efx.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include <linux/cpu_rmap.h>
  24. #include "net_driver.h"
  25. #include "efx.h"
  26. #include "nic.h"
  27. #include "mcdi.h"
  28. #include "workarounds.h"
  29. /**************************************************************************
  30. *
  31. * Type name strings
  32. *
  33. **************************************************************************
  34. */
  35. /* Loopback mode names (see LOOPBACK_MODE()) */
  36. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  37. const char *efx_loopback_mode_names[] = {
  38. [LOOPBACK_NONE] = "NONE",
  39. [LOOPBACK_DATA] = "DATAPATH",
  40. [LOOPBACK_GMAC] = "GMAC",
  41. [LOOPBACK_XGMII] = "XGMII",
  42. [LOOPBACK_XGXS] = "XGXS",
  43. [LOOPBACK_XAUI] = "XAUI",
  44. [LOOPBACK_GMII] = "GMII",
  45. [LOOPBACK_SGMII] = "SGMII",
  46. [LOOPBACK_XGBR] = "XGBR",
  47. [LOOPBACK_XFI] = "XFI",
  48. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  49. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  50. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  51. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  52. [LOOPBACK_GPHY] = "GPHY",
  53. [LOOPBACK_PHYXS] = "PHYXS",
  54. [LOOPBACK_PCS] = "PCS",
  55. [LOOPBACK_PMAPMD] = "PMA/PMD",
  56. [LOOPBACK_XPORT] = "XPORT",
  57. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  58. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  59. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  60. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  61. [LOOPBACK_GMII_WS] = "GMII_WS",
  62. [LOOPBACK_XFI_WS] = "XFI_WS",
  63. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  64. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  65. };
  66. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  67. const char *efx_reset_type_names[] = {
  68. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  69. [RESET_TYPE_ALL] = "ALL",
  70. [RESET_TYPE_WORLD] = "WORLD",
  71. [RESET_TYPE_DISABLE] = "DISABLE",
  72. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  73. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  74. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  75. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  76. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  77. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  78. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  79. };
  80. #define EFX_MAX_MTU (9 * 1024)
  81. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  82. * queued onto this work queue. This is not a per-nic work queue, because
  83. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  84. */
  85. static struct workqueue_struct *reset_workqueue;
  86. /**************************************************************************
  87. *
  88. * Configurable values
  89. *
  90. *************************************************************************/
  91. /*
  92. * Use separate channels for TX and RX events
  93. *
  94. * Set this to 1 to use separate channels for TX and RX. It allows us
  95. * to control interrupt affinity separately for TX and RX.
  96. *
  97. * This is only used in MSI-X interrupt mode
  98. */
  99. static unsigned int separate_tx_channels;
  100. module_param(separate_tx_channels, uint, 0444);
  101. MODULE_PARM_DESC(separate_tx_channels,
  102. "Use separate channels for TX and RX");
  103. /* This is the weight assigned to each of the (per-channel) virtual
  104. * NAPI devices.
  105. */
  106. static int napi_weight = 64;
  107. /* This is the time (in jiffies) between invocations of the hardware
  108. * monitor. On Falcon-based NICs, this will:
  109. * - Check the on-board hardware monitor;
  110. * - Poll the link state and reconfigure the hardware as necessary.
  111. */
  112. static unsigned int efx_monitor_interval = 1 * HZ;
  113. /* This controls whether or not the driver will initialise devices
  114. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  115. * such devices will be initialised with a random locally-generated
  116. * MAC address. This allows for loading the sfc_mtd driver to
  117. * reprogram the flash, even if the flash contents (including the MAC
  118. * address) have previously been erased.
  119. */
  120. static unsigned int allow_bad_hwaddr;
  121. /* Initial interrupt moderation settings. They can be modified after
  122. * module load with ethtool.
  123. *
  124. * The default for RX should strike a balance between increasing the
  125. * round-trip latency and reducing overhead.
  126. */
  127. static unsigned int rx_irq_mod_usec = 60;
  128. /* Initial interrupt moderation settings. They can be modified after
  129. * module load with ethtool.
  130. *
  131. * This default is chosen to ensure that a 10G link does not go idle
  132. * while a TX queue is stopped after it has become full. A queue is
  133. * restarted when it drops below half full. The time this takes (assuming
  134. * worst case 3 descriptors per packet and 1024 descriptors) is
  135. * 512 / 3 * 1.2 = 205 usec.
  136. */
  137. static unsigned int tx_irq_mod_usec = 150;
  138. /* This is the first interrupt mode to try out of:
  139. * 0 => MSI-X
  140. * 1 => MSI
  141. * 2 => legacy
  142. */
  143. static unsigned int interrupt_mode;
  144. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  145. * i.e. the number of CPUs among which we may distribute simultaneous
  146. * interrupt handling.
  147. *
  148. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  149. * The default (0) means to assign an interrupt to each package (level II cache)
  150. */
  151. static unsigned int rss_cpus;
  152. module_param(rss_cpus, uint, 0444);
  153. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  154. static int phy_flash_cfg;
  155. module_param(phy_flash_cfg, int, 0644);
  156. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  157. static unsigned irq_adapt_low_thresh = 10000;
  158. module_param(irq_adapt_low_thresh, uint, 0644);
  159. MODULE_PARM_DESC(irq_adapt_low_thresh,
  160. "Threshold score for reducing IRQ moderation");
  161. static unsigned irq_adapt_high_thresh = 20000;
  162. module_param(irq_adapt_high_thresh, uint, 0644);
  163. MODULE_PARM_DESC(irq_adapt_high_thresh,
  164. "Threshold score for increasing IRQ moderation");
  165. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  166. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  167. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  168. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  169. module_param(debug, uint, 0);
  170. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  171. /**************************************************************************
  172. *
  173. * Utility functions and prototypes
  174. *
  175. *************************************************************************/
  176. static void efx_remove_channels(struct efx_nic *efx);
  177. static void efx_remove_port(struct efx_nic *efx);
  178. static void efx_init_napi(struct efx_nic *efx);
  179. static void efx_fini_napi(struct efx_nic *efx);
  180. static void efx_fini_napi_channel(struct efx_channel *channel);
  181. static void efx_fini_struct(struct efx_nic *efx);
  182. static void efx_start_all(struct efx_nic *efx);
  183. static void efx_stop_all(struct efx_nic *efx);
  184. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  185. do { \
  186. if ((efx->state == STATE_RUNNING) || \
  187. (efx->state == STATE_DISABLED)) \
  188. ASSERT_RTNL(); \
  189. } while (0)
  190. /**************************************************************************
  191. *
  192. * Event queue processing
  193. *
  194. *************************************************************************/
  195. /* Process channel's event queue
  196. *
  197. * This function is responsible for processing the event queue of a
  198. * single channel. The caller must guarantee that this function will
  199. * never be concurrently called more than once on the same channel,
  200. * though different channels may be being processed concurrently.
  201. */
  202. static int efx_process_channel(struct efx_channel *channel, int budget)
  203. {
  204. struct efx_nic *efx = channel->efx;
  205. int spent;
  206. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  207. !channel->enabled))
  208. return 0;
  209. spent = efx_nic_process_eventq(channel, budget);
  210. if (spent == 0)
  211. return 0;
  212. /* Deliver last RX packet. */
  213. if (channel->rx_pkt) {
  214. __efx_rx_packet(channel, channel->rx_pkt,
  215. channel->rx_pkt_csummed);
  216. channel->rx_pkt = NULL;
  217. }
  218. efx_rx_strategy(channel);
  219. efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
  220. return spent;
  221. }
  222. /* Mark channel as finished processing
  223. *
  224. * Note that since we will not receive further interrupts for this
  225. * channel before we finish processing and call the eventq_read_ack()
  226. * method, there is no need to use the interrupt hold-off timers.
  227. */
  228. static inline void efx_channel_processed(struct efx_channel *channel)
  229. {
  230. /* The interrupt handler for this channel may set work_pending
  231. * as soon as we acknowledge the events we've seen. Make sure
  232. * it's cleared before then. */
  233. channel->work_pending = false;
  234. smp_wmb();
  235. efx_nic_eventq_read_ack(channel);
  236. }
  237. /* NAPI poll handler
  238. *
  239. * NAPI guarantees serialisation of polls of the same device, which
  240. * provides the guarantee required by efx_process_channel().
  241. */
  242. static int efx_poll(struct napi_struct *napi, int budget)
  243. {
  244. struct efx_channel *channel =
  245. container_of(napi, struct efx_channel, napi_str);
  246. struct efx_nic *efx = channel->efx;
  247. int spent;
  248. netif_vdbg(efx, intr, efx->net_dev,
  249. "channel %d NAPI poll executing on CPU %d\n",
  250. channel->channel, raw_smp_processor_id());
  251. spent = efx_process_channel(channel, budget);
  252. if (spent < budget) {
  253. if (channel->channel < efx->n_rx_channels &&
  254. efx->irq_rx_adaptive &&
  255. unlikely(++channel->irq_count == 1000)) {
  256. if (unlikely(channel->irq_mod_score <
  257. irq_adapt_low_thresh)) {
  258. if (channel->irq_moderation > 1) {
  259. channel->irq_moderation -= 1;
  260. efx->type->push_irq_moderation(channel);
  261. }
  262. } else if (unlikely(channel->irq_mod_score >
  263. irq_adapt_high_thresh)) {
  264. if (channel->irq_moderation <
  265. efx->irq_rx_moderation) {
  266. channel->irq_moderation += 1;
  267. efx->type->push_irq_moderation(channel);
  268. }
  269. }
  270. channel->irq_count = 0;
  271. channel->irq_mod_score = 0;
  272. }
  273. efx_filter_rfs_expire(channel);
  274. /* There is no race here; although napi_disable() will
  275. * only wait for napi_complete(), this isn't a problem
  276. * since efx_channel_processed() will have no effect if
  277. * interrupts have already been disabled.
  278. */
  279. napi_complete(napi);
  280. efx_channel_processed(channel);
  281. }
  282. return spent;
  283. }
  284. /* Process the eventq of the specified channel immediately on this CPU
  285. *
  286. * Disable hardware generated interrupts, wait for any existing
  287. * processing to finish, then directly poll (and ack ) the eventq.
  288. * Finally reenable NAPI and interrupts.
  289. *
  290. * Since we are touching interrupts the caller should hold the suspend lock
  291. */
  292. void efx_process_channel_now(struct efx_channel *channel)
  293. {
  294. struct efx_nic *efx = channel->efx;
  295. BUG_ON(channel->channel >= efx->n_channels);
  296. BUG_ON(!channel->enabled);
  297. /* Disable interrupts and wait for ISRs to complete */
  298. efx_nic_disable_interrupts(efx);
  299. if (efx->legacy_irq) {
  300. synchronize_irq(efx->legacy_irq);
  301. efx->legacy_irq_enabled = false;
  302. }
  303. if (channel->irq)
  304. synchronize_irq(channel->irq);
  305. /* Wait for any NAPI processing to complete */
  306. napi_disable(&channel->napi_str);
  307. /* Poll the channel */
  308. efx_process_channel(channel, channel->eventq_mask + 1);
  309. /* Ack the eventq. This may cause an interrupt to be generated
  310. * when they are reenabled */
  311. efx_channel_processed(channel);
  312. napi_enable(&channel->napi_str);
  313. if (efx->legacy_irq)
  314. efx->legacy_irq_enabled = true;
  315. efx_nic_enable_interrupts(efx);
  316. }
  317. /* Create event queue
  318. * Event queue memory allocations are done only once. If the channel
  319. * is reset, the memory buffer will be reused; this guards against
  320. * errors during channel reset and also simplifies interrupt handling.
  321. */
  322. static int efx_probe_eventq(struct efx_channel *channel)
  323. {
  324. struct efx_nic *efx = channel->efx;
  325. unsigned long entries;
  326. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  327. "chan %d create event queue\n", channel->channel);
  328. /* Build an event queue with room for one event per tx and rx buffer,
  329. * plus some extra for link state events and MCDI completions. */
  330. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  331. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  332. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  333. return efx_nic_probe_eventq(channel);
  334. }
  335. /* Prepare channel's event queue */
  336. static void efx_init_eventq(struct efx_channel *channel)
  337. {
  338. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  339. "chan %d init event queue\n", channel->channel);
  340. channel->eventq_read_ptr = 0;
  341. efx_nic_init_eventq(channel);
  342. }
  343. static void efx_fini_eventq(struct efx_channel *channel)
  344. {
  345. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  346. "chan %d fini event queue\n", channel->channel);
  347. efx_nic_fini_eventq(channel);
  348. }
  349. static void efx_remove_eventq(struct efx_channel *channel)
  350. {
  351. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  352. "chan %d remove event queue\n", channel->channel);
  353. efx_nic_remove_eventq(channel);
  354. }
  355. /**************************************************************************
  356. *
  357. * Channel handling
  358. *
  359. *************************************************************************/
  360. /* Allocate and initialise a channel structure, optionally copying
  361. * parameters (but not resources) from an old channel structure. */
  362. static struct efx_channel *
  363. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  364. {
  365. struct efx_channel *channel;
  366. struct efx_rx_queue *rx_queue;
  367. struct efx_tx_queue *tx_queue;
  368. int j;
  369. if (old_channel) {
  370. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  371. if (!channel)
  372. return NULL;
  373. *channel = *old_channel;
  374. channel->napi_dev = NULL;
  375. memset(&channel->eventq, 0, sizeof(channel->eventq));
  376. rx_queue = &channel->rx_queue;
  377. rx_queue->buffer = NULL;
  378. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  379. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  380. tx_queue = &channel->tx_queue[j];
  381. if (tx_queue->channel)
  382. tx_queue->channel = channel;
  383. tx_queue->buffer = NULL;
  384. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  385. }
  386. } else {
  387. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  388. if (!channel)
  389. return NULL;
  390. channel->efx = efx;
  391. channel->channel = i;
  392. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  393. tx_queue = &channel->tx_queue[j];
  394. tx_queue->efx = efx;
  395. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  396. tx_queue->channel = channel;
  397. }
  398. }
  399. rx_queue = &channel->rx_queue;
  400. rx_queue->efx = efx;
  401. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  402. (unsigned long)rx_queue);
  403. return channel;
  404. }
  405. static int efx_probe_channel(struct efx_channel *channel)
  406. {
  407. struct efx_tx_queue *tx_queue;
  408. struct efx_rx_queue *rx_queue;
  409. int rc;
  410. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  411. "creating channel %d\n", channel->channel);
  412. rc = efx_probe_eventq(channel);
  413. if (rc)
  414. goto fail1;
  415. efx_for_each_channel_tx_queue(tx_queue, channel) {
  416. rc = efx_probe_tx_queue(tx_queue);
  417. if (rc)
  418. goto fail2;
  419. }
  420. efx_for_each_channel_rx_queue(rx_queue, channel) {
  421. rc = efx_probe_rx_queue(rx_queue);
  422. if (rc)
  423. goto fail3;
  424. }
  425. channel->n_rx_frm_trunc = 0;
  426. return 0;
  427. fail3:
  428. efx_for_each_channel_rx_queue(rx_queue, channel)
  429. efx_remove_rx_queue(rx_queue);
  430. fail2:
  431. efx_for_each_channel_tx_queue(tx_queue, channel)
  432. efx_remove_tx_queue(tx_queue);
  433. fail1:
  434. return rc;
  435. }
  436. static void efx_set_channel_names(struct efx_nic *efx)
  437. {
  438. struct efx_channel *channel;
  439. const char *type = "";
  440. int number;
  441. efx_for_each_channel(channel, efx) {
  442. number = channel->channel;
  443. if (efx->n_channels > efx->n_rx_channels) {
  444. if (channel->channel < efx->n_rx_channels) {
  445. type = "-rx";
  446. } else {
  447. type = "-tx";
  448. number -= efx->n_rx_channels;
  449. }
  450. }
  451. snprintf(efx->channel_name[channel->channel],
  452. sizeof(efx->channel_name[0]),
  453. "%s%s-%d", efx->name, type, number);
  454. }
  455. }
  456. static int efx_probe_channels(struct efx_nic *efx)
  457. {
  458. struct efx_channel *channel;
  459. int rc;
  460. /* Restart special buffer allocation */
  461. efx->next_buffer_table = 0;
  462. efx_for_each_channel(channel, efx) {
  463. rc = efx_probe_channel(channel);
  464. if (rc) {
  465. netif_err(efx, probe, efx->net_dev,
  466. "failed to create channel %d\n",
  467. channel->channel);
  468. goto fail;
  469. }
  470. }
  471. efx_set_channel_names(efx);
  472. return 0;
  473. fail:
  474. efx_remove_channels(efx);
  475. return rc;
  476. }
  477. /* Channels are shutdown and reinitialised whilst the NIC is running
  478. * to propagate configuration changes (mtu, checksum offload), or
  479. * to clear hardware error conditions
  480. */
  481. static void efx_init_channels(struct efx_nic *efx)
  482. {
  483. struct efx_tx_queue *tx_queue;
  484. struct efx_rx_queue *rx_queue;
  485. struct efx_channel *channel;
  486. /* Calculate the rx buffer allocation parameters required to
  487. * support the current MTU, including padding for header
  488. * alignment and overruns.
  489. */
  490. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  491. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  492. efx->type->rx_buffer_hash_size +
  493. efx->type->rx_buffer_padding);
  494. efx->rx_buffer_order = get_order(efx->rx_buffer_len +
  495. sizeof(struct efx_rx_page_state));
  496. /* Initialise the channels */
  497. efx_for_each_channel(channel, efx) {
  498. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  499. "init chan %d\n", channel->channel);
  500. efx_init_eventq(channel);
  501. efx_for_each_channel_tx_queue(tx_queue, channel)
  502. efx_init_tx_queue(tx_queue);
  503. /* The rx buffer allocation strategy is MTU dependent */
  504. efx_rx_strategy(channel);
  505. efx_for_each_channel_rx_queue(rx_queue, channel)
  506. efx_init_rx_queue(rx_queue);
  507. WARN_ON(channel->rx_pkt != NULL);
  508. efx_rx_strategy(channel);
  509. }
  510. }
  511. /* This enables event queue processing and packet transmission.
  512. *
  513. * Note that this function is not allowed to fail, since that would
  514. * introduce too much complexity into the suspend/resume path.
  515. */
  516. static void efx_start_channel(struct efx_channel *channel)
  517. {
  518. struct efx_rx_queue *rx_queue;
  519. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  520. "starting chan %d\n", channel->channel);
  521. /* The interrupt handler for this channel may set work_pending
  522. * as soon as we enable it. Make sure it's cleared before
  523. * then. Similarly, make sure it sees the enabled flag set. */
  524. channel->work_pending = false;
  525. channel->enabled = true;
  526. smp_wmb();
  527. /* Fill the queues before enabling NAPI */
  528. efx_for_each_channel_rx_queue(rx_queue, channel)
  529. efx_fast_push_rx_descriptors(rx_queue);
  530. napi_enable(&channel->napi_str);
  531. }
  532. /* This disables event queue processing and packet transmission.
  533. * This function does not guarantee that all queue processing
  534. * (e.g. RX refill) is complete.
  535. */
  536. static void efx_stop_channel(struct efx_channel *channel)
  537. {
  538. if (!channel->enabled)
  539. return;
  540. netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
  541. "stop chan %d\n", channel->channel);
  542. channel->enabled = false;
  543. napi_disable(&channel->napi_str);
  544. }
  545. static void efx_fini_channels(struct efx_nic *efx)
  546. {
  547. struct efx_channel *channel;
  548. struct efx_tx_queue *tx_queue;
  549. struct efx_rx_queue *rx_queue;
  550. int rc;
  551. EFX_ASSERT_RESET_SERIALISED(efx);
  552. BUG_ON(efx->port_enabled);
  553. rc = efx_nic_flush_queues(efx);
  554. if (rc && EFX_WORKAROUND_7803(efx)) {
  555. /* Schedule a reset to recover from the flush failure. The
  556. * descriptor caches reference memory we're about to free,
  557. * but falcon_reconfigure_mac_wrapper() won't reconnect
  558. * the MACs because of the pending reset. */
  559. netif_err(efx, drv, efx->net_dev,
  560. "Resetting to recover from flush failure\n");
  561. efx_schedule_reset(efx, RESET_TYPE_ALL);
  562. } else if (rc) {
  563. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  564. } else {
  565. netif_dbg(efx, drv, efx->net_dev,
  566. "successfully flushed all queues\n");
  567. }
  568. efx_for_each_channel(channel, efx) {
  569. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  570. "shut down chan %d\n", channel->channel);
  571. efx_for_each_channel_rx_queue(rx_queue, channel)
  572. efx_fini_rx_queue(rx_queue);
  573. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  574. efx_fini_tx_queue(tx_queue);
  575. efx_fini_eventq(channel);
  576. }
  577. }
  578. static void efx_remove_channel(struct efx_channel *channel)
  579. {
  580. struct efx_tx_queue *tx_queue;
  581. struct efx_rx_queue *rx_queue;
  582. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  583. "destroy chan %d\n", channel->channel);
  584. efx_for_each_channel_rx_queue(rx_queue, channel)
  585. efx_remove_rx_queue(rx_queue);
  586. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  587. efx_remove_tx_queue(tx_queue);
  588. efx_remove_eventq(channel);
  589. }
  590. static void efx_remove_channels(struct efx_nic *efx)
  591. {
  592. struct efx_channel *channel;
  593. efx_for_each_channel(channel, efx)
  594. efx_remove_channel(channel);
  595. }
  596. int
  597. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  598. {
  599. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  600. u32 old_rxq_entries, old_txq_entries;
  601. unsigned i;
  602. int rc;
  603. efx_stop_all(efx);
  604. efx_fini_channels(efx);
  605. /* Clone channels */
  606. memset(other_channel, 0, sizeof(other_channel));
  607. for (i = 0; i < efx->n_channels; i++) {
  608. channel = efx_alloc_channel(efx, i, efx->channel[i]);
  609. if (!channel) {
  610. rc = -ENOMEM;
  611. goto out;
  612. }
  613. other_channel[i] = channel;
  614. }
  615. /* Swap entry counts and channel pointers */
  616. old_rxq_entries = efx->rxq_entries;
  617. old_txq_entries = efx->txq_entries;
  618. efx->rxq_entries = rxq_entries;
  619. efx->txq_entries = txq_entries;
  620. for (i = 0; i < efx->n_channels; i++) {
  621. channel = efx->channel[i];
  622. efx->channel[i] = other_channel[i];
  623. other_channel[i] = channel;
  624. }
  625. rc = efx_probe_channels(efx);
  626. if (rc)
  627. goto rollback;
  628. efx_init_napi(efx);
  629. /* Destroy old channels */
  630. for (i = 0; i < efx->n_channels; i++) {
  631. efx_fini_napi_channel(other_channel[i]);
  632. efx_remove_channel(other_channel[i]);
  633. }
  634. out:
  635. /* Free unused channel structures */
  636. for (i = 0; i < efx->n_channels; i++)
  637. kfree(other_channel[i]);
  638. efx_init_channels(efx);
  639. efx_start_all(efx);
  640. return rc;
  641. rollback:
  642. /* Swap back */
  643. efx->rxq_entries = old_rxq_entries;
  644. efx->txq_entries = old_txq_entries;
  645. for (i = 0; i < efx->n_channels; i++) {
  646. channel = efx->channel[i];
  647. efx->channel[i] = other_channel[i];
  648. other_channel[i] = channel;
  649. }
  650. goto out;
  651. }
  652. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  653. {
  654. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  655. }
  656. /**************************************************************************
  657. *
  658. * Port handling
  659. *
  660. **************************************************************************/
  661. /* This ensures that the kernel is kept informed (via
  662. * netif_carrier_on/off) of the link status, and also maintains the
  663. * link status's stop on the port's TX queue.
  664. */
  665. void efx_link_status_changed(struct efx_nic *efx)
  666. {
  667. struct efx_link_state *link_state = &efx->link_state;
  668. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  669. * that no events are triggered between unregister_netdev() and the
  670. * driver unloading. A more general condition is that NETDEV_CHANGE
  671. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  672. if (!netif_running(efx->net_dev))
  673. return;
  674. if (efx->port_inhibited) {
  675. netif_carrier_off(efx->net_dev);
  676. return;
  677. }
  678. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  679. efx->n_link_state_changes++;
  680. if (link_state->up)
  681. netif_carrier_on(efx->net_dev);
  682. else
  683. netif_carrier_off(efx->net_dev);
  684. }
  685. /* Status message for kernel log */
  686. if (link_state->up) {
  687. netif_info(efx, link, efx->net_dev,
  688. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  689. link_state->speed, link_state->fd ? "full" : "half",
  690. efx->net_dev->mtu,
  691. (efx->promiscuous ? " [PROMISC]" : ""));
  692. } else {
  693. netif_info(efx, link, efx->net_dev, "link down\n");
  694. }
  695. }
  696. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  697. {
  698. efx->link_advertising = advertising;
  699. if (advertising) {
  700. if (advertising & ADVERTISED_Pause)
  701. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  702. else
  703. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  704. if (advertising & ADVERTISED_Asym_Pause)
  705. efx->wanted_fc ^= EFX_FC_TX;
  706. }
  707. }
  708. void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
  709. {
  710. efx->wanted_fc = wanted_fc;
  711. if (efx->link_advertising) {
  712. if (wanted_fc & EFX_FC_RX)
  713. efx->link_advertising |= (ADVERTISED_Pause |
  714. ADVERTISED_Asym_Pause);
  715. else
  716. efx->link_advertising &= ~(ADVERTISED_Pause |
  717. ADVERTISED_Asym_Pause);
  718. if (wanted_fc & EFX_FC_TX)
  719. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  720. }
  721. }
  722. static void efx_fini_port(struct efx_nic *efx);
  723. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  724. * the MAC appropriately. All other PHY configuration changes are pushed
  725. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  726. * through efx_monitor().
  727. *
  728. * Callers must hold the mac_lock
  729. */
  730. int __efx_reconfigure_port(struct efx_nic *efx)
  731. {
  732. enum efx_phy_mode phy_mode;
  733. int rc;
  734. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  735. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  736. if (efx_dev_registered(efx)) {
  737. netif_addr_lock_bh(efx->net_dev);
  738. netif_addr_unlock_bh(efx->net_dev);
  739. }
  740. /* Disable PHY transmit in mac level loopbacks */
  741. phy_mode = efx->phy_mode;
  742. if (LOOPBACK_INTERNAL(efx))
  743. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  744. else
  745. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  746. rc = efx->type->reconfigure_port(efx);
  747. if (rc)
  748. efx->phy_mode = phy_mode;
  749. return rc;
  750. }
  751. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  752. * disabled. */
  753. int efx_reconfigure_port(struct efx_nic *efx)
  754. {
  755. int rc;
  756. EFX_ASSERT_RESET_SERIALISED(efx);
  757. mutex_lock(&efx->mac_lock);
  758. rc = __efx_reconfigure_port(efx);
  759. mutex_unlock(&efx->mac_lock);
  760. return rc;
  761. }
  762. /* Asynchronous work item for changing MAC promiscuity and multicast
  763. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  764. * MAC directly. */
  765. static void efx_mac_work(struct work_struct *data)
  766. {
  767. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  768. mutex_lock(&efx->mac_lock);
  769. if (efx->port_enabled) {
  770. efx->type->push_multicast_hash(efx);
  771. efx->mac_op->reconfigure(efx);
  772. }
  773. mutex_unlock(&efx->mac_lock);
  774. }
  775. static int efx_probe_port(struct efx_nic *efx)
  776. {
  777. unsigned char *perm_addr;
  778. int rc;
  779. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  780. if (phy_flash_cfg)
  781. efx->phy_mode = PHY_MODE_SPECIAL;
  782. /* Connect up MAC/PHY operations table */
  783. rc = efx->type->probe_port(efx);
  784. if (rc)
  785. return rc;
  786. /* Sanity check MAC address */
  787. perm_addr = efx->net_dev->perm_addr;
  788. if (is_valid_ether_addr(perm_addr)) {
  789. memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
  790. } else {
  791. netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
  792. perm_addr);
  793. if (!allow_bad_hwaddr) {
  794. rc = -EINVAL;
  795. goto err;
  796. }
  797. random_ether_addr(efx->net_dev->dev_addr);
  798. netif_info(efx, probe, efx->net_dev,
  799. "using locally-generated MAC %pM\n",
  800. efx->net_dev->dev_addr);
  801. }
  802. return 0;
  803. err:
  804. efx->type->remove_port(efx);
  805. return rc;
  806. }
  807. static int efx_init_port(struct efx_nic *efx)
  808. {
  809. int rc;
  810. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  811. mutex_lock(&efx->mac_lock);
  812. rc = efx->phy_op->init(efx);
  813. if (rc)
  814. goto fail1;
  815. efx->port_initialized = true;
  816. /* Reconfigure the MAC before creating dma queues (required for
  817. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  818. efx->mac_op->reconfigure(efx);
  819. /* Ensure the PHY advertises the correct flow control settings */
  820. rc = efx->phy_op->reconfigure(efx);
  821. if (rc)
  822. goto fail2;
  823. mutex_unlock(&efx->mac_lock);
  824. return 0;
  825. fail2:
  826. efx->phy_op->fini(efx);
  827. fail1:
  828. mutex_unlock(&efx->mac_lock);
  829. return rc;
  830. }
  831. static void efx_start_port(struct efx_nic *efx)
  832. {
  833. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  834. BUG_ON(efx->port_enabled);
  835. mutex_lock(&efx->mac_lock);
  836. efx->port_enabled = true;
  837. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  838. * and then cancelled by efx_flush_all() */
  839. efx->type->push_multicast_hash(efx);
  840. efx->mac_op->reconfigure(efx);
  841. mutex_unlock(&efx->mac_lock);
  842. }
  843. /* Prevent efx_mac_work() and efx_monitor() from working */
  844. static void efx_stop_port(struct efx_nic *efx)
  845. {
  846. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  847. mutex_lock(&efx->mac_lock);
  848. efx->port_enabled = false;
  849. mutex_unlock(&efx->mac_lock);
  850. /* Serialise against efx_set_multicast_list() */
  851. if (efx_dev_registered(efx)) {
  852. netif_addr_lock_bh(efx->net_dev);
  853. netif_addr_unlock_bh(efx->net_dev);
  854. }
  855. }
  856. static void efx_fini_port(struct efx_nic *efx)
  857. {
  858. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  859. if (!efx->port_initialized)
  860. return;
  861. efx->phy_op->fini(efx);
  862. efx->port_initialized = false;
  863. efx->link_state.up = false;
  864. efx_link_status_changed(efx);
  865. }
  866. static void efx_remove_port(struct efx_nic *efx)
  867. {
  868. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  869. efx->type->remove_port(efx);
  870. }
  871. /**************************************************************************
  872. *
  873. * NIC handling
  874. *
  875. **************************************************************************/
  876. /* This configures the PCI device to enable I/O and DMA. */
  877. static int efx_init_io(struct efx_nic *efx)
  878. {
  879. struct pci_dev *pci_dev = efx->pci_dev;
  880. dma_addr_t dma_mask = efx->type->max_dma_mask;
  881. int rc;
  882. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  883. rc = pci_enable_device(pci_dev);
  884. if (rc) {
  885. netif_err(efx, probe, efx->net_dev,
  886. "failed to enable PCI device\n");
  887. goto fail1;
  888. }
  889. pci_set_master(pci_dev);
  890. /* Set the PCI DMA mask. Try all possibilities from our
  891. * genuine mask down to 32 bits, because some architectures
  892. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  893. * masks event though they reject 46 bit masks.
  894. */
  895. while (dma_mask > 0x7fffffffUL) {
  896. if (pci_dma_supported(pci_dev, dma_mask) &&
  897. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  898. break;
  899. dma_mask >>= 1;
  900. }
  901. if (rc) {
  902. netif_err(efx, probe, efx->net_dev,
  903. "could not find a suitable DMA mask\n");
  904. goto fail2;
  905. }
  906. netif_dbg(efx, probe, efx->net_dev,
  907. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  908. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  909. if (rc) {
  910. /* pci_set_consistent_dma_mask() is not *allowed* to
  911. * fail with a mask that pci_set_dma_mask() accepted,
  912. * but just in case...
  913. */
  914. netif_err(efx, probe, efx->net_dev,
  915. "failed to set consistent DMA mask\n");
  916. goto fail2;
  917. }
  918. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  919. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  920. if (rc) {
  921. netif_err(efx, probe, efx->net_dev,
  922. "request for memory BAR failed\n");
  923. rc = -EIO;
  924. goto fail3;
  925. }
  926. efx->membase = ioremap_nocache(efx->membase_phys,
  927. efx->type->mem_map_size);
  928. if (!efx->membase) {
  929. netif_err(efx, probe, efx->net_dev,
  930. "could not map memory BAR at %llx+%x\n",
  931. (unsigned long long)efx->membase_phys,
  932. efx->type->mem_map_size);
  933. rc = -ENOMEM;
  934. goto fail4;
  935. }
  936. netif_dbg(efx, probe, efx->net_dev,
  937. "memory BAR at %llx+%x (virtual %p)\n",
  938. (unsigned long long)efx->membase_phys,
  939. efx->type->mem_map_size, efx->membase);
  940. return 0;
  941. fail4:
  942. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  943. fail3:
  944. efx->membase_phys = 0;
  945. fail2:
  946. pci_disable_device(efx->pci_dev);
  947. fail1:
  948. return rc;
  949. }
  950. static void efx_fini_io(struct efx_nic *efx)
  951. {
  952. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  953. if (efx->membase) {
  954. iounmap(efx->membase);
  955. efx->membase = NULL;
  956. }
  957. if (efx->membase_phys) {
  958. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  959. efx->membase_phys = 0;
  960. }
  961. pci_disable_device(efx->pci_dev);
  962. }
  963. /* Get number of channels wanted. Each channel will have its own IRQ,
  964. * 1 RX queue and/or 2 TX queues. */
  965. static int efx_wanted_channels(void)
  966. {
  967. cpumask_var_t core_mask;
  968. int count;
  969. int cpu;
  970. if (rss_cpus)
  971. return rss_cpus;
  972. if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
  973. printk(KERN_WARNING
  974. "sfc: RSS disabled due to allocation failure\n");
  975. return 1;
  976. }
  977. count = 0;
  978. for_each_online_cpu(cpu) {
  979. if (!cpumask_test_cpu(cpu, core_mask)) {
  980. ++count;
  981. cpumask_or(core_mask, core_mask,
  982. topology_core_cpumask(cpu));
  983. }
  984. }
  985. free_cpumask_var(core_mask);
  986. return count;
  987. }
  988. static int
  989. efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
  990. {
  991. #ifdef CONFIG_RFS_ACCEL
  992. int i, rc;
  993. efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
  994. if (!efx->net_dev->rx_cpu_rmap)
  995. return -ENOMEM;
  996. for (i = 0; i < efx->n_rx_channels; i++) {
  997. rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
  998. xentries[i].vector);
  999. if (rc) {
  1000. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  1001. efx->net_dev->rx_cpu_rmap = NULL;
  1002. return rc;
  1003. }
  1004. }
  1005. #endif
  1006. return 0;
  1007. }
  1008. /* Probe the number and type of interrupts we are able to obtain, and
  1009. * the resulting numbers of channels and RX queues.
  1010. */
  1011. static int efx_probe_interrupts(struct efx_nic *efx)
  1012. {
  1013. int max_channels =
  1014. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  1015. int rc, i;
  1016. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  1017. struct msix_entry xentries[EFX_MAX_CHANNELS];
  1018. int n_channels;
  1019. n_channels = efx_wanted_channels();
  1020. if (separate_tx_channels)
  1021. n_channels *= 2;
  1022. n_channels = min(n_channels, max_channels);
  1023. for (i = 0; i < n_channels; i++)
  1024. xentries[i].entry = i;
  1025. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  1026. if (rc > 0) {
  1027. netif_err(efx, drv, efx->net_dev,
  1028. "WARNING: Insufficient MSI-X vectors"
  1029. " available (%d < %d).\n", rc, n_channels);
  1030. netif_err(efx, drv, efx->net_dev,
  1031. "WARNING: Performance may be reduced.\n");
  1032. EFX_BUG_ON_PARANOID(rc >= n_channels);
  1033. n_channels = rc;
  1034. rc = pci_enable_msix(efx->pci_dev, xentries,
  1035. n_channels);
  1036. }
  1037. if (rc == 0) {
  1038. efx->n_channels = n_channels;
  1039. if (separate_tx_channels) {
  1040. efx->n_tx_channels =
  1041. max(efx->n_channels / 2, 1U);
  1042. efx->n_rx_channels =
  1043. max(efx->n_channels -
  1044. efx->n_tx_channels, 1U);
  1045. } else {
  1046. efx->n_tx_channels = efx->n_channels;
  1047. efx->n_rx_channels = efx->n_channels;
  1048. }
  1049. rc = efx_init_rx_cpu_rmap(efx, xentries);
  1050. if (rc) {
  1051. pci_disable_msix(efx->pci_dev);
  1052. return rc;
  1053. }
  1054. for (i = 0; i < n_channels; i++)
  1055. efx_get_channel(efx, i)->irq =
  1056. xentries[i].vector;
  1057. } else {
  1058. /* Fall back to single channel MSI */
  1059. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1060. netif_err(efx, drv, efx->net_dev,
  1061. "could not enable MSI-X\n");
  1062. }
  1063. }
  1064. /* Try single interrupt MSI */
  1065. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1066. efx->n_channels = 1;
  1067. efx->n_rx_channels = 1;
  1068. efx->n_tx_channels = 1;
  1069. rc = pci_enable_msi(efx->pci_dev);
  1070. if (rc == 0) {
  1071. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1072. } else {
  1073. netif_err(efx, drv, efx->net_dev,
  1074. "could not enable MSI\n");
  1075. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1076. }
  1077. }
  1078. /* Assume legacy interrupts */
  1079. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1080. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1081. efx->n_rx_channels = 1;
  1082. efx->n_tx_channels = 1;
  1083. efx->legacy_irq = efx->pci_dev->irq;
  1084. }
  1085. return 0;
  1086. }
  1087. static void efx_remove_interrupts(struct efx_nic *efx)
  1088. {
  1089. struct efx_channel *channel;
  1090. /* Remove MSI/MSI-X interrupts */
  1091. efx_for_each_channel(channel, efx)
  1092. channel->irq = 0;
  1093. pci_disable_msi(efx->pci_dev);
  1094. pci_disable_msix(efx->pci_dev);
  1095. /* Remove legacy interrupt */
  1096. efx->legacy_irq = 0;
  1097. }
  1098. static void efx_set_channels(struct efx_nic *efx)
  1099. {
  1100. efx->tx_channel_offset =
  1101. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1102. }
  1103. static int efx_probe_nic(struct efx_nic *efx)
  1104. {
  1105. size_t i;
  1106. int rc;
  1107. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1108. /* Carry out hardware-type specific initialisation */
  1109. rc = efx->type->probe(efx);
  1110. if (rc)
  1111. return rc;
  1112. /* Determine the number of channels and queues by trying to hook
  1113. * in MSI-X interrupts. */
  1114. rc = efx_probe_interrupts(efx);
  1115. if (rc)
  1116. goto fail;
  1117. if (efx->n_channels > 1)
  1118. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1119. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1120. efx->rx_indir_table[i] = i % efx->n_rx_channels;
  1121. efx_set_channels(efx);
  1122. netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
  1123. netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
  1124. /* Initialise the interrupt moderation settings */
  1125. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
  1126. return 0;
  1127. fail:
  1128. efx->type->remove(efx);
  1129. return rc;
  1130. }
  1131. static void efx_remove_nic(struct efx_nic *efx)
  1132. {
  1133. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1134. efx_remove_interrupts(efx);
  1135. efx->type->remove(efx);
  1136. }
  1137. /**************************************************************************
  1138. *
  1139. * NIC startup/shutdown
  1140. *
  1141. *************************************************************************/
  1142. static int efx_probe_all(struct efx_nic *efx)
  1143. {
  1144. int rc;
  1145. rc = efx_probe_nic(efx);
  1146. if (rc) {
  1147. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1148. goto fail1;
  1149. }
  1150. rc = efx_probe_port(efx);
  1151. if (rc) {
  1152. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1153. goto fail2;
  1154. }
  1155. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1156. rc = efx_probe_channels(efx);
  1157. if (rc)
  1158. goto fail3;
  1159. rc = efx_probe_filters(efx);
  1160. if (rc) {
  1161. netif_err(efx, probe, efx->net_dev,
  1162. "failed to create filter tables\n");
  1163. goto fail4;
  1164. }
  1165. return 0;
  1166. fail4:
  1167. efx_remove_channels(efx);
  1168. fail3:
  1169. efx_remove_port(efx);
  1170. fail2:
  1171. efx_remove_nic(efx);
  1172. fail1:
  1173. return rc;
  1174. }
  1175. /* Called after previous invocation(s) of efx_stop_all, restarts the
  1176. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  1177. * and ensures that the port is scheduled to be reconfigured.
  1178. * This function is safe to call multiple times when the NIC is in any
  1179. * state. */
  1180. static void efx_start_all(struct efx_nic *efx)
  1181. {
  1182. struct efx_channel *channel;
  1183. EFX_ASSERT_RESET_SERIALISED(efx);
  1184. /* Check that it is appropriate to restart the interface. All
  1185. * of these flags are safe to read under just the rtnl lock */
  1186. if (efx->port_enabled)
  1187. return;
  1188. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  1189. return;
  1190. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  1191. return;
  1192. /* Mark the port as enabled so port reconfigurations can start, then
  1193. * restart the transmit interface early so the watchdog timer stops */
  1194. efx_start_port(efx);
  1195. if (efx_dev_registered(efx))
  1196. netif_tx_wake_all_queues(efx->net_dev);
  1197. efx_for_each_channel(channel, efx)
  1198. efx_start_channel(channel);
  1199. if (efx->legacy_irq)
  1200. efx->legacy_irq_enabled = true;
  1201. efx_nic_enable_interrupts(efx);
  1202. /* Switch to event based MCDI completions after enabling interrupts.
  1203. * If a reset has been scheduled, then we need to stay in polled mode.
  1204. * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
  1205. * reset_pending [modified from an atomic context], we instead guarantee
  1206. * that efx_mcdi_mode_poll() isn't reverted erroneously */
  1207. efx_mcdi_mode_event(efx);
  1208. if (efx->reset_pending != RESET_TYPE_NONE)
  1209. efx_mcdi_mode_poll(efx);
  1210. /* Start the hardware monitor if there is one. Otherwise (we're link
  1211. * event driven), we have to poll the PHY because after an event queue
  1212. * flush, we could have a missed a link state change */
  1213. if (efx->type->monitor != NULL) {
  1214. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1215. efx_monitor_interval);
  1216. } else {
  1217. mutex_lock(&efx->mac_lock);
  1218. if (efx->phy_op->poll(efx))
  1219. efx_link_status_changed(efx);
  1220. mutex_unlock(&efx->mac_lock);
  1221. }
  1222. efx->type->start_stats(efx);
  1223. }
  1224. /* Flush all delayed work. Should only be called when no more delayed work
  1225. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1226. * since we're holding the rtnl_lock at this point. */
  1227. static void efx_flush_all(struct efx_nic *efx)
  1228. {
  1229. /* Make sure the hardware monitor is stopped */
  1230. cancel_delayed_work_sync(&efx->monitor_work);
  1231. /* Stop scheduled port reconfigurations */
  1232. cancel_work_sync(&efx->mac_work);
  1233. }
  1234. /* Quiesce hardware and software without bringing the link down.
  1235. * Safe to call multiple times, when the nic and interface is in any
  1236. * state. The caller is guaranteed to subsequently be in a position
  1237. * to modify any hardware and software state they see fit without
  1238. * taking locks. */
  1239. static void efx_stop_all(struct efx_nic *efx)
  1240. {
  1241. struct efx_channel *channel;
  1242. EFX_ASSERT_RESET_SERIALISED(efx);
  1243. /* port_enabled can be read safely under the rtnl lock */
  1244. if (!efx->port_enabled)
  1245. return;
  1246. efx->type->stop_stats(efx);
  1247. /* Switch to MCDI polling on Siena before disabling interrupts */
  1248. efx_mcdi_mode_poll(efx);
  1249. /* Disable interrupts and wait for ISR to complete */
  1250. efx_nic_disable_interrupts(efx);
  1251. if (efx->legacy_irq) {
  1252. synchronize_irq(efx->legacy_irq);
  1253. efx->legacy_irq_enabled = false;
  1254. }
  1255. efx_for_each_channel(channel, efx) {
  1256. if (channel->irq)
  1257. synchronize_irq(channel->irq);
  1258. }
  1259. /* Stop all NAPI processing and synchronous rx refills */
  1260. efx_for_each_channel(channel, efx)
  1261. efx_stop_channel(channel);
  1262. /* Stop all asynchronous port reconfigurations. Since all
  1263. * event processing has already been stopped, there is no
  1264. * window to loose phy events */
  1265. efx_stop_port(efx);
  1266. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1267. efx_flush_all(efx);
  1268. /* Stop the kernel transmit interface late, so the watchdog
  1269. * timer isn't ticking over the flush */
  1270. if (efx_dev_registered(efx)) {
  1271. netif_tx_stop_all_queues(efx->net_dev);
  1272. netif_tx_lock_bh(efx->net_dev);
  1273. netif_tx_unlock_bh(efx->net_dev);
  1274. }
  1275. }
  1276. static void efx_remove_all(struct efx_nic *efx)
  1277. {
  1278. efx_remove_filters(efx);
  1279. efx_remove_channels(efx);
  1280. efx_remove_port(efx);
  1281. efx_remove_nic(efx);
  1282. }
  1283. /**************************************************************************
  1284. *
  1285. * Interrupt moderation
  1286. *
  1287. **************************************************************************/
  1288. static unsigned irq_mod_ticks(int usecs, int resolution)
  1289. {
  1290. if (usecs <= 0)
  1291. return 0; /* cannot receive interrupts ahead of time :-) */
  1292. if (usecs < resolution)
  1293. return 1; /* never round down to 0 */
  1294. return usecs / resolution;
  1295. }
  1296. /* Set interrupt moderation parameters */
  1297. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
  1298. bool rx_adaptive)
  1299. {
  1300. struct efx_channel *channel;
  1301. unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1302. unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1303. EFX_ASSERT_RESET_SERIALISED(efx);
  1304. efx->irq_rx_adaptive = rx_adaptive;
  1305. efx->irq_rx_moderation = rx_ticks;
  1306. efx_for_each_channel(channel, efx) {
  1307. if (efx_channel_has_rx_queue(channel))
  1308. channel->irq_moderation = rx_ticks;
  1309. else if (efx_channel_has_tx_queues(channel))
  1310. channel->irq_moderation = tx_ticks;
  1311. }
  1312. }
  1313. /**************************************************************************
  1314. *
  1315. * Hardware monitor
  1316. *
  1317. **************************************************************************/
  1318. /* Run periodically off the general workqueue */
  1319. static void efx_monitor(struct work_struct *data)
  1320. {
  1321. struct efx_nic *efx = container_of(data, struct efx_nic,
  1322. monitor_work.work);
  1323. netif_vdbg(efx, timer, efx->net_dev,
  1324. "hardware monitor executing on CPU %d\n",
  1325. raw_smp_processor_id());
  1326. BUG_ON(efx->type->monitor == NULL);
  1327. /* If the mac_lock is already held then it is likely a port
  1328. * reconfiguration is already in place, which will likely do
  1329. * most of the work of monitor() anyway. */
  1330. if (mutex_trylock(&efx->mac_lock)) {
  1331. if (efx->port_enabled)
  1332. efx->type->monitor(efx);
  1333. mutex_unlock(&efx->mac_lock);
  1334. }
  1335. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1336. efx_monitor_interval);
  1337. }
  1338. /**************************************************************************
  1339. *
  1340. * ioctls
  1341. *
  1342. *************************************************************************/
  1343. /* Net device ioctl
  1344. * Context: process, rtnl_lock() held.
  1345. */
  1346. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1347. {
  1348. struct efx_nic *efx = netdev_priv(net_dev);
  1349. struct mii_ioctl_data *data = if_mii(ifr);
  1350. EFX_ASSERT_RESET_SERIALISED(efx);
  1351. /* Convert phy_id from older PRTAD/DEVAD format */
  1352. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1353. (data->phy_id & 0xfc00) == 0x0400)
  1354. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1355. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1356. }
  1357. /**************************************************************************
  1358. *
  1359. * NAPI interface
  1360. *
  1361. **************************************************************************/
  1362. static void efx_init_napi(struct efx_nic *efx)
  1363. {
  1364. struct efx_channel *channel;
  1365. efx_for_each_channel(channel, efx) {
  1366. channel->napi_dev = efx->net_dev;
  1367. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1368. efx_poll, napi_weight);
  1369. }
  1370. }
  1371. static void efx_fini_napi_channel(struct efx_channel *channel)
  1372. {
  1373. if (channel->napi_dev)
  1374. netif_napi_del(&channel->napi_str);
  1375. channel->napi_dev = NULL;
  1376. }
  1377. static void efx_fini_napi(struct efx_nic *efx)
  1378. {
  1379. struct efx_channel *channel;
  1380. efx_for_each_channel(channel, efx)
  1381. efx_fini_napi_channel(channel);
  1382. }
  1383. /**************************************************************************
  1384. *
  1385. * Kernel netpoll interface
  1386. *
  1387. *************************************************************************/
  1388. #ifdef CONFIG_NET_POLL_CONTROLLER
  1389. /* Although in the common case interrupts will be disabled, this is not
  1390. * guaranteed. However, all our work happens inside the NAPI callback,
  1391. * so no locking is required.
  1392. */
  1393. static void efx_netpoll(struct net_device *net_dev)
  1394. {
  1395. struct efx_nic *efx = netdev_priv(net_dev);
  1396. struct efx_channel *channel;
  1397. efx_for_each_channel(channel, efx)
  1398. efx_schedule_channel(channel);
  1399. }
  1400. #endif
  1401. /**************************************************************************
  1402. *
  1403. * Kernel net device interface
  1404. *
  1405. *************************************************************************/
  1406. /* Context: process, rtnl_lock() held. */
  1407. static int efx_net_open(struct net_device *net_dev)
  1408. {
  1409. struct efx_nic *efx = netdev_priv(net_dev);
  1410. EFX_ASSERT_RESET_SERIALISED(efx);
  1411. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1412. raw_smp_processor_id());
  1413. if (efx->state == STATE_DISABLED)
  1414. return -EIO;
  1415. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1416. return -EBUSY;
  1417. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1418. return -EIO;
  1419. /* Notify the kernel of the link state polled during driver load,
  1420. * before the monitor starts running */
  1421. efx_link_status_changed(efx);
  1422. efx_start_all(efx);
  1423. return 0;
  1424. }
  1425. /* Context: process, rtnl_lock() held.
  1426. * Note that the kernel will ignore our return code; this method
  1427. * should really be a void.
  1428. */
  1429. static int efx_net_stop(struct net_device *net_dev)
  1430. {
  1431. struct efx_nic *efx = netdev_priv(net_dev);
  1432. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1433. raw_smp_processor_id());
  1434. if (efx->state != STATE_DISABLED) {
  1435. /* Stop the device and flush all the channels */
  1436. efx_stop_all(efx);
  1437. efx_fini_channels(efx);
  1438. efx_init_channels(efx);
  1439. }
  1440. return 0;
  1441. }
  1442. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1443. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
  1444. {
  1445. struct efx_nic *efx = netdev_priv(net_dev);
  1446. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1447. spin_lock_bh(&efx->stats_lock);
  1448. efx->type->update_stats(efx);
  1449. spin_unlock_bh(&efx->stats_lock);
  1450. stats->rx_packets = mac_stats->rx_packets;
  1451. stats->tx_packets = mac_stats->tx_packets;
  1452. stats->rx_bytes = mac_stats->rx_bytes;
  1453. stats->tx_bytes = mac_stats->tx_bytes;
  1454. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1455. stats->multicast = mac_stats->rx_multicast;
  1456. stats->collisions = mac_stats->tx_collision;
  1457. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1458. mac_stats->rx_length_error);
  1459. stats->rx_crc_errors = mac_stats->rx_bad;
  1460. stats->rx_frame_errors = mac_stats->rx_align_error;
  1461. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1462. stats->rx_missed_errors = mac_stats->rx_missed;
  1463. stats->tx_window_errors = mac_stats->tx_late_collision;
  1464. stats->rx_errors = (stats->rx_length_errors +
  1465. stats->rx_crc_errors +
  1466. stats->rx_frame_errors +
  1467. mac_stats->rx_symbol_error);
  1468. stats->tx_errors = (stats->tx_window_errors +
  1469. mac_stats->tx_bad);
  1470. return stats;
  1471. }
  1472. /* Context: netif_tx_lock held, BHs disabled. */
  1473. static void efx_watchdog(struct net_device *net_dev)
  1474. {
  1475. struct efx_nic *efx = netdev_priv(net_dev);
  1476. netif_err(efx, tx_err, efx->net_dev,
  1477. "TX stuck with port_enabled=%d: resetting channels\n",
  1478. efx->port_enabled);
  1479. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1480. }
  1481. /* Context: process, rtnl_lock() held. */
  1482. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1483. {
  1484. struct efx_nic *efx = netdev_priv(net_dev);
  1485. int rc = 0;
  1486. EFX_ASSERT_RESET_SERIALISED(efx);
  1487. if (new_mtu > EFX_MAX_MTU)
  1488. return -EINVAL;
  1489. efx_stop_all(efx);
  1490. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1491. efx_fini_channels(efx);
  1492. mutex_lock(&efx->mac_lock);
  1493. /* Reconfigure the MAC before enabling the dma queues so that
  1494. * the RX buffers don't overflow */
  1495. net_dev->mtu = new_mtu;
  1496. efx->mac_op->reconfigure(efx);
  1497. mutex_unlock(&efx->mac_lock);
  1498. efx_init_channels(efx);
  1499. efx_start_all(efx);
  1500. return rc;
  1501. }
  1502. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1503. {
  1504. struct efx_nic *efx = netdev_priv(net_dev);
  1505. struct sockaddr *addr = data;
  1506. char *new_addr = addr->sa_data;
  1507. EFX_ASSERT_RESET_SERIALISED(efx);
  1508. if (!is_valid_ether_addr(new_addr)) {
  1509. netif_err(efx, drv, efx->net_dev,
  1510. "invalid ethernet MAC address requested: %pM\n",
  1511. new_addr);
  1512. return -EINVAL;
  1513. }
  1514. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1515. /* Reconfigure the MAC */
  1516. mutex_lock(&efx->mac_lock);
  1517. efx->mac_op->reconfigure(efx);
  1518. mutex_unlock(&efx->mac_lock);
  1519. return 0;
  1520. }
  1521. /* Context: netif_addr_lock held, BHs disabled. */
  1522. static void efx_set_multicast_list(struct net_device *net_dev)
  1523. {
  1524. struct efx_nic *efx = netdev_priv(net_dev);
  1525. struct netdev_hw_addr *ha;
  1526. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1527. u32 crc;
  1528. int bit;
  1529. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1530. /* Build multicast hash table */
  1531. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1532. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1533. } else {
  1534. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1535. netdev_for_each_mc_addr(ha, net_dev) {
  1536. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1537. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1538. set_bit_le(bit, mc_hash->byte);
  1539. }
  1540. /* Broadcast packets go through the multicast hash filter.
  1541. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1542. * so we always add bit 0xff to the mask.
  1543. */
  1544. set_bit_le(0xff, mc_hash->byte);
  1545. }
  1546. if (efx->port_enabled)
  1547. queue_work(efx->workqueue, &efx->mac_work);
  1548. /* Otherwise efx_start_port() will do this */
  1549. }
  1550. static const struct net_device_ops efx_netdev_ops = {
  1551. .ndo_open = efx_net_open,
  1552. .ndo_stop = efx_net_stop,
  1553. .ndo_get_stats64 = efx_net_stats,
  1554. .ndo_tx_timeout = efx_watchdog,
  1555. .ndo_start_xmit = efx_hard_start_xmit,
  1556. .ndo_validate_addr = eth_validate_addr,
  1557. .ndo_do_ioctl = efx_ioctl,
  1558. .ndo_change_mtu = efx_change_mtu,
  1559. .ndo_set_mac_address = efx_set_mac_address,
  1560. .ndo_set_multicast_list = efx_set_multicast_list,
  1561. #ifdef CONFIG_NET_POLL_CONTROLLER
  1562. .ndo_poll_controller = efx_netpoll,
  1563. #endif
  1564. .ndo_setup_tc = efx_setup_tc,
  1565. #ifdef CONFIG_RFS_ACCEL
  1566. .ndo_rx_flow_steer = efx_filter_rfs,
  1567. #endif
  1568. };
  1569. static void efx_update_name(struct efx_nic *efx)
  1570. {
  1571. strcpy(efx->name, efx->net_dev->name);
  1572. efx_mtd_rename(efx);
  1573. efx_set_channel_names(efx);
  1574. }
  1575. static int efx_netdev_event(struct notifier_block *this,
  1576. unsigned long event, void *ptr)
  1577. {
  1578. struct net_device *net_dev = ptr;
  1579. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1580. event == NETDEV_CHANGENAME)
  1581. efx_update_name(netdev_priv(net_dev));
  1582. return NOTIFY_DONE;
  1583. }
  1584. static struct notifier_block efx_netdev_notifier = {
  1585. .notifier_call = efx_netdev_event,
  1586. };
  1587. static ssize_t
  1588. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1589. {
  1590. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1591. return sprintf(buf, "%d\n", efx->phy_type);
  1592. }
  1593. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1594. static int efx_register_netdev(struct efx_nic *efx)
  1595. {
  1596. struct net_device *net_dev = efx->net_dev;
  1597. struct efx_channel *channel;
  1598. int rc;
  1599. net_dev->watchdog_timeo = 5 * HZ;
  1600. net_dev->irq = efx->pci_dev->irq;
  1601. net_dev->netdev_ops = &efx_netdev_ops;
  1602. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1603. /* Clear MAC statistics */
  1604. efx->mac_op->update_stats(efx);
  1605. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1606. rtnl_lock();
  1607. rc = dev_alloc_name(net_dev, net_dev->name);
  1608. if (rc < 0)
  1609. goto fail_locked;
  1610. efx_update_name(efx);
  1611. rc = register_netdevice(net_dev);
  1612. if (rc)
  1613. goto fail_locked;
  1614. efx_for_each_channel(channel, efx) {
  1615. struct efx_tx_queue *tx_queue;
  1616. efx_for_each_channel_tx_queue(tx_queue, channel)
  1617. efx_init_tx_queue_core_txq(tx_queue);
  1618. }
  1619. /* Always start with carrier off; PHY events will detect the link */
  1620. netif_carrier_off(efx->net_dev);
  1621. rtnl_unlock();
  1622. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1623. if (rc) {
  1624. netif_err(efx, drv, efx->net_dev,
  1625. "failed to init net dev attributes\n");
  1626. goto fail_registered;
  1627. }
  1628. return 0;
  1629. fail_locked:
  1630. rtnl_unlock();
  1631. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1632. return rc;
  1633. fail_registered:
  1634. unregister_netdev(net_dev);
  1635. return rc;
  1636. }
  1637. static void efx_unregister_netdev(struct efx_nic *efx)
  1638. {
  1639. struct efx_channel *channel;
  1640. struct efx_tx_queue *tx_queue;
  1641. if (!efx->net_dev)
  1642. return;
  1643. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1644. /* Free up any skbs still remaining. This has to happen before
  1645. * we try to unregister the netdev as running their destructors
  1646. * may be needed to get the device ref. count to 0. */
  1647. efx_for_each_channel(channel, efx) {
  1648. efx_for_each_channel_tx_queue(tx_queue, channel)
  1649. efx_release_tx_buffers(tx_queue);
  1650. }
  1651. if (efx_dev_registered(efx)) {
  1652. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1653. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1654. unregister_netdev(efx->net_dev);
  1655. }
  1656. }
  1657. /**************************************************************************
  1658. *
  1659. * Device reset and suspend
  1660. *
  1661. **************************************************************************/
  1662. /* Tears down the entire software state and most of the hardware state
  1663. * before reset. */
  1664. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1665. {
  1666. EFX_ASSERT_RESET_SERIALISED(efx);
  1667. efx_stop_all(efx);
  1668. mutex_lock(&efx->mac_lock);
  1669. efx_fini_channels(efx);
  1670. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1671. efx->phy_op->fini(efx);
  1672. efx->type->fini(efx);
  1673. }
  1674. /* This function will always ensure that the locks acquired in
  1675. * efx_reset_down() are released. A failure return code indicates
  1676. * that we were unable to reinitialise the hardware, and the
  1677. * driver should be disabled. If ok is false, then the rx and tx
  1678. * engines are not restarted, pending a RESET_DISABLE. */
  1679. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1680. {
  1681. int rc;
  1682. EFX_ASSERT_RESET_SERIALISED(efx);
  1683. rc = efx->type->init(efx);
  1684. if (rc) {
  1685. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1686. goto fail;
  1687. }
  1688. if (!ok)
  1689. goto fail;
  1690. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1691. rc = efx->phy_op->init(efx);
  1692. if (rc)
  1693. goto fail;
  1694. if (efx->phy_op->reconfigure(efx))
  1695. netif_err(efx, drv, efx->net_dev,
  1696. "could not restore PHY settings\n");
  1697. }
  1698. efx->mac_op->reconfigure(efx);
  1699. efx_init_channels(efx);
  1700. efx_restore_filters(efx);
  1701. mutex_unlock(&efx->mac_lock);
  1702. efx_start_all(efx);
  1703. return 0;
  1704. fail:
  1705. efx->port_initialized = false;
  1706. mutex_unlock(&efx->mac_lock);
  1707. return rc;
  1708. }
  1709. /* Reset the NIC using the specified method. Note that the reset may
  1710. * fail, in which case the card will be left in an unusable state.
  1711. *
  1712. * Caller must hold the rtnl_lock.
  1713. */
  1714. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1715. {
  1716. int rc, rc2;
  1717. bool disabled;
  1718. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1719. RESET_TYPE(method));
  1720. efx_reset_down(efx, method);
  1721. rc = efx->type->reset(efx, method);
  1722. if (rc) {
  1723. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1724. goto out;
  1725. }
  1726. /* Allow resets to be rescheduled. */
  1727. efx->reset_pending = RESET_TYPE_NONE;
  1728. /* Reinitialise bus-mastering, which may have been turned off before
  1729. * the reset was scheduled. This is still appropriate, even in the
  1730. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1731. * can respond to requests. */
  1732. pci_set_master(efx->pci_dev);
  1733. out:
  1734. /* Leave device stopped if necessary */
  1735. disabled = rc || method == RESET_TYPE_DISABLE;
  1736. rc2 = efx_reset_up(efx, method, !disabled);
  1737. if (rc2) {
  1738. disabled = true;
  1739. if (!rc)
  1740. rc = rc2;
  1741. }
  1742. if (disabled) {
  1743. dev_close(efx->net_dev);
  1744. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1745. efx->state = STATE_DISABLED;
  1746. } else {
  1747. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1748. }
  1749. return rc;
  1750. }
  1751. /* The worker thread exists so that code that cannot sleep can
  1752. * schedule a reset for later.
  1753. */
  1754. static void efx_reset_work(struct work_struct *data)
  1755. {
  1756. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1757. if (efx->reset_pending == RESET_TYPE_NONE)
  1758. return;
  1759. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1760. * flag set so that efx_pci_probe_main will be retried */
  1761. if (efx->state != STATE_RUNNING) {
  1762. netif_info(efx, drv, efx->net_dev,
  1763. "scheduled reset quenched. NIC not RUNNING\n");
  1764. return;
  1765. }
  1766. rtnl_lock();
  1767. (void)efx_reset(efx, efx->reset_pending);
  1768. rtnl_unlock();
  1769. }
  1770. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1771. {
  1772. enum reset_type method;
  1773. if (efx->reset_pending != RESET_TYPE_NONE) {
  1774. netif_info(efx, drv, efx->net_dev,
  1775. "quenching already scheduled reset\n");
  1776. return;
  1777. }
  1778. switch (type) {
  1779. case RESET_TYPE_INVISIBLE:
  1780. case RESET_TYPE_ALL:
  1781. case RESET_TYPE_WORLD:
  1782. case RESET_TYPE_DISABLE:
  1783. method = type;
  1784. break;
  1785. case RESET_TYPE_RX_RECOVERY:
  1786. case RESET_TYPE_RX_DESC_FETCH:
  1787. case RESET_TYPE_TX_DESC_FETCH:
  1788. case RESET_TYPE_TX_SKIP:
  1789. method = RESET_TYPE_INVISIBLE;
  1790. break;
  1791. case RESET_TYPE_MC_FAILURE:
  1792. default:
  1793. method = RESET_TYPE_ALL;
  1794. break;
  1795. }
  1796. if (method != type)
  1797. netif_dbg(efx, drv, efx->net_dev,
  1798. "scheduling %s reset for %s\n",
  1799. RESET_TYPE(method), RESET_TYPE(type));
  1800. else
  1801. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1802. RESET_TYPE(method));
  1803. efx->reset_pending = method;
  1804. /* efx_process_channel() will no longer read events once a
  1805. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1806. efx_mcdi_mode_poll(efx);
  1807. queue_work(reset_workqueue, &efx->reset_work);
  1808. }
  1809. /**************************************************************************
  1810. *
  1811. * List of NICs we support
  1812. *
  1813. **************************************************************************/
  1814. /* PCI device ID table */
  1815. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1816. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1817. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1818. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1819. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1820. {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
  1821. .driver_data = (unsigned long) &siena_a0_nic_type},
  1822. {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
  1823. .driver_data = (unsigned long) &siena_a0_nic_type},
  1824. {0} /* end of list */
  1825. };
  1826. /**************************************************************************
  1827. *
  1828. * Dummy PHY/MAC operations
  1829. *
  1830. * Can be used for some unimplemented operations
  1831. * Needed so all function pointers are valid and do not have to be tested
  1832. * before use
  1833. *
  1834. **************************************************************************/
  1835. int efx_port_dummy_op_int(struct efx_nic *efx)
  1836. {
  1837. return 0;
  1838. }
  1839. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1840. static bool efx_port_dummy_op_poll(struct efx_nic *efx)
  1841. {
  1842. return false;
  1843. }
  1844. static struct efx_phy_operations efx_dummy_phy_operations = {
  1845. .init = efx_port_dummy_op_int,
  1846. .reconfigure = efx_port_dummy_op_int,
  1847. .poll = efx_port_dummy_op_poll,
  1848. .fini = efx_port_dummy_op_void,
  1849. };
  1850. /**************************************************************************
  1851. *
  1852. * Data housekeeping
  1853. *
  1854. **************************************************************************/
  1855. /* This zeroes out and then fills in the invariants in a struct
  1856. * efx_nic (including all sub-structures).
  1857. */
  1858. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1859. struct pci_dev *pci_dev, struct net_device *net_dev)
  1860. {
  1861. int i;
  1862. /* Initialise common structures */
  1863. memset(efx, 0, sizeof(*efx));
  1864. spin_lock_init(&efx->biu_lock);
  1865. #ifdef CONFIG_SFC_MTD
  1866. INIT_LIST_HEAD(&efx->mtd_list);
  1867. #endif
  1868. INIT_WORK(&efx->reset_work, efx_reset_work);
  1869. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1870. efx->pci_dev = pci_dev;
  1871. efx->msg_enable = debug;
  1872. efx->state = STATE_INIT;
  1873. efx->reset_pending = RESET_TYPE_NONE;
  1874. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1875. efx->net_dev = net_dev;
  1876. efx->rx_checksum_enabled = true;
  1877. spin_lock_init(&efx->stats_lock);
  1878. mutex_init(&efx->mac_lock);
  1879. efx->mac_op = type->default_mac_ops;
  1880. efx->phy_op = &efx_dummy_phy_operations;
  1881. efx->mdio.dev = net_dev;
  1882. INIT_WORK(&efx->mac_work, efx_mac_work);
  1883. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1884. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  1885. if (!efx->channel[i])
  1886. goto fail;
  1887. }
  1888. efx->type = type;
  1889. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1890. /* Higher numbered interrupt modes are less capable! */
  1891. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1892. interrupt_mode);
  1893. /* Would be good to use the net_dev name, but we're too early */
  1894. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1895. pci_name(pci_dev));
  1896. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1897. if (!efx->workqueue)
  1898. goto fail;
  1899. return 0;
  1900. fail:
  1901. efx_fini_struct(efx);
  1902. return -ENOMEM;
  1903. }
  1904. static void efx_fini_struct(struct efx_nic *efx)
  1905. {
  1906. int i;
  1907. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  1908. kfree(efx->channel[i]);
  1909. if (efx->workqueue) {
  1910. destroy_workqueue(efx->workqueue);
  1911. efx->workqueue = NULL;
  1912. }
  1913. }
  1914. /**************************************************************************
  1915. *
  1916. * PCI interface
  1917. *
  1918. **************************************************************************/
  1919. /* Main body of final NIC shutdown code
  1920. * This is called only at module unload (or hotplug removal).
  1921. */
  1922. static void efx_pci_remove_main(struct efx_nic *efx)
  1923. {
  1924. #ifdef CONFIG_RFS_ACCEL
  1925. free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
  1926. efx->net_dev->rx_cpu_rmap = NULL;
  1927. #endif
  1928. efx_nic_fini_interrupt(efx);
  1929. efx_fini_channels(efx);
  1930. efx_fini_port(efx);
  1931. efx->type->fini(efx);
  1932. efx_fini_napi(efx);
  1933. efx_remove_all(efx);
  1934. }
  1935. /* Final NIC shutdown
  1936. * This is called only at module unload (or hotplug removal).
  1937. */
  1938. static void efx_pci_remove(struct pci_dev *pci_dev)
  1939. {
  1940. struct efx_nic *efx;
  1941. efx = pci_get_drvdata(pci_dev);
  1942. if (!efx)
  1943. return;
  1944. /* Mark the NIC as fini, then stop the interface */
  1945. rtnl_lock();
  1946. efx->state = STATE_FINI;
  1947. dev_close(efx->net_dev);
  1948. /* Allow any queued efx_resets() to complete */
  1949. rtnl_unlock();
  1950. efx_unregister_netdev(efx);
  1951. efx_mtd_remove(efx);
  1952. /* Wait for any scheduled resets to complete. No more will be
  1953. * scheduled from this point because efx_stop_all() has been
  1954. * called, we are no longer registered with driverlink, and
  1955. * the net_device's have been removed. */
  1956. cancel_work_sync(&efx->reset_work);
  1957. efx_pci_remove_main(efx);
  1958. efx_fini_io(efx);
  1959. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  1960. pci_set_drvdata(pci_dev, NULL);
  1961. efx_fini_struct(efx);
  1962. free_netdev(efx->net_dev);
  1963. };
  1964. /* Main body of NIC initialisation
  1965. * This is called at module load (or hotplug insertion, theoretically).
  1966. */
  1967. static int efx_pci_probe_main(struct efx_nic *efx)
  1968. {
  1969. int rc;
  1970. /* Do start-of-day initialisation */
  1971. rc = efx_probe_all(efx);
  1972. if (rc)
  1973. goto fail1;
  1974. efx_init_napi(efx);
  1975. rc = efx->type->init(efx);
  1976. if (rc) {
  1977. netif_err(efx, probe, efx->net_dev,
  1978. "failed to initialise NIC\n");
  1979. goto fail3;
  1980. }
  1981. rc = efx_init_port(efx);
  1982. if (rc) {
  1983. netif_err(efx, probe, efx->net_dev,
  1984. "failed to initialise port\n");
  1985. goto fail4;
  1986. }
  1987. efx_init_channels(efx);
  1988. rc = efx_nic_init_interrupt(efx);
  1989. if (rc)
  1990. goto fail5;
  1991. return 0;
  1992. fail5:
  1993. efx_fini_channels(efx);
  1994. efx_fini_port(efx);
  1995. fail4:
  1996. efx->type->fini(efx);
  1997. fail3:
  1998. efx_fini_napi(efx);
  1999. efx_remove_all(efx);
  2000. fail1:
  2001. return rc;
  2002. }
  2003. /* NIC initialisation
  2004. *
  2005. * This is called at module load (or hotplug insertion,
  2006. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  2007. * sets up and registers the network devices with the kernel and hooks
  2008. * the interrupt service routine. It does not prepare the device for
  2009. * transmission; this is left to the first time one of the network
  2010. * interfaces is brought up (i.e. efx_net_open).
  2011. */
  2012. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  2013. const struct pci_device_id *entry)
  2014. {
  2015. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  2016. struct net_device *net_dev;
  2017. struct efx_nic *efx;
  2018. int i, rc;
  2019. /* Allocate and initialise a struct net_device and struct efx_nic */
  2020. net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
  2021. EFX_MAX_RX_QUEUES);
  2022. if (!net_dev)
  2023. return -ENOMEM;
  2024. net_dev->features |= (type->offload_features | NETIF_F_SG |
  2025. NETIF_F_HIGHDMA | NETIF_F_TSO |
  2026. NETIF_F_GRO);
  2027. if (type->offload_features & NETIF_F_V6_CSUM)
  2028. net_dev->features |= NETIF_F_TSO6;
  2029. /* Mask for features that also apply to VLAN devices */
  2030. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  2031. NETIF_F_HIGHDMA | NETIF_F_TSO);
  2032. efx = netdev_priv(net_dev);
  2033. pci_set_drvdata(pci_dev, efx);
  2034. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2035. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  2036. if (rc)
  2037. goto fail1;
  2038. netif_info(efx, probe, efx->net_dev,
  2039. "Solarflare Communications NIC detected\n");
  2040. /* Set up basic I/O (BAR mappings etc) */
  2041. rc = efx_init_io(efx);
  2042. if (rc)
  2043. goto fail2;
  2044. /* No serialisation is required with the reset path because
  2045. * we're in STATE_INIT. */
  2046. for (i = 0; i < 5; i++) {
  2047. rc = efx_pci_probe_main(efx);
  2048. /* Serialise against efx_reset(). No more resets will be
  2049. * scheduled since efx_stop_all() has been called, and we
  2050. * have not and never have been registered with either
  2051. * the rtnetlink or driverlink layers. */
  2052. cancel_work_sync(&efx->reset_work);
  2053. if (rc == 0) {
  2054. if (efx->reset_pending != RESET_TYPE_NONE) {
  2055. /* If there was a scheduled reset during
  2056. * probe, the NIC is probably hosed anyway */
  2057. efx_pci_remove_main(efx);
  2058. rc = -EIO;
  2059. } else {
  2060. break;
  2061. }
  2062. }
  2063. /* Retry if a recoverably reset event has been scheduled */
  2064. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  2065. (efx->reset_pending != RESET_TYPE_ALL))
  2066. goto fail3;
  2067. efx->reset_pending = RESET_TYPE_NONE;
  2068. }
  2069. if (rc) {
  2070. netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
  2071. goto fail4;
  2072. }
  2073. /* Switch to the running state before we expose the device to the OS,
  2074. * so that dev_open()|efx_start_all() will actually start the device */
  2075. efx->state = STATE_RUNNING;
  2076. rc = efx_register_netdev(efx);
  2077. if (rc)
  2078. goto fail5;
  2079. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2080. rtnl_lock();
  2081. efx_mtd_probe(efx); /* allowed to fail */
  2082. rtnl_unlock();
  2083. return 0;
  2084. fail5:
  2085. efx_pci_remove_main(efx);
  2086. fail4:
  2087. fail3:
  2088. efx_fini_io(efx);
  2089. fail2:
  2090. efx_fini_struct(efx);
  2091. fail1:
  2092. WARN_ON(rc > 0);
  2093. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2094. free_netdev(net_dev);
  2095. return rc;
  2096. }
  2097. static int efx_pm_freeze(struct device *dev)
  2098. {
  2099. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2100. efx->state = STATE_FINI;
  2101. netif_device_detach(efx->net_dev);
  2102. efx_stop_all(efx);
  2103. efx_fini_channels(efx);
  2104. return 0;
  2105. }
  2106. static int efx_pm_thaw(struct device *dev)
  2107. {
  2108. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2109. efx->state = STATE_INIT;
  2110. efx_init_channels(efx);
  2111. mutex_lock(&efx->mac_lock);
  2112. efx->phy_op->reconfigure(efx);
  2113. mutex_unlock(&efx->mac_lock);
  2114. efx_start_all(efx);
  2115. netif_device_attach(efx->net_dev);
  2116. efx->state = STATE_RUNNING;
  2117. efx->type->resume_wol(efx);
  2118. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2119. queue_work(reset_workqueue, &efx->reset_work);
  2120. return 0;
  2121. }
  2122. static int efx_pm_poweroff(struct device *dev)
  2123. {
  2124. struct pci_dev *pci_dev = to_pci_dev(dev);
  2125. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2126. efx->type->fini(efx);
  2127. efx->reset_pending = RESET_TYPE_NONE;
  2128. pci_save_state(pci_dev);
  2129. return pci_set_power_state(pci_dev, PCI_D3hot);
  2130. }
  2131. /* Used for both resume and restore */
  2132. static int efx_pm_resume(struct device *dev)
  2133. {
  2134. struct pci_dev *pci_dev = to_pci_dev(dev);
  2135. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2136. int rc;
  2137. rc = pci_set_power_state(pci_dev, PCI_D0);
  2138. if (rc)
  2139. return rc;
  2140. pci_restore_state(pci_dev);
  2141. rc = pci_enable_device(pci_dev);
  2142. if (rc)
  2143. return rc;
  2144. pci_set_master(efx->pci_dev);
  2145. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2146. if (rc)
  2147. return rc;
  2148. rc = efx->type->init(efx);
  2149. if (rc)
  2150. return rc;
  2151. efx_pm_thaw(dev);
  2152. return 0;
  2153. }
  2154. static int efx_pm_suspend(struct device *dev)
  2155. {
  2156. int rc;
  2157. efx_pm_freeze(dev);
  2158. rc = efx_pm_poweroff(dev);
  2159. if (rc)
  2160. efx_pm_resume(dev);
  2161. return rc;
  2162. }
  2163. static struct dev_pm_ops efx_pm_ops = {
  2164. .suspend = efx_pm_suspend,
  2165. .resume = efx_pm_resume,
  2166. .freeze = efx_pm_freeze,
  2167. .thaw = efx_pm_thaw,
  2168. .poweroff = efx_pm_poweroff,
  2169. .restore = efx_pm_resume,
  2170. };
  2171. static struct pci_driver efx_pci_driver = {
  2172. .name = KBUILD_MODNAME,
  2173. .id_table = efx_pci_table,
  2174. .probe = efx_pci_probe,
  2175. .remove = efx_pci_remove,
  2176. .driver.pm = &efx_pm_ops,
  2177. };
  2178. /**************************************************************************
  2179. *
  2180. * Kernel module interface
  2181. *
  2182. *************************************************************************/
  2183. module_param(interrupt_mode, uint, 0444);
  2184. MODULE_PARM_DESC(interrupt_mode,
  2185. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2186. static int __init efx_init_module(void)
  2187. {
  2188. int rc;
  2189. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2190. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2191. if (rc)
  2192. goto err_notifier;
  2193. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2194. if (!reset_workqueue) {
  2195. rc = -ENOMEM;
  2196. goto err_reset;
  2197. }
  2198. rc = pci_register_driver(&efx_pci_driver);
  2199. if (rc < 0)
  2200. goto err_pci;
  2201. return 0;
  2202. err_pci:
  2203. destroy_workqueue(reset_workqueue);
  2204. err_reset:
  2205. unregister_netdevice_notifier(&efx_netdev_notifier);
  2206. err_notifier:
  2207. return rc;
  2208. }
  2209. static void __exit efx_exit_module(void)
  2210. {
  2211. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2212. pci_unregister_driver(&efx_pci_driver);
  2213. destroy_workqueue(reset_workqueue);
  2214. unregister_netdevice_notifier(&efx_netdev_notifier);
  2215. }
  2216. module_init(efx_init_module);
  2217. module_exit(efx_exit_module);
  2218. MODULE_AUTHOR("Solarflare Communications and "
  2219. "Michael Brown <mbrown@fensystems.co.uk>");
  2220. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2221. MODULE_LICENSE("GPL");
  2222. MODULE_DEVICE_TABLE(pci, efx_pci_table);