siena.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "mac.h"
  21. #include "spi.h"
  22. #include "regs.h"
  23. #include "io.h"
  24. #include "phy.h"
  25. #include "workarounds.h"
  26. #include "mcdi.h"
  27. #include "mcdi_pcol.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. efx_dword_t timer_cmd;
  33. if (channel->irq_moderation)
  34. EFX_POPULATE_DWORD_2(timer_cmd,
  35. FRF_CZ_TC_TIMER_MODE,
  36. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  37. FRF_CZ_TC_TIMER_VAL,
  38. channel->irq_moderation - 1);
  39. else
  40. EFX_POPULATE_DWORD_2(timer_cmd,
  41. FRF_CZ_TC_TIMER_MODE,
  42. FFE_CZ_TIMER_MODE_DIS,
  43. FRF_CZ_TC_TIMER_VAL, 0);
  44. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  45. channel->channel);
  46. }
  47. static void siena_push_multicast_hash(struct efx_nic *efx)
  48. {
  49. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  50. efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  51. efx->multicast_hash.byte, sizeof(efx->multicast_hash),
  52. NULL, 0, NULL);
  53. }
  54. static int siena_mdio_write(struct net_device *net_dev,
  55. int prtad, int devad, u16 addr, u16 value)
  56. {
  57. struct efx_nic *efx = netdev_priv(net_dev);
  58. uint32_t status;
  59. int rc;
  60. rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
  61. addr, value, &status);
  62. if (rc)
  63. return rc;
  64. if (status != MC_CMD_MDIO_STATUS_GOOD)
  65. return -EIO;
  66. return 0;
  67. }
  68. static int siena_mdio_read(struct net_device *net_dev,
  69. int prtad, int devad, u16 addr)
  70. {
  71. struct efx_nic *efx = netdev_priv(net_dev);
  72. uint16_t value;
  73. uint32_t status;
  74. int rc;
  75. rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
  76. addr, &value, &status);
  77. if (rc)
  78. return rc;
  79. if (status != MC_CMD_MDIO_STATUS_GOOD)
  80. return -EIO;
  81. return (int)value;
  82. }
  83. /* This call is responsible for hooking in the MAC and PHY operations */
  84. static int siena_probe_port(struct efx_nic *efx)
  85. {
  86. int rc;
  87. /* Hook in PHY operations table */
  88. efx->phy_op = &efx_mcdi_phy_ops;
  89. /* Set up MDIO structure for PHY */
  90. efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  91. efx->mdio.mdio_read = siena_mdio_read;
  92. efx->mdio.mdio_write = siena_mdio_write;
  93. /* Fill out MDIO structure, loopback modes, and initial link state */
  94. rc = efx->phy_op->probe(efx);
  95. if (rc != 0)
  96. return rc;
  97. /* Allocate buffer for stats */
  98. rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
  99. MC_CMD_MAC_NSTATS * sizeof(u64));
  100. if (rc)
  101. return rc;
  102. netif_dbg(efx, probe, efx->net_dev,
  103. "stats buffer at %llx (virt %p phys %llx)\n",
  104. (u64)efx->stats_buffer.dma_addr,
  105. efx->stats_buffer.addr,
  106. (u64)virt_to_phys(efx->stats_buffer.addr));
  107. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
  108. return 0;
  109. }
  110. static void siena_remove_port(struct efx_nic *efx)
  111. {
  112. efx->phy_op->remove(efx);
  113. efx_nic_free_buffer(efx, &efx->stats_buffer);
  114. }
  115. static const struct efx_nic_register_test siena_register_tests[] = {
  116. { FR_AZ_ADR_REGION,
  117. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  118. { FR_CZ_USR_EV_CFG,
  119. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  120. { FR_AZ_RX_CFG,
  121. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  122. { FR_AZ_TX_CFG,
  123. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  124. { FR_AZ_TX_RESERVED,
  125. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  126. { FR_AZ_SRM_TX_DC_CFG,
  127. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  128. { FR_AZ_RX_DC_CFG,
  129. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  130. { FR_AZ_RX_DC_PF_WM,
  131. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  132. { FR_BZ_DP_CTRL,
  133. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  134. { FR_BZ_RX_RSS_TKEY,
  135. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  136. { FR_CZ_RX_RSS_IPV6_REG1,
  137. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  138. { FR_CZ_RX_RSS_IPV6_REG2,
  139. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  140. { FR_CZ_RX_RSS_IPV6_REG3,
  141. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  142. };
  143. static int siena_test_registers(struct efx_nic *efx)
  144. {
  145. return efx_nic_test_registers(efx, siena_register_tests,
  146. ARRAY_SIZE(siena_register_tests));
  147. }
  148. /**************************************************************************
  149. *
  150. * Device reset
  151. *
  152. **************************************************************************
  153. */
  154. static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
  155. {
  156. int rc;
  157. /* Recover from a failed assertion pre-reset */
  158. rc = efx_mcdi_handle_assertion(efx);
  159. if (rc)
  160. return rc;
  161. if (method == RESET_TYPE_WORLD)
  162. return efx_mcdi_reset_mc(efx);
  163. else
  164. return efx_mcdi_reset_port(efx);
  165. }
  166. static int siena_probe_nvconfig(struct efx_nic *efx)
  167. {
  168. return efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL);
  169. }
  170. static int siena_probe_nic(struct efx_nic *efx)
  171. {
  172. struct siena_nic_data *nic_data;
  173. bool already_attached = 0;
  174. efx_oword_t reg;
  175. int rc;
  176. /* Allocate storage for hardware specific data */
  177. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  178. if (!nic_data)
  179. return -ENOMEM;
  180. efx->nic_data = nic_data;
  181. if (efx_nic_fpga_ver(efx) != 0) {
  182. netif_err(efx, probe, efx->net_dev,
  183. "Siena FPGA not supported\n");
  184. rc = -ENODEV;
  185. goto fail1;
  186. }
  187. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  188. efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  189. efx_mcdi_init(efx);
  190. /* Recover from a failed assertion before probing */
  191. rc = efx_mcdi_handle_assertion(efx);
  192. if (rc)
  193. goto fail1;
  194. rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
  195. if (rc) {
  196. netif_err(efx, probe, efx->net_dev,
  197. "Failed to read MCPU firmware version - rc %d\n", rc);
  198. goto fail1; /* MCPU absent? */
  199. }
  200. /* Let the BMC know that the driver is now in charge of link and
  201. * filter settings. We must do this before we reset the NIC */
  202. rc = efx_mcdi_drv_attach(efx, true, &already_attached);
  203. if (rc) {
  204. netif_err(efx, probe, efx->net_dev,
  205. "Unable to register driver with MCPU\n");
  206. goto fail2;
  207. }
  208. if (already_attached)
  209. /* Not a fatal error */
  210. netif_err(efx, probe, efx->net_dev,
  211. "Host already registered with MCPU\n");
  212. /* Now we can reset the NIC */
  213. rc = siena_reset_hw(efx, RESET_TYPE_ALL);
  214. if (rc) {
  215. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  216. goto fail3;
  217. }
  218. siena_init_wol(efx);
  219. /* Allocate memory for INT_KER */
  220. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  221. if (rc)
  222. goto fail4;
  223. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  224. netif_dbg(efx, probe, efx->net_dev,
  225. "INT_KER at %llx (virt %p phys %llx)\n",
  226. (unsigned long long)efx->irq_status.dma_addr,
  227. efx->irq_status.addr,
  228. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  229. /* Read in the non-volatile configuration */
  230. rc = siena_probe_nvconfig(efx);
  231. if (rc == -EINVAL) {
  232. netif_err(efx, probe, efx->net_dev,
  233. "NVRAM is invalid therefore using defaults\n");
  234. efx->phy_type = PHY_TYPE_NONE;
  235. efx->mdio.prtad = MDIO_PRTAD_NONE;
  236. } else if (rc) {
  237. goto fail5;
  238. }
  239. return 0;
  240. fail5:
  241. efx_nic_free_buffer(efx, &efx->irq_status);
  242. fail4:
  243. fail3:
  244. efx_mcdi_drv_attach(efx, false, NULL);
  245. fail2:
  246. fail1:
  247. kfree(efx->nic_data);
  248. return rc;
  249. }
  250. /* This call performs hardware-specific global initialisation, such as
  251. * defining the descriptor cache sizes and number of RSS channels.
  252. * It does not set up any buffers, descriptor rings or event queues.
  253. */
  254. static int siena_init_nic(struct efx_nic *efx)
  255. {
  256. efx_oword_t temp;
  257. int rc;
  258. /* Recover from a failed assertion post-reset */
  259. rc = efx_mcdi_handle_assertion(efx);
  260. if (rc)
  261. return rc;
  262. /* Squash TX of packets of 16 bytes or less */
  263. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  264. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  265. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  266. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  267. * descriptors (which is bad).
  268. */
  269. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  270. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  271. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  272. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  273. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  274. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  275. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  276. /* Enable hash insertion. This is broken for the 'Falcon' hash
  277. * if IPv6 hashing is also enabled, so also select Toeplitz
  278. * TCP/IPv4 and IPv4 hashes. */
  279. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  280. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  281. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  282. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  283. /* Set hash key for IPv4 */
  284. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  285. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  286. /* Enable IPv6 RSS */
  287. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  288. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  289. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  290. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  291. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  292. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  293. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  294. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  295. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  296. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  297. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  298. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  299. if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
  300. /* No MCDI operation has been defined to set thresholds */
  301. netif_err(efx, hw, efx->net_dev,
  302. "ignoring RX flow control thresholds\n");
  303. /* Enable event logging */
  304. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  305. if (rc)
  306. return rc;
  307. /* Set destination of both TX and RX Flush events */
  308. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  309. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  310. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  311. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  312. efx_nic_init_common(efx);
  313. return 0;
  314. }
  315. static void siena_remove_nic(struct efx_nic *efx)
  316. {
  317. efx_nic_free_buffer(efx, &efx->irq_status);
  318. siena_reset_hw(efx, RESET_TYPE_ALL);
  319. /* Relinquish the device back to the BMC */
  320. if (efx_nic_has_mc(efx))
  321. efx_mcdi_drv_attach(efx, false, NULL);
  322. /* Tear down the private nic state */
  323. kfree(efx->nic_data);
  324. efx->nic_data = NULL;
  325. }
  326. #define STATS_GENERATION_INVALID ((u64)(-1))
  327. static int siena_try_update_nic_stats(struct efx_nic *efx)
  328. {
  329. u64 *dma_stats;
  330. struct efx_mac_stats *mac_stats;
  331. u64 generation_start;
  332. u64 generation_end;
  333. mac_stats = &efx->mac_stats;
  334. dma_stats = (u64 *)efx->stats_buffer.addr;
  335. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  336. if (generation_end == STATS_GENERATION_INVALID)
  337. return 0;
  338. rmb();
  339. #define MAC_STAT(M, D) \
  340. mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
  341. MAC_STAT(tx_bytes, TX_BYTES);
  342. MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
  343. mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
  344. mac_stats->tx_bad_bytes);
  345. MAC_STAT(tx_packets, TX_PKTS);
  346. MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
  347. MAC_STAT(tx_pause, TX_PAUSE_PKTS);
  348. MAC_STAT(tx_control, TX_CONTROL_PKTS);
  349. MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
  350. MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
  351. MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
  352. MAC_STAT(tx_lt64, TX_LT64_PKTS);
  353. MAC_STAT(tx_64, TX_64_PKTS);
  354. MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
  355. MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
  356. MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
  357. MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
  358. MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
  359. MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
  360. MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
  361. mac_stats->tx_collision = 0;
  362. MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
  363. MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
  364. MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
  365. MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
  366. MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
  367. mac_stats->tx_collision = (mac_stats->tx_single_collision +
  368. mac_stats->tx_multiple_collision +
  369. mac_stats->tx_excessive_collision +
  370. mac_stats->tx_late_collision);
  371. MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
  372. MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
  373. MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
  374. MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
  375. MAC_STAT(rx_bytes, RX_BYTES);
  376. MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
  377. mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
  378. mac_stats->rx_bad_bytes);
  379. MAC_STAT(rx_packets, RX_PKTS);
  380. MAC_STAT(rx_good, RX_GOOD_PKTS);
  381. MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
  382. MAC_STAT(rx_pause, RX_PAUSE_PKTS);
  383. MAC_STAT(rx_control, RX_CONTROL_PKTS);
  384. MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
  385. MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
  386. MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
  387. MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
  388. MAC_STAT(rx_64, RX_64_PKTS);
  389. MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
  390. MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
  391. MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
  392. MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
  393. MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
  394. MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
  395. MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
  396. mac_stats->rx_bad_lt64 = 0;
  397. mac_stats->rx_bad_64_to_15xx = 0;
  398. mac_stats->rx_bad_15xx_to_jumbo = 0;
  399. MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
  400. MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
  401. mac_stats->rx_missed = 0;
  402. MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
  403. MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
  404. MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
  405. MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
  406. MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
  407. mac_stats->rx_good_lt64 = 0;
  408. efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
  409. #undef MAC_STAT
  410. rmb();
  411. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  412. if (generation_end != generation_start)
  413. return -EAGAIN;
  414. return 0;
  415. }
  416. static void siena_update_nic_stats(struct efx_nic *efx)
  417. {
  418. int retry;
  419. /* If we're unlucky enough to read statistics wduring the DMA, wait
  420. * up to 10ms for it to finish (typically takes <500us) */
  421. for (retry = 0; retry < 100; ++retry) {
  422. if (siena_try_update_nic_stats(efx) == 0)
  423. return;
  424. udelay(100);
  425. }
  426. /* Use the old values instead */
  427. }
  428. static void siena_start_nic_stats(struct efx_nic *efx)
  429. {
  430. u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
  431. dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
  432. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
  433. MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
  434. }
  435. static void siena_stop_nic_stats(struct efx_nic *efx)
  436. {
  437. efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
  438. }
  439. void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
  440. {
  441. struct siena_nic_data *nic_data = efx->nic_data;
  442. snprintf(buf, len, "%u.%u.%u.%u",
  443. (unsigned int)(nic_data->fw_version >> 48),
  444. (unsigned int)(nic_data->fw_version >> 32 & 0xffff),
  445. (unsigned int)(nic_data->fw_version >> 16 & 0xffff),
  446. (unsigned int)(nic_data->fw_version & 0xffff));
  447. }
  448. /**************************************************************************
  449. *
  450. * Wake on LAN
  451. *
  452. **************************************************************************
  453. */
  454. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  455. {
  456. struct siena_nic_data *nic_data = efx->nic_data;
  457. wol->supported = WAKE_MAGIC;
  458. if (nic_data->wol_filter_id != -1)
  459. wol->wolopts = WAKE_MAGIC;
  460. else
  461. wol->wolopts = 0;
  462. memset(&wol->sopass, 0, sizeof(wol->sopass));
  463. }
  464. static int siena_set_wol(struct efx_nic *efx, u32 type)
  465. {
  466. struct siena_nic_data *nic_data = efx->nic_data;
  467. int rc;
  468. if (type & ~WAKE_MAGIC)
  469. return -EINVAL;
  470. if (type & WAKE_MAGIC) {
  471. if (nic_data->wol_filter_id != -1)
  472. efx_mcdi_wol_filter_remove(efx,
  473. nic_data->wol_filter_id);
  474. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  475. &nic_data->wol_filter_id);
  476. if (rc)
  477. goto fail;
  478. pci_wake_from_d3(efx->pci_dev, true);
  479. } else {
  480. rc = efx_mcdi_wol_filter_reset(efx);
  481. nic_data->wol_filter_id = -1;
  482. pci_wake_from_d3(efx->pci_dev, false);
  483. if (rc)
  484. goto fail;
  485. }
  486. return 0;
  487. fail:
  488. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  489. __func__, type, rc);
  490. return rc;
  491. }
  492. static void siena_init_wol(struct efx_nic *efx)
  493. {
  494. struct siena_nic_data *nic_data = efx->nic_data;
  495. int rc;
  496. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  497. if (rc != 0) {
  498. /* If it failed, attempt to get into a synchronised
  499. * state with MC by resetting any set WoL filters */
  500. efx_mcdi_wol_filter_reset(efx);
  501. nic_data->wol_filter_id = -1;
  502. } else if (nic_data->wol_filter_id != -1) {
  503. pci_wake_from_d3(efx->pci_dev, true);
  504. }
  505. }
  506. /**************************************************************************
  507. *
  508. * Revision-dependent attributes used by efx.c and nic.c
  509. *
  510. **************************************************************************
  511. */
  512. struct efx_nic_type siena_a0_nic_type = {
  513. .probe = siena_probe_nic,
  514. .remove = siena_remove_nic,
  515. .init = siena_init_nic,
  516. .fini = efx_port_dummy_op_void,
  517. .monitor = NULL,
  518. .reset = siena_reset_hw,
  519. .probe_port = siena_probe_port,
  520. .remove_port = siena_remove_port,
  521. .prepare_flush = efx_port_dummy_op_void,
  522. .update_stats = siena_update_nic_stats,
  523. .start_stats = siena_start_nic_stats,
  524. .stop_stats = siena_stop_nic_stats,
  525. .set_id_led = efx_mcdi_set_id_led,
  526. .push_irq_moderation = siena_push_irq_moderation,
  527. .push_multicast_hash = siena_push_multicast_hash,
  528. .reconfigure_port = efx_mcdi_phy_reconfigure,
  529. .get_wol = siena_get_wol,
  530. .set_wol = siena_set_wol,
  531. .resume_wol = siena_init_wol,
  532. .test_registers = siena_test_registers,
  533. .test_nvram = efx_mcdi_nvram_test_all,
  534. .default_mac_ops = &efx_mcdi_mac_operations,
  535. .revision = EFX_REV_SIENA_A0,
  536. .mem_map_size = (FR_CZ_MC_TREG_SMEM +
  537. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
  538. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  539. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  540. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  541. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  542. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  543. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  544. .rx_buffer_hash_size = 0x10,
  545. .rx_buffer_padding = 0,
  546. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  547. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  548. * interrupt handler only supports 32
  549. * channels */
  550. .tx_dc_base = 0x88000,
  551. .rx_dc_base = 0x68000,
  552. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  553. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  554. .reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,
  555. };