hw.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  106. {
  107. u32 retval;
  108. int i;
  109. for (i = 0, retval = 0; i < n; i++) {
  110. retval = (retval << 1) | (val & 1);
  111. val >>= 1;
  112. }
  113. return retval;
  114. }
  115. bool ath9k_get_channel_edges(struct ath_hw *ah,
  116. u16 flags, u16 *low,
  117. u16 *high)
  118. {
  119. struct ath9k_hw_capabilities *pCap = &ah->caps;
  120. if (flags & CHANNEL_5GHZ) {
  121. *low = pCap->low_5ghz_chan;
  122. *high = pCap->high_5ghz_chan;
  123. return true;
  124. }
  125. if ((flags & CHANNEL_2GHZ)) {
  126. *low = pCap->low_2ghz_chan;
  127. *high = pCap->high_2ghz_chan;
  128. return true;
  129. }
  130. return false;
  131. }
  132. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  133. u8 phy, int kbps,
  134. u32 frameLen, u16 rateix,
  135. bool shortPreamble)
  136. {
  137. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  138. if (kbps == 0)
  139. return 0;
  140. switch (phy) {
  141. case WLAN_RC_PHY_CCK:
  142. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  143. if (shortPreamble)
  144. phyTime >>= 1;
  145. numBits = frameLen << 3;
  146. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  147. break;
  148. case WLAN_RC_PHY_OFDM:
  149. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_QUARTER
  154. + OFDM_PREAMBLE_TIME_QUARTER
  155. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  156. } else if (ah->curchan &&
  157. IS_CHAN_HALF_RATE(ah->curchan)) {
  158. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  159. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  160. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  161. txTime = OFDM_SIFS_TIME_HALF +
  162. OFDM_PREAMBLE_TIME_HALF
  163. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  164. } else {
  165. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  166. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  167. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  168. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  169. + (numSymbols * OFDM_SYMBOL_TIME);
  170. }
  171. break;
  172. default:
  173. ath_err(ath9k_hw_common(ah),
  174. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  175. txTime = 0;
  176. break;
  177. }
  178. return txTime;
  179. }
  180. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  181. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  182. struct ath9k_channel *chan,
  183. struct chan_centers *centers)
  184. {
  185. int8_t extoff;
  186. if (!IS_CHAN_HT40(chan)) {
  187. centers->ctl_center = centers->ext_center =
  188. centers->synth_center = chan->channel;
  189. return;
  190. }
  191. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  192. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  193. centers->synth_center =
  194. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  195. extoff = 1;
  196. } else {
  197. centers->synth_center =
  198. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  199. extoff = -1;
  200. }
  201. centers->ctl_center =
  202. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  203. /* 25 MHz spacing is supported by hw but not on upper layers */
  204. centers->ext_center =
  205. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  206. }
  207. /******************/
  208. /* Chip Revisions */
  209. /******************/
  210. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  211. {
  212. u32 val;
  213. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  214. if (val == 0xFF) {
  215. val = REG_READ(ah, AR_SREV);
  216. ah->hw_version.macVersion =
  217. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  218. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  219. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  220. } else {
  221. if (!AR_SREV_9100(ah))
  222. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  223. ah->hw_version.macRev = val & AR_SREV_REVISION;
  224. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  225. ah->is_pciexpress = true;
  226. }
  227. }
  228. /************************************/
  229. /* HW Attach, Detach, Init Routines */
  230. /************************************/
  231. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  232. {
  233. if (!AR_SREV_5416(ah))
  234. return;
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  239. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  244. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  245. }
  246. /* This should work for all families including legacy */
  247. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  248. {
  249. struct ath_common *common = ath9k_hw_common(ah);
  250. u32 regAddr[2] = { AR_STA_ID0 };
  251. u32 regHold[2];
  252. static const u32 patternData[4] = {
  253. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  254. };
  255. int i, j, loop_max;
  256. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  257. loop_max = 2;
  258. regAddr[1] = AR_PHY_BASE + (8 << 2);
  259. } else
  260. loop_max = 1;
  261. for (i = 0; i < loop_max; i++) {
  262. u32 addr = regAddr[i];
  263. u32 wrData, rdData;
  264. regHold[i] = REG_READ(ah, addr);
  265. for (j = 0; j < 0x100; j++) {
  266. wrData = (j << 16) | j;
  267. REG_WRITE(ah, addr, wrData);
  268. rdData = REG_READ(ah, addr);
  269. if (rdData != wrData) {
  270. ath_err(common,
  271. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  272. addr, wrData, rdData);
  273. return false;
  274. }
  275. }
  276. for (j = 0; j < 4; j++) {
  277. wrData = patternData[j];
  278. REG_WRITE(ah, addr, wrData);
  279. rdData = REG_READ(ah, addr);
  280. if (wrData != rdData) {
  281. ath_err(common,
  282. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  283. addr, wrData, rdData);
  284. return false;
  285. }
  286. }
  287. REG_WRITE(ah, regAddr[i], regHold[i]);
  288. }
  289. udelay(100);
  290. return true;
  291. }
  292. static void ath9k_hw_init_config(struct ath_hw *ah)
  293. {
  294. int i;
  295. ah->config.dma_beacon_response_time = 2;
  296. ah->config.sw_beacon_response_time = 10;
  297. ah->config.additional_swba_backoff = 0;
  298. ah->config.ack_6mb = 0x0;
  299. ah->config.cwm_ignore_extcca = 0;
  300. ah->config.pcie_powersave_enable = 0;
  301. ah->config.pcie_clock_req = 0;
  302. ah->config.pcie_waen = 0;
  303. ah->config.analog_shiftreg = 1;
  304. ah->config.enable_ani = true;
  305. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  306. ah->config.spurchans[i][0] = AR_NO_SPUR;
  307. ah->config.spurchans[i][1] = AR_NO_SPUR;
  308. }
  309. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  310. ah->config.ht_enable = 1;
  311. else
  312. ah->config.ht_enable = 0;
  313. /* PAPRD needs some more work to be enabled */
  314. ah->config.paprd_disable = 1;
  315. ah->config.rx_intr_mitigation = true;
  316. ah->config.pcieSerDesWrite = true;
  317. /*
  318. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  319. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  320. * This means we use it for all AR5416 devices, and the few
  321. * minor PCI AR9280 devices out there.
  322. *
  323. * Serialization is required because these devices do not handle
  324. * well the case of two concurrent reads/writes due to the latency
  325. * involved. During one read/write another read/write can be issued
  326. * on another CPU while the previous read/write may still be working
  327. * on our hardware, if we hit this case the hardware poops in a loop.
  328. * We prevent this by serializing reads and writes.
  329. *
  330. * This issue is not present on PCI-Express devices or pre-AR5416
  331. * devices (legacy, 802.11abg).
  332. */
  333. if (num_possible_cpus() > 1)
  334. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  335. }
  336. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  337. {
  338. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  339. regulatory->country_code = CTRY_DEFAULT;
  340. regulatory->power_limit = MAX_RATE_POWER;
  341. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  342. ah->hw_version.magic = AR5416_MAGIC;
  343. ah->hw_version.subvendorid = 0;
  344. ah->atim_window = 0;
  345. ah->sta_id1_defaults =
  346. AR_STA_ID1_CRPT_MIC_ENABLE |
  347. AR_STA_ID1_MCAST_KSRCH;
  348. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  349. ah->slottime = 20;
  350. ah->globaltxtimeout = (u32) -1;
  351. ah->power_mode = ATH9K_PM_UNDEFINED;
  352. }
  353. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  354. {
  355. struct ath_common *common = ath9k_hw_common(ah);
  356. u32 sum;
  357. int i;
  358. u16 eeval;
  359. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  360. sum = 0;
  361. for (i = 0; i < 3; i++) {
  362. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  363. sum += eeval;
  364. common->macaddr[2 * i] = eeval >> 8;
  365. common->macaddr[2 * i + 1] = eeval & 0xff;
  366. }
  367. if (sum == 0 || sum == 0xffff * 3)
  368. return -EADDRNOTAVAIL;
  369. return 0;
  370. }
  371. static int ath9k_hw_post_init(struct ath_hw *ah)
  372. {
  373. struct ath_common *common = ath9k_hw_common(ah);
  374. int ecode;
  375. if (common->bus_ops->ath_bus_type != ATH_USB) {
  376. if (!ath9k_hw_chip_test(ah))
  377. return -ENODEV;
  378. }
  379. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  380. ecode = ar9002_hw_rf_claim(ah);
  381. if (ecode != 0)
  382. return ecode;
  383. }
  384. ecode = ath9k_hw_eeprom_init(ah);
  385. if (ecode != 0)
  386. return ecode;
  387. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  388. "Eeprom VER: %d, REV: %d\n",
  389. ah->eep_ops->get_eeprom_ver(ah),
  390. ah->eep_ops->get_eeprom_rev(ah));
  391. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  392. if (ecode) {
  393. ath_err(ath9k_hw_common(ah),
  394. "Failed allocating banks for external radio\n");
  395. ath9k_hw_rf_free_ext_banks(ah);
  396. return ecode;
  397. }
  398. if (!AR_SREV_9100(ah)) {
  399. ath9k_hw_ani_setup(ah);
  400. ath9k_hw_ani_init(ah);
  401. }
  402. return 0;
  403. }
  404. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  405. {
  406. if (AR_SREV_9300_20_OR_LATER(ah))
  407. ar9003_hw_attach_ops(ah);
  408. else
  409. ar9002_hw_attach_ops(ah);
  410. }
  411. /* Called for all hardware families */
  412. static int __ath9k_hw_init(struct ath_hw *ah)
  413. {
  414. struct ath_common *common = ath9k_hw_common(ah);
  415. int r = 0;
  416. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  417. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  418. ath9k_hw_read_revisions(ah);
  419. /*
  420. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  421. * We need to do this to avoid RMW of this register. We cannot
  422. * read the reg when chip is asleep.
  423. */
  424. ah->WARegVal = REG_READ(ah, AR_WA);
  425. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  426. AR_WA_ASPM_TIMER_BASED_DISABLE);
  427. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  428. ath_err(common, "Couldn't reset chip\n");
  429. return -EIO;
  430. }
  431. ath9k_hw_init_defaults(ah);
  432. ath9k_hw_init_config(ah);
  433. ath9k_hw_attach_ops(ah);
  434. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  435. ath_err(common, "Couldn't wakeup chip\n");
  436. return -EIO;
  437. }
  438. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  439. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  440. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  441. !ah->is_pciexpress)) {
  442. ah->config.serialize_regmode =
  443. SER_REG_MODE_ON;
  444. } else {
  445. ah->config.serialize_regmode =
  446. SER_REG_MODE_OFF;
  447. }
  448. }
  449. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  450. ah->config.serialize_regmode);
  451. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  452. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  453. else
  454. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  455. switch (ah->hw_version.macVersion) {
  456. case AR_SREV_VERSION_5416_PCI:
  457. case AR_SREV_VERSION_5416_PCIE:
  458. case AR_SREV_VERSION_9160:
  459. case AR_SREV_VERSION_9100:
  460. case AR_SREV_VERSION_9280:
  461. case AR_SREV_VERSION_9285:
  462. case AR_SREV_VERSION_9287:
  463. case AR_SREV_VERSION_9271:
  464. case AR_SREV_VERSION_9300:
  465. case AR_SREV_VERSION_9485:
  466. break;
  467. default:
  468. ath_err(common,
  469. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  470. ah->hw_version.macVersion, ah->hw_version.macRev);
  471. return -EOPNOTSUPP;
  472. }
  473. if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
  474. ah->is_pciexpress = false;
  475. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  476. ath9k_hw_init_cal_settings(ah);
  477. ah->ani_function = ATH9K_ANI_ALL;
  478. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  479. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  480. if (!AR_SREV_9300_20_OR_LATER(ah))
  481. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  482. ath9k_hw_init_mode_regs(ah);
  483. if (ah->is_pciexpress)
  484. ath9k_hw_configpcipowersave(ah, 0, 0);
  485. else
  486. ath9k_hw_disablepcie(ah);
  487. if (!AR_SREV_9300_20_OR_LATER(ah))
  488. ar9002_hw_cck_chan14_spread(ah);
  489. r = ath9k_hw_post_init(ah);
  490. if (r)
  491. return r;
  492. ath9k_hw_init_mode_gain_regs(ah);
  493. r = ath9k_hw_fill_cap_info(ah);
  494. if (r)
  495. return r;
  496. r = ath9k_hw_init_macaddr(ah);
  497. if (r) {
  498. ath_err(common, "Failed to initialize MAC address\n");
  499. return r;
  500. }
  501. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  502. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  503. else
  504. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  505. ah->bb_watchdog_timeout_ms = 25;
  506. common->state = ATH_HW_INITIALIZED;
  507. return 0;
  508. }
  509. int ath9k_hw_init(struct ath_hw *ah)
  510. {
  511. int ret;
  512. struct ath_common *common = ath9k_hw_common(ah);
  513. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  514. switch (ah->hw_version.devid) {
  515. case AR5416_DEVID_PCI:
  516. case AR5416_DEVID_PCIE:
  517. case AR5416_AR9100_DEVID:
  518. case AR9160_DEVID_PCI:
  519. case AR9280_DEVID_PCI:
  520. case AR9280_DEVID_PCIE:
  521. case AR9285_DEVID_PCIE:
  522. case AR9287_DEVID_PCI:
  523. case AR9287_DEVID_PCIE:
  524. case AR2427_DEVID_PCIE:
  525. case AR9300_DEVID_PCIE:
  526. case AR9300_DEVID_AR9485_PCIE:
  527. break;
  528. default:
  529. if (common->bus_ops->ath_bus_type == ATH_USB)
  530. break;
  531. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  532. ah->hw_version.devid);
  533. return -EOPNOTSUPP;
  534. }
  535. ret = __ath9k_hw_init(ah);
  536. if (ret) {
  537. ath_err(common,
  538. "Unable to initialize hardware; initialization status: %d\n",
  539. ret);
  540. return ret;
  541. }
  542. return 0;
  543. }
  544. EXPORT_SYMBOL(ath9k_hw_init);
  545. static void ath9k_hw_init_qos(struct ath_hw *ah)
  546. {
  547. ENABLE_REGWRITE_BUFFER(ah);
  548. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  549. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  550. REG_WRITE(ah, AR_QOS_NO_ACK,
  551. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  552. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  553. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  554. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  555. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  556. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  557. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  558. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  559. REGWRITE_BUFFER_FLUSH(ah);
  560. }
  561. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  562. {
  563. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
  564. udelay(100);
  565. REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
  566. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  567. udelay(100);
  568. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  569. }
  570. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  571. #define DPLL2_KD_VAL 0x3D
  572. #define DPLL2_KI_VAL 0x06
  573. #define DPLL3_PHASE_SHIFT_VAL 0x1
  574. static void ath9k_hw_init_pll(struct ath_hw *ah,
  575. struct ath9k_channel *chan)
  576. {
  577. u32 pll;
  578. if (AR_SREV_9485(ah)) {
  579. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  580. REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
  581. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  582. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  583. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  584. udelay(100);
  585. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
  586. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  587. AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
  588. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  589. AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  591. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  592. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
  593. udelay(110);
  594. }
  595. pll = ath9k_hw_compute_pll_control(ah, chan);
  596. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  597. /* Switch the core clock for ar9271 to 117Mhz */
  598. if (AR_SREV_9271(ah)) {
  599. udelay(500);
  600. REG_WRITE(ah, 0x50040, 0x304);
  601. }
  602. udelay(RTC_PLL_SETTLE_DELAY);
  603. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  604. }
  605. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  606. enum nl80211_iftype opmode)
  607. {
  608. u32 imr_reg = AR_IMR_TXERR |
  609. AR_IMR_TXURN |
  610. AR_IMR_RXERR |
  611. AR_IMR_RXORN |
  612. AR_IMR_BCNMISC;
  613. if (AR_SREV_9300_20_OR_LATER(ah)) {
  614. imr_reg |= AR_IMR_RXOK_HP;
  615. if (ah->config.rx_intr_mitigation)
  616. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  617. else
  618. imr_reg |= AR_IMR_RXOK_LP;
  619. } else {
  620. if (ah->config.rx_intr_mitigation)
  621. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  622. else
  623. imr_reg |= AR_IMR_RXOK;
  624. }
  625. if (ah->config.tx_intr_mitigation)
  626. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  627. else
  628. imr_reg |= AR_IMR_TXOK;
  629. if (opmode == NL80211_IFTYPE_AP)
  630. imr_reg |= AR_IMR_MIB;
  631. ENABLE_REGWRITE_BUFFER(ah);
  632. REG_WRITE(ah, AR_IMR, imr_reg);
  633. ah->imrs2_reg |= AR_IMR_S2_GTT;
  634. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  635. if (!AR_SREV_9100(ah)) {
  636. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  637. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  638. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  639. }
  640. REGWRITE_BUFFER_FLUSH(ah);
  641. if (AR_SREV_9300_20_OR_LATER(ah)) {
  642. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  643. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  644. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  645. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  646. }
  647. }
  648. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  649. {
  650. u32 val = ath9k_hw_mac_to_clks(ah, us);
  651. val = min(val, (u32) 0xFFFF);
  652. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  653. }
  654. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  655. {
  656. u32 val = ath9k_hw_mac_to_clks(ah, us);
  657. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  658. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  659. }
  660. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  661. {
  662. u32 val = ath9k_hw_mac_to_clks(ah, us);
  663. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  664. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  665. }
  666. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  667. {
  668. if (tu > 0xFFFF) {
  669. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  670. "bad global tx timeout %u\n", tu);
  671. ah->globaltxtimeout = (u32) -1;
  672. return false;
  673. } else {
  674. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  675. ah->globaltxtimeout = tu;
  676. return true;
  677. }
  678. }
  679. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  680. {
  681. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  682. int acktimeout;
  683. int slottime;
  684. int sifstime;
  685. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  686. ah->misc_mode);
  687. if (ah->misc_mode != 0)
  688. REG_WRITE(ah, AR_PCU_MISC,
  689. REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
  690. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  691. sifstime = 16;
  692. else
  693. sifstime = 10;
  694. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  695. slottime = ah->slottime + 3 * ah->coverage_class;
  696. acktimeout = slottime + sifstime;
  697. /*
  698. * Workaround for early ACK timeouts, add an offset to match the
  699. * initval's 64us ack timeout value.
  700. * This was initially only meant to work around an issue with delayed
  701. * BA frames in some implementations, but it has been found to fix ACK
  702. * timeout issues in other cases as well.
  703. */
  704. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  705. acktimeout += 64 - sifstime - ah->slottime;
  706. ath9k_hw_setslottime(ah, ah->slottime);
  707. ath9k_hw_set_ack_timeout(ah, acktimeout);
  708. ath9k_hw_set_cts_timeout(ah, acktimeout);
  709. if (ah->globaltxtimeout != (u32) -1)
  710. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  711. }
  712. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  713. void ath9k_hw_deinit(struct ath_hw *ah)
  714. {
  715. struct ath_common *common = ath9k_hw_common(ah);
  716. if (common->state < ATH_HW_INITIALIZED)
  717. goto free_hw;
  718. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  719. free_hw:
  720. ath9k_hw_rf_free_ext_banks(ah);
  721. }
  722. EXPORT_SYMBOL(ath9k_hw_deinit);
  723. /*******/
  724. /* INI */
  725. /*******/
  726. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  727. {
  728. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  729. if (IS_CHAN_B(chan))
  730. ctl |= CTL_11B;
  731. else if (IS_CHAN_G(chan))
  732. ctl |= CTL_11G;
  733. else
  734. ctl |= CTL_11A;
  735. return ctl;
  736. }
  737. /****************************************/
  738. /* Reset and Channel Switching Routines */
  739. /****************************************/
  740. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  741. {
  742. struct ath_common *common = ath9k_hw_common(ah);
  743. u32 regval;
  744. ENABLE_REGWRITE_BUFFER(ah);
  745. /*
  746. * set AHB_MODE not to do cacheline prefetches
  747. */
  748. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  749. regval = REG_READ(ah, AR_AHB_MODE);
  750. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  751. }
  752. /*
  753. * let mac dma reads be in 128 byte chunks
  754. */
  755. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  756. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  757. REGWRITE_BUFFER_FLUSH(ah);
  758. /*
  759. * Restore TX Trigger Level to its pre-reset value.
  760. * The initial value depends on whether aggregation is enabled, and is
  761. * adjusted whenever underruns are detected.
  762. */
  763. if (!AR_SREV_9300_20_OR_LATER(ah))
  764. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  765. ENABLE_REGWRITE_BUFFER(ah);
  766. /*
  767. * let mac dma writes be in 128 byte chunks
  768. */
  769. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  770. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  771. /*
  772. * Setup receive FIFO threshold to hold off TX activities
  773. */
  774. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  775. if (AR_SREV_9300_20_OR_LATER(ah)) {
  776. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  777. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  778. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  779. ah->caps.rx_status_len);
  780. }
  781. /*
  782. * reduce the number of usable entries in PCU TXBUF to avoid
  783. * wrap around issues.
  784. */
  785. if (AR_SREV_9285(ah)) {
  786. /* For AR9285 the number of Fifos are reduced to half.
  787. * So set the usable tx buf size also to half to
  788. * avoid data/delimiter underruns
  789. */
  790. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  791. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  792. } else if (!AR_SREV_9271(ah)) {
  793. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  794. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  795. }
  796. REGWRITE_BUFFER_FLUSH(ah);
  797. if (AR_SREV_9300_20_OR_LATER(ah))
  798. ath9k_hw_reset_txstatus_ring(ah);
  799. }
  800. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  801. {
  802. u32 val;
  803. val = REG_READ(ah, AR_STA_ID1);
  804. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  805. switch (opmode) {
  806. case NL80211_IFTYPE_AP:
  807. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  808. | AR_STA_ID1_KSRCH_MODE);
  809. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  810. break;
  811. case NL80211_IFTYPE_ADHOC:
  812. case NL80211_IFTYPE_MESH_POINT:
  813. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  814. | AR_STA_ID1_KSRCH_MODE);
  815. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  816. break;
  817. case NL80211_IFTYPE_STATION:
  818. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  819. break;
  820. default:
  821. if (ah->is_monitoring)
  822. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  823. break;
  824. }
  825. }
  826. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  827. u32 *coef_mantissa, u32 *coef_exponent)
  828. {
  829. u32 coef_exp, coef_man;
  830. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  831. if ((coef_scaled >> coef_exp) & 0x1)
  832. break;
  833. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  834. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  835. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  836. *coef_exponent = coef_exp - 16;
  837. }
  838. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  839. {
  840. u32 rst_flags;
  841. u32 tmpReg;
  842. if (AR_SREV_9100(ah)) {
  843. u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
  844. val &= ~AR_RTC_DERIVED_CLK_PERIOD;
  845. val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
  846. REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
  847. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  848. }
  849. ENABLE_REGWRITE_BUFFER(ah);
  850. if (AR_SREV_9300_20_OR_LATER(ah)) {
  851. REG_WRITE(ah, AR_WA, ah->WARegVal);
  852. udelay(10);
  853. }
  854. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  855. AR_RTC_FORCE_WAKE_ON_INT);
  856. if (AR_SREV_9100(ah)) {
  857. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  858. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  859. } else {
  860. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  861. if (tmpReg &
  862. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  863. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  864. u32 val;
  865. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  866. val = AR_RC_HOSTIF;
  867. if (!AR_SREV_9300_20_OR_LATER(ah))
  868. val |= AR_RC_AHB;
  869. REG_WRITE(ah, AR_RC, val);
  870. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  871. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  872. rst_flags = AR_RTC_RC_MAC_WARM;
  873. if (type == ATH9K_RESET_COLD)
  874. rst_flags |= AR_RTC_RC_MAC_COLD;
  875. }
  876. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  877. REGWRITE_BUFFER_FLUSH(ah);
  878. udelay(50);
  879. REG_WRITE(ah, AR_RTC_RC, 0);
  880. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  881. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  882. "RTC stuck in MAC reset\n");
  883. return false;
  884. }
  885. if (!AR_SREV_9100(ah))
  886. REG_WRITE(ah, AR_RC, 0);
  887. if (AR_SREV_9100(ah))
  888. udelay(50);
  889. return true;
  890. }
  891. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  892. {
  893. ENABLE_REGWRITE_BUFFER(ah);
  894. if (AR_SREV_9300_20_OR_LATER(ah)) {
  895. REG_WRITE(ah, AR_WA, ah->WARegVal);
  896. udelay(10);
  897. }
  898. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  899. AR_RTC_FORCE_WAKE_ON_INT);
  900. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  901. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  902. REG_WRITE(ah, AR_RTC_RESET, 0);
  903. REGWRITE_BUFFER_FLUSH(ah);
  904. if (!AR_SREV_9300_20_OR_LATER(ah))
  905. udelay(2);
  906. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  907. REG_WRITE(ah, AR_RC, 0);
  908. REG_WRITE(ah, AR_RTC_RESET, 1);
  909. if (!ath9k_hw_wait(ah,
  910. AR_RTC_STATUS,
  911. AR_RTC_STATUS_M,
  912. AR_RTC_STATUS_ON,
  913. AH_WAIT_TIMEOUT)) {
  914. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  915. "RTC not waking up\n");
  916. return false;
  917. }
  918. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  919. }
  920. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  921. {
  922. if (AR_SREV_9300_20_OR_LATER(ah)) {
  923. REG_WRITE(ah, AR_WA, ah->WARegVal);
  924. udelay(10);
  925. }
  926. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  927. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  928. switch (type) {
  929. case ATH9K_RESET_POWER_ON:
  930. return ath9k_hw_set_reset_power_on(ah);
  931. case ATH9K_RESET_WARM:
  932. case ATH9K_RESET_COLD:
  933. return ath9k_hw_set_reset(ah, type);
  934. default:
  935. return false;
  936. }
  937. }
  938. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  939. struct ath9k_channel *chan)
  940. {
  941. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  942. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  943. return false;
  944. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  945. return false;
  946. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  947. return false;
  948. ah->chip_fullsleep = false;
  949. ath9k_hw_init_pll(ah, chan);
  950. ath9k_hw_set_rfmode(ah, chan);
  951. return true;
  952. }
  953. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  954. struct ath9k_channel *chan)
  955. {
  956. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  957. struct ath_common *common = ath9k_hw_common(ah);
  958. struct ieee80211_channel *channel = chan->chan;
  959. u32 qnum;
  960. int r;
  961. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  962. if (ath9k_hw_numtxpending(ah, qnum)) {
  963. ath_dbg(common, ATH_DBG_QUEUE,
  964. "Transmit frames pending on queue %d\n", qnum);
  965. return false;
  966. }
  967. }
  968. if (!ath9k_hw_rfbus_req(ah)) {
  969. ath_err(common, "Could not kill baseband RX\n");
  970. return false;
  971. }
  972. ath9k_hw_set_channel_regs(ah, chan);
  973. r = ath9k_hw_rf_set_freq(ah, chan);
  974. if (r) {
  975. ath_err(common, "Failed to set channel\n");
  976. return false;
  977. }
  978. ath9k_hw_set_clockrate(ah);
  979. ah->eep_ops->set_txpower(ah, chan,
  980. ath9k_regd_get_ctl(regulatory, chan),
  981. channel->max_antenna_gain * 2,
  982. channel->max_power * 2,
  983. min((u32) MAX_RATE_POWER,
  984. (u32) regulatory->power_limit), false);
  985. ath9k_hw_rfbus_done(ah);
  986. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  987. ath9k_hw_set_delta_slope(ah, chan);
  988. ath9k_hw_spur_mitigate_freq(ah, chan);
  989. return true;
  990. }
  991. bool ath9k_hw_check_alive(struct ath_hw *ah)
  992. {
  993. int count = 50;
  994. u32 reg;
  995. if (AR_SREV_9285_12_OR_LATER(ah))
  996. return true;
  997. do {
  998. reg = REG_READ(ah, AR_OBS_BUS_1);
  999. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1000. continue;
  1001. switch (reg & 0x7E000B00) {
  1002. case 0x1E000000:
  1003. case 0x52000B00:
  1004. case 0x18000B00:
  1005. continue;
  1006. default:
  1007. return true;
  1008. }
  1009. } while (count-- > 0);
  1010. return false;
  1011. }
  1012. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1013. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1014. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1015. {
  1016. struct ath_common *common = ath9k_hw_common(ah);
  1017. u32 saveLedState;
  1018. struct ath9k_channel *curchan = ah->curchan;
  1019. u32 saveDefAntenna;
  1020. u32 macStaId1;
  1021. u64 tsf = 0;
  1022. int i, r;
  1023. ah->txchainmask = common->tx_chainmask;
  1024. ah->rxchainmask = common->rx_chainmask;
  1025. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1026. ath9k_hw_abortpcurecv(ah);
  1027. if (!ath9k_hw_stopdmarecv(ah)) {
  1028. ath_dbg(common, ATH_DBG_XMIT,
  1029. "Failed to stop receive dma\n");
  1030. bChannelChange = false;
  1031. }
  1032. }
  1033. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1034. return -EIO;
  1035. if (curchan && !ah->chip_fullsleep)
  1036. ath9k_hw_getnf(ah, curchan);
  1037. ah->caldata = caldata;
  1038. if (caldata &&
  1039. (chan->channel != caldata->channel ||
  1040. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1041. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1042. /* Operating channel changed, reset channel calibration data */
  1043. memset(caldata, 0, sizeof(*caldata));
  1044. ath9k_init_nfcal_hist_buffer(ah, chan);
  1045. }
  1046. if (bChannelChange &&
  1047. (ah->chip_fullsleep != true) &&
  1048. (ah->curchan != NULL) &&
  1049. (chan->channel != ah->curchan->channel) &&
  1050. ((chan->channelFlags & CHANNEL_ALL) ==
  1051. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1052. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1053. if (ath9k_hw_channel_change(ah, chan)) {
  1054. ath9k_hw_loadnf(ah, ah->curchan);
  1055. ath9k_hw_start_nfcal(ah, true);
  1056. if (AR_SREV_9271(ah))
  1057. ar9002_hw_load_ani_reg(ah, chan);
  1058. return 0;
  1059. }
  1060. }
  1061. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1062. if (saveDefAntenna == 0)
  1063. saveDefAntenna = 1;
  1064. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1065. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1066. if (AR_SREV_9100(ah) ||
  1067. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1068. tsf = ath9k_hw_gettsf64(ah);
  1069. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1070. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1071. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1072. ath9k_hw_mark_phy_inactive(ah);
  1073. ah->paprd_table_write_done = false;
  1074. /* Only required on the first reset */
  1075. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1076. REG_WRITE(ah,
  1077. AR9271_RESET_POWER_DOWN_CONTROL,
  1078. AR9271_RADIO_RF_RST);
  1079. udelay(50);
  1080. }
  1081. if (!ath9k_hw_chip_reset(ah, chan)) {
  1082. ath_err(common, "Chip reset failed\n");
  1083. return -EINVAL;
  1084. }
  1085. /* Only required on the first reset */
  1086. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1087. ah->htc_reset_init = false;
  1088. REG_WRITE(ah,
  1089. AR9271_RESET_POWER_DOWN_CONTROL,
  1090. AR9271_GATE_MAC_CTL);
  1091. udelay(50);
  1092. }
  1093. /* Restore TSF */
  1094. if (tsf)
  1095. ath9k_hw_settsf64(ah, tsf);
  1096. if (AR_SREV_9280_20_OR_LATER(ah))
  1097. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1098. if (!AR_SREV_9300_20_OR_LATER(ah))
  1099. ar9002_hw_enable_async_fifo(ah);
  1100. r = ath9k_hw_process_ini(ah, chan);
  1101. if (r)
  1102. return r;
  1103. /*
  1104. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1105. * right after the chip reset. When that happens, write a new
  1106. * value after the initvals have been applied, with an offset
  1107. * based on measured time difference
  1108. */
  1109. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1110. tsf += 1500;
  1111. ath9k_hw_settsf64(ah, tsf);
  1112. }
  1113. /* Setup MFP options for CCMP */
  1114. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1115. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1116. * frames when constructing CCMP AAD. */
  1117. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1118. 0xc7ff);
  1119. ah->sw_mgmt_crypto = false;
  1120. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1121. /* Disable hardware crypto for management frames */
  1122. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1123. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1124. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1125. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1126. ah->sw_mgmt_crypto = true;
  1127. } else
  1128. ah->sw_mgmt_crypto = true;
  1129. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1130. ath9k_hw_set_delta_slope(ah, chan);
  1131. ath9k_hw_spur_mitigate_freq(ah, chan);
  1132. ah->eep_ops->set_board_values(ah, chan);
  1133. ENABLE_REGWRITE_BUFFER(ah);
  1134. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1135. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1136. | macStaId1
  1137. | AR_STA_ID1_RTS_USE_DEF
  1138. | (ah->config.
  1139. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1140. | ah->sta_id1_defaults);
  1141. ath_hw_setbssidmask(common);
  1142. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1143. ath9k_hw_write_associd(ah);
  1144. REG_WRITE(ah, AR_ISR, ~0);
  1145. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1146. REGWRITE_BUFFER_FLUSH(ah);
  1147. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1148. r = ath9k_hw_rf_set_freq(ah, chan);
  1149. if (r)
  1150. return r;
  1151. ath9k_hw_set_clockrate(ah);
  1152. ENABLE_REGWRITE_BUFFER(ah);
  1153. for (i = 0; i < AR_NUM_DCU; i++)
  1154. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1155. REGWRITE_BUFFER_FLUSH(ah);
  1156. ah->intr_txqs = 0;
  1157. for (i = 0; i < ah->caps.total_queues; i++)
  1158. ath9k_hw_resettxqueue(ah, i);
  1159. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1160. ath9k_hw_ani_cache_ini_regs(ah);
  1161. ath9k_hw_init_qos(ah);
  1162. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1163. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1164. ath9k_hw_init_global_settings(ah);
  1165. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1166. ar9002_hw_update_async_fifo(ah);
  1167. ar9002_hw_enable_wep_aggregation(ah);
  1168. }
  1169. REG_WRITE(ah, AR_STA_ID1,
  1170. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1171. ath9k_hw_set_dma(ah);
  1172. REG_WRITE(ah, AR_OBS, 8);
  1173. if (ah->config.rx_intr_mitigation) {
  1174. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1175. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1176. }
  1177. if (ah->config.tx_intr_mitigation) {
  1178. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1179. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1180. }
  1181. ath9k_hw_init_bb(ah, chan);
  1182. if (!ath9k_hw_init_cal(ah, chan))
  1183. return -EIO;
  1184. ENABLE_REGWRITE_BUFFER(ah);
  1185. ath9k_hw_restore_chainmask(ah);
  1186. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1187. REGWRITE_BUFFER_FLUSH(ah);
  1188. /*
  1189. * For big endian systems turn on swapping for descriptors
  1190. */
  1191. if (AR_SREV_9100(ah)) {
  1192. u32 mask;
  1193. mask = REG_READ(ah, AR_CFG);
  1194. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1195. ath_dbg(common, ATH_DBG_RESET,
  1196. "CFG Byte Swap Set 0x%x\n", mask);
  1197. } else {
  1198. mask =
  1199. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1200. REG_WRITE(ah, AR_CFG, mask);
  1201. ath_dbg(common, ATH_DBG_RESET,
  1202. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1203. }
  1204. } else {
  1205. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1206. /* Configure AR9271 target WLAN */
  1207. if (AR_SREV_9271(ah))
  1208. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1209. else
  1210. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1211. }
  1212. #ifdef __BIG_ENDIAN
  1213. else
  1214. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1215. #endif
  1216. }
  1217. if (ah->btcoex_hw.enabled)
  1218. ath9k_hw_btcoex_enable(ah);
  1219. if (AR_SREV_9300_20_OR_LATER(ah))
  1220. ar9003_hw_bb_watchdog_config(ah);
  1221. return 0;
  1222. }
  1223. EXPORT_SYMBOL(ath9k_hw_reset);
  1224. /******************************/
  1225. /* Power Management (Chipset) */
  1226. /******************************/
  1227. /*
  1228. * Notify Power Mgt is disabled in self-generated frames.
  1229. * If requested, force chip to sleep.
  1230. */
  1231. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1232. {
  1233. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1234. if (setChip) {
  1235. /*
  1236. * Clear the RTC force wake bit to allow the
  1237. * mac to go to sleep.
  1238. */
  1239. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1240. AR_RTC_FORCE_WAKE_EN);
  1241. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1242. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1243. /* Shutdown chip. Active low */
  1244. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1245. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1246. AR_RTC_RESET_EN);
  1247. }
  1248. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1249. if (AR_SREV_9300_20_OR_LATER(ah))
  1250. REG_WRITE(ah, AR_WA,
  1251. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1252. }
  1253. /*
  1254. * Notify Power Management is enabled in self-generating
  1255. * frames. If request, set power mode of chip to
  1256. * auto/normal. Duration in units of 128us (1/8 TU).
  1257. */
  1258. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1259. {
  1260. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1261. if (setChip) {
  1262. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1263. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1264. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1265. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1266. AR_RTC_FORCE_WAKE_ON_INT);
  1267. } else {
  1268. /*
  1269. * Clear the RTC force wake bit to allow the
  1270. * mac to go to sleep.
  1271. */
  1272. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1273. AR_RTC_FORCE_WAKE_EN);
  1274. }
  1275. }
  1276. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1277. if (AR_SREV_9300_20_OR_LATER(ah))
  1278. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1279. }
  1280. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1281. {
  1282. u32 val;
  1283. int i;
  1284. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1285. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1286. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1287. udelay(10);
  1288. }
  1289. if (setChip) {
  1290. if ((REG_READ(ah, AR_RTC_STATUS) &
  1291. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1292. if (ath9k_hw_set_reset_reg(ah,
  1293. ATH9K_RESET_POWER_ON) != true) {
  1294. return false;
  1295. }
  1296. if (!AR_SREV_9300_20_OR_LATER(ah))
  1297. ath9k_hw_init_pll(ah, NULL);
  1298. }
  1299. if (AR_SREV_9100(ah))
  1300. REG_SET_BIT(ah, AR_RTC_RESET,
  1301. AR_RTC_RESET_EN);
  1302. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1303. AR_RTC_FORCE_WAKE_EN);
  1304. udelay(50);
  1305. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1306. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1307. if (val == AR_RTC_STATUS_ON)
  1308. break;
  1309. udelay(50);
  1310. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1311. AR_RTC_FORCE_WAKE_EN);
  1312. }
  1313. if (i == 0) {
  1314. ath_err(ath9k_hw_common(ah),
  1315. "Failed to wakeup in %uus\n",
  1316. POWER_UP_TIME / 20);
  1317. return false;
  1318. }
  1319. }
  1320. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1321. return true;
  1322. }
  1323. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1324. {
  1325. struct ath_common *common = ath9k_hw_common(ah);
  1326. int status = true, setChip = true;
  1327. static const char *modes[] = {
  1328. "AWAKE",
  1329. "FULL-SLEEP",
  1330. "NETWORK SLEEP",
  1331. "UNDEFINED"
  1332. };
  1333. if (ah->power_mode == mode)
  1334. return status;
  1335. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1336. modes[ah->power_mode], modes[mode]);
  1337. switch (mode) {
  1338. case ATH9K_PM_AWAKE:
  1339. status = ath9k_hw_set_power_awake(ah, setChip);
  1340. break;
  1341. case ATH9K_PM_FULL_SLEEP:
  1342. ath9k_set_power_sleep(ah, setChip);
  1343. ah->chip_fullsleep = true;
  1344. break;
  1345. case ATH9K_PM_NETWORK_SLEEP:
  1346. ath9k_set_power_network_sleep(ah, setChip);
  1347. break;
  1348. default:
  1349. ath_err(common, "Unknown power mode %u\n", mode);
  1350. return false;
  1351. }
  1352. ah->power_mode = mode;
  1353. /*
  1354. * XXX: If this warning never comes up after a while then
  1355. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1356. * ath9k_hw_setpower() return type void.
  1357. */
  1358. if (!(ah->ah_flags & AH_UNPLUGGED))
  1359. ATH_DBG_WARN_ON_ONCE(!status);
  1360. return status;
  1361. }
  1362. EXPORT_SYMBOL(ath9k_hw_setpower);
  1363. /*******************/
  1364. /* Beacon Handling */
  1365. /*******************/
  1366. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1367. {
  1368. int flags = 0;
  1369. ENABLE_REGWRITE_BUFFER(ah);
  1370. switch (ah->opmode) {
  1371. case NL80211_IFTYPE_ADHOC:
  1372. case NL80211_IFTYPE_MESH_POINT:
  1373. REG_SET_BIT(ah, AR_TXCFG,
  1374. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1375. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  1376. TU_TO_USEC(next_beacon +
  1377. (ah->atim_window ? ah->
  1378. atim_window : 1)));
  1379. flags |= AR_NDP_TIMER_EN;
  1380. case NL80211_IFTYPE_AP:
  1381. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  1382. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  1383. TU_TO_USEC(next_beacon -
  1384. ah->config.
  1385. dma_beacon_response_time));
  1386. REG_WRITE(ah, AR_NEXT_SWBA,
  1387. TU_TO_USEC(next_beacon -
  1388. ah->config.
  1389. sw_beacon_response_time));
  1390. flags |=
  1391. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1392. break;
  1393. default:
  1394. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1395. "%s: unsupported opmode: %d\n",
  1396. __func__, ah->opmode);
  1397. return;
  1398. break;
  1399. }
  1400. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1401. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  1402. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  1403. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  1404. REGWRITE_BUFFER_FLUSH(ah);
  1405. beacon_period &= ~ATH9K_BEACON_ENA;
  1406. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  1407. ath9k_hw_reset_tsf(ah);
  1408. }
  1409. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1410. }
  1411. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1412. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1413. const struct ath9k_beacon_state *bs)
  1414. {
  1415. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1416. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1417. struct ath_common *common = ath9k_hw_common(ah);
  1418. ENABLE_REGWRITE_BUFFER(ah);
  1419. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1420. REG_WRITE(ah, AR_BEACON_PERIOD,
  1421. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1422. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1423. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1424. REGWRITE_BUFFER_FLUSH(ah);
  1425. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1426. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1427. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1428. if (bs->bs_sleepduration > beaconintval)
  1429. beaconintval = bs->bs_sleepduration;
  1430. dtimperiod = bs->bs_dtimperiod;
  1431. if (bs->bs_sleepduration > dtimperiod)
  1432. dtimperiod = bs->bs_sleepduration;
  1433. if (beaconintval == dtimperiod)
  1434. nextTbtt = bs->bs_nextdtim;
  1435. else
  1436. nextTbtt = bs->bs_nexttbtt;
  1437. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1438. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1439. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1440. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1441. ENABLE_REGWRITE_BUFFER(ah);
  1442. REG_WRITE(ah, AR_NEXT_DTIM,
  1443. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1444. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1445. REG_WRITE(ah, AR_SLEEP1,
  1446. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1447. | AR_SLEEP1_ASSUME_DTIM);
  1448. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1449. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1450. else
  1451. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1452. REG_WRITE(ah, AR_SLEEP2,
  1453. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1454. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1455. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1456. REGWRITE_BUFFER_FLUSH(ah);
  1457. REG_SET_BIT(ah, AR_TIMER_MODE,
  1458. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1459. AR_DTIM_TIMER_EN);
  1460. /* TSF Out of Range Threshold */
  1461. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1462. }
  1463. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1464. /*******************/
  1465. /* HW Capabilities */
  1466. /*******************/
  1467. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1468. {
  1469. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1470. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1471. struct ath_common *common = ath9k_hw_common(ah);
  1472. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1473. u16 capField = 0, eeval;
  1474. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1475. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1476. regulatory->current_rd = eeval;
  1477. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1478. if (AR_SREV_9285_12_OR_LATER(ah))
  1479. eeval |= AR9285_RDEXT_DEFAULT;
  1480. regulatory->current_rd_ext = eeval;
  1481. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1482. if (ah->opmode != NL80211_IFTYPE_AP &&
  1483. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1484. if (regulatory->current_rd == 0x64 ||
  1485. regulatory->current_rd == 0x65)
  1486. regulatory->current_rd += 5;
  1487. else if (regulatory->current_rd == 0x41)
  1488. regulatory->current_rd = 0x43;
  1489. ath_dbg(common, ATH_DBG_REGULATORY,
  1490. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1491. }
  1492. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1493. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1494. ath_err(common,
  1495. "no band has been marked as supported in EEPROM\n");
  1496. return -EINVAL;
  1497. }
  1498. if (eeval & AR5416_OPFLAGS_11A)
  1499. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1500. if (eeval & AR5416_OPFLAGS_11G)
  1501. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1502. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1503. /*
  1504. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1505. * the EEPROM.
  1506. */
  1507. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1508. !(eeval & AR5416_OPFLAGS_11A) &&
  1509. !(AR_SREV_9271(ah)))
  1510. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1511. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1512. else
  1513. /* Use rx_chainmask from EEPROM. */
  1514. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1515. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1516. /* enable key search for every frame in an aggregate */
  1517. if (AR_SREV_9300_20_OR_LATER(ah))
  1518. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1519. pCap->low_2ghz_chan = 2312;
  1520. pCap->high_2ghz_chan = 2732;
  1521. pCap->low_5ghz_chan = 4920;
  1522. pCap->high_5ghz_chan = 6100;
  1523. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1524. if (ah->config.ht_enable)
  1525. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1526. else
  1527. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1528. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  1529. pCap->total_queues =
  1530. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  1531. else
  1532. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  1533. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  1534. pCap->keycache_size =
  1535. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  1536. else
  1537. pCap->keycache_size = AR_KEYTABLE_SIZE;
  1538. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  1539. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
  1540. else
  1541. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  1542. if (AR_SREV_9271(ah))
  1543. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1544. else if (AR_DEVID_7010(ah))
  1545. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1546. else if (AR_SREV_9285_12_OR_LATER(ah))
  1547. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1548. else if (AR_SREV_9280_20_OR_LATER(ah))
  1549. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1550. else
  1551. pCap->num_gpio_pins = AR_NUM_GPIO;
  1552. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1553. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1554. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1555. } else {
  1556. pCap->rts_aggr_limit = (8 * 1024);
  1557. }
  1558. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  1559. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1560. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1561. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1562. ah->rfkill_gpio =
  1563. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1564. ah->rfkill_polarity =
  1565. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1566. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1567. }
  1568. #endif
  1569. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1570. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1571. else
  1572. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1573. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1574. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1575. else
  1576. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1577. if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
  1578. pCap->reg_cap =
  1579. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1580. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  1581. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  1582. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  1583. } else {
  1584. pCap->reg_cap =
  1585. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  1586. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  1587. }
  1588. /* Advertise midband for AR5416 with FCC midband set in eeprom */
  1589. if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
  1590. AR_SREV_5416(ah))
  1591. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  1592. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1593. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1594. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1595. if (AR_SREV_9285(ah)) {
  1596. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1597. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1598. } else {
  1599. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1600. }
  1601. } else {
  1602. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1603. }
  1604. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1605. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1606. if (!AR_SREV_9485(ah))
  1607. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1608. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1609. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1610. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1611. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1612. pCap->txs_len = sizeof(struct ar9003_txs);
  1613. if (!ah->config.paprd_disable &&
  1614. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1615. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1616. } else {
  1617. pCap->tx_desc_len = sizeof(struct ath_desc);
  1618. if (AR_SREV_9280_20(ah) &&
  1619. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1620. AR5416_EEP_MINOR_VER_16) ||
  1621. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1622. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1623. }
  1624. if (AR_SREV_9300_20_OR_LATER(ah))
  1625. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1626. if (AR_SREV_9300_20_OR_LATER(ah))
  1627. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1628. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1629. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1630. if (AR_SREV_9285(ah))
  1631. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1632. ant_div_ctl1 =
  1633. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1634. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1635. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1636. }
  1637. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1638. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1639. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1640. }
  1641. if (AR_SREV_9485_10(ah)) {
  1642. pCap->pcie_lcr_extsync_en = true;
  1643. pCap->pcie_lcr_offset = 0x80;
  1644. }
  1645. tx_chainmask = pCap->tx_chainmask;
  1646. rx_chainmask = pCap->rx_chainmask;
  1647. while (tx_chainmask || rx_chainmask) {
  1648. if (tx_chainmask & BIT(0))
  1649. pCap->max_txchains++;
  1650. if (rx_chainmask & BIT(0))
  1651. pCap->max_rxchains++;
  1652. tx_chainmask >>= 1;
  1653. rx_chainmask >>= 1;
  1654. }
  1655. return 0;
  1656. }
  1657. /****************************/
  1658. /* GPIO / RFKILL / Antennae */
  1659. /****************************/
  1660. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1661. u32 gpio, u32 type)
  1662. {
  1663. int addr;
  1664. u32 gpio_shift, tmp;
  1665. if (gpio > 11)
  1666. addr = AR_GPIO_OUTPUT_MUX3;
  1667. else if (gpio > 5)
  1668. addr = AR_GPIO_OUTPUT_MUX2;
  1669. else
  1670. addr = AR_GPIO_OUTPUT_MUX1;
  1671. gpio_shift = (gpio % 6) * 5;
  1672. if (AR_SREV_9280_20_OR_LATER(ah)
  1673. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1674. REG_RMW(ah, addr, (type << gpio_shift),
  1675. (0x1f << gpio_shift));
  1676. } else {
  1677. tmp = REG_READ(ah, addr);
  1678. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1679. tmp &= ~(0x1f << gpio_shift);
  1680. tmp |= (type << gpio_shift);
  1681. REG_WRITE(ah, addr, tmp);
  1682. }
  1683. }
  1684. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1685. {
  1686. u32 gpio_shift;
  1687. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1688. if (AR_DEVID_7010(ah)) {
  1689. gpio_shift = gpio;
  1690. REG_RMW(ah, AR7010_GPIO_OE,
  1691. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1692. (AR7010_GPIO_OE_MASK << gpio_shift));
  1693. return;
  1694. }
  1695. gpio_shift = gpio << 1;
  1696. REG_RMW(ah,
  1697. AR_GPIO_OE_OUT,
  1698. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1699. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1700. }
  1701. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1702. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1703. {
  1704. #define MS_REG_READ(x, y) \
  1705. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1706. if (gpio >= ah->caps.num_gpio_pins)
  1707. return 0xffffffff;
  1708. if (AR_DEVID_7010(ah)) {
  1709. u32 val;
  1710. val = REG_READ(ah, AR7010_GPIO_IN);
  1711. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1712. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1713. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1714. AR_GPIO_BIT(gpio)) != 0;
  1715. else if (AR_SREV_9271(ah))
  1716. return MS_REG_READ(AR9271, gpio) != 0;
  1717. else if (AR_SREV_9287_11_OR_LATER(ah))
  1718. return MS_REG_READ(AR9287, gpio) != 0;
  1719. else if (AR_SREV_9285_12_OR_LATER(ah))
  1720. return MS_REG_READ(AR9285, gpio) != 0;
  1721. else if (AR_SREV_9280_20_OR_LATER(ah))
  1722. return MS_REG_READ(AR928X, gpio) != 0;
  1723. else
  1724. return MS_REG_READ(AR, gpio) != 0;
  1725. }
  1726. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1727. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1728. u32 ah_signal_type)
  1729. {
  1730. u32 gpio_shift;
  1731. if (AR_DEVID_7010(ah)) {
  1732. gpio_shift = gpio;
  1733. REG_RMW(ah, AR7010_GPIO_OE,
  1734. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1735. (AR7010_GPIO_OE_MASK << gpio_shift));
  1736. return;
  1737. }
  1738. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1739. gpio_shift = 2 * gpio;
  1740. REG_RMW(ah,
  1741. AR_GPIO_OE_OUT,
  1742. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1743. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1744. }
  1745. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1746. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1747. {
  1748. if (AR_DEVID_7010(ah)) {
  1749. val = val ? 0 : 1;
  1750. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1751. AR_GPIO_BIT(gpio));
  1752. return;
  1753. }
  1754. if (AR_SREV_9271(ah))
  1755. val = ~val;
  1756. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1757. AR_GPIO_BIT(gpio));
  1758. }
  1759. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1760. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1761. {
  1762. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1763. }
  1764. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1765. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1766. {
  1767. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1768. }
  1769. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1770. /*********************/
  1771. /* General Operation */
  1772. /*********************/
  1773. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1774. {
  1775. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1776. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1777. if (phybits & AR_PHY_ERR_RADAR)
  1778. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1779. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1780. bits |= ATH9K_RX_FILTER_PHYERR;
  1781. return bits;
  1782. }
  1783. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1784. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1785. {
  1786. u32 phybits;
  1787. ENABLE_REGWRITE_BUFFER(ah);
  1788. REG_WRITE(ah, AR_RX_FILTER, bits);
  1789. phybits = 0;
  1790. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1791. phybits |= AR_PHY_ERR_RADAR;
  1792. if (bits & ATH9K_RX_FILTER_PHYERR)
  1793. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1794. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1795. if (phybits)
  1796. REG_WRITE(ah, AR_RXCFG,
  1797. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  1798. else
  1799. REG_WRITE(ah, AR_RXCFG,
  1800. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  1801. REGWRITE_BUFFER_FLUSH(ah);
  1802. }
  1803. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1804. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1805. {
  1806. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1807. return false;
  1808. ath9k_hw_init_pll(ah, NULL);
  1809. return true;
  1810. }
  1811. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1812. bool ath9k_hw_disable(struct ath_hw *ah)
  1813. {
  1814. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1815. return false;
  1816. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1817. return false;
  1818. ath9k_hw_init_pll(ah, NULL);
  1819. return true;
  1820. }
  1821. EXPORT_SYMBOL(ath9k_hw_disable);
  1822. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1823. {
  1824. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1825. struct ath9k_channel *chan = ah->curchan;
  1826. struct ieee80211_channel *channel = chan->chan;
  1827. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1828. ah->eep_ops->set_txpower(ah, chan,
  1829. ath9k_regd_get_ctl(regulatory, chan),
  1830. channel->max_antenna_gain * 2,
  1831. channel->max_power * 2,
  1832. min((u32) MAX_RATE_POWER,
  1833. (u32) regulatory->power_limit), test);
  1834. }
  1835. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1836. void ath9k_hw_setopmode(struct ath_hw *ah)
  1837. {
  1838. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1839. }
  1840. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1841. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1842. {
  1843. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1844. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1845. }
  1846. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1847. void ath9k_hw_write_associd(struct ath_hw *ah)
  1848. {
  1849. struct ath_common *common = ath9k_hw_common(ah);
  1850. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1851. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1852. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1853. }
  1854. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1855. #define ATH9K_MAX_TSF_READ 10
  1856. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1857. {
  1858. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1859. int i;
  1860. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1861. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1862. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1863. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1864. if (tsf_upper2 == tsf_upper1)
  1865. break;
  1866. tsf_upper1 = tsf_upper2;
  1867. }
  1868. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1869. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1870. }
  1871. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1872. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1873. {
  1874. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1875. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1876. }
  1877. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1878. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1879. {
  1880. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1881. AH_TSF_WRITE_TIMEOUT))
  1882. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1883. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1884. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1885. }
  1886. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1887. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1888. {
  1889. if (setting)
  1890. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1891. else
  1892. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1893. }
  1894. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1895. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1896. {
  1897. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1898. u32 macmode;
  1899. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1900. macmode = AR_2040_JOINED_RX_CLEAR;
  1901. else
  1902. macmode = 0;
  1903. REG_WRITE(ah, AR_2040_MODE, macmode);
  1904. }
  1905. /* HW Generic timers configuration */
  1906. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1907. {
  1908. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1909. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1910. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1911. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1912. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1913. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1914. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1915. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1916. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1917. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1918. AR_NDP2_TIMER_MODE, 0x0002},
  1919. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1920. AR_NDP2_TIMER_MODE, 0x0004},
  1921. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1922. AR_NDP2_TIMER_MODE, 0x0008},
  1923. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1924. AR_NDP2_TIMER_MODE, 0x0010},
  1925. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1926. AR_NDP2_TIMER_MODE, 0x0020},
  1927. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1928. AR_NDP2_TIMER_MODE, 0x0040},
  1929. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1930. AR_NDP2_TIMER_MODE, 0x0080}
  1931. };
  1932. /* HW generic timer primitives */
  1933. /* compute and clear index of rightmost 1 */
  1934. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1935. {
  1936. u32 b;
  1937. b = *mask;
  1938. b &= (0-b);
  1939. *mask &= ~b;
  1940. b *= debruijn32;
  1941. b >>= 27;
  1942. return timer_table->gen_timer_index[b];
  1943. }
  1944. static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1945. {
  1946. return REG_READ(ah, AR_TSF_L32);
  1947. }
  1948. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1949. void (*trigger)(void *),
  1950. void (*overflow)(void *),
  1951. void *arg,
  1952. u8 timer_index)
  1953. {
  1954. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1955. struct ath_gen_timer *timer;
  1956. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1957. if (timer == NULL) {
  1958. ath_err(ath9k_hw_common(ah),
  1959. "Failed to allocate memory for hw timer[%d]\n",
  1960. timer_index);
  1961. return NULL;
  1962. }
  1963. /* allocate a hardware generic timer slot */
  1964. timer_table->timers[timer_index] = timer;
  1965. timer->index = timer_index;
  1966. timer->trigger = trigger;
  1967. timer->overflow = overflow;
  1968. timer->arg = arg;
  1969. return timer;
  1970. }
  1971. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1972. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1973. struct ath_gen_timer *timer,
  1974. u32 timer_next,
  1975. u32 timer_period)
  1976. {
  1977. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1978. u32 tsf;
  1979. BUG_ON(!timer_period);
  1980. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1981. tsf = ath9k_hw_gettsf32(ah);
  1982. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1983. "current tsf %x period %x timer_next %x\n",
  1984. tsf, timer_period, timer_next);
  1985. /*
  1986. * Pull timer_next forward if the current TSF already passed it
  1987. * because of software latency
  1988. */
  1989. if (timer_next < tsf)
  1990. timer_next = tsf + timer_period;
  1991. /*
  1992. * Program generic timer registers
  1993. */
  1994. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  1995. timer_next);
  1996. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  1997. timer_period);
  1998. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  1999. gen_tmr_configuration[timer->index].mode_mask);
  2000. /* Enable both trigger and thresh interrupt masks */
  2001. REG_SET_BIT(ah, AR_IMR_S5,
  2002. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2003. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2004. }
  2005. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2006. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2007. {
  2008. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2009. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2010. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2011. return;
  2012. }
  2013. /* Clear generic timer enable bits. */
  2014. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2015. gen_tmr_configuration[timer->index].mode_mask);
  2016. /* Disable both trigger and thresh interrupt masks */
  2017. REG_CLR_BIT(ah, AR_IMR_S5,
  2018. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2019. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2020. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2021. }
  2022. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2023. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2024. {
  2025. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2026. /* free the hardware generic timer slot */
  2027. timer_table->timers[timer->index] = NULL;
  2028. kfree(timer);
  2029. }
  2030. EXPORT_SYMBOL(ath_gen_timer_free);
  2031. /*
  2032. * Generic Timer Interrupts handling
  2033. */
  2034. void ath_gen_timer_isr(struct ath_hw *ah)
  2035. {
  2036. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2037. struct ath_gen_timer *timer;
  2038. struct ath_common *common = ath9k_hw_common(ah);
  2039. u32 trigger_mask, thresh_mask, index;
  2040. /* get hardware generic timer interrupt status */
  2041. trigger_mask = ah->intr_gen_timer_trigger;
  2042. thresh_mask = ah->intr_gen_timer_thresh;
  2043. trigger_mask &= timer_table->timer_mask.val;
  2044. thresh_mask &= timer_table->timer_mask.val;
  2045. trigger_mask &= ~thresh_mask;
  2046. while (thresh_mask) {
  2047. index = rightmost_index(timer_table, &thresh_mask);
  2048. timer = timer_table->timers[index];
  2049. BUG_ON(!timer);
  2050. ath_dbg(common, ATH_DBG_HWTIMER,
  2051. "TSF overflow for Gen timer %d\n", index);
  2052. timer->overflow(timer->arg);
  2053. }
  2054. while (trigger_mask) {
  2055. index = rightmost_index(timer_table, &trigger_mask);
  2056. timer = timer_table->timers[index];
  2057. BUG_ON(!timer);
  2058. ath_dbg(common, ATH_DBG_HWTIMER,
  2059. "Gen timer[%d] trigger\n", index);
  2060. timer->trigger(timer->arg);
  2061. }
  2062. }
  2063. EXPORT_SYMBOL(ath_gen_timer_isr);
  2064. /********/
  2065. /* HTC */
  2066. /********/
  2067. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2068. {
  2069. ah->htc_reset_init = true;
  2070. }
  2071. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2072. static struct {
  2073. u32 version;
  2074. const char * name;
  2075. } ath_mac_bb_names[] = {
  2076. /* Devices with external radios */
  2077. { AR_SREV_VERSION_5416_PCI, "5416" },
  2078. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2079. { AR_SREV_VERSION_9100, "9100" },
  2080. { AR_SREV_VERSION_9160, "9160" },
  2081. /* Single-chip solutions */
  2082. { AR_SREV_VERSION_9280, "9280" },
  2083. { AR_SREV_VERSION_9285, "9285" },
  2084. { AR_SREV_VERSION_9287, "9287" },
  2085. { AR_SREV_VERSION_9271, "9271" },
  2086. { AR_SREV_VERSION_9300, "9300" },
  2087. };
  2088. /* For devices with external radios */
  2089. static struct {
  2090. u16 version;
  2091. const char * name;
  2092. } ath_rf_names[] = {
  2093. { 0, "5133" },
  2094. { AR_RAD5133_SREV_MAJOR, "5133" },
  2095. { AR_RAD5122_SREV_MAJOR, "5122" },
  2096. { AR_RAD2133_SREV_MAJOR, "2133" },
  2097. { AR_RAD2122_SREV_MAJOR, "2122" }
  2098. };
  2099. /*
  2100. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2101. */
  2102. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2103. {
  2104. int i;
  2105. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2106. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2107. return ath_mac_bb_names[i].name;
  2108. }
  2109. }
  2110. return "????";
  2111. }
  2112. /*
  2113. * Return the RF name. "????" is returned if the RF is unknown.
  2114. * Used for devices with external radios.
  2115. */
  2116. static const char *ath9k_hw_rf_name(u16 rf_version)
  2117. {
  2118. int i;
  2119. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2120. if (ath_rf_names[i].version == rf_version) {
  2121. return ath_rf_names[i].name;
  2122. }
  2123. }
  2124. return "????";
  2125. }
  2126. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2127. {
  2128. int used;
  2129. /* chipsets >= AR9280 are single-chip */
  2130. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2131. used = snprintf(hw_name, len,
  2132. "Atheros AR%s Rev:%x",
  2133. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2134. ah->hw_version.macRev);
  2135. }
  2136. else {
  2137. used = snprintf(hw_name, len,
  2138. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2139. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2140. ah->hw_version.macRev,
  2141. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2142. AR_RADIO_SREV_MAJOR)),
  2143. ah->hw_version.phyRev);
  2144. }
  2145. hw_name[used] = '\0';
  2146. }
  2147. EXPORT_SYMBOL(ath9k_hw_name);