
  510. int do_adjtimex(struct timex *txc)
  511. {
  512. struct timespec ts;
  513. int result;
  514. /* Validate the data before disabling interrupts */
  515. if (txc->modes & ADJ_ADJTIME) {
  516. /* singleshot must not be used with any other mode bits */
  517. if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
  518. return -EINVAL;
  519. if (!(txc->modes & ADJ_OFFSET_READONLY) &&
  520. !capable(CAP_SYS_TIME))
  521. return -EPERM;
  522. } else {
  523. /* In order to modify anything, you gotta be super-user! */
  524. if (txc->modes && !capable(CAP_SYS_TIME))
  525. return -EPERM;
  526. /*
  527. * if the quartz is off by more than 10% then
  528. * something is VERY wrong!
  529. */
  530. if (txc->modes & ADJ_TICK &&
  531. (txc->tick < 900000/USER_HZ ||
  532. txc->tick > 1100000/USER_HZ))
  533. return -EINVAL;
  534. if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
  535. hrtimer_cancel(&leap_timer);
  536. }
  537. getnstimeofday(&ts);
  538. write_seqlock_irq(&xtime_lock);
  539. if (txc->modes & ADJ_ADJTIME) {
  540. long save_adjust = time_adjust;
  541. if (!(txc->modes & ADJ_OFFSET_READONLY)) {
  542. /* adjtime() is independent from ntp_adjtime() */
  543. time_adjust = txc->offset;
  544. ntp_update_frequency();
  545. }
  546. txc->offset = save_adjust;
  547. } else {
  548. /* If there are input parameters, then process them: */
  549. if (txc->modes)
  550. process_adjtimex_modes(txc, &ts);
  551. txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
  552. NTP_SCALE_SHIFT);
  553. if (!(time_status & STA_NANO))
  554. txc->offset /= NSEC_PER_USEC;
  555. }
  556. result = time_state; /* mostly `TIME_OK' */
  557. /* check for errors */
  558. if (is_error_status(time_status))
  559. result = TIME_ERROR;
  560. txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
  561. PPM_SCALE_INV, NTP_SCALE_SHIFT);
  562. txc->maxerror = time_maxerror;
  563. txc->esterror = time_esterror;
  564. txc->status = time_status;
  565. txc->constant = time_constant;
  566. txc->precision = 1;
  567. txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
  568. txc->tick = tick_usec;
  569. txc->tai = time_tai;
  570. /* fill PPS status fields */
  571. pps_fill_timex(txc);
  572. write_sequnlock_irq(&xtime_lock);
  573. txc->time.tv_sec = ts.tv_sec;
  574. txc->time.tv_usec = ts.tv_nsec;
  575. if (!(time_status & STA_NANO))
  576. txc->time.tv_usec /= NSEC_PER_USEC;
  577. notify_cmos_timer();
  578. return result;
  579. }
  580. #ifdef CONFIG_NTP_PPS
  581. /* actually struct pps_normtime is good old struct timespec, but it is
  582. * semantically different (and it is the reason why it was invented):
  583. * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
  584. * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
  585. struct pps_normtime {
  586. __kernel_time_t sec; /* seconds */
  587. long nsec; /* nanoseconds */
  588. };
  589. /* normalize the timestamp so that nsec is in the
  590. ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
  591. static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
  592. {
  593. struct pps_normtime norm = {
  594. .sec = ts.tv_sec,
  595. .nsec = ts.tv_nsec
  596. };
  597. if (norm.nsec > (NSEC_PER_SEC >> 1)) {
  598. norm.nsec -= NSEC_PER_SEC;
  599. norm.sec++;
  600. }
  601. return norm;
  602. }
  603. /* get current phase correction and jitter */
  604. static inline long pps_phase_filter_get(long *jitter)
  605. {
  606. *jitter = pps_tf[0] - pps_tf[1];
  607. if (*jitter < 0)
  608. *jitter = -*jitter;
  609. /* TODO: test various filters */
  610. return pps_tf[0];
  611. }
  612. /* add the sample to the phase filter */
  613. static inline void pps_phase_filter_add(long err)
  614. {
  615. pps_tf[2] = pps_tf[1];
  616. pps_tf[1] = pps_tf[0];
  617. pps_tf[0] = err;
  618. }
  619. /* decrease frequency calibration interval length.
  620. * It is halved after four consecutive unstable intervals.
  621. */
  622. static inline void pps_dec_freq_interval(void)
  623. {
  624. if (--pps_intcnt <= -PPS_INTCOUNT) {
  625. pps_intcnt = -PPS_INTCOUNT;
  626. if (pps_shift > PPS_INTMIN) {
  627. pps_shift--;
  628. pps_intcnt = 0;
  629. }
  630. }
  631. }
  632. /* increase frequency calibration interval length.
  633. * It is doubled after four consecutive stable intervals.
  634. */
  635. static inline void pps_inc_freq_interval(void)
  636. {
  637. if (++pps_intcnt >= PPS_INTCOUNT) {
  638. pps_intcnt = PPS_INTCOUNT;
  639. if (pps_shift < PPS_INTMAX) {
  640. pps_shift++;
  641. pps_intcnt = 0;
  642. }
  643. }
  644. }
  645. /* update clock frequency based on MONOTONIC_RAW clock PPS signal
  646. * timestamps
  647. *
  648. * At the end of the calibration interval the difference between the
  649. * first and last MONOTONIC_RAW clock timestamps divided by the length
  650. * of the interval becomes the frequency update. If the interval was
  651. * too long, the data are discarded.
  652. * Returns the difference between old and new frequency values.
  653. */
  654. static long hardpps_update_freq(struct pps_normtime freq_norm)
  655. {
  656. long delta, delta_mod;
  657. s64 ftemp;
  658. /* check if the frequency interval was too long */
  659. if (freq_norm.sec > (2 << pps_shift)) {
  660. time_status |= STA_PPSERROR;
  661. pps_errcnt++;
  662. pps_dec_freq_interval();
  663. pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
  664. freq_norm.sec);
  665. return 0;
  666. }
  667. /* here the raw frequency offset and wander (stability) is
  668. * calculated. If the wander is less than the wander threshold
  669. * the interval is increased; otherwise it is decreased.
  670. */
  671. ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
  672. freq_norm.sec);
  673. delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
  674. pps_freq = ftemp;
  675. if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
  676. pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
  677. time_status |= STA_PPSWANDER;
  678. pps_stbcnt++;
  679. pps_dec_freq_interval();
  680. } else { /* good sample */
  681. pps_inc_freq_interval();
  682. }
  683. /* the stability metric is calculated as the average of recent
  684. * frequency changes, but is used only for performance
  685. * monitoring
  686. */
  687. delta_mod = delta;
  688. if (delta_mod < 0)
  689. delta_mod = -delta_mod;
  690. pps_stabil += (div_s64(((s64)delta_mod) <<
  691. (NTP_SCALE_SHIFT - SHIFT_USEC),
  692. NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
  693. /* if enabled, the system clock frequency is updated */
  694. if ((time_status & STA_PPSFREQ) != 0 &&
  695. (time_status & STA_FREQHOLD) == 0) {
  696. time_freq = pps_freq;
  697. ntp_update_frequency();
  698. }
  699. return delta;
  700. }
  701. /* correct REALTIME clock phase error against PPS signal */
  702. static void hardpps_update_phase(long error)
  703. {
  704. long correction = -error;
  705. long jitter;
  706. /* add the sample to the median filter */
  707. pps_phase_filter_add(correction);
  708. correction = pps_phase_filter_get(&jitter);
  709. /* Nominal jitter is due to PPS signal noise. If it exceeds the
  710. * threshold, the sample is discarded; otherwise, if so enabled,
  711. * the time offset is updated.
  712. */
  713. if (jitter > (pps_jitter << PPS_POPCORN)) {
  714. pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
  715. jitter, (pps_jitter << PPS_POPCORN));
  716. time_status |= STA_PPSJITTER;
  717. pps_jitcnt++;
  718. } else if (time_status & STA_PPSTIME) {
  719. /* correct the time using the phase offset */
  720. time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
  721. NTP_INTERVAL_FREQ);
  722. /* cancel running adjtime() */
  723. time_adjust = 0;
  724. }
  725. /* update jitter */
  726. pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
  727. }
  728. /*
  729. * hardpps() - discipline CPU clock oscillator to external PPS signal
  730. *
  731. * This routine is called at each PPS signal arrival in order to
  732. * discipline the CPU clock oscillator to the PPS signal. It takes two
  733. * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
  734. * is used to correct clock phase error and the latter is used to
  735. * correct the frequency.
  736. *
  737. * This code is based on David Mills's reference nanokernel
  738. * implementation. It was mostly rewritten but keeps the same idea.
  739. */
  740. void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
  741. {
  742. struct pps_normtime pts_norm, freq_norm;
  743. unsigned long flags;
  744. pts_norm = pps_normalize_ts(*phase_ts);
  745. write_seqlock_irqsave(&xtime_lock, flags);
  746. /* clear the error bits, they will be set again if needed */
  747. time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
  748. /* indicate signal presence */
  749. time_status |= STA_PPSSIGNAL;
  750. pps_valid = PPS_VALID;
  751. /* when called for the first time,
  752. * just start the frequency interval */
  753. if (unlikely(pps_fbase.tv_sec == 0)) {
  754. pps_fbase = *raw_ts;
  755. write_sequnlock_irqrestore(&xtime_lock, flags);
  756. return;
  757. }
  758. /* ok, now we have a base for frequency calculation */
  759. freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
  760. /* check that the signal is in the range
  761. * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
  762. if ((freq_norm.sec == 0) ||
  763. (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
  764. (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
  765. time_status |= STA_PPSJITTER;
  766. /* restart the frequency calibration interval */
  767. pps_fbase = *raw_ts;
  768. write_sequnlock_irqrestore(&xtime_lock, flags);
  769. pr_err("hardpps: PPSJITTER: bad pulse\n");
  770. return;
  771. }
  772. /* signal is ok */
  773. /* check if the current frequency interval is finished */
  774. if (freq_norm.sec >= (1 << pps_shift)) {
  775. pps_calcnt++;
  776. /* restart the frequency calibration interval */
  777. pps_fbase = *raw_ts;
  778. hardpps_update_freq(freq_norm);
  779. }
  780. hardpps_update_phase(pts_norm.nsec);
  781. write_sequnlock_irqrestore(&xtime_lock, flags);
  782. }
  783. EXPORT_SYMBOL(hardpps);
  784. #endif /* CONFIG_NTP_PPS */
  785. static int __init ntp_tick_adj_setup(char *str)
  786. {
  787. ntp_tick_adj = simple_strtol(str, NULL, 0);
  788. ntp_tick_adj <<= NTP_SCALE_SHIFT;
  789. return 1;
  790. }
  791. __setup("ntp_tick_adj=", ntp_tick_adj_setup);
  792. void __init ntp_init(void)
  793. {
  794. ntp_clear();
  795. hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  796. leap_timer.function = ntp_leap_second;
  797. }