ar9003_phy.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * Copyright (c) 2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9003_phy.h"
  18. static const int firstep_table[] =
  19. /* level: 0 1 2 3 4 5 6 7 8 */
  20. { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
  21. static const int cycpwrThr1_table[] =
  22. /* level: 0 1 2 3 4 5 6 7 8 */
  23. { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
  24. /*
  25. * register values to turn OFDM weak signal detection OFF
  26. */
  27. static const int m1ThreshLow_off = 127;
  28. static const int m2ThreshLow_off = 127;
  29. static const int m1Thresh_off = 127;
  30. static const int m2Thresh_off = 127;
  31. static const int m2CountThr_off = 31;
  32. static const int m2CountThrLow_off = 63;
  33. static const int m1ThreshLowExt_off = 127;
  34. static const int m2ThreshLowExt_off = 127;
  35. static const int m1ThreshExt_off = 127;
  36. static const int m2ThreshExt_off = 127;
  37. /**
  38. * ar9003_hw_set_channel - set channel on single-chip device
  39. * @ah: atheros hardware structure
  40. * @chan:
  41. *
  42. * This is the function to change channel on single-chip devices, that is
  43. * all devices after ar9280.
  44. *
  45. * This function takes the channel value in MHz and sets
  46. * hardware channel value. Assumes writes have been enabled to analog bus.
  47. *
  48. * Actual Expression,
  49. *
  50. * For 2GHz channel,
  51. * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  52. * (freq_ref = 40MHz)
  53. *
  54. * For 5GHz channel,
  55. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
  56. * (freq_ref = 40MHz/(24>>amodeRefSel))
  57. *
  58. * For 5GHz channels which are 5MHz spaced,
  59. * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
  60. * (freq_ref = 40MHz)
  61. */
  62. static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  63. {
  64. u16 bMode, fracMode = 0, aModeRefSel = 0;
  65. u32 freq, channelSel = 0, reg32 = 0;
  66. struct chan_centers centers;
  67. int loadSynthChannel;
  68. ath9k_hw_get_channel_centers(ah, chan, &centers);
  69. freq = centers.synth_center;
  70. if (freq < 4800) { /* 2 GHz, fractional mode */
  71. if (AR_SREV_9485(ah))
  72. channelSel = CHANSEL_2G_9485(freq);
  73. else
  74. channelSel = CHANSEL_2G(freq);
  75. /* Set to 2G mode */
  76. bMode = 1;
  77. } else {
  78. channelSel = CHANSEL_5G(freq);
  79. /* Doubler is ON, so, divide channelSel by 2. */
  80. channelSel >>= 1;
  81. /* Set to 5G mode */
  82. bMode = 0;
  83. }
  84. /* Enable fractional mode for all channels */
  85. fracMode = 1;
  86. aModeRefSel = 0;
  87. loadSynthChannel = 0;
  88. reg32 = (bMode << 29);
  89. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  90. /* Enable Long shift Select for Synthesizer */
  91. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
  92. AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
  93. /* Program Synth. setting */
  94. reg32 = (channelSel << 2) | (fracMode << 30) |
  95. (aModeRefSel << 28) | (loadSynthChannel << 31);
  96. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  97. /* Toggle Load Synth channel bit */
  98. loadSynthChannel = 1;
  99. reg32 = (channelSel << 2) | (fracMode << 30) |
  100. (aModeRefSel << 28) | (loadSynthChannel << 31);
  101. REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
  102. ah->curchan = chan;
  103. ah->curchan_rad_index = -1;
  104. return 0;
  105. }
  106. /**
  107. * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
  108. * @ah: atheros hardware structure
  109. * @chan:
  110. *
  111. * For single-chip solutions. Converts to baseband spur frequency given the
  112. * input channel frequency and compute register settings below.
  113. *
  114. * Spur mitigation for MRC CCK
  115. */
  116. static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
  117. struct ath9k_channel *chan)
  118. {
  119. static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
  120. int cur_bb_spur, negative = 0, cck_spur_freq;
  121. int i;
  122. int range, max_spur_cnts, synth_freq;
  123. u8 *spur_fbin_ptr = NULL;
  124. /*
  125. * Need to verify range +/- 10 MHz in control channel, otherwise spur
  126. * is out-of-band and can be ignored.
  127. */
  128. if (AR_SREV_9485(ah)) {
  129. spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
  130. IS_CHAN_2GHZ(chan));
  131. if (spur_fbin_ptr[0] == 0) /* No spur */
  132. return;
  133. max_spur_cnts = 5;
  134. if (IS_CHAN_HT40(chan)) {
  135. range = 19;
  136. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  137. AR_PHY_GC_DYN2040_PRI_CH) == 0)
  138. synth_freq = chan->channel + 10;
  139. else
  140. synth_freq = chan->channel - 10;
  141. } else {
  142. range = 10;
  143. synth_freq = chan->channel;
  144. }
  145. } else {
  146. range = 10;
  147. max_spur_cnts = 4;
  148. synth_freq = chan->channel;
  149. }
  150. for (i = 0; i < max_spur_cnts; i++) {
  151. negative = 0;
  152. if (AR_SREV_9485(ah))
  153. cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
  154. IS_CHAN_2GHZ(chan)) - synth_freq;
  155. else
  156. cur_bb_spur = spur_freq[i] - synth_freq;
  157. if (cur_bb_spur < 0) {
  158. negative = 1;
  159. cur_bb_spur = -cur_bb_spur;
  160. }
  161. if (cur_bb_spur < range) {
  162. cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
  163. if (negative == 1)
  164. cck_spur_freq = -cck_spur_freq;
  165. cck_spur_freq = cck_spur_freq & 0xfffff;
  166. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  167. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
  168. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  169. AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
  170. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  171. AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
  172. 0x2);
  173. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  174. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
  175. 0x1);
  176. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  177. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
  178. cck_spur_freq);
  179. return;
  180. }
  181. }
  182. REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
  183. AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
  184. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  185. AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
  186. REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
  187. AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
  188. }
  189. /* Clean all spur register fields */
  190. static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
  191. {
  192. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  193. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
  194. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  195. AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
  196. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  197. AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
  198. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  199. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
  200. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  201. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
  202. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  203. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
  204. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  205. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
  206. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  207. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
  208. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  209. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
  210. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  211. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
  212. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  213. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
  214. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  215. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
  216. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  217. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
  218. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  219. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
  220. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  221. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
  222. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  223. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
  224. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  225. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
  226. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  227. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
  228. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  229. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
  230. }
  231. static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
  232. int freq_offset,
  233. int spur_freq_sd,
  234. int spur_delta_phase,
  235. int spur_subchannel_sd)
  236. {
  237. int mask_index = 0;
  238. /* OFDM Spur mitigation */
  239. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  240. AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
  241. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  242. AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
  243. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  244. AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
  245. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  246. AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
  247. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  248. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
  249. REG_RMW_FIELD(ah, AR_PHY_TIMING11,
  250. AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
  251. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  252. AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
  253. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  254. AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
  255. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  256. AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
  257. if (REG_READ_FIELD(ah, AR_PHY_MODE,
  258. AR_PHY_MODE_DYNAMIC) == 0x1)
  259. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  260. AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
  261. mask_index = (freq_offset << 4) / 5;
  262. if (mask_index < 0)
  263. mask_index = mask_index - 1;
  264. mask_index = mask_index & 0x7f;
  265. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  266. AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
  267. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  268. AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
  269. REG_RMW_FIELD(ah, AR_PHY_TIMING4,
  270. AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
  271. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  272. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
  273. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  274. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
  275. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  276. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
  277. REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
  278. AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
  279. REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
  280. AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
  281. REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
  282. AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
  283. REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
  284. AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
  285. }
  286. static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
  287. struct ath9k_channel *chan,
  288. int freq_offset)
  289. {
  290. int spur_freq_sd = 0;
  291. int spur_subchannel_sd = 0;
  292. int spur_delta_phase = 0;
  293. if (IS_CHAN_HT40(chan)) {
  294. if (freq_offset < 0) {
  295. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  296. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  297. spur_subchannel_sd = 1;
  298. else
  299. spur_subchannel_sd = 0;
  300. spur_freq_sd = ((freq_offset + 10) << 9) / 11;
  301. } else {
  302. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  303. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  304. spur_subchannel_sd = 0;
  305. else
  306. spur_subchannel_sd = 1;
  307. spur_freq_sd = ((freq_offset - 10) << 9) / 11;
  308. }
  309. spur_delta_phase = (freq_offset << 17) / 5;
  310. } else {
  311. spur_subchannel_sd = 0;
  312. spur_freq_sd = (freq_offset << 9) /11;
  313. spur_delta_phase = (freq_offset << 18) / 5;
  314. }
  315. spur_freq_sd = spur_freq_sd & 0x3ff;
  316. spur_delta_phase = spur_delta_phase & 0xfffff;
  317. ar9003_hw_spur_ofdm(ah,
  318. freq_offset,
  319. spur_freq_sd,
  320. spur_delta_phase,
  321. spur_subchannel_sd);
  322. }
  323. /* Spur mitigation for OFDM */
  324. static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
  325. struct ath9k_channel *chan)
  326. {
  327. int synth_freq;
  328. int range = 10;
  329. int freq_offset = 0;
  330. int mode;
  331. u8* spurChansPtr;
  332. unsigned int i;
  333. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  334. if (IS_CHAN_5GHZ(chan)) {
  335. spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
  336. mode = 0;
  337. }
  338. else {
  339. spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
  340. mode = 1;
  341. }
  342. if (spurChansPtr[0] == 0)
  343. return; /* No spur in the mode */
  344. if (IS_CHAN_HT40(chan)) {
  345. range = 19;
  346. if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
  347. AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
  348. synth_freq = chan->channel - 10;
  349. else
  350. synth_freq = chan->channel + 10;
  351. } else {
  352. range = 10;
  353. synth_freq = chan->channel;
  354. }
  355. ar9003_hw_spur_ofdm_clear(ah);
  356. for (i = 0; spurChansPtr[i] && i < 5; i++) {
  357. freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
  358. if (abs(freq_offset) < range) {
  359. ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
  360. break;
  361. }
  362. }
  363. }
  364. static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
  365. struct ath9k_channel *chan)
  366. {
  367. ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
  368. ar9003_hw_spur_mitigate_ofdm(ah, chan);
  369. }
  370. static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
  371. struct ath9k_channel *chan)
  372. {
  373. u32 pll;
  374. pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
  375. if (chan && IS_CHAN_HALF_RATE(chan))
  376. pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
  377. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  378. pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
  379. pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
  380. return pll;
  381. }
  382. static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
  383. struct ath9k_channel *chan)
  384. {
  385. u32 phymode;
  386. u32 enableDacFifo = 0;
  387. enableDacFifo =
  388. (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
  389. /* Enable 11n HT, 20 MHz */
  390. phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
  391. AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
  392. /* Configure baseband for dynamic 20/40 operation */
  393. if (IS_CHAN_HT40(chan)) {
  394. phymode |= AR_PHY_GC_DYN2040_EN;
  395. /* Configure control (primary) channel at +-10MHz */
  396. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  397. (chan->chanmode == CHANNEL_G_HT40PLUS))
  398. phymode |= AR_PHY_GC_DYN2040_PRI_CH;
  399. }
  400. /* make sure we preserve INI settings */
  401. phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
  402. /* turn off Green Field detection for STA for now */
  403. phymode &= ~AR_PHY_GC_GF_DETECT_EN;
  404. REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
  405. /* Configure MAC for 20/40 operation */
  406. ath9k_hw_set11nmac2040(ah);
  407. /* global transmit timeout (25 TUs default)*/
  408. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  409. /* carrier sense timeout */
  410. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  411. }
  412. static void ar9003_hw_init_bb(struct ath_hw *ah,
  413. struct ath9k_channel *chan)
  414. {
  415. u32 synthDelay;
  416. /*
  417. * Wait for the frequency synth to settle (synth goes on
  418. * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
  419. * Value is in 100ns increments.
  420. */
  421. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  422. if (IS_CHAN_B(chan))
  423. synthDelay = (4 * synthDelay) / 22;
  424. else
  425. synthDelay /= 10;
  426. /* Activate the PHY (includes baseband activate + synthesizer on) */
  427. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  428. /*
  429. * There is an issue if the AP starts the calibration before
  430. * the base band timeout completes. This could result in the
  431. * rx_clear false triggering. As a workaround we add delay an
  432. * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  433. * does not happen.
  434. */
  435. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  436. }
  437. void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
  438. {
  439. switch (rx) {
  440. case 0x5:
  441. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  442. AR_PHY_SWAP_ALT_CHAIN);
  443. case 0x3:
  444. case 0x1:
  445. case 0x2:
  446. case 0x7:
  447. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
  448. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
  449. break;
  450. default:
  451. break;
  452. }
  453. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
  454. REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
  455. else
  456. REG_WRITE(ah, AR_SELFGEN_MASK, tx);
  457. if (tx == 0x5) {
  458. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  459. AR_PHY_SWAP_ALT_CHAIN);
  460. }
  461. }
  462. /*
  463. * Override INI values with chip specific configuration.
  464. */
  465. static void ar9003_hw_override_ini(struct ath_hw *ah)
  466. {
  467. u32 val;
  468. /*
  469. * Set the RX_ABORT and RX_DIS and clear it only after
  470. * RXE is set for MAC. This prevents frames with
  471. * corrupted descriptor status.
  472. */
  473. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  474. /*
  475. * For AR9280 and above, there is a new feature that allows
  476. * Multicast search based on both MAC Address and Key ID. By default,
  477. * this feature is enabled. But since the driver is not using this
  478. * feature, we switch it off; otherwise multicast search based on
  479. * MAC addr only will fail.
  480. */
  481. val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
  482. REG_WRITE(ah, AR_PCU_MISC_MODE2,
  483. val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
  484. }
  485. static void ar9003_hw_prog_ini(struct ath_hw *ah,
  486. struct ar5416IniArray *iniArr,
  487. int column)
  488. {
  489. unsigned int i, regWrites = 0;
  490. /* New INI format: Array may be undefined (pre, core, post arrays) */
  491. if (!iniArr->ia_array)
  492. return;
  493. /*
  494. * New INI format: Pre, core, and post arrays for a given subsystem
  495. * may be modal (> 2 columns) or non-modal (2 columns). Determine if
  496. * the array is non-modal and force the column to 1.
  497. */
  498. if (column >= iniArr->ia_columns)
  499. column = 1;
  500. for (i = 0; i < iniArr->ia_rows; i++) {
  501. u32 reg = INI_RA(iniArr, i, 0);
  502. u32 val = INI_RA(iniArr, i, column);
  503. REG_WRITE(ah, reg, val);
  504. DO_DELAY(regWrites);
  505. }
  506. }
  507. static int ar9003_hw_process_ini(struct ath_hw *ah,
  508. struct ath9k_channel *chan)
  509. {
  510. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  511. unsigned int regWrites = 0, i;
  512. struct ieee80211_channel *channel = chan->chan;
  513. u32 modesIndex, freqIndex;
  514. switch (chan->chanmode) {
  515. case CHANNEL_A:
  516. case CHANNEL_A_HT20:
  517. modesIndex = 1;
  518. freqIndex = 1;
  519. break;
  520. case CHANNEL_A_HT40PLUS:
  521. case CHANNEL_A_HT40MINUS:
  522. modesIndex = 2;
  523. freqIndex = 1;
  524. break;
  525. case CHANNEL_G:
  526. case CHANNEL_G_HT20:
  527. case CHANNEL_B:
  528. modesIndex = 4;
  529. freqIndex = 2;
  530. break;
  531. case CHANNEL_G_HT40PLUS:
  532. case CHANNEL_G_HT40MINUS:
  533. modesIndex = 3;
  534. freqIndex = 2;
  535. break;
  536. default:
  537. return -EINVAL;
  538. }
  539. for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
  540. ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
  541. ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
  542. ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
  543. ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
  544. }
  545. REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
  546. REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
  547. /*
  548. * For 5GHz channels requiring Fast Clock, apply
  549. * different modal values.
  550. */
  551. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  552. REG_WRITE_ARRAY(&ah->iniModesAdditional,
  553. modesIndex, regWrites);
  554. ar9003_hw_override_ini(ah);
  555. ar9003_hw_set_channel_regs(ah, chan);
  556. ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
  557. /* Set TX power */
  558. ah->eep_ops->set_txpower(ah, chan,
  559. ath9k_regd_get_ctl(regulatory, chan),
  560. channel->max_antenna_gain * 2,
  561. channel->max_power * 2,
  562. min((u32) MAX_RATE_POWER,
  563. (u32) regulatory->power_limit), false);
  564. return 0;
  565. }
  566. static void ar9003_hw_set_rfmode(struct ath_hw *ah,
  567. struct ath9k_channel *chan)
  568. {
  569. u32 rfMode = 0;
  570. if (chan == NULL)
  571. return;
  572. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  573. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  574. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  575. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  576. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  577. }
  578. static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
  579. {
  580. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  581. }
  582. static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
  583. struct ath9k_channel *chan)
  584. {
  585. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  586. u32 clockMhzScaled = 0x64000000;
  587. struct chan_centers centers;
  588. /*
  589. * half and quarter rate can divide the scaled clock by 2 or 4
  590. * scale for selected channel bandwidth
  591. */
  592. if (IS_CHAN_HALF_RATE(chan))
  593. clockMhzScaled = clockMhzScaled >> 1;
  594. else if (IS_CHAN_QUARTER_RATE(chan))
  595. clockMhzScaled = clockMhzScaled >> 2;
  596. /*
  597. * ALGO -> coef = 1e8/fcarrier*fclock/40;
  598. * scaled coef to provide precision for this floating calculation
  599. */
  600. ath9k_hw_get_channel_centers(ah, chan, &centers);
  601. coef_scaled = clockMhzScaled / centers.synth_center;
  602. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  603. &ds_coef_exp);
  604. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  605. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  606. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  607. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  608. /*
  609. * For Short GI,
  610. * scaled coeff is 9/10 that of normal coeff
  611. */
  612. coef_scaled = (9 * coef_scaled) / 10;
  613. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  614. &ds_coef_exp);
  615. /* for short gi */
  616. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  617. AR_PHY_SGI_DSC_MAN, ds_coef_man);
  618. REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
  619. AR_PHY_SGI_DSC_EXP, ds_coef_exp);
  620. }
  621. static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
  622. {
  623. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  624. return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  625. AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
  626. }
  627. /*
  628. * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
  629. * Read the phy active delay register. Value is in 100ns increments.
  630. */
  631. static void ar9003_hw_rfbus_done(struct ath_hw *ah)
  632. {
  633. u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  634. if (IS_CHAN_B(ah->curchan))
  635. synthDelay = (4 * synthDelay) / 22;
  636. else
  637. synthDelay /= 10;
  638. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  639. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  640. }
  641. static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
  642. {
  643. u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
  644. if (value)
  645. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  646. else
  647. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  648. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  649. }
  650. static bool ar9003_hw_ani_control(struct ath_hw *ah,
  651. enum ath9k_ani_cmd cmd, int param)
  652. {
  653. struct ath_common *common = ath9k_hw_common(ah);
  654. struct ath9k_channel *chan = ah->curchan;
  655. struct ar5416AniState *aniState = &chan->ani;
  656. s32 value, value2;
  657. switch (cmd & ah->ani_function) {
  658. case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
  659. /*
  660. * on == 1 means ofdm weak signal detection is ON
  661. * on == 1 is the default, for less noise immunity
  662. *
  663. * on == 0 means ofdm weak signal detection is OFF
  664. * on == 0 means more noise imm
  665. */
  666. u32 on = param ? 1 : 0;
  667. /*
  668. * make register setting for default
  669. * (weak sig detect ON) come from INI file
  670. */
  671. int m1ThreshLow = on ?
  672. aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
  673. int m2ThreshLow = on ?
  674. aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
  675. int m1Thresh = on ?
  676. aniState->iniDef.m1Thresh : m1Thresh_off;
  677. int m2Thresh = on ?
  678. aniState->iniDef.m2Thresh : m2Thresh_off;
  679. int m2CountThr = on ?
  680. aniState->iniDef.m2CountThr : m2CountThr_off;
  681. int m2CountThrLow = on ?
  682. aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
  683. int m1ThreshLowExt = on ?
  684. aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
  685. int m2ThreshLowExt = on ?
  686. aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
  687. int m1ThreshExt = on ?
  688. aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
  689. int m2ThreshExt = on ?
  690. aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
  691. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  692. AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
  693. m1ThreshLow);
  694. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  695. AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
  696. m2ThreshLow);
  697. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  698. AR_PHY_SFCORR_M1_THRESH, m1Thresh);
  699. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  700. AR_PHY_SFCORR_M2_THRESH, m2Thresh);
  701. REG_RMW_FIELD(ah, AR_PHY_SFCORR,
  702. AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
  703. REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
  704. AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
  705. m2CountThrLow);
  706. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  707. AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
  708. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  709. AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
  710. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  711. AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
  712. REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
  713. AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
  714. if (on)
  715. REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
  716. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  717. else
  718. REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
  719. AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
  720. if (!on != aniState->ofdmWeakSigDetectOff) {
  721. ath_dbg(common, ATH_DBG_ANI,
  722. "** ch %d: ofdm weak signal: %s=>%s\n",
  723. chan->channel,
  724. !aniState->ofdmWeakSigDetectOff ?
  725. "on" : "off",
  726. on ? "on" : "off");
  727. if (on)
  728. ah->stats.ast_ani_ofdmon++;
  729. else
  730. ah->stats.ast_ani_ofdmoff++;
  731. aniState->ofdmWeakSigDetectOff = !on;
  732. }
  733. break;
  734. }
  735. case ATH9K_ANI_FIRSTEP_LEVEL:{
  736. u32 level = param;
  737. if (level >= ARRAY_SIZE(firstep_table)) {
  738. ath_dbg(common, ATH_DBG_ANI,
  739. "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
  740. level, ARRAY_SIZE(firstep_table));
  741. return false;
  742. }
  743. /*
  744. * make register setting relative to default
  745. * from INI file & cap value
  746. */
  747. value = firstep_table[level] -
  748. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  749. aniState->iniDef.firstep;
  750. if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  751. value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  752. if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  753. value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  754. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
  755. AR_PHY_FIND_SIG_FIRSTEP,
  756. value);
  757. /*
  758. * we need to set first step low register too
  759. * make register setting relative to default
  760. * from INI file & cap value
  761. */
  762. value2 = firstep_table[level] -
  763. firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
  764. aniState->iniDef.firstepLow;
  765. if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
  766. value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
  767. if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
  768. value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
  769. REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
  770. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
  771. if (level != aniState->firstepLevel) {
  772. ath_dbg(common, ATH_DBG_ANI,
  773. "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
  774. chan->channel,
  775. aniState->firstepLevel,
  776. level,
  777. ATH9K_ANI_FIRSTEP_LVL_NEW,
  778. value,
  779. aniState->iniDef.firstep);
  780. ath_dbg(common, ATH_DBG_ANI,
  781. "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
  782. chan->channel,
  783. aniState->firstepLevel,
  784. level,
  785. ATH9K_ANI_FIRSTEP_LVL_NEW,
  786. value2,
  787. aniState->iniDef.firstepLow);
  788. if (level > aniState->firstepLevel)
  789. ah->stats.ast_ani_stepup++;
  790. else if (level < aniState->firstepLevel)
  791. ah->stats.ast_ani_stepdown++;
  792. aniState->firstepLevel = level;
  793. }
  794. break;
  795. }
  796. case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
  797. u32 level = param;
  798. if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
  799. ath_dbg(common, ATH_DBG_ANI,
  800. "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
  801. level, ARRAY_SIZE(cycpwrThr1_table));
  802. return false;
  803. }
  804. /*
  805. * make register setting relative to default
  806. * from INI file & cap value
  807. */
  808. value = cycpwrThr1_table[level] -
  809. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  810. aniState->iniDef.cycpwrThr1;
  811. if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  812. value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  813. if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  814. value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  815. REG_RMW_FIELD(ah, AR_PHY_TIMING5,
  816. AR_PHY_TIMING5_CYCPWR_THR1,
  817. value);
  818. /*
  819. * set AR_PHY_EXT_CCA for extension channel
  820. * make register setting relative to default
  821. * from INI file & cap value
  822. */
  823. value2 = cycpwrThr1_table[level] -
  824. cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
  825. aniState->iniDef.cycpwrThr1Ext;
  826. if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
  827. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
  828. if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
  829. value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
  830. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  831. AR_PHY_EXT_CYCPWR_THR1, value2);
  832. if (level != aniState->spurImmunityLevel) {
  833. ath_dbg(common, ATH_DBG_ANI,
  834. "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
  835. chan->channel,
  836. aniState->spurImmunityLevel,
  837. level,
  838. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  839. value,
  840. aniState->iniDef.cycpwrThr1);
  841. ath_dbg(common, ATH_DBG_ANI,
  842. "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
  843. chan->channel,
  844. aniState->spurImmunityLevel,
  845. level,
  846. ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
  847. value2,
  848. aniState->iniDef.cycpwrThr1Ext);
  849. if (level > aniState->spurImmunityLevel)
  850. ah->stats.ast_ani_spurup++;
  851. else if (level < aniState->spurImmunityLevel)
  852. ah->stats.ast_ani_spurdown++;
  853. aniState->spurImmunityLevel = level;
  854. }
  855. break;
  856. }
  857. case ATH9K_ANI_MRC_CCK:{
  858. /*
  859. * is_on == 1 means MRC CCK ON (default, less noise imm)
  860. * is_on == 0 means MRC CCK is OFF (more noise imm)
  861. */
  862. bool is_on = param ? 1 : 0;
  863. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  864. AR_PHY_MRC_CCK_ENABLE, is_on);
  865. REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
  866. AR_PHY_MRC_CCK_MUX_REG, is_on);
  867. if (!is_on != aniState->mrcCCKOff) {
  868. ath_dbg(common, ATH_DBG_ANI,
  869. "** ch %d: MRC CCK: %s=>%s\n",
  870. chan->channel,
  871. !aniState->mrcCCKOff ? "on" : "off",
  872. is_on ? "on" : "off");
  873. if (is_on)
  874. ah->stats.ast_ani_ccklow++;
  875. else
  876. ah->stats.ast_ani_cckhigh++;
  877. aniState->mrcCCKOff = !is_on;
  878. }
  879. break;
  880. }
  881. case ATH9K_ANI_PRESENT:
  882. break;
  883. default:
  884. ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
  885. return false;
  886. }
  887. ath_dbg(common, ATH_DBG_ANI,
  888. "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
  889. aniState->spurImmunityLevel,
  890. !aniState->ofdmWeakSigDetectOff ? "on" : "off",
  891. aniState->firstepLevel,
  892. !aniState->mrcCCKOff ? "on" : "off",
  893. aniState->listenTime,
  894. aniState->ofdmPhyErrCount,
  895. aniState->cckPhyErrCount);
  896. return true;
  897. }
  898. static void ar9003_hw_do_getnf(struct ath_hw *ah,
  899. int16_t nfarray[NUM_NF_READINGS])
  900. {
  901. int16_t nf;
  902. nf = MS(REG_READ(ah, AR_PHY_CCA_0), AR_PHY_MINCCA_PWR);
  903. nfarray[0] = sign_extend32(nf, 8);
  904. nf = MS(REG_READ(ah, AR_PHY_CCA_1), AR_PHY_CH1_MINCCA_PWR);
  905. nfarray[1] = sign_extend32(nf, 8);
  906. nf = MS(REG_READ(ah, AR_PHY_CCA_2), AR_PHY_CH2_MINCCA_PWR);
  907. nfarray[2] = sign_extend32(nf, 8);
  908. if (!IS_CHAN_HT40(ah->curchan))
  909. return;
  910. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
  911. nfarray[3] = sign_extend32(nf, 8);
  912. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_1), AR_PHY_CH1_EXT_MINCCA_PWR);
  913. nfarray[4] = sign_extend32(nf, 8);
  914. nf = MS(REG_READ(ah, AR_PHY_EXT_CCA_2), AR_PHY_CH2_EXT_MINCCA_PWR);
  915. nfarray[5] = sign_extend32(nf, 8);
  916. }
  917. static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
  918. {
  919. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
  920. ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
  921. ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
  922. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
  923. ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
  924. ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
  925. }
  926. /*
  927. * Initialize the ANI register values with default (ini) values.
  928. * This routine is called during a (full) hardware reset after
  929. * all the registers are initialised from the INI.
  930. */
  931. static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
  932. {
  933. struct ar5416AniState *aniState;
  934. struct ath_common *common = ath9k_hw_common(ah);
  935. struct ath9k_channel *chan = ah->curchan;
  936. struct ath9k_ani_default *iniDef;
  937. u32 val;
  938. aniState = &ah->curchan->ani;
  939. iniDef = &aniState->iniDef;
  940. ath_dbg(common, ATH_DBG_ANI,
  941. "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
  942. ah->hw_version.macVersion,
  943. ah->hw_version.macRev,
  944. ah->opmode,
  945. chan->channel,
  946. chan->channelFlags);
  947. val = REG_READ(ah, AR_PHY_SFCORR);
  948. iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
  949. iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
  950. iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
  951. val = REG_READ(ah, AR_PHY_SFCORR_LOW);
  952. iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
  953. iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
  954. iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
  955. val = REG_READ(ah, AR_PHY_SFCORR_EXT);
  956. iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
  957. iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
  958. iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
  959. iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
  960. iniDef->firstep = REG_READ_FIELD(ah,
  961. AR_PHY_FIND_SIG,
  962. AR_PHY_FIND_SIG_FIRSTEP);
  963. iniDef->firstepLow = REG_READ_FIELD(ah,
  964. AR_PHY_FIND_SIG_LOW,
  965. AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
  966. iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
  967. AR_PHY_TIMING5,
  968. AR_PHY_TIMING5_CYCPWR_THR1);
  969. iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
  970. AR_PHY_EXT_CCA,
  971. AR_PHY_EXT_CYCPWR_THR1);
  972. /* these levels just got reset to defaults by the INI */
  973. aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
  974. aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
  975. aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
  976. aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
  977. }
  978. static void ar9003_hw_set_radar_params(struct ath_hw *ah,
  979. struct ath_hw_radar_conf *conf)
  980. {
  981. u32 radar_0 = 0, radar_1 = 0;
  982. if (!conf) {
  983. REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
  984. return;
  985. }
  986. radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
  987. radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
  988. radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
  989. radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
  990. radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
  991. radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
  992. radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
  993. radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
  994. radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
  995. radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
  996. radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
  997. REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
  998. REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
  999. if (conf->ext_channel)
  1000. REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1001. else
  1002. REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
  1003. }
  1004. static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
  1005. {
  1006. struct ath_hw_radar_conf *conf = &ah->radar_conf;
  1007. conf->fir_power = -28;
  1008. conf->radar_rssi = 0;
  1009. conf->pulse_height = 10;
  1010. conf->pulse_rssi = 24;
  1011. conf->pulse_inband = 8;
  1012. conf->pulse_maxlen = 255;
  1013. conf->pulse_inband_step = 12;
  1014. conf->radar_inband = 8;
  1015. }
  1016. void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
  1017. {
  1018. struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
  1019. static const u32 ar9300_cca_regs[6] = {
  1020. AR_PHY_CCA_0,
  1021. AR_PHY_CCA_1,
  1022. AR_PHY_CCA_2,
  1023. AR_PHY_EXT_CCA,
  1024. AR_PHY_EXT_CCA_1,
  1025. AR_PHY_EXT_CCA_2,
  1026. };
  1027. priv_ops->rf_set_freq = ar9003_hw_set_channel;
  1028. priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
  1029. priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
  1030. priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
  1031. priv_ops->init_bb = ar9003_hw_init_bb;
  1032. priv_ops->process_ini = ar9003_hw_process_ini;
  1033. priv_ops->set_rfmode = ar9003_hw_set_rfmode;
  1034. priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
  1035. priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
  1036. priv_ops->rfbus_req = ar9003_hw_rfbus_req;
  1037. priv_ops->rfbus_done = ar9003_hw_rfbus_done;
  1038. priv_ops->set_diversity = ar9003_hw_set_diversity;
  1039. priv_ops->ani_control = ar9003_hw_ani_control;
  1040. priv_ops->do_getnf = ar9003_hw_do_getnf;
  1041. priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
  1042. priv_ops->set_radar_params = ar9003_hw_set_radar_params;
  1043. ar9003_hw_set_nf_limits(ah);
  1044. ar9003_hw_set_radar_conf(ah);
  1045. memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
  1046. }
  1047. void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
  1048. {
  1049. struct ath_common *common = ath9k_hw_common(ah);
  1050. u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
  1051. u32 val, idle_count;
  1052. if (!idle_tmo_ms) {
  1053. /* disable IRQ, disable chip-reset for BB panic */
  1054. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1055. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
  1056. ~(AR_PHY_WATCHDOG_RST_ENABLE |
  1057. AR_PHY_WATCHDOG_IRQ_ENABLE));
  1058. /* disable watchdog in non-IDLE mode, disable in IDLE mode */
  1059. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1060. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
  1061. ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1062. AR_PHY_WATCHDOG_IDLE_ENABLE));
  1063. ath_dbg(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
  1064. return;
  1065. }
  1066. /* enable IRQ, disable chip-reset for BB watchdog */
  1067. val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
  1068. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
  1069. (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
  1070. ~AR_PHY_WATCHDOG_RST_ENABLE);
  1071. /* bound limit to 10 secs */
  1072. if (idle_tmo_ms > 10000)
  1073. idle_tmo_ms = 10000;
  1074. /*
  1075. * The time unit for watchdog event is 2^15 44/88MHz cycles.
  1076. *
  1077. * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
  1078. * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
  1079. *
  1080. * Given we use fast clock now in 5 GHz, these time units should
  1081. * be common for both 2 GHz and 5 GHz.
  1082. */
  1083. idle_count = (100 * idle_tmo_ms) / 74;
  1084. if (ah->curchan && IS_CHAN_HT40(ah->curchan))
  1085. idle_count = (100 * idle_tmo_ms) / 37;
  1086. /*
  1087. * enable watchdog in non-IDLE mode, disable in IDLE mode,
  1088. * set idle time-out.
  1089. */
  1090. REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
  1091. AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
  1092. AR_PHY_WATCHDOG_IDLE_MASK |
  1093. (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
  1094. ath_dbg(common, ATH_DBG_RESET,
  1095. "Enabled BB Watchdog timeout (%u ms)\n",
  1096. idle_tmo_ms);
  1097. }
  1098. void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
  1099. {
  1100. /*
  1101. * we want to avoid printing in ISR context so we save the
  1102. * watchdog status to be printed later in bottom half context.
  1103. */
  1104. ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
  1105. /*
  1106. * the watchdog timer should reset on status read but to be sure
  1107. * sure we write 0 to the watchdog status bit.
  1108. */
  1109. REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
  1110. ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
  1111. }
  1112. void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
  1113. {
  1114. struct ath_common *common = ath9k_hw_common(ah);
  1115. u32 status;
  1116. if (likely(!(common->debug_mask & ATH_DBG_RESET)))
  1117. return;
  1118. status = ah->bb_watchdog_last_status;
  1119. ath_dbg(common, ATH_DBG_RESET,
  1120. "\n==== BB update: BB status=0x%08x ====\n", status);
  1121. ath_dbg(common, ATH_DBG_RESET,
  1122. "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
  1123. MS(status, AR_PHY_WATCHDOG_INFO),
  1124. MS(status, AR_PHY_WATCHDOG_DET_HANG),
  1125. MS(status, AR_PHY_WATCHDOG_RADAR_SM),
  1126. MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
  1127. MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
  1128. MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
  1129. MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
  1130. MS(status, AR_PHY_WATCHDOG_AGC_SM),
  1131. MS(status, AR_PHY_WATCHDOG_SRCH_SM));
  1132. ath_dbg(common, ATH_DBG_RESET,
  1133. "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
  1134. REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
  1135. REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
  1136. ath_dbg(common, ATH_DBG_RESET,
  1137. "** BB mode: BB_gen_controls=0x%08x **\n",
  1138. REG_READ(ah, AR_PHY_GEN_CTRL));
  1139. #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
  1140. if (common->cc_survey.cycles)
  1141. ath_dbg(common, ATH_DBG_RESET,
  1142. "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
  1143. PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
  1144. ath_dbg(common, ATH_DBG_RESET,
  1145. "==== BB update: done ====\n\n");
  1146. }
  1147. EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);