ixgbevf_main.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581
  1. /*******************************************************************************
  2. Intel 82599 Virtual Function driver
  3. Copyright(c) 1999 - 2010 Intel Corporation.
  4. This program is free software; you can redistribute it and/or modify it
  5. under the terms and conditions of the GNU General Public License,
  6. version 2, as published by the Free Software Foundation.
  7. This program is distributed in the hope it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc.,
  13. 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  14. The full GNU General Public License is included in this distribution in
  15. the file called "COPYING".
  16. Contact Information:
  17. e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /******************************************************************************
  21. Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
  22. ******************************************************************************/
  23. #include <linux/types.h>
  24. #include <linux/module.h>
  25. #include <linux/pci.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/string.h>
  29. #include <linux/in.h>
  30. #include <linux/ip.h>
  31. #include <linux/tcp.h>
  32. #include <linux/ipv6.h>
  33. #include <linux/slab.h>
  34. #include <net/checksum.h>
  35. #include <net/ip6_checksum.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include "ixgbevf.h"
  39. char ixgbevf_driver_name[] = "ixgbevf";
  40. static const char ixgbevf_driver_string[] =
  41. "Intel(R) 82599 Virtual Function";
  42. #define DRV_VERSION "1.1.0-k0"
  43. const char ixgbevf_driver_version[] = DRV_VERSION;
  44. static char ixgbevf_copyright[] =
  45. "Copyright (c) 2009 - 2010 Intel Corporation.";
  46. static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
  47. [board_82599_vf] = &ixgbevf_82599_vf_info,
  48. [board_X540_vf] = &ixgbevf_X540_vf_info,
  49. };
  50. /* ixgbevf_pci_tbl - PCI Device ID Table
  51. *
  52. * Wildcard entries (PCI_ANY_ID) should come last
  53. * Last entry must be all 0s
  54. *
  55. * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  56. * Class, Class Mask, private data (not used) }
  57. */
  58. static struct pci_device_id ixgbevf_pci_tbl[] = {
  59. {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
  60. board_82599_vf},
  61. {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
  62. board_X540_vf},
  63. /* required last entry */
  64. {0, }
  65. };
  66. MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
  67. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  68. MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
  69. MODULE_LICENSE("GPL");
  70. MODULE_VERSION(DRV_VERSION);
  71. #define DEFAULT_DEBUG_LEVEL_SHIFT 3
  72. /* forward decls */
  73. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
  74. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  75. u32 itr_reg);
  76. static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
  77. struct ixgbevf_ring *rx_ring,
  78. u32 val)
  79. {
  80. /*
  81. * Force memory writes to complete before letting h/w
  82. * know there are new descriptors to fetch. (Only
  83. * applicable for weak-ordered memory model archs,
  84. * such as IA-64).
  85. */
  86. wmb();
  87. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
  88. }
  89. /*
  90. * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
  91. * @adapter: pointer to adapter struct
  92. * @direction: 0 for Rx, 1 for Tx, -1 for other causes
  93. * @queue: queue to map the corresponding interrupt to
  94. * @msix_vector: the vector to map to the corresponding queue
  95. *
  96. */
  97. static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
  98. u8 queue, u8 msix_vector)
  99. {
  100. u32 ivar, index;
  101. struct ixgbe_hw *hw = &adapter->hw;
  102. if (direction == -1) {
  103. /* other causes */
  104. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  105. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
  106. ivar &= ~0xFF;
  107. ivar |= msix_vector;
  108. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
  109. } else {
  110. /* tx or rx causes */
  111. msix_vector |= IXGBE_IVAR_ALLOC_VAL;
  112. index = ((16 * (queue & 1)) + (8 * direction));
  113. ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
  114. ivar &= ~(0xFF << index);
  115. ivar |= (msix_vector << index);
  116. IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
  117. }
  118. }
  119. static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
  120. struct ixgbevf_tx_buffer
  121. *tx_buffer_info)
  122. {
  123. if (tx_buffer_info->dma) {
  124. if (tx_buffer_info->mapped_as_page)
  125. dma_unmap_page(&adapter->pdev->dev,
  126. tx_buffer_info->dma,
  127. tx_buffer_info->length,
  128. DMA_TO_DEVICE);
  129. else
  130. dma_unmap_single(&adapter->pdev->dev,
  131. tx_buffer_info->dma,
  132. tx_buffer_info->length,
  133. DMA_TO_DEVICE);
  134. tx_buffer_info->dma = 0;
  135. }
  136. if (tx_buffer_info->skb) {
  137. dev_kfree_skb_any(tx_buffer_info->skb);
  138. tx_buffer_info->skb = NULL;
  139. }
  140. tx_buffer_info->time_stamp = 0;
  141. /* tx_buffer_info must be completely set up in the transmit path */
  142. }
  143. static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
  144. struct ixgbevf_ring *tx_ring,
  145. unsigned int eop)
  146. {
  147. struct ixgbe_hw *hw = &adapter->hw;
  148. u32 head, tail;
  149. /* Detect a transmit hang in hardware, this serializes the
  150. * check with the clearing of time_stamp and movement of eop */
  151. head = readl(hw->hw_addr + tx_ring->head);
  152. tail = readl(hw->hw_addr + tx_ring->tail);
  153. adapter->detect_tx_hung = false;
  154. if ((head != tail) &&
  155. tx_ring->tx_buffer_info[eop].time_stamp &&
  156. time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
  157. /* detected Tx unit hang */
  158. union ixgbe_adv_tx_desc *tx_desc;
  159. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  160. printk(KERN_ERR "Detected Tx Unit Hang\n"
  161. " Tx Queue <%d>\n"
  162. " TDH, TDT <%x>, <%x>\n"
  163. " next_to_use <%x>\n"
  164. " next_to_clean <%x>\n"
  165. "tx_buffer_info[next_to_clean]\n"
  166. " time_stamp <%lx>\n"
  167. " jiffies <%lx>\n",
  168. tx_ring->queue_index,
  169. head, tail,
  170. tx_ring->next_to_use, eop,
  171. tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
  172. return true;
  173. }
  174. return false;
  175. }
  176. #define IXGBE_MAX_TXD_PWR 14
  177. #define IXGBE_MAX_DATA_PER_TXD (1 << IXGBE_MAX_TXD_PWR)
  178. /* Tx Descriptors needed, worst case */
  179. #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
  180. (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
  181. #ifdef MAX_SKB_FRAGS
  182. #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
  183. MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1) /* for context */
  184. #else
  185. #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
  186. #endif
  187. static void ixgbevf_tx_timeout(struct net_device *netdev);
  188. /**
  189. * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
  190. * @adapter: board private structure
  191. * @tx_ring: tx ring to clean
  192. **/
  193. static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
  194. struct ixgbevf_ring *tx_ring)
  195. {
  196. struct net_device *netdev = adapter->netdev;
  197. struct ixgbe_hw *hw = &adapter->hw;
  198. union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
  199. struct ixgbevf_tx_buffer *tx_buffer_info;
  200. unsigned int i, eop, count = 0;
  201. unsigned int total_bytes = 0, total_packets = 0;
  202. i = tx_ring->next_to_clean;
  203. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  204. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  205. while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
  206. (count < tx_ring->work_limit)) {
  207. bool cleaned = false;
  208. rmb(); /* read buffer_info after eop_desc */
  209. for ( ; !cleaned; count++) {
  210. struct sk_buff *skb;
  211. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  212. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  213. cleaned = (i == eop);
  214. skb = tx_buffer_info->skb;
  215. if (cleaned && skb) {
  216. unsigned int segs, bytecount;
  217. /* gso_segs is currently only valid for tcp */
  218. segs = skb_shinfo(skb)->gso_segs ?: 1;
  219. /* multiply data chunks by size of headers */
  220. bytecount = ((segs - 1) * skb_headlen(skb)) +
  221. skb->len;
  222. total_packets += segs;
  223. total_bytes += bytecount;
  224. }
  225. ixgbevf_unmap_and_free_tx_resource(adapter,
  226. tx_buffer_info);
  227. tx_desc->wb.status = 0;
  228. i++;
  229. if (i == tx_ring->count)
  230. i = 0;
  231. }
  232. eop = tx_ring->tx_buffer_info[i].next_to_watch;
  233. eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
  234. }
  235. tx_ring->next_to_clean = i;
  236. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  237. if (unlikely(count && netif_carrier_ok(netdev) &&
  238. (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  239. /* Make sure that anybody stopping the queue after this
  240. * sees the new next_to_clean.
  241. */
  242. smp_mb();
  243. #ifdef HAVE_TX_MQ
  244. if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
  245. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  246. netif_wake_subqueue(netdev, tx_ring->queue_index);
  247. ++adapter->restart_queue;
  248. }
  249. #else
  250. if (netif_queue_stopped(netdev) &&
  251. !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
  252. netif_wake_queue(netdev);
  253. ++adapter->restart_queue;
  254. }
  255. #endif
  256. }
  257. if (adapter->detect_tx_hung) {
  258. if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
  259. /* schedule immediate reset if we believe we hung */
  260. printk(KERN_INFO
  261. "tx hang %d detected, resetting adapter\n",
  262. adapter->tx_timeout_count + 1);
  263. ixgbevf_tx_timeout(adapter->netdev);
  264. }
  265. }
  266. /* re-arm the interrupt */
  267. if ((count >= tx_ring->work_limit) &&
  268. (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
  269. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
  270. }
  271. tx_ring->total_bytes += total_bytes;
  272. tx_ring->total_packets += total_packets;
  273. netdev->stats.tx_bytes += total_bytes;
  274. netdev->stats.tx_packets += total_packets;
  275. return count < tx_ring->work_limit;
  276. }
  277. /**
  278. * ixgbevf_receive_skb - Send a completed packet up the stack
  279. * @q_vector: structure containing interrupt and ring information
  280. * @skb: packet to send up
  281. * @status: hardware indication of status of receive
  282. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  283. * @rx_desc: rx descriptor
  284. **/
  285. static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
  286. struct sk_buff *skb, u8 status,
  287. struct ixgbevf_ring *ring,
  288. union ixgbe_adv_rx_desc *rx_desc)
  289. {
  290. struct ixgbevf_adapter *adapter = q_vector->adapter;
  291. bool is_vlan = (status & IXGBE_RXD_STAT_VP);
  292. u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
  293. int ret;
  294. if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
  295. if (adapter->vlgrp && is_vlan)
  296. vlan_gro_receive(&q_vector->napi,
  297. adapter->vlgrp,
  298. tag, skb);
  299. else
  300. napi_gro_receive(&q_vector->napi, skb);
  301. } else {
  302. if (adapter->vlgrp && is_vlan)
  303. ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
  304. else
  305. ret = netif_rx(skb);
  306. }
  307. }
  308. /**
  309. * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
  310. * @adapter: address of board private structure
  311. * @status_err: hardware indication of status of receive
  312. * @skb: skb currently being received and modified
  313. **/
  314. static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
  315. u32 status_err, struct sk_buff *skb)
  316. {
  317. skb_checksum_none_assert(skb);
  318. /* Rx csum disabled */
  319. if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
  320. return;
  321. /* if IP and error */
  322. if ((status_err & IXGBE_RXD_STAT_IPCS) &&
  323. (status_err & IXGBE_RXDADV_ERR_IPE)) {
  324. adapter->hw_csum_rx_error++;
  325. return;
  326. }
  327. if (!(status_err & IXGBE_RXD_STAT_L4CS))
  328. return;
  329. if (status_err & IXGBE_RXDADV_ERR_TCPE) {
  330. adapter->hw_csum_rx_error++;
  331. return;
  332. }
  333. /* It must be a TCP or UDP packet with a valid checksum */
  334. skb->ip_summed = CHECKSUM_UNNECESSARY;
  335. adapter->hw_csum_rx_good++;
  336. }
  337. /**
  338. * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
  339. * @adapter: address of board private structure
  340. **/
  341. static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
  342. struct ixgbevf_ring *rx_ring,
  343. int cleaned_count)
  344. {
  345. struct pci_dev *pdev = adapter->pdev;
  346. union ixgbe_adv_rx_desc *rx_desc;
  347. struct ixgbevf_rx_buffer *bi;
  348. struct sk_buff *skb;
  349. unsigned int i;
  350. unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
  351. i = rx_ring->next_to_use;
  352. bi = &rx_ring->rx_buffer_info[i];
  353. while (cleaned_count--) {
  354. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  355. if (!bi->page_dma &&
  356. (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
  357. if (!bi->page) {
  358. bi->page = netdev_alloc_page(adapter->netdev);
  359. if (!bi->page) {
  360. adapter->alloc_rx_page_failed++;
  361. goto no_buffers;
  362. }
  363. bi->page_offset = 0;
  364. } else {
  365. /* use a half page if we're re-using */
  366. bi->page_offset ^= (PAGE_SIZE / 2);
  367. }
  368. bi->page_dma = dma_map_page(&pdev->dev, bi->page,
  369. bi->page_offset,
  370. (PAGE_SIZE / 2),
  371. DMA_FROM_DEVICE);
  372. }
  373. skb = bi->skb;
  374. if (!skb) {
  375. skb = netdev_alloc_skb(adapter->netdev,
  376. bufsz);
  377. if (!skb) {
  378. adapter->alloc_rx_buff_failed++;
  379. goto no_buffers;
  380. }
  381. /*
  382. * Make buffer alignment 2 beyond a 16 byte boundary
  383. * this will result in a 16 byte aligned IP header after
  384. * the 14 byte MAC header is removed
  385. */
  386. skb_reserve(skb, NET_IP_ALIGN);
  387. bi->skb = skb;
  388. }
  389. if (!bi->dma) {
  390. bi->dma = dma_map_single(&pdev->dev, skb->data,
  391. rx_ring->rx_buf_len,
  392. DMA_FROM_DEVICE);
  393. }
  394. /* Refresh the desc even if buffer_addrs didn't change because
  395. * each write-back erases this info. */
  396. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  397. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  398. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  399. } else {
  400. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  401. }
  402. i++;
  403. if (i == rx_ring->count)
  404. i = 0;
  405. bi = &rx_ring->rx_buffer_info[i];
  406. }
  407. no_buffers:
  408. if (rx_ring->next_to_use != i) {
  409. rx_ring->next_to_use = i;
  410. if (i-- == 0)
  411. i = (rx_ring->count - 1);
  412. ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
  413. }
  414. }
  415. static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
  416. u64 qmask)
  417. {
  418. u32 mask;
  419. struct ixgbe_hw *hw = &adapter->hw;
  420. mask = (qmask & 0xFFFFFFFF);
  421. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  422. }
  423. static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
  424. {
  425. return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
  426. }
  427. static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
  428. {
  429. return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
  430. }
  431. static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
  432. struct ixgbevf_ring *rx_ring,
  433. int *work_done, int work_to_do)
  434. {
  435. struct ixgbevf_adapter *adapter = q_vector->adapter;
  436. struct pci_dev *pdev = adapter->pdev;
  437. union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
  438. struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
  439. struct sk_buff *skb;
  440. unsigned int i;
  441. u32 len, staterr;
  442. u16 hdr_info;
  443. bool cleaned = false;
  444. int cleaned_count = 0;
  445. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  446. i = rx_ring->next_to_clean;
  447. rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
  448. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  449. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  450. while (staterr & IXGBE_RXD_STAT_DD) {
  451. u32 upper_len = 0;
  452. if (*work_done >= work_to_do)
  453. break;
  454. (*work_done)++;
  455. rmb(); /* read descriptor and rx_buffer_info after status DD */
  456. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  457. hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
  458. len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
  459. IXGBE_RXDADV_HDRBUFLEN_SHIFT;
  460. if (hdr_info & IXGBE_RXDADV_SPH)
  461. adapter->rx_hdr_split++;
  462. if (len > IXGBEVF_RX_HDR_SIZE)
  463. len = IXGBEVF_RX_HDR_SIZE;
  464. upper_len = le16_to_cpu(rx_desc->wb.upper.length);
  465. } else {
  466. len = le16_to_cpu(rx_desc->wb.upper.length);
  467. }
  468. cleaned = true;
  469. skb = rx_buffer_info->skb;
  470. prefetch(skb->data - NET_IP_ALIGN);
  471. rx_buffer_info->skb = NULL;
  472. if (rx_buffer_info->dma) {
  473. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  474. rx_ring->rx_buf_len,
  475. DMA_FROM_DEVICE);
  476. rx_buffer_info->dma = 0;
  477. skb_put(skb, len);
  478. }
  479. if (upper_len) {
  480. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  481. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  482. rx_buffer_info->page_dma = 0;
  483. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  484. rx_buffer_info->page,
  485. rx_buffer_info->page_offset,
  486. upper_len);
  487. if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
  488. (page_count(rx_buffer_info->page) != 1))
  489. rx_buffer_info->page = NULL;
  490. else
  491. get_page(rx_buffer_info->page);
  492. skb->len += upper_len;
  493. skb->data_len += upper_len;
  494. skb->truesize += upper_len;
  495. }
  496. i++;
  497. if (i == rx_ring->count)
  498. i = 0;
  499. next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
  500. prefetch(next_rxd);
  501. cleaned_count++;
  502. next_buffer = &rx_ring->rx_buffer_info[i];
  503. if (!(staterr & IXGBE_RXD_STAT_EOP)) {
  504. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  505. rx_buffer_info->skb = next_buffer->skb;
  506. rx_buffer_info->dma = next_buffer->dma;
  507. next_buffer->skb = skb;
  508. next_buffer->dma = 0;
  509. } else {
  510. skb->next = next_buffer->skb;
  511. skb->next->prev = skb;
  512. }
  513. adapter->non_eop_descs++;
  514. goto next_desc;
  515. }
  516. /* ERR_MASK will only have valid bits if EOP set */
  517. if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
  518. dev_kfree_skb_irq(skb);
  519. goto next_desc;
  520. }
  521. ixgbevf_rx_checksum(adapter, staterr, skb);
  522. /* probably a little skewed due to removing CRC */
  523. total_rx_bytes += skb->len;
  524. total_rx_packets++;
  525. /*
  526. * Work around issue of some types of VM to VM loop back
  527. * packets not getting split correctly
  528. */
  529. if (staterr & IXGBE_RXD_STAT_LB) {
  530. u32 header_fixup_len = skb_headlen(skb);
  531. if (header_fixup_len < 14)
  532. skb_push(skb, header_fixup_len);
  533. }
  534. skb->protocol = eth_type_trans(skb, adapter->netdev);
  535. ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
  536. next_desc:
  537. rx_desc->wb.upper.status_error = 0;
  538. /* return some buffers to hardware, one at a time is too slow */
  539. if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
  540. ixgbevf_alloc_rx_buffers(adapter, rx_ring,
  541. cleaned_count);
  542. cleaned_count = 0;
  543. }
  544. /* use prefetched values */
  545. rx_desc = next_rxd;
  546. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  547. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  548. }
  549. rx_ring->next_to_clean = i;
  550. cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
  551. if (cleaned_count)
  552. ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
  553. rx_ring->total_packets += total_rx_packets;
  554. rx_ring->total_bytes += total_rx_bytes;
  555. adapter->netdev->stats.rx_bytes += total_rx_bytes;
  556. adapter->netdev->stats.rx_packets += total_rx_packets;
  557. return cleaned;
  558. }
  559. /**
  560. * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
  561. * @napi: napi struct with our devices info in it
  562. * @budget: amount of work driver is allowed to do this pass, in packets
  563. *
  564. * This function is optimized for cleaning one queue only on a single
  565. * q_vector!!!
  566. **/
  567. static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
  568. {
  569. struct ixgbevf_q_vector *q_vector =
  570. container_of(napi, struct ixgbevf_q_vector, napi);
  571. struct ixgbevf_adapter *adapter = q_vector->adapter;
  572. struct ixgbevf_ring *rx_ring = NULL;
  573. int work_done = 0;
  574. long r_idx;
  575. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  576. rx_ring = &(adapter->rx_ring[r_idx]);
  577. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  578. /* If all Rx work done, exit the polling mode */
  579. if (work_done < budget) {
  580. napi_complete(napi);
  581. if (adapter->itr_setting & 1)
  582. ixgbevf_set_itr_msix(q_vector);
  583. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  584. ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
  585. }
  586. return work_done;
  587. }
  588. /**
  589. * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
  590. * @napi: napi struct with our devices info in it
  591. * @budget: amount of work driver is allowed to do this pass, in packets
  592. *
  593. * This function will clean more than one rx queue associated with a
  594. * q_vector.
  595. **/
  596. static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
  597. {
  598. struct ixgbevf_q_vector *q_vector =
  599. container_of(napi, struct ixgbevf_q_vector, napi);
  600. struct ixgbevf_adapter *adapter = q_vector->adapter;
  601. struct ixgbevf_ring *rx_ring = NULL;
  602. int work_done = 0, i;
  603. long r_idx;
  604. u64 enable_mask = 0;
  605. /* attempt to distribute budget to each queue fairly, but don't allow
  606. * the budget to go below 1 because we'll exit polling */
  607. budget /= (q_vector->rxr_count ?: 1);
  608. budget = max(budget, 1);
  609. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  610. for (i = 0; i < q_vector->rxr_count; i++) {
  611. rx_ring = &(adapter->rx_ring[r_idx]);
  612. ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
  613. enable_mask |= rx_ring->v_idx;
  614. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  615. r_idx + 1);
  616. }
  617. #ifndef HAVE_NETDEV_NAPI_LIST
  618. if (!netif_running(adapter->netdev))
  619. work_done = 0;
  620. #endif
  621. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  622. rx_ring = &(adapter->rx_ring[r_idx]);
  623. /* If all Rx work done, exit the polling mode */
  624. if (work_done < budget) {
  625. napi_complete(napi);
  626. if (adapter->itr_setting & 1)
  627. ixgbevf_set_itr_msix(q_vector);
  628. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  629. ixgbevf_irq_enable_queues(adapter, enable_mask);
  630. }
  631. return work_done;
  632. }
  633. /**
  634. * ixgbevf_configure_msix - Configure MSI-X hardware
  635. * @adapter: board private structure
  636. *
  637. * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
  638. * interrupts.
  639. **/
  640. static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
  641. {
  642. struct ixgbevf_q_vector *q_vector;
  643. struct ixgbe_hw *hw = &adapter->hw;
  644. int i, j, q_vectors, v_idx, r_idx;
  645. u32 mask;
  646. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  647. /*
  648. * Populate the IVAR table and set the ITR values to the
  649. * corresponding register.
  650. */
  651. for (v_idx = 0; v_idx < q_vectors; v_idx++) {
  652. q_vector = adapter->q_vector[v_idx];
  653. /* XXX for_each_set_bit(...) */
  654. r_idx = find_first_bit(q_vector->rxr_idx,
  655. adapter->num_rx_queues);
  656. for (i = 0; i < q_vector->rxr_count; i++) {
  657. j = adapter->rx_ring[r_idx].reg_idx;
  658. ixgbevf_set_ivar(adapter, 0, j, v_idx);
  659. r_idx = find_next_bit(q_vector->rxr_idx,
  660. adapter->num_rx_queues,
  661. r_idx + 1);
  662. }
  663. r_idx = find_first_bit(q_vector->txr_idx,
  664. adapter->num_tx_queues);
  665. for (i = 0; i < q_vector->txr_count; i++) {
  666. j = adapter->tx_ring[r_idx].reg_idx;
  667. ixgbevf_set_ivar(adapter, 1, j, v_idx);
  668. r_idx = find_next_bit(q_vector->txr_idx,
  669. adapter->num_tx_queues,
  670. r_idx + 1);
  671. }
  672. /* if this is a tx only vector halve the interrupt rate */
  673. if (q_vector->txr_count && !q_vector->rxr_count)
  674. q_vector->eitr = (adapter->eitr_param >> 1);
  675. else if (q_vector->rxr_count)
  676. /* rx only */
  677. q_vector->eitr = adapter->eitr_param;
  678. ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
  679. }
  680. ixgbevf_set_ivar(adapter, -1, 1, v_idx);
  681. /* set up to autoclear timer, and the vectors */
  682. mask = IXGBE_EIMS_ENABLE_MASK;
  683. mask &= ~IXGBE_EIMS_OTHER;
  684. IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
  685. }
  686. enum latency_range {
  687. lowest_latency = 0,
  688. low_latency = 1,
  689. bulk_latency = 2,
  690. latency_invalid = 255
  691. };
  692. /**
  693. * ixgbevf_update_itr - update the dynamic ITR value based on statistics
  694. * @adapter: pointer to adapter
  695. * @eitr: eitr setting (ints per sec) to give last timeslice
  696. * @itr_setting: current throttle rate in ints/second
  697. * @packets: the number of packets during this measurement interval
  698. * @bytes: the number of bytes during this measurement interval
  699. *
  700. * Stores a new ITR value based on packets and byte
  701. * counts during the last interrupt. The advantage of per interrupt
  702. * computation is faster updates and more accurate ITR for the current
  703. * traffic pattern. Constants in this function were computed
  704. * based on theoretical maximum wire speed and thresholds were set based
  705. * on testing data as well as attempting to minimize response time
  706. * while increasing bulk throughput.
  707. **/
  708. static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
  709. u32 eitr, u8 itr_setting,
  710. int packets, int bytes)
  711. {
  712. unsigned int retval = itr_setting;
  713. u32 timepassed_us;
  714. u64 bytes_perint;
  715. if (packets == 0)
  716. goto update_itr_done;
  717. /* simple throttlerate management
  718. * 0-20MB/s lowest (100000 ints/s)
  719. * 20-100MB/s low (20000 ints/s)
  720. * 100-1249MB/s bulk (8000 ints/s)
  721. */
  722. /* what was last interrupt timeslice? */
  723. timepassed_us = 1000000/eitr;
  724. bytes_perint = bytes / timepassed_us; /* bytes/usec */
  725. switch (itr_setting) {
  726. case lowest_latency:
  727. if (bytes_perint > adapter->eitr_low)
  728. retval = low_latency;
  729. break;
  730. case low_latency:
  731. if (bytes_perint > adapter->eitr_high)
  732. retval = bulk_latency;
  733. else if (bytes_perint <= adapter->eitr_low)
  734. retval = lowest_latency;
  735. break;
  736. case bulk_latency:
  737. if (bytes_perint <= adapter->eitr_high)
  738. retval = low_latency;
  739. break;
  740. }
  741. update_itr_done:
  742. return retval;
  743. }
  744. /**
  745. * ixgbevf_write_eitr - write VTEITR register in hardware specific way
  746. * @adapter: pointer to adapter struct
  747. * @v_idx: vector index into q_vector array
  748. * @itr_reg: new value to be written in *register* format, not ints/s
  749. *
  750. * This function is made to be called by ethtool and by the driver
  751. * when it needs to update VTEITR registers at runtime. Hardware
  752. * specific quirks/differences are taken care of here.
  753. */
  754. static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
  755. u32 itr_reg)
  756. {
  757. struct ixgbe_hw *hw = &adapter->hw;
  758. itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
  759. /*
  760. * set the WDIS bit to not clear the timer bits and cause an
  761. * immediate assertion of the interrupt
  762. */
  763. itr_reg |= IXGBE_EITR_CNT_WDIS;
  764. IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
  765. }
  766. static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
  767. {
  768. struct ixgbevf_adapter *adapter = q_vector->adapter;
  769. u32 new_itr;
  770. u8 current_itr, ret_itr;
  771. int i, r_idx, v_idx = q_vector->v_idx;
  772. struct ixgbevf_ring *rx_ring, *tx_ring;
  773. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  774. for (i = 0; i < q_vector->txr_count; i++) {
  775. tx_ring = &(adapter->tx_ring[r_idx]);
  776. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  777. q_vector->tx_itr,
  778. tx_ring->total_packets,
  779. tx_ring->total_bytes);
  780. /* if the result for this queue would decrease interrupt
  781. * rate for this vector then use that result */
  782. q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
  783. q_vector->tx_itr - 1 : ret_itr);
  784. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  785. r_idx + 1);
  786. }
  787. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  788. for (i = 0; i < q_vector->rxr_count; i++) {
  789. rx_ring = &(adapter->rx_ring[r_idx]);
  790. ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
  791. q_vector->rx_itr,
  792. rx_ring->total_packets,
  793. rx_ring->total_bytes);
  794. /* if the result for this queue would decrease interrupt
  795. * rate for this vector then use that result */
  796. q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
  797. q_vector->rx_itr - 1 : ret_itr);
  798. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  799. r_idx + 1);
  800. }
  801. current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
  802. switch (current_itr) {
  803. /* counts and packets in update_itr are dependent on these numbers */
  804. case lowest_latency:
  805. new_itr = 100000;
  806. break;
  807. case low_latency:
  808. new_itr = 20000; /* aka hwitr = ~200 */
  809. break;
  810. case bulk_latency:
  811. default:
  812. new_itr = 8000;
  813. break;
  814. }
  815. if (new_itr != q_vector->eitr) {
  816. u32 itr_reg;
  817. /* save the algorithm value here, not the smoothed one */
  818. q_vector->eitr = new_itr;
  819. /* do an exponential smoothing */
  820. new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
  821. itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
  822. ixgbevf_write_eitr(adapter, v_idx, itr_reg);
  823. }
  824. }
  825. static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
  826. {
  827. struct net_device *netdev = data;
  828. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  829. struct ixgbe_hw *hw = &adapter->hw;
  830. u32 eicr;
  831. u32 msg;
  832. eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
  833. IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
  834. if (!hw->mbx.ops.check_for_ack(hw)) {
  835. /*
  836. * checking for the ack clears the PFACK bit. Place
  837. * it back in the v2p_mailbox cache so that anyone
  838. * polling for an ack will not miss it. Also
  839. * avoid the read below because the code to read
  840. * the mailbox will also clear the ack bit. This was
  841. * causing lost acks. Just cache the bit and exit
  842. * the IRQ handler.
  843. */
  844. hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
  845. goto out;
  846. }
  847. /* Not an ack interrupt, go ahead and read the message */
  848. hw->mbx.ops.read(hw, &msg, 1);
  849. if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
  850. mod_timer(&adapter->watchdog_timer,
  851. round_jiffies(jiffies + 1));
  852. out:
  853. return IRQ_HANDLED;
  854. }
  855. static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
  856. {
  857. struct ixgbevf_q_vector *q_vector = data;
  858. struct ixgbevf_adapter *adapter = q_vector->adapter;
  859. struct ixgbevf_ring *tx_ring;
  860. int i, r_idx;
  861. if (!q_vector->txr_count)
  862. return IRQ_HANDLED;
  863. r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
  864. for (i = 0; i < q_vector->txr_count; i++) {
  865. tx_ring = &(adapter->tx_ring[r_idx]);
  866. tx_ring->total_bytes = 0;
  867. tx_ring->total_packets = 0;
  868. ixgbevf_clean_tx_irq(adapter, tx_ring);
  869. r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
  870. r_idx + 1);
  871. }
  872. if (adapter->itr_setting & 1)
  873. ixgbevf_set_itr_msix(q_vector);
  874. return IRQ_HANDLED;
  875. }
  876. /**
  877. * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
  878. * @irq: unused
  879. * @data: pointer to our q_vector struct for this interrupt vector
  880. **/
  881. static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
  882. {
  883. struct ixgbevf_q_vector *q_vector = data;
  884. struct ixgbevf_adapter *adapter = q_vector->adapter;
  885. struct ixgbe_hw *hw = &adapter->hw;
  886. struct ixgbevf_ring *rx_ring;
  887. int r_idx;
  888. int i;
  889. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  890. for (i = 0; i < q_vector->rxr_count; i++) {
  891. rx_ring = &(adapter->rx_ring[r_idx]);
  892. rx_ring->total_bytes = 0;
  893. rx_ring->total_packets = 0;
  894. r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
  895. r_idx + 1);
  896. }
  897. if (!q_vector->rxr_count)
  898. return IRQ_HANDLED;
  899. r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
  900. rx_ring = &(adapter->rx_ring[r_idx]);
  901. /* disable interrupts on this vector only */
  902. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
  903. napi_schedule(&q_vector->napi);
  904. return IRQ_HANDLED;
  905. }
  906. static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
  907. {
  908. ixgbevf_msix_clean_rx(irq, data);
  909. ixgbevf_msix_clean_tx(irq, data);
  910. return IRQ_HANDLED;
  911. }
  912. static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
  913. int r_idx)
  914. {
  915. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  916. set_bit(r_idx, q_vector->rxr_idx);
  917. q_vector->rxr_count++;
  918. a->rx_ring[r_idx].v_idx = 1 << v_idx;
  919. }
  920. static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
  921. int t_idx)
  922. {
  923. struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
  924. set_bit(t_idx, q_vector->txr_idx);
  925. q_vector->txr_count++;
  926. a->tx_ring[t_idx].v_idx = 1 << v_idx;
  927. }
  928. /**
  929. * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
  930. * @adapter: board private structure to initialize
  931. *
  932. * This function maps descriptor rings to the queue-specific vectors
  933. * we were allotted through the MSI-X enabling code. Ideally, we'd have
  934. * one vector per ring/queue, but on a constrained vector budget, we
  935. * group the rings as "efficiently" as possible. You would add new
  936. * mapping configurations in here.
  937. **/
  938. static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
  939. {
  940. int q_vectors;
  941. int v_start = 0;
  942. int rxr_idx = 0, txr_idx = 0;
  943. int rxr_remaining = adapter->num_rx_queues;
  944. int txr_remaining = adapter->num_tx_queues;
  945. int i, j;
  946. int rqpv, tqpv;
  947. int err = 0;
  948. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  949. /*
  950. * The ideal configuration...
  951. * We have enough vectors to map one per queue.
  952. */
  953. if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
  954. for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
  955. map_vector_to_rxq(adapter, v_start, rxr_idx);
  956. for (; txr_idx < txr_remaining; v_start++, txr_idx++)
  957. map_vector_to_txq(adapter, v_start, txr_idx);
  958. goto out;
  959. }
  960. /*
  961. * If we don't have enough vectors for a 1-to-1
  962. * mapping, we'll have to group them so there are
  963. * multiple queues per vector.
  964. */
  965. /* Re-adjusting *qpv takes care of the remainder. */
  966. for (i = v_start; i < q_vectors; i++) {
  967. rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
  968. for (j = 0; j < rqpv; j++) {
  969. map_vector_to_rxq(adapter, i, rxr_idx);
  970. rxr_idx++;
  971. rxr_remaining--;
  972. }
  973. }
  974. for (i = v_start; i < q_vectors; i++) {
  975. tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
  976. for (j = 0; j < tqpv; j++) {
  977. map_vector_to_txq(adapter, i, txr_idx);
  978. txr_idx++;
  979. txr_remaining--;
  980. }
  981. }
  982. out:
  983. return err;
  984. }
  985. /**
  986. * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
  987. * @adapter: board private structure
  988. *
  989. * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
  990. * interrupts from the kernel.
  991. **/
  992. static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
  993. {
  994. struct net_device *netdev = adapter->netdev;
  995. irqreturn_t (*handler)(int, void *);
  996. int i, vector, q_vectors, err;
  997. int ri = 0, ti = 0;
  998. /* Decrement for Other and TCP Timer vectors */
  999. q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1000. #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count) \
  1001. ? &ixgbevf_msix_clean_many : \
  1002. (_v)->rxr_count ? &ixgbevf_msix_clean_rx : \
  1003. (_v)->txr_count ? &ixgbevf_msix_clean_tx : \
  1004. NULL)
  1005. for (vector = 0; vector < q_vectors; vector++) {
  1006. handler = SET_HANDLER(adapter->q_vector[vector]);
  1007. if (handler == &ixgbevf_msix_clean_rx) {
  1008. sprintf(adapter->name[vector], "%s-%s-%d",
  1009. netdev->name, "rx", ri++);
  1010. } else if (handler == &ixgbevf_msix_clean_tx) {
  1011. sprintf(adapter->name[vector], "%s-%s-%d",
  1012. netdev->name, "tx", ti++);
  1013. } else if (handler == &ixgbevf_msix_clean_many) {
  1014. sprintf(adapter->name[vector], "%s-%s-%d",
  1015. netdev->name, "TxRx", vector);
  1016. } else {
  1017. /* skip this unused q_vector */
  1018. continue;
  1019. }
  1020. err = request_irq(adapter->msix_entries[vector].vector,
  1021. handler, 0, adapter->name[vector],
  1022. adapter->q_vector[vector]);
  1023. if (err) {
  1024. hw_dbg(&adapter->hw,
  1025. "request_irq failed for MSIX interrupt "
  1026. "Error: %d\n", err);
  1027. goto free_queue_irqs;
  1028. }
  1029. }
  1030. sprintf(adapter->name[vector], "%s:mbx", netdev->name);
  1031. err = request_irq(adapter->msix_entries[vector].vector,
  1032. &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
  1033. if (err) {
  1034. hw_dbg(&adapter->hw,
  1035. "request_irq for msix_mbx failed: %d\n", err);
  1036. goto free_queue_irqs;
  1037. }
  1038. return 0;
  1039. free_queue_irqs:
  1040. for (i = vector - 1; i >= 0; i--)
  1041. free_irq(adapter->msix_entries[--vector].vector,
  1042. &(adapter->q_vector[i]));
  1043. pci_disable_msix(adapter->pdev);
  1044. kfree(adapter->msix_entries);
  1045. adapter->msix_entries = NULL;
  1046. return err;
  1047. }
  1048. static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
  1049. {
  1050. int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1051. for (i = 0; i < q_vectors; i++) {
  1052. struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
  1053. bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
  1054. bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
  1055. q_vector->rxr_count = 0;
  1056. q_vector->txr_count = 0;
  1057. q_vector->eitr = adapter->eitr_param;
  1058. }
  1059. }
  1060. /**
  1061. * ixgbevf_request_irq - initialize interrupts
  1062. * @adapter: board private structure
  1063. *
  1064. * Attempts to configure interrupts using the best available
  1065. * capabilities of the hardware and kernel.
  1066. **/
  1067. static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
  1068. {
  1069. int err = 0;
  1070. err = ixgbevf_request_msix_irqs(adapter);
  1071. if (err)
  1072. hw_dbg(&adapter->hw,
  1073. "request_irq failed, Error %d\n", err);
  1074. return err;
  1075. }
  1076. static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
  1077. {
  1078. struct net_device *netdev = adapter->netdev;
  1079. int i, q_vectors;
  1080. q_vectors = adapter->num_msix_vectors;
  1081. i = q_vectors - 1;
  1082. free_irq(adapter->msix_entries[i].vector, netdev);
  1083. i--;
  1084. for (; i >= 0; i--) {
  1085. free_irq(adapter->msix_entries[i].vector,
  1086. adapter->q_vector[i]);
  1087. }
  1088. ixgbevf_reset_q_vectors(adapter);
  1089. }
  1090. /**
  1091. * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
  1092. * @adapter: board private structure
  1093. **/
  1094. static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
  1095. {
  1096. int i;
  1097. struct ixgbe_hw *hw = &adapter->hw;
  1098. IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
  1099. IXGBE_WRITE_FLUSH(hw);
  1100. for (i = 0; i < adapter->num_msix_vectors; i++)
  1101. synchronize_irq(adapter->msix_entries[i].vector);
  1102. }
  1103. /**
  1104. * ixgbevf_irq_enable - Enable default interrupt generation settings
  1105. * @adapter: board private structure
  1106. **/
  1107. static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
  1108. bool queues, bool flush)
  1109. {
  1110. struct ixgbe_hw *hw = &adapter->hw;
  1111. u32 mask;
  1112. u64 qmask;
  1113. mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
  1114. qmask = ~0;
  1115. IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
  1116. if (queues)
  1117. ixgbevf_irq_enable_queues(adapter, qmask);
  1118. if (flush)
  1119. IXGBE_WRITE_FLUSH(hw);
  1120. }
  1121. /**
  1122. * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
  1123. * @adapter: board private structure
  1124. *
  1125. * Configure the Tx unit of the MAC after a reset.
  1126. **/
  1127. static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
  1128. {
  1129. u64 tdba;
  1130. struct ixgbe_hw *hw = &adapter->hw;
  1131. u32 i, j, tdlen, txctrl;
  1132. /* Setup the HW Tx Head and Tail descriptor pointers */
  1133. for (i = 0; i < adapter->num_tx_queues; i++) {
  1134. struct ixgbevf_ring *ring = &adapter->tx_ring[i];
  1135. j = ring->reg_idx;
  1136. tdba = ring->dma;
  1137. tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
  1138. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
  1139. (tdba & DMA_BIT_MASK(32)));
  1140. IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
  1141. IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
  1142. IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
  1143. IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
  1144. adapter->tx_ring[i].head = IXGBE_VFTDH(j);
  1145. adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
  1146. /* Disable Tx Head Writeback RO bit, since this hoses
  1147. * bookkeeping if things aren't delivered in order.
  1148. */
  1149. txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
  1150. txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
  1151. IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
  1152. }
  1153. }
  1154. #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
  1155. static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
  1156. {
  1157. struct ixgbevf_ring *rx_ring;
  1158. struct ixgbe_hw *hw = &adapter->hw;
  1159. u32 srrctl;
  1160. rx_ring = &adapter->rx_ring[index];
  1161. srrctl = IXGBE_SRRCTL_DROP_EN;
  1162. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1163. u16 bufsz = IXGBEVF_RXBUFFER_2048;
  1164. /* grow the amount we can receive on large page machines */
  1165. if (bufsz < (PAGE_SIZE / 2))
  1166. bufsz = (PAGE_SIZE / 2);
  1167. /* cap the bufsz at our largest descriptor size */
  1168. bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
  1169. srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1170. srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
  1171. srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
  1172. IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
  1173. IXGBE_SRRCTL_BSIZEHDR_MASK);
  1174. } else {
  1175. srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
  1176. if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
  1177. srrctl |= IXGBEVF_RXBUFFER_2048 >>
  1178. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1179. else
  1180. srrctl |= rx_ring->rx_buf_len >>
  1181. IXGBE_SRRCTL_BSIZEPKT_SHIFT;
  1182. }
  1183. IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
  1184. }
  1185. /**
  1186. * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
  1187. * @adapter: board private structure
  1188. *
  1189. * Configure the Rx unit of the MAC after a reset.
  1190. **/
  1191. static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
  1192. {
  1193. u64 rdba;
  1194. struct ixgbe_hw *hw = &adapter->hw;
  1195. struct net_device *netdev = adapter->netdev;
  1196. int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
  1197. int i, j;
  1198. u32 rdlen;
  1199. int rx_buf_len;
  1200. /* Decide whether to use packet split mode or not */
  1201. if (netdev->mtu > ETH_DATA_LEN) {
  1202. if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
  1203. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1204. else
  1205. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1206. } else {
  1207. if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
  1208. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  1209. else
  1210. adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
  1211. }
  1212. /* Set the RX buffer length according to the mode */
  1213. if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
  1214. /* PSRTYPE must be initialized in 82599 */
  1215. u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
  1216. IXGBE_PSRTYPE_UDPHDR |
  1217. IXGBE_PSRTYPE_IPV4HDR |
  1218. IXGBE_PSRTYPE_IPV6HDR |
  1219. IXGBE_PSRTYPE_L2HDR;
  1220. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
  1221. rx_buf_len = IXGBEVF_RX_HDR_SIZE;
  1222. } else {
  1223. IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
  1224. if (netdev->mtu <= ETH_DATA_LEN)
  1225. rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
  1226. else
  1227. rx_buf_len = ALIGN(max_frame, 1024);
  1228. }
  1229. rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
  1230. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1231. * the Base and Length of the Rx Descriptor Ring */
  1232. for (i = 0; i < adapter->num_rx_queues; i++) {
  1233. rdba = adapter->rx_ring[i].dma;
  1234. j = adapter->rx_ring[i].reg_idx;
  1235. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
  1236. (rdba & DMA_BIT_MASK(32)));
  1237. IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
  1238. IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
  1239. IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
  1240. IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
  1241. adapter->rx_ring[i].head = IXGBE_VFRDH(j);
  1242. adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
  1243. adapter->rx_ring[i].rx_buf_len = rx_buf_len;
  1244. ixgbevf_configure_srrctl(adapter, j);
  1245. }
  1246. }
  1247. static void ixgbevf_vlan_rx_register(struct net_device *netdev,
  1248. struct vlan_group *grp)
  1249. {
  1250. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1251. struct ixgbe_hw *hw = &adapter->hw;
  1252. int i, j;
  1253. u32 ctrl;
  1254. adapter->vlgrp = grp;
  1255. for (i = 0; i < adapter->num_rx_queues; i++) {
  1256. j = adapter->rx_ring[i].reg_idx;
  1257. ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
  1258. ctrl |= IXGBE_RXDCTL_VME;
  1259. IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
  1260. }
  1261. }
  1262. static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
  1263. {
  1264. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1265. struct ixgbe_hw *hw = &adapter->hw;
  1266. /* add VID to filter table */
  1267. if (hw->mac.ops.set_vfta)
  1268. hw->mac.ops.set_vfta(hw, vid, 0, true);
  1269. }
  1270. static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
  1271. {
  1272. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1273. struct ixgbe_hw *hw = &adapter->hw;
  1274. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  1275. ixgbevf_irq_disable(adapter);
  1276. vlan_group_set_device(adapter->vlgrp, vid, NULL);
  1277. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  1278. ixgbevf_irq_enable(adapter, true, true);
  1279. /* remove VID from filter table */
  1280. if (hw->mac.ops.set_vfta)
  1281. hw->mac.ops.set_vfta(hw, vid, 0, false);
  1282. }
  1283. static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
  1284. {
  1285. ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  1286. if (adapter->vlgrp) {
  1287. u16 vid;
  1288. for (vid = 0; vid < VLAN_N_VID; vid++) {
  1289. if (!vlan_group_get_device(adapter->vlgrp, vid))
  1290. continue;
  1291. ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
  1292. }
  1293. }
  1294. }
  1295. /**
  1296. * ixgbevf_set_rx_mode - Multicast set
  1297. * @netdev: network interface device structure
  1298. *
  1299. * The set_rx_method entry point is called whenever the multicast address
  1300. * list or the network interface flags are updated. This routine is
  1301. * responsible for configuring the hardware for proper multicast mode.
  1302. **/
  1303. static void ixgbevf_set_rx_mode(struct net_device *netdev)
  1304. {
  1305. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  1306. struct ixgbe_hw *hw = &adapter->hw;
  1307. /* reprogram multicast list */
  1308. if (hw->mac.ops.update_mc_addr_list)
  1309. hw->mac.ops.update_mc_addr_list(hw, netdev);
  1310. }
  1311. static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
  1312. {
  1313. int q_idx;
  1314. struct ixgbevf_q_vector *q_vector;
  1315. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1316. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1317. struct napi_struct *napi;
  1318. q_vector = adapter->q_vector[q_idx];
  1319. if (!q_vector->rxr_count)
  1320. continue;
  1321. napi = &q_vector->napi;
  1322. if (q_vector->rxr_count > 1)
  1323. napi->poll = &ixgbevf_clean_rxonly_many;
  1324. napi_enable(napi);
  1325. }
  1326. }
  1327. static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
  1328. {
  1329. int q_idx;
  1330. struct ixgbevf_q_vector *q_vector;
  1331. int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1332. for (q_idx = 0; q_idx < q_vectors; q_idx++) {
  1333. q_vector = adapter->q_vector[q_idx];
  1334. if (!q_vector->rxr_count)
  1335. continue;
  1336. napi_disable(&q_vector->napi);
  1337. }
  1338. }
  1339. static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
  1340. {
  1341. struct net_device *netdev = adapter->netdev;
  1342. int i;
  1343. ixgbevf_set_rx_mode(netdev);
  1344. ixgbevf_restore_vlan(adapter);
  1345. ixgbevf_configure_tx(adapter);
  1346. ixgbevf_configure_rx(adapter);
  1347. for (i = 0; i < adapter->num_rx_queues; i++) {
  1348. struct ixgbevf_ring *ring = &adapter->rx_ring[i];
  1349. ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
  1350. ring->next_to_use = ring->count - 1;
  1351. writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
  1352. }
  1353. }
  1354. #define IXGBE_MAX_RX_DESC_POLL 10
  1355. static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
  1356. int rxr)
  1357. {
  1358. struct ixgbe_hw *hw = &adapter->hw;
  1359. int j = adapter->rx_ring[rxr].reg_idx;
  1360. int k;
  1361. for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
  1362. if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
  1363. break;
  1364. else
  1365. msleep(1);
  1366. }
  1367. if (k >= IXGBE_MAX_RX_DESC_POLL) {
  1368. hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
  1369. "not set within the polling period\n", rxr);
  1370. }
  1371. ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
  1372. (adapter->rx_ring[rxr].count - 1));
  1373. }
  1374. static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
  1375. {
  1376. /* Only save pre-reset stats if there are some */
  1377. if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
  1378. adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
  1379. adapter->stats.base_vfgprc;
  1380. adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
  1381. adapter->stats.base_vfgptc;
  1382. adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
  1383. adapter->stats.base_vfgorc;
  1384. adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
  1385. adapter->stats.base_vfgotc;
  1386. adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
  1387. adapter->stats.base_vfmprc;
  1388. }
  1389. }
  1390. static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
  1391. {
  1392. struct ixgbe_hw *hw = &adapter->hw;
  1393. adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
  1394. adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
  1395. adapter->stats.last_vfgorc |=
  1396. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
  1397. adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
  1398. adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
  1399. adapter->stats.last_vfgotc |=
  1400. (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
  1401. adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
  1402. adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
  1403. adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
  1404. adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
  1405. adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
  1406. adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
  1407. }
  1408. static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
  1409. {
  1410. struct net_device *netdev = adapter->netdev;
  1411. struct ixgbe_hw *hw = &adapter->hw;
  1412. int i, j = 0;
  1413. int num_rx_rings = adapter->num_rx_queues;
  1414. u32 txdctl, rxdctl;
  1415. for (i = 0; i < adapter->num_tx_queues; i++) {
  1416. j = adapter->tx_ring[i].reg_idx;
  1417. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1418. /* enable WTHRESH=8 descriptors, to encourage burst writeback */
  1419. txdctl |= (8 << 16);
  1420. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1421. }
  1422. for (i = 0; i < adapter->num_tx_queues; i++) {
  1423. j = adapter->tx_ring[i].reg_idx;
  1424. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1425. txdctl |= IXGBE_TXDCTL_ENABLE;
  1426. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
  1427. }
  1428. for (i = 0; i < num_rx_rings; i++) {
  1429. j = adapter->rx_ring[i].reg_idx;
  1430. rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
  1431. rxdctl |= IXGBE_RXDCTL_ENABLE;
  1432. if (hw->mac.type == ixgbe_mac_X540_vf) {
  1433. rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
  1434. rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
  1435. IXGBE_RXDCTL_RLPML_EN);
  1436. }
  1437. IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
  1438. ixgbevf_rx_desc_queue_enable(adapter, i);
  1439. }
  1440. ixgbevf_configure_msix(adapter);
  1441. if (hw->mac.ops.set_rar) {
  1442. if (is_valid_ether_addr(hw->mac.addr))
  1443. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  1444. else
  1445. hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
  1446. }
  1447. clear_bit(__IXGBEVF_DOWN, &adapter->state);
  1448. ixgbevf_napi_enable_all(adapter);
  1449. /* enable transmits */
  1450. netif_tx_start_all_queues(netdev);
  1451. ixgbevf_save_reset_stats(adapter);
  1452. ixgbevf_init_last_counter_stats(adapter);
  1453. /* bring the link up in the watchdog, this could race with our first
  1454. * link up interrupt but shouldn't be a problem */
  1455. adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
  1456. adapter->link_check_timeout = jiffies;
  1457. mod_timer(&adapter->watchdog_timer, jiffies);
  1458. return 0;
  1459. }
  1460. int ixgbevf_up(struct ixgbevf_adapter *adapter)
  1461. {
  1462. int err;
  1463. struct ixgbe_hw *hw = &adapter->hw;
  1464. ixgbevf_configure(adapter);
  1465. err = ixgbevf_up_complete(adapter);
  1466. /* clear any pending interrupts, may auto mask */
  1467. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  1468. ixgbevf_irq_enable(adapter, true, true);
  1469. return err;
  1470. }
  1471. /**
  1472. * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
  1473. * @adapter: board private structure
  1474. * @rx_ring: ring to free buffers from
  1475. **/
  1476. static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
  1477. struct ixgbevf_ring *rx_ring)
  1478. {
  1479. struct pci_dev *pdev = adapter->pdev;
  1480. unsigned long size;
  1481. unsigned int i;
  1482. if (!rx_ring->rx_buffer_info)
  1483. return;
  1484. /* Free all the Rx ring sk_buffs */
  1485. for (i = 0; i < rx_ring->count; i++) {
  1486. struct ixgbevf_rx_buffer *rx_buffer_info;
  1487. rx_buffer_info = &rx_ring->rx_buffer_info[i];
  1488. if (rx_buffer_info->dma) {
  1489. dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
  1490. rx_ring->rx_buf_len,
  1491. DMA_FROM_DEVICE);
  1492. rx_buffer_info->dma = 0;
  1493. }
  1494. if (rx_buffer_info->skb) {
  1495. struct sk_buff *skb = rx_buffer_info->skb;
  1496. rx_buffer_info->skb = NULL;
  1497. do {
  1498. struct sk_buff *this = skb;
  1499. skb = skb->prev;
  1500. dev_kfree_skb(this);
  1501. } while (skb);
  1502. }
  1503. if (!rx_buffer_info->page)
  1504. continue;
  1505. dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
  1506. PAGE_SIZE / 2, DMA_FROM_DEVICE);
  1507. rx_buffer_info->page_dma = 0;
  1508. put_page(rx_buffer_info->page);
  1509. rx_buffer_info->page = NULL;
  1510. rx_buffer_info->page_offset = 0;
  1511. }
  1512. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  1513. memset(rx_ring->rx_buffer_info, 0, size);
  1514. /* Zero out the descriptor ring */
  1515. memset(rx_ring->desc, 0, rx_ring->size);
  1516. rx_ring->next_to_clean = 0;
  1517. rx_ring->next_to_use = 0;
  1518. if (rx_ring->head)
  1519. writel(0, adapter->hw.hw_addr + rx_ring->head);
  1520. if (rx_ring->tail)
  1521. writel(0, adapter->hw.hw_addr + rx_ring->tail);
  1522. }
  1523. /**
  1524. * ixgbevf_clean_tx_ring - Free Tx Buffers
  1525. * @adapter: board private structure
  1526. * @tx_ring: ring to be cleaned
  1527. **/
  1528. static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
  1529. struct ixgbevf_ring *tx_ring)
  1530. {
  1531. struct ixgbevf_tx_buffer *tx_buffer_info;
  1532. unsigned long size;
  1533. unsigned int i;
  1534. if (!tx_ring->tx_buffer_info)
  1535. return;
  1536. /* Free all the Tx ring sk_buffs */
  1537. for (i = 0; i < tx_ring->count; i++) {
  1538. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  1539. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  1540. }
  1541. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  1542. memset(tx_ring->tx_buffer_info, 0, size);
  1543. memset(tx_ring->desc, 0, tx_ring->size);
  1544. tx_ring->next_to_use = 0;
  1545. tx_ring->next_to_clean = 0;
  1546. if (tx_ring->head)
  1547. writel(0, adapter->hw.hw_addr + tx_ring->head);
  1548. if (tx_ring->tail)
  1549. writel(0, adapter->hw.hw_addr + tx_ring->tail);
  1550. }
  1551. /**
  1552. * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
  1553. * @adapter: board private structure
  1554. **/
  1555. static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
  1556. {
  1557. int i;
  1558. for (i = 0; i < adapter->num_rx_queues; i++)
  1559. ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1560. }
  1561. /**
  1562. * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
  1563. * @adapter: board private structure
  1564. **/
  1565. static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
  1566. {
  1567. int i;
  1568. for (i = 0; i < adapter->num_tx_queues; i++)
  1569. ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1570. }
  1571. void ixgbevf_down(struct ixgbevf_adapter *adapter)
  1572. {
  1573. struct net_device *netdev = adapter->netdev;
  1574. struct ixgbe_hw *hw = &adapter->hw;
  1575. u32 txdctl;
  1576. int i, j;
  1577. /* signal that we are down to the interrupt handler */
  1578. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1579. /* disable receives */
  1580. netif_tx_disable(netdev);
  1581. msleep(10);
  1582. netif_tx_stop_all_queues(netdev);
  1583. ixgbevf_irq_disable(adapter);
  1584. ixgbevf_napi_disable_all(adapter);
  1585. del_timer_sync(&adapter->watchdog_timer);
  1586. /* can't call flush scheduled work here because it can deadlock
  1587. * if linkwatch_event tries to acquire the rtnl_lock which we are
  1588. * holding */
  1589. while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
  1590. msleep(1);
  1591. /* disable transmits in the hardware now that interrupts are off */
  1592. for (i = 0; i < adapter->num_tx_queues; i++) {
  1593. j = adapter->tx_ring[i].reg_idx;
  1594. txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
  1595. IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
  1596. (txdctl & ~IXGBE_TXDCTL_ENABLE));
  1597. }
  1598. netif_carrier_off(netdev);
  1599. if (!pci_channel_offline(adapter->pdev))
  1600. ixgbevf_reset(adapter);
  1601. ixgbevf_clean_all_tx_rings(adapter);
  1602. ixgbevf_clean_all_rx_rings(adapter);
  1603. }
  1604. void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
  1605. {
  1606. struct ixgbe_hw *hw = &adapter->hw;
  1607. WARN_ON(in_interrupt());
  1608. while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
  1609. msleep(1);
  1610. /*
  1611. * Check if PF is up before re-init. If not then skip until
  1612. * later when the PF is up and ready to service requests from
  1613. * the VF via mailbox. If the VF is up and running then the
  1614. * watchdog task will continue to schedule reset tasks until
  1615. * the PF is up and running.
  1616. */
  1617. if (!hw->mac.ops.reset_hw(hw)) {
  1618. ixgbevf_down(adapter);
  1619. ixgbevf_up(adapter);
  1620. }
  1621. clear_bit(__IXGBEVF_RESETTING, &adapter->state);
  1622. }
  1623. void ixgbevf_reset(struct ixgbevf_adapter *adapter)
  1624. {
  1625. struct ixgbe_hw *hw = &adapter->hw;
  1626. struct net_device *netdev = adapter->netdev;
  1627. if (hw->mac.ops.reset_hw(hw))
  1628. hw_dbg(hw, "PF still resetting\n");
  1629. else
  1630. hw->mac.ops.init_hw(hw);
  1631. if (is_valid_ether_addr(adapter->hw.mac.addr)) {
  1632. memcpy(netdev->dev_addr, adapter->hw.mac.addr,
  1633. netdev->addr_len);
  1634. memcpy(netdev->perm_addr, adapter->hw.mac.addr,
  1635. netdev->addr_len);
  1636. }
  1637. }
  1638. static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
  1639. int vectors)
  1640. {
  1641. int err, vector_threshold;
  1642. /* We'll want at least 3 (vector_threshold):
  1643. * 1) TxQ[0] Cleanup
  1644. * 2) RxQ[0] Cleanup
  1645. * 3) Other (Link Status Change, etc.)
  1646. */
  1647. vector_threshold = MIN_MSIX_COUNT;
  1648. /* The more we get, the more we will assign to Tx/Rx Cleanup
  1649. * for the separate queues...where Rx Cleanup >= Tx Cleanup.
  1650. * Right now, we simply care about how many we'll get; we'll
  1651. * set them up later while requesting irq's.
  1652. */
  1653. while (vectors >= vector_threshold) {
  1654. err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
  1655. vectors);
  1656. if (!err) /* Success in acquiring all requested vectors. */
  1657. break;
  1658. else if (err < 0)
  1659. vectors = 0; /* Nasty failure, quit now */
  1660. else /* err == number of vectors we should try again with */
  1661. vectors = err;
  1662. }
  1663. if (vectors < vector_threshold) {
  1664. /* Can't allocate enough MSI-X interrupts? Oh well.
  1665. * This just means we'll go with either a single MSI
  1666. * vector or fall back to legacy interrupts.
  1667. */
  1668. hw_dbg(&adapter->hw,
  1669. "Unable to allocate MSI-X interrupts\n");
  1670. kfree(adapter->msix_entries);
  1671. adapter->msix_entries = NULL;
  1672. } else {
  1673. /*
  1674. * Adjust for only the vectors we'll use, which is minimum
  1675. * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
  1676. * vectors we were allocated.
  1677. */
  1678. adapter->num_msix_vectors = vectors;
  1679. }
  1680. }
  1681. /*
  1682. * ixgbevf_set_num_queues: Allocate queues for device, feature dependant
  1683. * @adapter: board private structure to initialize
  1684. *
  1685. * This is the top level queue allocation routine. The order here is very
  1686. * important, starting with the "most" number of features turned on at once,
  1687. * and ending with the smallest set of features. This way large combinations
  1688. * can be allocated if they're turned on, and smaller combinations are the
  1689. * fallthrough conditions.
  1690. *
  1691. **/
  1692. static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
  1693. {
  1694. /* Start with base case */
  1695. adapter->num_rx_queues = 1;
  1696. adapter->num_tx_queues = 1;
  1697. adapter->num_rx_pools = adapter->num_rx_queues;
  1698. adapter->num_rx_queues_per_pool = 1;
  1699. }
  1700. /**
  1701. * ixgbevf_alloc_queues - Allocate memory for all rings
  1702. * @adapter: board private structure to initialize
  1703. *
  1704. * We allocate one ring per queue at run-time since we don't know the
  1705. * number of queues at compile-time. The polling_netdev array is
  1706. * intended for Multiqueue, but should work fine with a single queue.
  1707. **/
  1708. static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
  1709. {
  1710. int i;
  1711. adapter->tx_ring = kcalloc(adapter->num_tx_queues,
  1712. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1713. if (!adapter->tx_ring)
  1714. goto err_tx_ring_allocation;
  1715. adapter->rx_ring = kcalloc(adapter->num_rx_queues,
  1716. sizeof(struct ixgbevf_ring), GFP_KERNEL);
  1717. if (!adapter->rx_ring)
  1718. goto err_rx_ring_allocation;
  1719. for (i = 0; i < adapter->num_tx_queues; i++) {
  1720. adapter->tx_ring[i].count = adapter->tx_ring_count;
  1721. adapter->tx_ring[i].queue_index = i;
  1722. adapter->tx_ring[i].reg_idx = i;
  1723. }
  1724. for (i = 0; i < adapter->num_rx_queues; i++) {
  1725. adapter->rx_ring[i].count = adapter->rx_ring_count;
  1726. adapter->rx_ring[i].queue_index = i;
  1727. adapter->rx_ring[i].reg_idx = i;
  1728. }
  1729. return 0;
  1730. err_rx_ring_allocation:
  1731. kfree(adapter->tx_ring);
  1732. err_tx_ring_allocation:
  1733. return -ENOMEM;
  1734. }
  1735. /**
  1736. * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
  1737. * @adapter: board private structure to initialize
  1738. *
  1739. * Attempt to configure the interrupts using the best available
  1740. * capabilities of the hardware and the kernel.
  1741. **/
  1742. static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
  1743. {
  1744. int err = 0;
  1745. int vector, v_budget;
  1746. /*
  1747. * It's easy to be greedy for MSI-X vectors, but it really
  1748. * doesn't do us much good if we have a lot more vectors
  1749. * than CPU's. So let's be conservative and only ask for
  1750. * (roughly) twice the number of vectors as there are CPU's.
  1751. */
  1752. v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
  1753. (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
  1754. /* A failure in MSI-X entry allocation isn't fatal, but it does
  1755. * mean we disable MSI-X capabilities of the adapter. */
  1756. adapter->msix_entries = kcalloc(v_budget,
  1757. sizeof(struct msix_entry), GFP_KERNEL);
  1758. if (!adapter->msix_entries) {
  1759. err = -ENOMEM;
  1760. goto out;
  1761. }
  1762. for (vector = 0; vector < v_budget; vector++)
  1763. adapter->msix_entries[vector].entry = vector;
  1764. ixgbevf_acquire_msix_vectors(adapter, v_budget);
  1765. out:
  1766. return err;
  1767. }
  1768. /**
  1769. * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
  1770. * @adapter: board private structure to initialize
  1771. *
  1772. * We allocate one q_vector per queue interrupt. If allocation fails we
  1773. * return -ENOMEM.
  1774. **/
  1775. static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
  1776. {
  1777. int q_idx, num_q_vectors;
  1778. struct ixgbevf_q_vector *q_vector;
  1779. int napi_vectors;
  1780. int (*poll)(struct napi_struct *, int);
  1781. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1782. napi_vectors = adapter->num_rx_queues;
  1783. poll = &ixgbevf_clean_rxonly;
  1784. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1785. q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
  1786. if (!q_vector)
  1787. goto err_out;
  1788. q_vector->adapter = adapter;
  1789. q_vector->v_idx = q_idx;
  1790. q_vector->eitr = adapter->eitr_param;
  1791. if (q_idx < napi_vectors)
  1792. netif_napi_add(adapter->netdev, &q_vector->napi,
  1793. (*poll), 64);
  1794. adapter->q_vector[q_idx] = q_vector;
  1795. }
  1796. return 0;
  1797. err_out:
  1798. while (q_idx) {
  1799. q_idx--;
  1800. q_vector = adapter->q_vector[q_idx];
  1801. netif_napi_del(&q_vector->napi);
  1802. kfree(q_vector);
  1803. adapter->q_vector[q_idx] = NULL;
  1804. }
  1805. return -ENOMEM;
  1806. }
  1807. /**
  1808. * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
  1809. * @adapter: board private structure to initialize
  1810. *
  1811. * This function frees the memory allocated to the q_vectors. In addition if
  1812. * NAPI is enabled it will delete any references to the NAPI struct prior
  1813. * to freeing the q_vector.
  1814. **/
  1815. static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
  1816. {
  1817. int q_idx, num_q_vectors;
  1818. int napi_vectors;
  1819. num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
  1820. napi_vectors = adapter->num_rx_queues;
  1821. for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
  1822. struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
  1823. adapter->q_vector[q_idx] = NULL;
  1824. if (q_idx < napi_vectors)
  1825. netif_napi_del(&q_vector->napi);
  1826. kfree(q_vector);
  1827. }
  1828. }
  1829. /**
  1830. * ixgbevf_reset_interrupt_capability - Reset MSIX setup
  1831. * @adapter: board private structure
  1832. *
  1833. **/
  1834. static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
  1835. {
  1836. pci_disable_msix(adapter->pdev);
  1837. kfree(adapter->msix_entries);
  1838. adapter->msix_entries = NULL;
  1839. }
  1840. /**
  1841. * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
  1842. * @adapter: board private structure to initialize
  1843. *
  1844. **/
  1845. static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
  1846. {
  1847. int err;
  1848. /* Number of supported queues */
  1849. ixgbevf_set_num_queues(adapter);
  1850. err = ixgbevf_set_interrupt_capability(adapter);
  1851. if (err) {
  1852. hw_dbg(&adapter->hw,
  1853. "Unable to setup interrupt capabilities\n");
  1854. goto err_set_interrupt;
  1855. }
  1856. err = ixgbevf_alloc_q_vectors(adapter);
  1857. if (err) {
  1858. hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
  1859. "vectors\n");
  1860. goto err_alloc_q_vectors;
  1861. }
  1862. err = ixgbevf_alloc_queues(adapter);
  1863. if (err) {
  1864. printk(KERN_ERR "Unable to allocate memory for queues\n");
  1865. goto err_alloc_queues;
  1866. }
  1867. hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
  1868. "Tx Queue count = %u\n",
  1869. (adapter->num_rx_queues > 1) ? "Enabled" :
  1870. "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
  1871. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1872. return 0;
  1873. err_alloc_queues:
  1874. ixgbevf_free_q_vectors(adapter);
  1875. err_alloc_q_vectors:
  1876. ixgbevf_reset_interrupt_capability(adapter);
  1877. err_set_interrupt:
  1878. return err;
  1879. }
  1880. /**
  1881. * ixgbevf_sw_init - Initialize general software structures
  1882. * (struct ixgbevf_adapter)
  1883. * @adapter: board private structure to initialize
  1884. *
  1885. * ixgbevf_sw_init initializes the Adapter private data structure.
  1886. * Fields are initialized based on PCI device information and
  1887. * OS network device settings (MTU size).
  1888. **/
  1889. static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
  1890. {
  1891. struct ixgbe_hw *hw = &adapter->hw;
  1892. struct pci_dev *pdev = adapter->pdev;
  1893. int err;
  1894. /* PCI config space info */
  1895. hw->vendor_id = pdev->vendor;
  1896. hw->device_id = pdev->device;
  1897. hw->revision_id = pdev->revision;
  1898. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  1899. hw->subsystem_device_id = pdev->subsystem_device;
  1900. hw->mbx.ops.init_params(hw);
  1901. hw->mac.max_tx_queues = MAX_TX_QUEUES;
  1902. hw->mac.max_rx_queues = MAX_RX_QUEUES;
  1903. err = hw->mac.ops.reset_hw(hw);
  1904. if (err) {
  1905. dev_info(&pdev->dev,
  1906. "PF still in reset state, assigning new address\n");
  1907. dev_hw_addr_random(adapter->netdev, hw->mac.addr);
  1908. } else {
  1909. err = hw->mac.ops.init_hw(hw);
  1910. if (err) {
  1911. printk(KERN_ERR "init_shared_code failed: %d\n", err);
  1912. goto out;
  1913. }
  1914. }
  1915. /* Enable dynamic interrupt throttling rates */
  1916. adapter->eitr_param = 20000;
  1917. adapter->itr_setting = 1;
  1918. /* set defaults for eitr in MegaBytes */
  1919. adapter->eitr_low = 10;
  1920. adapter->eitr_high = 20;
  1921. /* set default ring sizes */
  1922. adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
  1923. adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
  1924. /* enable rx csum by default */
  1925. adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
  1926. set_bit(__IXGBEVF_DOWN, &adapter->state);
  1927. out:
  1928. return err;
  1929. }
  1930. #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
  1931. { \
  1932. u32 current_counter = IXGBE_READ_REG(hw, reg); \
  1933. if (current_counter < last_counter) \
  1934. counter += 0x100000000LL; \
  1935. last_counter = current_counter; \
  1936. counter &= 0xFFFFFFFF00000000LL; \
  1937. counter |= current_counter; \
  1938. }
  1939. #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
  1940. { \
  1941. u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
  1942. u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
  1943. u64 current_counter = (current_counter_msb << 32) | \
  1944. current_counter_lsb; \
  1945. if (current_counter < last_counter) \
  1946. counter += 0x1000000000LL; \
  1947. last_counter = current_counter; \
  1948. counter &= 0xFFFFFFF000000000LL; \
  1949. counter |= current_counter; \
  1950. }
  1951. /**
  1952. * ixgbevf_update_stats - Update the board statistics counters.
  1953. * @adapter: board private structure
  1954. **/
  1955. void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
  1956. {
  1957. struct ixgbe_hw *hw = &adapter->hw;
  1958. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
  1959. adapter->stats.vfgprc);
  1960. UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
  1961. adapter->stats.vfgptc);
  1962. UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
  1963. adapter->stats.last_vfgorc,
  1964. adapter->stats.vfgorc);
  1965. UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
  1966. adapter->stats.last_vfgotc,
  1967. adapter->stats.vfgotc);
  1968. UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
  1969. adapter->stats.vfmprc);
  1970. /* Fill out the OS statistics structure */
  1971. adapter->netdev->stats.multicast = adapter->stats.vfmprc -
  1972. adapter->stats.base_vfmprc;
  1973. }
  1974. /**
  1975. * ixgbevf_watchdog - Timer Call-back
  1976. * @data: pointer to adapter cast into an unsigned long
  1977. **/
  1978. static void ixgbevf_watchdog(unsigned long data)
  1979. {
  1980. struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
  1981. struct ixgbe_hw *hw = &adapter->hw;
  1982. u64 eics = 0;
  1983. int i;
  1984. /*
  1985. * Do the watchdog outside of interrupt context due to the lovely
  1986. * delays that some of the newer hardware requires
  1987. */
  1988. if (test_bit(__IXGBEVF_DOWN, &adapter->state))
  1989. goto watchdog_short_circuit;
  1990. /* get one bit for every active tx/rx interrupt vector */
  1991. for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
  1992. struct ixgbevf_q_vector *qv = adapter->q_vector[i];
  1993. if (qv->rxr_count || qv->txr_count)
  1994. eics |= (1 << i);
  1995. }
  1996. IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
  1997. watchdog_short_circuit:
  1998. schedule_work(&adapter->watchdog_task);
  1999. }
  2000. /**
  2001. * ixgbevf_tx_timeout - Respond to a Tx Hang
  2002. * @netdev: network interface device structure
  2003. **/
  2004. static void ixgbevf_tx_timeout(struct net_device *netdev)
  2005. {
  2006. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2007. /* Do the reset outside of interrupt context */
  2008. schedule_work(&adapter->reset_task);
  2009. }
  2010. static void ixgbevf_reset_task(struct work_struct *work)
  2011. {
  2012. struct ixgbevf_adapter *adapter;
  2013. adapter = container_of(work, struct ixgbevf_adapter, reset_task);
  2014. /* If we're already down or resetting, just bail */
  2015. if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
  2016. test_bit(__IXGBEVF_RESETTING, &adapter->state))
  2017. return;
  2018. adapter->tx_timeout_count++;
  2019. ixgbevf_reinit_locked(adapter);
  2020. }
  2021. /**
  2022. * ixgbevf_watchdog_task - worker thread to bring link up
  2023. * @work: pointer to work_struct containing our data
  2024. **/
  2025. static void ixgbevf_watchdog_task(struct work_struct *work)
  2026. {
  2027. struct ixgbevf_adapter *adapter = container_of(work,
  2028. struct ixgbevf_adapter,
  2029. watchdog_task);
  2030. struct net_device *netdev = adapter->netdev;
  2031. struct ixgbe_hw *hw = &adapter->hw;
  2032. u32 link_speed = adapter->link_speed;
  2033. bool link_up = adapter->link_up;
  2034. adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
  2035. /*
  2036. * Always check the link on the watchdog because we have
  2037. * no LSC interrupt
  2038. */
  2039. if (hw->mac.ops.check_link) {
  2040. if ((hw->mac.ops.check_link(hw, &link_speed,
  2041. &link_up, false)) != 0) {
  2042. adapter->link_up = link_up;
  2043. adapter->link_speed = link_speed;
  2044. netif_carrier_off(netdev);
  2045. netif_tx_stop_all_queues(netdev);
  2046. schedule_work(&adapter->reset_task);
  2047. goto pf_has_reset;
  2048. }
  2049. } else {
  2050. /* always assume link is up, if no check link
  2051. * function */
  2052. link_speed = IXGBE_LINK_SPEED_10GB_FULL;
  2053. link_up = true;
  2054. }
  2055. adapter->link_up = link_up;
  2056. adapter->link_speed = link_speed;
  2057. if (link_up) {
  2058. if (!netif_carrier_ok(netdev)) {
  2059. hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
  2060. (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
  2061. 10 : 1);
  2062. netif_carrier_on(netdev);
  2063. netif_tx_wake_all_queues(netdev);
  2064. } else {
  2065. /* Force detection of hung controller */
  2066. adapter->detect_tx_hung = true;
  2067. }
  2068. } else {
  2069. adapter->link_up = false;
  2070. adapter->link_speed = 0;
  2071. if (netif_carrier_ok(netdev)) {
  2072. hw_dbg(&adapter->hw, "NIC Link is Down\n");
  2073. netif_carrier_off(netdev);
  2074. netif_tx_stop_all_queues(netdev);
  2075. }
  2076. }
  2077. ixgbevf_update_stats(adapter);
  2078. pf_has_reset:
  2079. /* Force detection of hung controller every watchdog period */
  2080. adapter->detect_tx_hung = true;
  2081. /* Reset the timer */
  2082. if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
  2083. mod_timer(&adapter->watchdog_timer,
  2084. round_jiffies(jiffies + (2 * HZ)));
  2085. adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
  2086. }
  2087. /**
  2088. * ixgbevf_free_tx_resources - Free Tx Resources per Queue
  2089. * @adapter: board private structure
  2090. * @tx_ring: Tx descriptor ring for a specific queue
  2091. *
  2092. * Free all transmit software resources
  2093. **/
  2094. void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
  2095. struct ixgbevf_ring *tx_ring)
  2096. {
  2097. struct pci_dev *pdev = adapter->pdev;
  2098. ixgbevf_clean_tx_ring(adapter, tx_ring);
  2099. vfree(tx_ring->tx_buffer_info);
  2100. tx_ring->tx_buffer_info = NULL;
  2101. dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
  2102. tx_ring->dma);
  2103. tx_ring->desc = NULL;
  2104. }
  2105. /**
  2106. * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
  2107. * @adapter: board private structure
  2108. *
  2109. * Free all transmit software resources
  2110. **/
  2111. static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
  2112. {
  2113. int i;
  2114. for (i = 0; i < adapter->num_tx_queues; i++)
  2115. if (adapter->tx_ring[i].desc)
  2116. ixgbevf_free_tx_resources(adapter,
  2117. &adapter->tx_ring[i]);
  2118. }
  2119. /**
  2120. * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
  2121. * @adapter: board private structure
  2122. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2123. *
  2124. * Return 0 on success, negative on failure
  2125. **/
  2126. int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
  2127. struct ixgbevf_ring *tx_ring)
  2128. {
  2129. struct pci_dev *pdev = adapter->pdev;
  2130. int size;
  2131. size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
  2132. tx_ring->tx_buffer_info = vzalloc(size);
  2133. if (!tx_ring->tx_buffer_info)
  2134. goto err;
  2135. /* round up to nearest 4K */
  2136. tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
  2137. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2138. tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
  2139. &tx_ring->dma, GFP_KERNEL);
  2140. if (!tx_ring->desc)
  2141. goto err;
  2142. tx_ring->next_to_use = 0;
  2143. tx_ring->next_to_clean = 0;
  2144. tx_ring->work_limit = tx_ring->count;
  2145. return 0;
  2146. err:
  2147. vfree(tx_ring->tx_buffer_info);
  2148. tx_ring->tx_buffer_info = NULL;
  2149. hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
  2150. "descriptor ring\n");
  2151. return -ENOMEM;
  2152. }
  2153. /**
  2154. * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
  2155. * @adapter: board private structure
  2156. *
  2157. * If this function returns with an error, then it's possible one or
  2158. * more of the rings is populated (while the rest are not). It is the
  2159. * callers duty to clean those orphaned rings.
  2160. *
  2161. * Return 0 on success, negative on failure
  2162. **/
  2163. static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
  2164. {
  2165. int i, err = 0;
  2166. for (i = 0; i < adapter->num_tx_queues; i++) {
  2167. err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  2168. if (!err)
  2169. continue;
  2170. hw_dbg(&adapter->hw,
  2171. "Allocation for Tx Queue %u failed\n", i);
  2172. break;
  2173. }
  2174. return err;
  2175. }
  2176. /**
  2177. * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
  2178. * @adapter: board private structure
  2179. * @rx_ring: rx descriptor ring (for a specific queue) to setup
  2180. *
  2181. * Returns 0 on success, negative on failure
  2182. **/
  2183. int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
  2184. struct ixgbevf_ring *rx_ring)
  2185. {
  2186. struct pci_dev *pdev = adapter->pdev;
  2187. int size;
  2188. size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
  2189. rx_ring->rx_buffer_info = vzalloc(size);
  2190. if (!rx_ring->rx_buffer_info) {
  2191. hw_dbg(&adapter->hw,
  2192. "Unable to vmalloc buffer memory for "
  2193. "the receive descriptor ring\n");
  2194. goto alloc_failed;
  2195. }
  2196. /* Round up to nearest 4K */
  2197. rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
  2198. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2199. rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
  2200. &rx_ring->dma, GFP_KERNEL);
  2201. if (!rx_ring->desc) {
  2202. hw_dbg(&adapter->hw,
  2203. "Unable to allocate memory for "
  2204. "the receive descriptor ring\n");
  2205. vfree(rx_ring->rx_buffer_info);
  2206. rx_ring->rx_buffer_info = NULL;
  2207. goto alloc_failed;
  2208. }
  2209. rx_ring->next_to_clean = 0;
  2210. rx_ring->next_to_use = 0;
  2211. return 0;
  2212. alloc_failed:
  2213. return -ENOMEM;
  2214. }
  2215. /**
  2216. * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
  2217. * @adapter: board private structure
  2218. *
  2219. * If this function returns with an error, then it's possible one or
  2220. * more of the rings is populated (while the rest are not). It is the
  2221. * callers duty to clean those orphaned rings.
  2222. *
  2223. * Return 0 on success, negative on failure
  2224. **/
  2225. static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
  2226. {
  2227. int i, err = 0;
  2228. for (i = 0; i < adapter->num_rx_queues; i++) {
  2229. err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  2230. if (!err)
  2231. continue;
  2232. hw_dbg(&adapter->hw,
  2233. "Allocation for Rx Queue %u failed\n", i);
  2234. break;
  2235. }
  2236. return err;
  2237. }
  2238. /**
  2239. * ixgbevf_free_rx_resources - Free Rx Resources
  2240. * @adapter: board private structure
  2241. * @rx_ring: ring to clean the resources from
  2242. *
  2243. * Free all receive software resources
  2244. **/
  2245. void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
  2246. struct ixgbevf_ring *rx_ring)
  2247. {
  2248. struct pci_dev *pdev = adapter->pdev;
  2249. ixgbevf_clean_rx_ring(adapter, rx_ring);
  2250. vfree(rx_ring->rx_buffer_info);
  2251. rx_ring->rx_buffer_info = NULL;
  2252. dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
  2253. rx_ring->dma);
  2254. rx_ring->desc = NULL;
  2255. }
  2256. /**
  2257. * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
  2258. * @adapter: board private structure
  2259. *
  2260. * Free all receive software resources
  2261. **/
  2262. static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
  2263. {
  2264. int i;
  2265. for (i = 0; i < adapter->num_rx_queues; i++)
  2266. if (adapter->rx_ring[i].desc)
  2267. ixgbevf_free_rx_resources(adapter,
  2268. &adapter->rx_ring[i]);
  2269. }
  2270. /**
  2271. * ixgbevf_open - Called when a network interface is made active
  2272. * @netdev: network interface device structure
  2273. *
  2274. * Returns 0 on success, negative value on failure
  2275. *
  2276. * The open entry point is called when a network interface is made
  2277. * active by the system (IFF_UP). At this point all resources needed
  2278. * for transmit and receive operations are allocated, the interrupt
  2279. * handler is registered with the OS, the watchdog timer is started,
  2280. * and the stack is notified that the interface is ready.
  2281. **/
  2282. static int ixgbevf_open(struct net_device *netdev)
  2283. {
  2284. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2285. struct ixgbe_hw *hw = &adapter->hw;
  2286. int err;
  2287. /* disallow open during test */
  2288. if (test_bit(__IXGBEVF_TESTING, &adapter->state))
  2289. return -EBUSY;
  2290. if (hw->adapter_stopped) {
  2291. ixgbevf_reset(adapter);
  2292. /* if adapter is still stopped then PF isn't up and
  2293. * the vf can't start. */
  2294. if (hw->adapter_stopped) {
  2295. err = IXGBE_ERR_MBX;
  2296. printk(KERN_ERR "Unable to start - perhaps the PF"
  2297. " Driver isn't up yet\n");
  2298. goto err_setup_reset;
  2299. }
  2300. }
  2301. /* allocate transmit descriptors */
  2302. err = ixgbevf_setup_all_tx_resources(adapter);
  2303. if (err)
  2304. goto err_setup_tx;
  2305. /* allocate receive descriptors */
  2306. err = ixgbevf_setup_all_rx_resources(adapter);
  2307. if (err)
  2308. goto err_setup_rx;
  2309. ixgbevf_configure(adapter);
  2310. /*
  2311. * Map the Tx/Rx rings to the vectors we were allotted.
  2312. * if request_irq will be called in this function map_rings
  2313. * must be called *before* up_complete
  2314. */
  2315. ixgbevf_map_rings_to_vectors(adapter);
  2316. err = ixgbevf_up_complete(adapter);
  2317. if (err)
  2318. goto err_up;
  2319. /* clear any pending interrupts, may auto mask */
  2320. IXGBE_READ_REG(hw, IXGBE_VTEICR);
  2321. err = ixgbevf_request_irq(adapter);
  2322. if (err)
  2323. goto err_req_irq;
  2324. ixgbevf_irq_enable(adapter, true, true);
  2325. return 0;
  2326. err_req_irq:
  2327. ixgbevf_down(adapter);
  2328. err_up:
  2329. ixgbevf_free_irq(adapter);
  2330. err_setup_rx:
  2331. ixgbevf_free_all_rx_resources(adapter);
  2332. err_setup_tx:
  2333. ixgbevf_free_all_tx_resources(adapter);
  2334. ixgbevf_reset(adapter);
  2335. err_setup_reset:
  2336. return err;
  2337. }
  2338. /**
  2339. * ixgbevf_close - Disables a network interface
  2340. * @netdev: network interface device structure
  2341. *
  2342. * Returns 0, this is not allowed to fail
  2343. *
  2344. * The close entry point is called when an interface is de-activated
  2345. * by the OS. The hardware is still under the drivers control, but
  2346. * needs to be disabled. A global MAC reset is issued to stop the
  2347. * hardware, and all transmit and receive resources are freed.
  2348. **/
  2349. static int ixgbevf_close(struct net_device *netdev)
  2350. {
  2351. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2352. ixgbevf_down(adapter);
  2353. ixgbevf_free_irq(adapter);
  2354. ixgbevf_free_all_tx_resources(adapter);
  2355. ixgbevf_free_all_rx_resources(adapter);
  2356. return 0;
  2357. }
  2358. static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
  2359. struct ixgbevf_ring *tx_ring,
  2360. struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
  2361. {
  2362. struct ixgbe_adv_tx_context_desc *context_desc;
  2363. unsigned int i;
  2364. int err;
  2365. struct ixgbevf_tx_buffer *tx_buffer_info;
  2366. u32 vlan_macip_lens = 0, type_tucmd_mlhl;
  2367. u32 mss_l4len_idx, l4len;
  2368. if (skb_is_gso(skb)) {
  2369. if (skb_header_cloned(skb)) {
  2370. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2371. if (err)
  2372. return err;
  2373. }
  2374. l4len = tcp_hdrlen(skb);
  2375. *hdr_len += l4len;
  2376. if (skb->protocol == htons(ETH_P_IP)) {
  2377. struct iphdr *iph = ip_hdr(skb);
  2378. iph->tot_len = 0;
  2379. iph->check = 0;
  2380. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2381. iph->daddr, 0,
  2382. IPPROTO_TCP,
  2383. 0);
  2384. adapter->hw_tso_ctxt++;
  2385. } else if (skb_is_gso_v6(skb)) {
  2386. ipv6_hdr(skb)->payload_len = 0;
  2387. tcp_hdr(skb)->check =
  2388. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2389. &ipv6_hdr(skb)->daddr,
  2390. 0, IPPROTO_TCP, 0);
  2391. adapter->hw_tso6_ctxt++;
  2392. }
  2393. i = tx_ring->next_to_use;
  2394. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2395. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2396. /* VLAN MACLEN IPLEN */
  2397. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2398. vlan_macip_lens |=
  2399. (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
  2400. vlan_macip_lens |= ((skb_network_offset(skb)) <<
  2401. IXGBE_ADVTXD_MACLEN_SHIFT);
  2402. *hdr_len += skb_network_offset(skb);
  2403. vlan_macip_lens |=
  2404. (skb_transport_header(skb) - skb_network_header(skb));
  2405. *hdr_len +=
  2406. (skb_transport_header(skb) - skb_network_header(skb));
  2407. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2408. context_desc->seqnum_seed = 0;
  2409. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  2410. type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
  2411. IXGBE_ADVTXD_DTYP_CTXT);
  2412. if (skb->protocol == htons(ETH_P_IP))
  2413. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2414. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2415. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2416. /* MSS L4LEN IDX */
  2417. mss_l4len_idx =
  2418. (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
  2419. mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
  2420. /* use index 1 for TSO */
  2421. mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2422. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  2423. tx_buffer_info->time_stamp = jiffies;
  2424. tx_buffer_info->next_to_watch = i;
  2425. i++;
  2426. if (i == tx_ring->count)
  2427. i = 0;
  2428. tx_ring->next_to_use = i;
  2429. return true;
  2430. }
  2431. return false;
  2432. }
  2433. static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
  2434. struct ixgbevf_ring *tx_ring,
  2435. struct sk_buff *skb, u32 tx_flags)
  2436. {
  2437. struct ixgbe_adv_tx_context_desc *context_desc;
  2438. unsigned int i;
  2439. struct ixgbevf_tx_buffer *tx_buffer_info;
  2440. u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
  2441. if (skb->ip_summed == CHECKSUM_PARTIAL ||
  2442. (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
  2443. i = tx_ring->next_to_use;
  2444. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2445. context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
  2446. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2447. vlan_macip_lens |= (tx_flags &
  2448. IXGBE_TX_FLAGS_VLAN_MASK);
  2449. vlan_macip_lens |= (skb_network_offset(skb) <<
  2450. IXGBE_ADVTXD_MACLEN_SHIFT);
  2451. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2452. vlan_macip_lens |= (skb_transport_header(skb) -
  2453. skb_network_header(skb));
  2454. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  2455. context_desc->seqnum_seed = 0;
  2456. type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
  2457. IXGBE_ADVTXD_DTYP_CTXT);
  2458. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2459. switch (skb->protocol) {
  2460. case __constant_htons(ETH_P_IP):
  2461. type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
  2462. if (ip_hdr(skb)->protocol == IPPROTO_TCP)
  2463. type_tucmd_mlhl |=
  2464. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2465. break;
  2466. case __constant_htons(ETH_P_IPV6):
  2467. /* XXX what about other V6 headers?? */
  2468. if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
  2469. type_tucmd_mlhl |=
  2470. IXGBE_ADVTXD_TUCMD_L4T_TCP;
  2471. break;
  2472. default:
  2473. if (unlikely(net_ratelimit())) {
  2474. printk(KERN_WARNING
  2475. "partial checksum but "
  2476. "proto=%x!\n",
  2477. skb->protocol);
  2478. }
  2479. break;
  2480. }
  2481. }
  2482. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
  2483. /* use index zero for tx checksum offload */
  2484. context_desc->mss_l4len_idx = 0;
  2485. tx_buffer_info->time_stamp = jiffies;
  2486. tx_buffer_info->next_to_watch = i;
  2487. adapter->hw_csum_tx_good++;
  2488. i++;
  2489. if (i == tx_ring->count)
  2490. i = 0;
  2491. tx_ring->next_to_use = i;
  2492. return true;
  2493. }
  2494. return false;
  2495. }
  2496. static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
  2497. struct ixgbevf_ring *tx_ring,
  2498. struct sk_buff *skb, u32 tx_flags,
  2499. unsigned int first)
  2500. {
  2501. struct pci_dev *pdev = adapter->pdev;
  2502. struct ixgbevf_tx_buffer *tx_buffer_info;
  2503. unsigned int len;
  2504. unsigned int total = skb->len;
  2505. unsigned int offset = 0, size;
  2506. int count = 0;
  2507. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  2508. unsigned int f;
  2509. int i;
  2510. i = tx_ring->next_to_use;
  2511. len = min(skb_headlen(skb), total);
  2512. while (len) {
  2513. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2514. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2515. tx_buffer_info->length = size;
  2516. tx_buffer_info->mapped_as_page = false;
  2517. tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
  2518. skb->data + offset,
  2519. size, DMA_TO_DEVICE);
  2520. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2521. goto dma_error;
  2522. tx_buffer_info->time_stamp = jiffies;
  2523. tx_buffer_info->next_to_watch = i;
  2524. len -= size;
  2525. total -= size;
  2526. offset += size;
  2527. count++;
  2528. i++;
  2529. if (i == tx_ring->count)
  2530. i = 0;
  2531. }
  2532. for (f = 0; f < nr_frags; f++) {
  2533. struct skb_frag_struct *frag;
  2534. frag = &skb_shinfo(skb)->frags[f];
  2535. len = min((unsigned int)frag->size, total);
  2536. offset = frag->page_offset;
  2537. while (len) {
  2538. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2539. size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
  2540. tx_buffer_info->length = size;
  2541. tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
  2542. frag->page,
  2543. offset,
  2544. size,
  2545. DMA_TO_DEVICE);
  2546. tx_buffer_info->mapped_as_page = true;
  2547. if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
  2548. goto dma_error;
  2549. tx_buffer_info->time_stamp = jiffies;
  2550. tx_buffer_info->next_to_watch = i;
  2551. len -= size;
  2552. total -= size;
  2553. offset += size;
  2554. count++;
  2555. i++;
  2556. if (i == tx_ring->count)
  2557. i = 0;
  2558. }
  2559. if (total == 0)
  2560. break;
  2561. }
  2562. if (i == 0)
  2563. i = tx_ring->count - 1;
  2564. else
  2565. i = i - 1;
  2566. tx_ring->tx_buffer_info[i].skb = skb;
  2567. tx_ring->tx_buffer_info[first].next_to_watch = i;
  2568. return count;
  2569. dma_error:
  2570. dev_err(&pdev->dev, "TX DMA map failed\n");
  2571. /* clear timestamp and dma mappings for failed tx_buffer_info map */
  2572. tx_buffer_info->dma = 0;
  2573. tx_buffer_info->time_stamp = 0;
  2574. tx_buffer_info->next_to_watch = 0;
  2575. count--;
  2576. /* clear timestamp and dma mappings for remaining portion of packet */
  2577. while (count >= 0) {
  2578. count--;
  2579. i--;
  2580. if (i < 0)
  2581. i += tx_ring->count;
  2582. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2583. ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
  2584. }
  2585. return count;
  2586. }
  2587. static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
  2588. struct ixgbevf_ring *tx_ring, int tx_flags,
  2589. int count, u32 paylen, u8 hdr_len)
  2590. {
  2591. union ixgbe_adv_tx_desc *tx_desc = NULL;
  2592. struct ixgbevf_tx_buffer *tx_buffer_info;
  2593. u32 olinfo_status = 0, cmd_type_len = 0;
  2594. unsigned int i;
  2595. u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
  2596. cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
  2597. cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
  2598. if (tx_flags & IXGBE_TX_FLAGS_VLAN)
  2599. cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
  2600. if (tx_flags & IXGBE_TX_FLAGS_TSO) {
  2601. cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
  2602. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2603. IXGBE_ADVTXD_POPTS_SHIFT;
  2604. /* use index 1 context for tso */
  2605. olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
  2606. if (tx_flags & IXGBE_TX_FLAGS_IPV4)
  2607. olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
  2608. IXGBE_ADVTXD_POPTS_SHIFT;
  2609. } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
  2610. olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
  2611. IXGBE_ADVTXD_POPTS_SHIFT;
  2612. olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
  2613. i = tx_ring->next_to_use;
  2614. while (count--) {
  2615. tx_buffer_info = &tx_ring->tx_buffer_info[i];
  2616. tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
  2617. tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
  2618. tx_desc->read.cmd_type_len =
  2619. cpu_to_le32(cmd_type_len | tx_buffer_info->length);
  2620. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  2621. i++;
  2622. if (i == tx_ring->count)
  2623. i = 0;
  2624. }
  2625. tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
  2626. /*
  2627. * Force memory writes to complete before letting h/w
  2628. * know there are new descriptors to fetch. (Only
  2629. * applicable for weak-ordered memory model archs,
  2630. * such as IA-64).
  2631. */
  2632. wmb();
  2633. tx_ring->next_to_use = i;
  2634. writel(i, adapter->hw.hw_addr + tx_ring->tail);
  2635. }
  2636. static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2637. struct ixgbevf_ring *tx_ring, int size)
  2638. {
  2639. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2640. netif_stop_subqueue(netdev, tx_ring->queue_index);
  2641. /* Herbert's original patch had:
  2642. * smp_mb__after_netif_stop_queue();
  2643. * but since that doesn't exist yet, just open code it. */
  2644. smp_mb();
  2645. /* We need to check again in a case another CPU has just
  2646. * made room available. */
  2647. if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
  2648. return -EBUSY;
  2649. /* A reprieve! - use start_queue because it doesn't call schedule */
  2650. netif_start_subqueue(netdev, tx_ring->queue_index);
  2651. ++adapter->restart_queue;
  2652. return 0;
  2653. }
  2654. static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
  2655. struct ixgbevf_ring *tx_ring, int size)
  2656. {
  2657. if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
  2658. return 0;
  2659. return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
  2660. }
  2661. static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2662. {
  2663. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2664. struct ixgbevf_ring *tx_ring;
  2665. unsigned int first;
  2666. unsigned int tx_flags = 0;
  2667. u8 hdr_len = 0;
  2668. int r_idx = 0, tso;
  2669. int count = 0;
  2670. unsigned int f;
  2671. tx_ring = &adapter->tx_ring[r_idx];
  2672. if (vlan_tx_tag_present(skb)) {
  2673. tx_flags |= vlan_tx_tag_get(skb);
  2674. tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
  2675. tx_flags |= IXGBE_TX_FLAGS_VLAN;
  2676. }
  2677. /* four things can cause us to need a context descriptor */
  2678. if (skb_is_gso(skb) ||
  2679. (skb->ip_summed == CHECKSUM_PARTIAL) ||
  2680. (tx_flags & IXGBE_TX_FLAGS_VLAN))
  2681. count++;
  2682. count += TXD_USE_COUNT(skb_headlen(skb));
  2683. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  2684. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  2685. if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
  2686. adapter->tx_busy++;
  2687. return NETDEV_TX_BUSY;
  2688. }
  2689. first = tx_ring->next_to_use;
  2690. if (skb->protocol == htons(ETH_P_IP))
  2691. tx_flags |= IXGBE_TX_FLAGS_IPV4;
  2692. tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
  2693. if (tso < 0) {
  2694. dev_kfree_skb_any(skb);
  2695. return NETDEV_TX_OK;
  2696. }
  2697. if (tso)
  2698. tx_flags |= IXGBE_TX_FLAGS_TSO;
  2699. else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
  2700. (skb->ip_summed == CHECKSUM_PARTIAL))
  2701. tx_flags |= IXGBE_TX_FLAGS_CSUM;
  2702. ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
  2703. ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
  2704. skb->len, hdr_len);
  2705. ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
  2706. return NETDEV_TX_OK;
  2707. }
  2708. /**
  2709. * ixgbevf_set_mac - Change the Ethernet Address of the NIC
  2710. * @netdev: network interface device structure
  2711. * @p: pointer to an address structure
  2712. *
  2713. * Returns 0 on success, negative on failure
  2714. **/
  2715. static int ixgbevf_set_mac(struct net_device *netdev, void *p)
  2716. {
  2717. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2718. struct ixgbe_hw *hw = &adapter->hw;
  2719. struct sockaddr *addr = p;
  2720. if (!is_valid_ether_addr(addr->sa_data))
  2721. return -EADDRNOTAVAIL;
  2722. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  2723. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  2724. if (hw->mac.ops.set_rar)
  2725. hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
  2726. return 0;
  2727. }
  2728. /**
  2729. * ixgbevf_change_mtu - Change the Maximum Transfer Unit
  2730. * @netdev: network interface device structure
  2731. * @new_mtu: new value for maximum frame size
  2732. *
  2733. * Returns 0 on success, negative on failure
  2734. **/
  2735. static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
  2736. {
  2737. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2738. struct ixgbe_hw *hw = &adapter->hw;
  2739. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
  2740. int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
  2741. u32 msg[2];
  2742. if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
  2743. max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
  2744. /* MTU < 68 is an error and causes problems on some kernels */
  2745. if ((new_mtu < 68) || (max_frame > max_possible_frame))
  2746. return -EINVAL;
  2747. hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
  2748. netdev->mtu, new_mtu);
  2749. /* must set new MTU before calling down or up */
  2750. netdev->mtu = new_mtu;
  2751. msg[0] = IXGBE_VF_SET_LPE;
  2752. msg[1] = max_frame;
  2753. hw->mbx.ops.write_posted(hw, msg, 2);
  2754. if (netif_running(netdev))
  2755. ixgbevf_reinit_locked(adapter);
  2756. return 0;
  2757. }
  2758. static void ixgbevf_shutdown(struct pci_dev *pdev)
  2759. {
  2760. struct net_device *netdev = pci_get_drvdata(pdev);
  2761. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2762. netif_device_detach(netdev);
  2763. if (netif_running(netdev)) {
  2764. ixgbevf_down(adapter);
  2765. ixgbevf_free_irq(adapter);
  2766. ixgbevf_free_all_tx_resources(adapter);
  2767. ixgbevf_free_all_rx_resources(adapter);
  2768. }
  2769. #ifdef CONFIG_PM
  2770. pci_save_state(pdev);
  2771. #endif
  2772. pci_disable_device(pdev);
  2773. }
  2774. static const struct net_device_ops ixgbe_netdev_ops = {
  2775. .ndo_open = &ixgbevf_open,
  2776. .ndo_stop = &ixgbevf_close,
  2777. .ndo_start_xmit = &ixgbevf_xmit_frame,
  2778. .ndo_set_rx_mode = &ixgbevf_set_rx_mode,
  2779. .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
  2780. .ndo_validate_addr = eth_validate_addr,
  2781. .ndo_set_mac_address = &ixgbevf_set_mac,
  2782. .ndo_change_mtu = &ixgbevf_change_mtu,
  2783. .ndo_tx_timeout = &ixgbevf_tx_timeout,
  2784. .ndo_vlan_rx_register = &ixgbevf_vlan_rx_register,
  2785. .ndo_vlan_rx_add_vid = &ixgbevf_vlan_rx_add_vid,
  2786. .ndo_vlan_rx_kill_vid = &ixgbevf_vlan_rx_kill_vid,
  2787. };
  2788. static void ixgbevf_assign_netdev_ops(struct net_device *dev)
  2789. {
  2790. struct ixgbevf_adapter *adapter;
  2791. adapter = netdev_priv(dev);
  2792. dev->netdev_ops = &ixgbe_netdev_ops;
  2793. ixgbevf_set_ethtool_ops(dev);
  2794. dev->watchdog_timeo = 5 * HZ;
  2795. }
  2796. /**
  2797. * ixgbevf_probe - Device Initialization Routine
  2798. * @pdev: PCI device information struct
  2799. * @ent: entry in ixgbevf_pci_tbl
  2800. *
  2801. * Returns 0 on success, negative on failure
  2802. *
  2803. * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
  2804. * The OS initialization, configuring of the adapter private structure,
  2805. * and a hardware reset occur.
  2806. **/
  2807. static int __devinit ixgbevf_probe(struct pci_dev *pdev,
  2808. const struct pci_device_id *ent)
  2809. {
  2810. struct net_device *netdev;
  2811. struct ixgbevf_adapter *adapter = NULL;
  2812. struct ixgbe_hw *hw = NULL;
  2813. const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
  2814. static int cards_found;
  2815. int err, pci_using_dac;
  2816. err = pci_enable_device(pdev);
  2817. if (err)
  2818. return err;
  2819. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
  2820. !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  2821. pci_using_dac = 1;
  2822. } else {
  2823. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  2824. if (err) {
  2825. err = dma_set_coherent_mask(&pdev->dev,
  2826. DMA_BIT_MASK(32));
  2827. if (err) {
  2828. dev_err(&pdev->dev, "No usable DMA "
  2829. "configuration, aborting\n");
  2830. goto err_dma;
  2831. }
  2832. }
  2833. pci_using_dac = 0;
  2834. }
  2835. err = pci_request_regions(pdev, ixgbevf_driver_name);
  2836. if (err) {
  2837. dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
  2838. goto err_pci_reg;
  2839. }
  2840. pci_set_master(pdev);
  2841. #ifdef HAVE_TX_MQ
  2842. netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
  2843. MAX_TX_QUEUES);
  2844. #else
  2845. netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
  2846. #endif
  2847. if (!netdev) {
  2848. err = -ENOMEM;
  2849. goto err_alloc_etherdev;
  2850. }
  2851. SET_NETDEV_DEV(netdev, &pdev->dev);
  2852. pci_set_drvdata(pdev, netdev);
  2853. adapter = netdev_priv(netdev);
  2854. adapter->netdev = netdev;
  2855. adapter->pdev = pdev;
  2856. hw = &adapter->hw;
  2857. hw->back = adapter;
  2858. adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
  2859. /*
  2860. * call save state here in standalone driver because it relies on
  2861. * adapter struct to exist, and needs to call netdev_priv
  2862. */
  2863. pci_save_state(pdev);
  2864. hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
  2865. pci_resource_len(pdev, 0));
  2866. if (!hw->hw_addr) {
  2867. err = -EIO;
  2868. goto err_ioremap;
  2869. }
  2870. ixgbevf_assign_netdev_ops(netdev);
  2871. adapter->bd_number = cards_found;
  2872. /* Setup hw api */
  2873. memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
  2874. hw->mac.type = ii->mac;
  2875. memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
  2876. sizeof(struct ixgbe_mac_operations));
  2877. adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
  2878. adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
  2879. adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
  2880. /* setup the private structure */
  2881. err = ixgbevf_sw_init(adapter);
  2882. netdev->features = NETIF_F_SG |
  2883. NETIF_F_IP_CSUM |
  2884. NETIF_F_HW_VLAN_TX |
  2885. NETIF_F_HW_VLAN_RX |
  2886. NETIF_F_HW_VLAN_FILTER;
  2887. netdev->features |= NETIF_F_IPV6_CSUM;
  2888. netdev->features |= NETIF_F_TSO;
  2889. netdev->features |= NETIF_F_TSO6;
  2890. netdev->features |= NETIF_F_GRO;
  2891. netdev->vlan_features |= NETIF_F_TSO;
  2892. netdev->vlan_features |= NETIF_F_TSO6;
  2893. netdev->vlan_features |= NETIF_F_IP_CSUM;
  2894. netdev->vlan_features |= NETIF_F_IPV6_CSUM;
  2895. netdev->vlan_features |= NETIF_F_SG;
  2896. if (pci_using_dac)
  2897. netdev->features |= NETIF_F_HIGHDMA;
  2898. /* The HW MAC address was set and/or determined in sw_init */
  2899. memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
  2900. memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
  2901. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2902. printk(KERN_ERR "invalid MAC address\n");
  2903. err = -EIO;
  2904. goto err_sw_init;
  2905. }
  2906. init_timer(&adapter->watchdog_timer);
  2907. adapter->watchdog_timer.function = ixgbevf_watchdog;
  2908. adapter->watchdog_timer.data = (unsigned long)adapter;
  2909. INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
  2910. INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
  2911. err = ixgbevf_init_interrupt_scheme(adapter);
  2912. if (err)
  2913. goto err_sw_init;
  2914. /* pick up the PCI bus settings for reporting later */
  2915. if (hw->mac.ops.get_bus_info)
  2916. hw->mac.ops.get_bus_info(hw);
  2917. strcpy(netdev->name, "eth%d");
  2918. err = register_netdev(netdev);
  2919. if (err)
  2920. goto err_register;
  2921. adapter->netdev_registered = true;
  2922. netif_carrier_off(netdev);
  2923. ixgbevf_init_last_counter_stats(adapter);
  2924. /* print the MAC address */
  2925. hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  2926. netdev->dev_addr[0],
  2927. netdev->dev_addr[1],
  2928. netdev->dev_addr[2],
  2929. netdev->dev_addr[3],
  2930. netdev->dev_addr[4],
  2931. netdev->dev_addr[5]);
  2932. hw_dbg(hw, "MAC: %d\n", hw->mac.type);
  2933. hw_dbg(hw, "LRO is disabled\n");
  2934. hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
  2935. cards_found++;
  2936. return 0;
  2937. err_register:
  2938. err_sw_init:
  2939. ixgbevf_reset_interrupt_capability(adapter);
  2940. iounmap(hw->hw_addr);
  2941. err_ioremap:
  2942. free_netdev(netdev);
  2943. err_alloc_etherdev:
  2944. pci_release_regions(pdev);
  2945. err_pci_reg:
  2946. err_dma:
  2947. pci_disable_device(pdev);
  2948. return err;
  2949. }
  2950. /**
  2951. * ixgbevf_remove - Device Removal Routine
  2952. * @pdev: PCI device information struct
  2953. *
  2954. * ixgbevf_remove is called by the PCI subsystem to alert the driver
  2955. * that it should release a PCI device. The could be caused by a
  2956. * Hot-Plug event, or because the driver is going to be removed from
  2957. * memory.
  2958. **/
  2959. static void __devexit ixgbevf_remove(struct pci_dev *pdev)
  2960. {
  2961. struct net_device *netdev = pci_get_drvdata(pdev);
  2962. struct ixgbevf_adapter *adapter = netdev_priv(netdev);
  2963. set_bit(__IXGBEVF_DOWN, &adapter->state);
  2964. del_timer_sync(&adapter->watchdog_timer);
  2965. cancel_work_sync(&adapter->reset_task);
  2966. cancel_work_sync(&adapter->watchdog_task);
  2967. if (adapter->netdev_registered) {
  2968. unregister_netdev(netdev);
  2969. adapter->netdev_registered = false;
  2970. }
  2971. ixgbevf_reset_interrupt_capability(adapter);
  2972. iounmap(adapter->hw.hw_addr);
  2973. pci_release_regions(pdev);
  2974. hw_dbg(&adapter->hw, "Remove complete\n");
  2975. kfree(adapter->tx_ring);
  2976. kfree(adapter->rx_ring);
  2977. free_netdev(netdev);
  2978. pci_disable_device(pdev);
  2979. }
  2980. static struct pci_driver ixgbevf_driver = {
  2981. .name = ixgbevf_driver_name,
  2982. .id_table = ixgbevf_pci_tbl,
  2983. .probe = ixgbevf_probe,
  2984. .remove = __devexit_p(ixgbevf_remove),
  2985. .shutdown = ixgbevf_shutdown,
  2986. };
  2987. /**
  2988. * ixgbevf_init_module - Driver Registration Routine
  2989. *
  2990. * ixgbevf_init_module is the first routine called when the driver is
  2991. * loaded. All it does is register with the PCI subsystem.
  2992. **/
  2993. static int __init ixgbevf_init_module(void)
  2994. {
  2995. int ret;
  2996. printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
  2997. ixgbevf_driver_version);
  2998. printk(KERN_INFO "%s\n", ixgbevf_copyright);
  2999. ret = pci_register_driver(&ixgbevf_driver);
  3000. return ret;
  3001. }
  3002. module_init(ixgbevf_init_module);
  3003. /**
  3004. * ixgbevf_exit_module - Driver Exit Cleanup Routine
  3005. *
  3006. * ixgbevf_exit_module is called just before the driver is removed
  3007. * from memory.
  3008. **/
  3009. static void __exit ixgbevf_exit_module(void)
  3010. {
  3011. pci_unregister_driver(&ixgbevf_driver);
  3012. }
  3013. #ifdef DEBUG
  3014. /**
  3015. * ixgbevf_get_hw_dev_name - return device name string
  3016. * used by hardware layer to print debugging information
  3017. **/
  3018. char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
  3019. {
  3020. struct ixgbevf_adapter *adapter = hw->back;
  3021. return adapter->netdev->name;
  3022. }
  3023. #endif
  3024. module_exit(ixgbevf_exit_module);
  3025. /* ixgbevf_main.c */