c_can.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158
  1. /*
  2. * CAN bus driver for Bosch C_CAN controller
  3. *
  4. * Copyright (C) 2010 ST Microelectronics
  5. * Bhupesh Sharma <bhupesh.sharma@st.com>
  6. *
  7. * Borrowed heavily from the C_CAN driver originally written by:
  8. * Copyright (C) 2007
  9. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10. * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11. *
  12. * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13. * written by:
  14. * Copyright
  15. * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16. * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17. *
  18. * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19. * Bosch C_CAN user manual can be obtained from:
  20. * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21. * users_manual_c_can.pdf
  22. *
  23. * This file is licensed under the terms of the GNU General Public
  24. * License version 2. This program is licensed "as is" without any
  25. * warranty of any kind, whether express or implied.
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/if_ether.h>
  35. #include <linux/list.h>
  36. #include <linux/delay.h>
  37. #include <linux/io.h>
  38. #include <linux/can.h>
  39. #include <linux/can/dev.h>
  40. #include <linux/can/error.h>
  41. #include "c_can.h"
  42. /* control register */
  43. #define CONTROL_TEST BIT(7)
  44. #define CONTROL_CCE BIT(6)
  45. #define CONTROL_DISABLE_AR BIT(5)
  46. #define CONTROL_ENABLE_AR (0 << 5)
  47. #define CONTROL_EIE BIT(3)
  48. #define CONTROL_SIE BIT(2)
  49. #define CONTROL_IE BIT(1)
  50. #define CONTROL_INIT BIT(0)
  51. /* test register */
  52. #define TEST_RX BIT(7)
  53. #define TEST_TX1 BIT(6)
  54. #define TEST_TX2 BIT(5)
  55. #define TEST_LBACK BIT(4)
  56. #define TEST_SILENT BIT(3)
  57. #define TEST_BASIC BIT(2)
  58. /* status register */
  59. #define STATUS_BOFF BIT(7)
  60. #define STATUS_EWARN BIT(6)
  61. #define STATUS_EPASS BIT(5)
  62. #define STATUS_RXOK BIT(4)
  63. #define STATUS_TXOK BIT(3)
  64. /* error counter register */
  65. #define ERR_CNT_TEC_MASK 0xff
  66. #define ERR_CNT_TEC_SHIFT 0
  67. #define ERR_CNT_REC_SHIFT 8
  68. #define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
  69. #define ERR_CNT_RP_SHIFT 15
  70. #define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
  71. /* bit-timing register */
  72. #define BTR_BRP_MASK 0x3f
  73. #define BTR_BRP_SHIFT 0
  74. #define BTR_SJW_SHIFT 6
  75. #define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
  76. #define BTR_TSEG1_SHIFT 8
  77. #define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
  78. #define BTR_TSEG2_SHIFT 12
  79. #define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
  80. /* brp extension register */
  81. #define BRP_EXT_BRPE_MASK 0x0f
  82. #define BRP_EXT_BRPE_SHIFT 0
  83. /* IFx command request */
  84. #define IF_COMR_BUSY BIT(15)
  85. /* IFx command mask */
  86. #define IF_COMM_WR BIT(7)
  87. #define IF_COMM_MASK BIT(6)
  88. #define IF_COMM_ARB BIT(5)
  89. #define IF_COMM_CONTROL BIT(4)
  90. #define IF_COMM_CLR_INT_PND BIT(3)
  91. #define IF_COMM_TXRQST BIT(2)
  92. #define IF_COMM_DATAA BIT(1)
  93. #define IF_COMM_DATAB BIT(0)
  94. #define IF_COMM_ALL (IF_COMM_MASK | IF_COMM_ARB | \
  95. IF_COMM_CONTROL | IF_COMM_TXRQST | \
  96. IF_COMM_DATAA | IF_COMM_DATAB)
  97. /* IFx arbitration */
  98. #define IF_ARB_MSGVAL BIT(15)
  99. #define IF_ARB_MSGXTD BIT(14)
  100. #define IF_ARB_TRANSMIT BIT(13)
  101. /* IFx message control */
  102. #define IF_MCONT_NEWDAT BIT(15)
  103. #define IF_MCONT_MSGLST BIT(14)
  104. #define IF_MCONT_CLR_MSGLST (0 << 14)
  105. #define IF_MCONT_INTPND BIT(13)
  106. #define IF_MCONT_UMASK BIT(12)
  107. #define IF_MCONT_TXIE BIT(11)
  108. #define IF_MCONT_RXIE BIT(10)
  109. #define IF_MCONT_RMTEN BIT(9)
  110. #define IF_MCONT_TXRQST BIT(8)
  111. #define IF_MCONT_EOB BIT(7)
  112. #define IF_MCONT_DLC_MASK 0xf
  113. /*
  114. * IFx register masks:
  115. * allow easy operation on 16-bit registers when the
  116. * argument is 32-bit instead
  117. */
  118. #define IFX_WRITE_LOW_16BIT(x) ((x) & 0xFFFF)
  119. #define IFX_WRITE_HIGH_16BIT(x) (((x) & 0xFFFF0000) >> 16)
  120. /* message object split */
  121. #define C_CAN_NO_OF_OBJECTS 32
  122. #define C_CAN_MSG_OBJ_RX_NUM 16
  123. #define C_CAN_MSG_OBJ_TX_NUM 16
  124. #define C_CAN_MSG_OBJ_RX_FIRST 1
  125. #define C_CAN_MSG_OBJ_RX_LAST (C_CAN_MSG_OBJ_RX_FIRST + \
  126. C_CAN_MSG_OBJ_RX_NUM - 1)
  127. #define C_CAN_MSG_OBJ_TX_FIRST (C_CAN_MSG_OBJ_RX_LAST + 1)
  128. #define C_CAN_MSG_OBJ_TX_LAST (C_CAN_MSG_OBJ_TX_FIRST + \
  129. C_CAN_MSG_OBJ_TX_NUM - 1)
  130. #define C_CAN_MSG_OBJ_RX_SPLIT 9
  131. #define C_CAN_MSG_RX_LOW_LAST (C_CAN_MSG_OBJ_RX_SPLIT - 1)
  132. #define C_CAN_NEXT_MSG_OBJ_MASK (C_CAN_MSG_OBJ_TX_NUM - 1)
  133. #define RECEIVE_OBJECT_BITS 0x0000ffff
  134. /* status interrupt */
  135. #define STATUS_INTERRUPT 0x8000
  136. /* global interrupt masks */
  137. #define ENABLE_ALL_INTERRUPTS 1
  138. #define DISABLE_ALL_INTERRUPTS 0
  139. /* minimum timeout for checking BUSY status */
  140. #define MIN_TIMEOUT_VALUE 6
  141. /* napi related */
  142. #define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
  143. /* c_can lec values */
  144. enum c_can_lec_type {
  145. LEC_NO_ERROR = 0,
  146. LEC_STUFF_ERROR,
  147. LEC_FORM_ERROR,
  148. LEC_ACK_ERROR,
  149. LEC_BIT1_ERROR,
  150. LEC_BIT0_ERROR,
  151. LEC_CRC_ERROR,
  152. LEC_UNUSED,
  153. };
  154. /*
  155. * c_can error types:
  156. * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
  157. */
  158. enum c_can_bus_error_types {
  159. C_CAN_NO_ERROR = 0,
  160. C_CAN_BUS_OFF,
  161. C_CAN_ERROR_WARNING,
  162. C_CAN_ERROR_PASSIVE,
  163. };
  164. static struct can_bittiming_const c_can_bittiming_const = {
  165. .name = KBUILD_MODNAME,
  166. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  167. .tseg1_max = 16,
  168. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  169. .tseg2_max = 8,
  170. .sjw_max = 4,
  171. .brp_min = 1,
  172. .brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
  173. .brp_inc = 1,
  174. };
  175. static inline int get_tx_next_msg_obj(const struct c_can_priv *priv)
  176. {
  177. return (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) +
  178. C_CAN_MSG_OBJ_TX_FIRST;
  179. }
  180. static inline int get_tx_echo_msg_obj(const struct c_can_priv *priv)
  181. {
  182. return (priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) +
  183. C_CAN_MSG_OBJ_TX_FIRST;
  184. }
  185. static u32 c_can_read_reg32(struct c_can_priv *priv, void *reg)
  186. {
  187. u32 val = priv->read_reg(priv, reg);
  188. val |= ((u32) priv->read_reg(priv, reg + 2)) << 16;
  189. return val;
  190. }
  191. static void c_can_enable_all_interrupts(struct c_can_priv *priv,
  192. int enable)
  193. {
  194. unsigned int cntrl_save = priv->read_reg(priv,
  195. &priv->regs->control);
  196. if (enable)
  197. cntrl_save |= (CONTROL_SIE | CONTROL_EIE | CONTROL_IE);
  198. else
  199. cntrl_save &= ~(CONTROL_EIE | CONTROL_IE | CONTROL_SIE);
  200. priv->write_reg(priv, &priv->regs->control, cntrl_save);
  201. }
  202. static inline int c_can_msg_obj_is_busy(struct c_can_priv *priv, int iface)
  203. {
  204. int count = MIN_TIMEOUT_VALUE;
  205. while (count && priv->read_reg(priv,
  206. &priv->regs->ifregs[iface].com_req) &
  207. IF_COMR_BUSY) {
  208. count--;
  209. udelay(1);
  210. }
  211. if (!count)
  212. return 1;
  213. return 0;
  214. }
  215. static inline void c_can_object_get(struct net_device *dev,
  216. int iface, int objno, int mask)
  217. {
  218. struct c_can_priv *priv = netdev_priv(dev);
  219. /*
  220. * As per specs, after writting the message object number in the
  221. * IF command request register the transfer b/w interface
  222. * register and message RAM must be complete in 6 CAN-CLK
  223. * period.
  224. */
  225. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  226. IFX_WRITE_LOW_16BIT(mask));
  227. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  228. IFX_WRITE_LOW_16BIT(objno));
  229. if (c_can_msg_obj_is_busy(priv, iface))
  230. netdev_err(dev, "timed out in object get\n");
  231. }
  232. static inline void c_can_object_put(struct net_device *dev,
  233. int iface, int objno, int mask)
  234. {
  235. struct c_can_priv *priv = netdev_priv(dev);
  236. /*
  237. * As per specs, after writting the message object number in the
  238. * IF command request register the transfer b/w interface
  239. * register and message RAM must be complete in 6 CAN-CLK
  240. * period.
  241. */
  242. priv->write_reg(priv, &priv->regs->ifregs[iface].com_mask,
  243. (IF_COMM_WR | IFX_WRITE_LOW_16BIT(mask)));
  244. priv->write_reg(priv, &priv->regs->ifregs[iface].com_req,
  245. IFX_WRITE_LOW_16BIT(objno));
  246. if (c_can_msg_obj_is_busy(priv, iface))
  247. netdev_err(dev, "timed out in object put\n");
  248. }
  249. static void c_can_write_msg_object(struct net_device *dev,
  250. int iface, struct can_frame *frame, int objno)
  251. {
  252. int i;
  253. u16 flags = 0;
  254. unsigned int id;
  255. struct c_can_priv *priv = netdev_priv(dev);
  256. if (!(frame->can_id & CAN_RTR_FLAG))
  257. flags |= IF_ARB_TRANSMIT;
  258. if (frame->can_id & CAN_EFF_FLAG) {
  259. id = frame->can_id & CAN_EFF_MASK;
  260. flags |= IF_ARB_MSGXTD;
  261. } else
  262. id = ((frame->can_id & CAN_SFF_MASK) << 18);
  263. flags |= IF_ARB_MSGVAL;
  264. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  265. IFX_WRITE_LOW_16BIT(id));
  266. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, flags |
  267. IFX_WRITE_HIGH_16BIT(id));
  268. for (i = 0; i < frame->can_dlc; i += 2) {
  269. priv->write_reg(priv, &priv->regs->ifregs[iface].data[i / 2],
  270. frame->data[i] | (frame->data[i + 1] << 8));
  271. }
  272. /* enable interrupt for this message object */
  273. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  274. IF_MCONT_TXIE | IF_MCONT_TXRQST | IF_MCONT_EOB |
  275. frame->can_dlc);
  276. c_can_object_put(dev, iface, objno, IF_COMM_ALL);
  277. }
  278. static inline void c_can_mark_rx_msg_obj(struct net_device *dev,
  279. int iface, int ctrl_mask,
  280. int obj)
  281. {
  282. struct c_can_priv *priv = netdev_priv(dev);
  283. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  284. ctrl_mask & ~(IF_MCONT_MSGLST | IF_MCONT_INTPND));
  285. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  286. }
  287. static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
  288. int iface,
  289. int ctrl_mask)
  290. {
  291. int i;
  292. struct c_can_priv *priv = netdev_priv(dev);
  293. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++) {
  294. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  295. ctrl_mask & ~(IF_MCONT_MSGLST |
  296. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  297. c_can_object_put(dev, iface, i, IF_COMM_CONTROL);
  298. }
  299. }
  300. static inline void c_can_activate_rx_msg_obj(struct net_device *dev,
  301. int iface, int ctrl_mask,
  302. int obj)
  303. {
  304. struct c_can_priv *priv = netdev_priv(dev);
  305. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  306. ctrl_mask & ~(IF_MCONT_MSGLST |
  307. IF_MCONT_INTPND | IF_MCONT_NEWDAT));
  308. c_can_object_put(dev, iface, obj, IF_COMM_CONTROL);
  309. }
  310. static void c_can_handle_lost_msg_obj(struct net_device *dev,
  311. int iface, int objno)
  312. {
  313. struct c_can_priv *priv = netdev_priv(dev);
  314. struct net_device_stats *stats = &dev->stats;
  315. struct sk_buff *skb;
  316. struct can_frame *frame;
  317. netdev_err(dev, "msg lost in buffer %d\n", objno);
  318. c_can_object_get(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  319. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl,
  320. IF_MCONT_CLR_MSGLST);
  321. c_can_object_put(dev, 0, objno, IF_COMM_CONTROL);
  322. /* create an error msg */
  323. skb = alloc_can_err_skb(dev, &frame);
  324. if (unlikely(!skb))
  325. return;
  326. frame->can_id |= CAN_ERR_CRTL;
  327. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  328. stats->rx_errors++;
  329. stats->rx_over_errors++;
  330. netif_receive_skb(skb);
  331. }
  332. static int c_can_read_msg_object(struct net_device *dev, int iface, int ctrl)
  333. {
  334. u16 flags, data;
  335. int i;
  336. unsigned int val;
  337. struct c_can_priv *priv = netdev_priv(dev);
  338. struct net_device_stats *stats = &dev->stats;
  339. struct sk_buff *skb;
  340. struct can_frame *frame;
  341. skb = alloc_can_skb(dev, &frame);
  342. if (!skb) {
  343. stats->rx_dropped++;
  344. return -ENOMEM;
  345. }
  346. frame->can_dlc = get_can_dlc(ctrl & 0x0F);
  347. flags = priv->read_reg(priv, &priv->regs->ifregs[iface].arb2);
  348. val = priv->read_reg(priv, &priv->regs->ifregs[iface].arb1) |
  349. (flags << 16);
  350. if (flags & IF_ARB_MSGXTD)
  351. frame->can_id = (val & CAN_EFF_MASK) | CAN_EFF_FLAG;
  352. else
  353. frame->can_id = (val >> 18) & CAN_SFF_MASK;
  354. if (flags & IF_ARB_TRANSMIT)
  355. frame->can_id |= CAN_RTR_FLAG;
  356. else {
  357. for (i = 0; i < frame->can_dlc; i += 2) {
  358. data = priv->read_reg(priv,
  359. &priv->regs->ifregs[iface].data[i / 2]);
  360. frame->data[i] = data;
  361. frame->data[i + 1] = data >> 8;
  362. }
  363. }
  364. netif_receive_skb(skb);
  365. stats->rx_packets++;
  366. stats->rx_bytes += frame->can_dlc;
  367. return 0;
  368. }
  369. static void c_can_setup_receive_object(struct net_device *dev, int iface,
  370. int objno, unsigned int mask,
  371. unsigned int id, unsigned int mcont)
  372. {
  373. struct c_can_priv *priv = netdev_priv(dev);
  374. priv->write_reg(priv, &priv->regs->ifregs[iface].mask1,
  375. IFX_WRITE_LOW_16BIT(mask));
  376. priv->write_reg(priv, &priv->regs->ifregs[iface].mask2,
  377. IFX_WRITE_HIGH_16BIT(mask));
  378. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1,
  379. IFX_WRITE_LOW_16BIT(id));
  380. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2,
  381. (IF_ARB_MSGVAL | IFX_WRITE_HIGH_16BIT(id)));
  382. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, mcont);
  383. c_can_object_put(dev, iface, objno, IF_COMM_ALL & ~IF_COMM_TXRQST);
  384. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  385. c_can_read_reg32(priv, &priv->regs->msgval1));
  386. }
  387. static void c_can_inval_msg_object(struct net_device *dev, int iface, int objno)
  388. {
  389. struct c_can_priv *priv = netdev_priv(dev);
  390. priv->write_reg(priv, &priv->regs->ifregs[iface].arb1, 0);
  391. priv->write_reg(priv, &priv->regs->ifregs[iface].arb2, 0);
  392. priv->write_reg(priv, &priv->regs->ifregs[iface].msg_cntrl, 0);
  393. c_can_object_put(dev, iface, objno, IF_COMM_ARB | IF_COMM_CONTROL);
  394. netdev_dbg(dev, "obj no:%d, msgval:0x%08x\n", objno,
  395. c_can_read_reg32(priv, &priv->regs->msgval1));
  396. }
  397. static inline int c_can_is_next_tx_obj_busy(struct c_can_priv *priv, int objno)
  398. {
  399. int val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  400. /*
  401. * as transmission request register's bit n-1 corresponds to
  402. * message object n, we need to handle the same properly.
  403. */
  404. if (val & (1 << (objno - 1)))
  405. return 1;
  406. return 0;
  407. }
  408. static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
  409. struct net_device *dev)
  410. {
  411. u32 msg_obj_no;
  412. struct c_can_priv *priv = netdev_priv(dev);
  413. struct can_frame *frame = (struct can_frame *)skb->data;
  414. if (can_dropped_invalid_skb(dev, skb))
  415. return NETDEV_TX_OK;
  416. msg_obj_no = get_tx_next_msg_obj(priv);
  417. /* prepare message object for transmission */
  418. c_can_write_msg_object(dev, 0, frame, msg_obj_no);
  419. can_put_echo_skb(skb, dev, msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  420. /*
  421. * we have to stop the queue in case of a wrap around or
  422. * if the next TX message object is still in use
  423. */
  424. priv->tx_next++;
  425. if (c_can_is_next_tx_obj_busy(priv, get_tx_next_msg_obj(priv)) ||
  426. (priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) == 0)
  427. netif_stop_queue(dev);
  428. return NETDEV_TX_OK;
  429. }
  430. static int c_can_set_bittiming(struct net_device *dev)
  431. {
  432. unsigned int reg_btr, reg_brpe, ctrl_save;
  433. u8 brp, brpe, sjw, tseg1, tseg2;
  434. u32 ten_bit_brp;
  435. struct c_can_priv *priv = netdev_priv(dev);
  436. const struct can_bittiming *bt = &priv->can.bittiming;
  437. /* c_can provides a 6-bit brp and 4-bit brpe fields */
  438. ten_bit_brp = bt->brp - 1;
  439. brp = ten_bit_brp & BTR_BRP_MASK;
  440. brpe = ten_bit_brp >> 6;
  441. sjw = bt->sjw - 1;
  442. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  443. tseg2 = bt->phase_seg2 - 1;
  444. reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
  445. (tseg2 << BTR_TSEG2_SHIFT);
  446. reg_brpe = brpe & BRP_EXT_BRPE_MASK;
  447. netdev_info(dev,
  448. "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
  449. ctrl_save = priv->read_reg(priv, &priv->regs->control);
  450. priv->write_reg(priv, &priv->regs->control,
  451. ctrl_save | CONTROL_CCE | CONTROL_INIT);
  452. priv->write_reg(priv, &priv->regs->btr, reg_btr);
  453. priv->write_reg(priv, &priv->regs->brp_ext, reg_brpe);
  454. priv->write_reg(priv, &priv->regs->control, ctrl_save);
  455. return 0;
  456. }
  457. /*
  458. * Configure C_CAN message objects for Tx and Rx purposes:
  459. * C_CAN provides a total of 32 message objects that can be configured
  460. * either for Tx or Rx purposes. Here the first 16 message objects are used as
  461. * a reception FIFO. The end of reception FIFO is signified by the EoB bit
  462. * being SET. The remaining 16 message objects are kept aside for Tx purposes.
  463. * See user guide document for further details on configuring message
  464. * objects.
  465. */
  466. static void c_can_configure_msg_objects(struct net_device *dev)
  467. {
  468. int i;
  469. /* first invalidate all message objects */
  470. for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
  471. c_can_inval_msg_object(dev, 0, i);
  472. /* setup receive message objects */
  473. for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
  474. c_can_setup_receive_object(dev, 0, i, 0, 0,
  475. (IF_MCONT_RXIE | IF_MCONT_UMASK) & ~IF_MCONT_EOB);
  476. c_can_setup_receive_object(dev, 0, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
  477. IF_MCONT_EOB | IF_MCONT_RXIE | IF_MCONT_UMASK);
  478. }
  479. /*
  480. * Configure C_CAN chip:
  481. * - enable/disable auto-retransmission
  482. * - set operating mode
  483. * - configure message objects
  484. */
  485. static void c_can_chip_config(struct net_device *dev)
  486. {
  487. struct c_can_priv *priv = netdev_priv(dev);
  488. if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
  489. /* disable automatic retransmission */
  490. priv->write_reg(priv, &priv->regs->control,
  491. CONTROL_DISABLE_AR);
  492. else
  493. /* enable automatic retransmission */
  494. priv->write_reg(priv, &priv->regs->control,
  495. CONTROL_ENABLE_AR);
  496. if (priv->can.ctrlmode & (CAN_CTRLMODE_LISTENONLY &
  497. CAN_CTRLMODE_LOOPBACK)) {
  498. /* loopback + silent mode : useful for hot self-test */
  499. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  500. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  501. priv->write_reg(priv, &priv->regs->test,
  502. TEST_LBACK | TEST_SILENT);
  503. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  504. /* loopback mode : useful for self-test function */
  505. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  506. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  507. priv->write_reg(priv, &priv->regs->test, TEST_LBACK);
  508. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  509. /* silent mode : bus-monitoring mode */
  510. priv->write_reg(priv, &priv->regs->control, CONTROL_EIE |
  511. CONTROL_SIE | CONTROL_IE | CONTROL_TEST);
  512. priv->write_reg(priv, &priv->regs->test, TEST_SILENT);
  513. } else
  514. /* normal mode*/
  515. priv->write_reg(priv, &priv->regs->control,
  516. CONTROL_EIE | CONTROL_SIE | CONTROL_IE);
  517. /* configure message objects */
  518. c_can_configure_msg_objects(dev);
  519. /* set a `lec` value so that we can check for updates later */
  520. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  521. /* set bittiming params */
  522. c_can_set_bittiming(dev);
  523. }
  524. static void c_can_start(struct net_device *dev)
  525. {
  526. struct c_can_priv *priv = netdev_priv(dev);
  527. /* enable status change, error and module interrupts */
  528. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  529. /* basic c_can configuration */
  530. c_can_chip_config(dev);
  531. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  532. /* reset tx helper pointers */
  533. priv->tx_next = priv->tx_echo = 0;
  534. }
  535. static void c_can_stop(struct net_device *dev)
  536. {
  537. struct c_can_priv *priv = netdev_priv(dev);
  538. /* disable all interrupts */
  539. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  540. /* set the state as STOPPED */
  541. priv->can.state = CAN_STATE_STOPPED;
  542. }
  543. static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
  544. {
  545. switch (mode) {
  546. case CAN_MODE_START:
  547. c_can_start(dev);
  548. netif_wake_queue(dev);
  549. break;
  550. default:
  551. return -EOPNOTSUPP;
  552. }
  553. return 0;
  554. }
  555. static int c_can_get_berr_counter(const struct net_device *dev,
  556. struct can_berr_counter *bec)
  557. {
  558. unsigned int reg_err_counter;
  559. struct c_can_priv *priv = netdev_priv(dev);
  560. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  561. bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
  562. ERR_CNT_REC_SHIFT;
  563. bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
  564. return 0;
  565. }
  566. /*
  567. * theory of operation:
  568. *
  569. * priv->tx_echo holds the number of the oldest can_frame put for
  570. * transmission into the hardware, but not yet ACKed by the CAN tx
  571. * complete IRQ.
  572. *
  573. * We iterate from priv->tx_echo to priv->tx_next and check if the
  574. * packet has been transmitted, echo it back to the CAN framework.
  575. * If we discover a not yet transmitted package, stop looking for more.
  576. */
  577. static void c_can_do_tx(struct net_device *dev)
  578. {
  579. u32 val;
  580. u32 msg_obj_no;
  581. struct c_can_priv *priv = netdev_priv(dev);
  582. struct net_device_stats *stats = &dev->stats;
  583. for (/* nix */; (priv->tx_next - priv->tx_echo) > 0; priv->tx_echo++) {
  584. msg_obj_no = get_tx_echo_msg_obj(priv);
  585. c_can_inval_msg_object(dev, 0, msg_obj_no);
  586. val = c_can_read_reg32(priv, &priv->regs->txrqst1);
  587. if (!(val & (1 << msg_obj_no))) {
  588. can_get_echo_skb(dev,
  589. msg_obj_no - C_CAN_MSG_OBJ_TX_FIRST);
  590. stats->tx_bytes += priv->read_reg(priv,
  591. &priv->regs->ifregs[0].msg_cntrl)
  592. & IF_MCONT_DLC_MASK;
  593. stats->tx_packets++;
  594. }
  595. }
  596. /* restart queue if wrap-up or if queue stalled on last pkt */
  597. if (((priv->tx_next & C_CAN_NEXT_MSG_OBJ_MASK) != 0) ||
  598. ((priv->tx_echo & C_CAN_NEXT_MSG_OBJ_MASK) == 0))
  599. netif_wake_queue(dev);
  600. }
  601. /*
  602. * theory of operation:
  603. *
  604. * c_can core saves a received CAN message into the first free message
  605. * object it finds free (starting with the lowest). Bits NEWDAT and
  606. * INTPND are set for this message object indicating that a new message
  607. * has arrived. To work-around this issue, we keep two groups of message
  608. * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
  609. *
  610. * To ensure in-order frame reception we use the following
  611. * approach while re-activating a message object to receive further
  612. * frames:
  613. * - if the current message object number is lower than
  614. * C_CAN_MSG_RX_LOW_LAST, do not clear the NEWDAT bit while clearing
  615. * the INTPND bit.
  616. * - if the current message object number is equal to
  617. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of all lower
  618. * receive message objects.
  619. * - if the current message object number is greater than
  620. * C_CAN_MSG_RX_LOW_LAST then clear the NEWDAT bit of
  621. * only this message object.
  622. */
  623. static int c_can_do_rx_poll(struct net_device *dev, int quota)
  624. {
  625. u32 num_rx_pkts = 0;
  626. unsigned int msg_obj, msg_ctrl_save;
  627. struct c_can_priv *priv = netdev_priv(dev);
  628. u32 val = c_can_read_reg32(priv, &priv->regs->intpnd1);
  629. for (msg_obj = C_CAN_MSG_OBJ_RX_FIRST;
  630. msg_obj <= C_CAN_MSG_OBJ_RX_LAST && quota > 0;
  631. val = c_can_read_reg32(priv, &priv->regs->intpnd1),
  632. msg_obj++) {
  633. /*
  634. * as interrupt pending register's bit n-1 corresponds to
  635. * message object n, we need to handle the same properly.
  636. */
  637. if (val & (1 << (msg_obj - 1))) {
  638. c_can_object_get(dev, 0, msg_obj, IF_COMM_ALL &
  639. ~IF_COMM_TXRQST);
  640. msg_ctrl_save = priv->read_reg(priv,
  641. &priv->regs->ifregs[0].msg_cntrl);
  642. if (msg_ctrl_save & IF_MCONT_EOB)
  643. return num_rx_pkts;
  644. if (msg_ctrl_save & IF_MCONT_MSGLST) {
  645. c_can_handle_lost_msg_obj(dev, 0, msg_obj);
  646. num_rx_pkts++;
  647. quota--;
  648. continue;
  649. }
  650. if (!(msg_ctrl_save & IF_MCONT_NEWDAT))
  651. continue;
  652. /* read the data from the message object */
  653. c_can_read_msg_object(dev, 0, msg_ctrl_save);
  654. if (msg_obj < C_CAN_MSG_RX_LOW_LAST)
  655. c_can_mark_rx_msg_obj(dev, 0,
  656. msg_ctrl_save, msg_obj);
  657. else if (msg_obj > C_CAN_MSG_RX_LOW_LAST)
  658. /* activate this msg obj */
  659. c_can_activate_rx_msg_obj(dev, 0,
  660. msg_ctrl_save, msg_obj);
  661. else if (msg_obj == C_CAN_MSG_RX_LOW_LAST)
  662. /* activate all lower message objects */
  663. c_can_activate_all_lower_rx_msg_obj(dev,
  664. 0, msg_ctrl_save);
  665. num_rx_pkts++;
  666. quota--;
  667. }
  668. }
  669. return num_rx_pkts;
  670. }
  671. static inline int c_can_has_and_handle_berr(struct c_can_priv *priv)
  672. {
  673. return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  674. (priv->current_status & LEC_UNUSED);
  675. }
  676. static int c_can_handle_state_change(struct net_device *dev,
  677. enum c_can_bus_error_types error_type)
  678. {
  679. unsigned int reg_err_counter;
  680. unsigned int rx_err_passive;
  681. struct c_can_priv *priv = netdev_priv(dev);
  682. struct net_device_stats *stats = &dev->stats;
  683. struct can_frame *cf;
  684. struct sk_buff *skb;
  685. struct can_berr_counter bec;
  686. /* propogate the error condition to the CAN stack */
  687. skb = alloc_can_err_skb(dev, &cf);
  688. if (unlikely(!skb))
  689. return 0;
  690. c_can_get_berr_counter(dev, &bec);
  691. reg_err_counter = priv->read_reg(priv, &priv->regs->err_cnt);
  692. rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
  693. ERR_CNT_RP_SHIFT;
  694. switch (error_type) {
  695. case C_CAN_ERROR_WARNING:
  696. /* error warning state */
  697. priv->can.can_stats.error_warning++;
  698. priv->can.state = CAN_STATE_ERROR_WARNING;
  699. cf->can_id |= CAN_ERR_CRTL;
  700. cf->data[1] = (bec.txerr > bec.rxerr) ?
  701. CAN_ERR_CRTL_TX_WARNING :
  702. CAN_ERR_CRTL_RX_WARNING;
  703. cf->data[6] = bec.txerr;
  704. cf->data[7] = bec.rxerr;
  705. break;
  706. case C_CAN_ERROR_PASSIVE:
  707. /* error passive state */
  708. priv->can.can_stats.error_passive++;
  709. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  710. cf->can_id |= CAN_ERR_CRTL;
  711. if (rx_err_passive)
  712. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  713. if (bec.txerr > 127)
  714. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  715. cf->data[6] = bec.txerr;
  716. cf->data[7] = bec.rxerr;
  717. break;
  718. case C_CAN_BUS_OFF:
  719. /* bus-off state */
  720. priv->can.state = CAN_STATE_BUS_OFF;
  721. cf->can_id |= CAN_ERR_BUSOFF;
  722. /*
  723. * disable all interrupts in bus-off mode to ensure that
  724. * the CPU is not hogged down
  725. */
  726. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  727. can_bus_off(dev);
  728. break;
  729. default:
  730. break;
  731. }
  732. netif_receive_skb(skb);
  733. stats->rx_packets++;
  734. stats->rx_bytes += cf->can_dlc;
  735. return 1;
  736. }
  737. static int c_can_handle_bus_err(struct net_device *dev,
  738. enum c_can_lec_type lec_type)
  739. {
  740. struct c_can_priv *priv = netdev_priv(dev);
  741. struct net_device_stats *stats = &dev->stats;
  742. struct can_frame *cf;
  743. struct sk_buff *skb;
  744. /*
  745. * early exit if no lec update or no error.
  746. * no lec update means that no CAN bus event has been detected
  747. * since CPU wrote 0x7 value to status reg.
  748. */
  749. if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
  750. return 0;
  751. /* propogate the error condition to the CAN stack */
  752. skb = alloc_can_err_skb(dev, &cf);
  753. if (unlikely(!skb))
  754. return 0;
  755. /*
  756. * check for 'last error code' which tells us the
  757. * type of the last error to occur on the CAN bus
  758. */
  759. /* common for all type of bus errors */
  760. priv->can.can_stats.bus_error++;
  761. stats->rx_errors++;
  762. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  763. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  764. switch (lec_type) {
  765. case LEC_STUFF_ERROR:
  766. netdev_dbg(dev, "stuff error\n");
  767. cf->data[2] |= CAN_ERR_PROT_STUFF;
  768. break;
  769. case LEC_FORM_ERROR:
  770. netdev_dbg(dev, "form error\n");
  771. cf->data[2] |= CAN_ERR_PROT_FORM;
  772. break;
  773. case LEC_ACK_ERROR:
  774. netdev_dbg(dev, "ack error\n");
  775. cf->data[2] |= (CAN_ERR_PROT_LOC_ACK |
  776. CAN_ERR_PROT_LOC_ACK_DEL);
  777. break;
  778. case LEC_BIT1_ERROR:
  779. netdev_dbg(dev, "bit1 error\n");
  780. cf->data[2] |= CAN_ERR_PROT_BIT1;
  781. break;
  782. case LEC_BIT0_ERROR:
  783. netdev_dbg(dev, "bit0 error\n");
  784. cf->data[2] |= CAN_ERR_PROT_BIT0;
  785. break;
  786. case LEC_CRC_ERROR:
  787. netdev_dbg(dev, "CRC error\n");
  788. cf->data[2] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  789. CAN_ERR_PROT_LOC_CRC_DEL);
  790. break;
  791. default:
  792. break;
  793. }
  794. /* set a `lec` value so that we can check for updates later */
  795. priv->write_reg(priv, &priv->regs->status, LEC_UNUSED);
  796. netif_receive_skb(skb);
  797. stats->rx_packets++;
  798. stats->rx_bytes += cf->can_dlc;
  799. return 1;
  800. }
  801. static int c_can_poll(struct napi_struct *napi, int quota)
  802. {
  803. u16 irqstatus;
  804. int lec_type = 0;
  805. int work_done = 0;
  806. struct net_device *dev = napi->dev;
  807. struct c_can_priv *priv = netdev_priv(dev);
  808. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  809. if (!irqstatus)
  810. goto end;
  811. /* status events have the highest priority */
  812. if (irqstatus == STATUS_INTERRUPT) {
  813. priv->current_status = priv->read_reg(priv,
  814. &priv->regs->status);
  815. /* handle Tx/Rx events */
  816. if (priv->current_status & STATUS_TXOK)
  817. priv->write_reg(priv, &priv->regs->status,
  818. priv->current_status & ~STATUS_TXOK);
  819. if (priv->current_status & STATUS_RXOK)
  820. priv->write_reg(priv, &priv->regs->status,
  821. priv->current_status & ~STATUS_RXOK);
  822. /* handle state changes */
  823. if ((priv->current_status & STATUS_EWARN) &&
  824. (!(priv->last_status & STATUS_EWARN))) {
  825. netdev_dbg(dev, "entered error warning state\n");
  826. work_done += c_can_handle_state_change(dev,
  827. C_CAN_ERROR_WARNING);
  828. }
  829. if ((priv->current_status & STATUS_EPASS) &&
  830. (!(priv->last_status & STATUS_EPASS))) {
  831. netdev_dbg(dev, "entered error passive state\n");
  832. work_done += c_can_handle_state_change(dev,
  833. C_CAN_ERROR_PASSIVE);
  834. }
  835. if ((priv->current_status & STATUS_BOFF) &&
  836. (!(priv->last_status & STATUS_BOFF))) {
  837. netdev_dbg(dev, "entered bus off state\n");
  838. work_done += c_can_handle_state_change(dev,
  839. C_CAN_BUS_OFF);
  840. }
  841. /* handle bus recovery events */
  842. if ((!(priv->current_status & STATUS_BOFF)) &&
  843. (priv->last_status & STATUS_BOFF)) {
  844. netdev_dbg(dev, "left bus off state\n");
  845. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  846. }
  847. if ((!(priv->current_status & STATUS_EPASS)) &&
  848. (priv->last_status & STATUS_EPASS)) {
  849. netdev_dbg(dev, "left error passive state\n");
  850. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  851. }
  852. priv->last_status = priv->current_status;
  853. /* handle lec errors on the bus */
  854. lec_type = c_can_has_and_handle_berr(priv);
  855. if (lec_type)
  856. work_done += c_can_handle_bus_err(dev, lec_type);
  857. } else if ((irqstatus >= C_CAN_MSG_OBJ_RX_FIRST) &&
  858. (irqstatus <= C_CAN_MSG_OBJ_RX_LAST)) {
  859. /* handle events corresponding to receive message objects */
  860. work_done += c_can_do_rx_poll(dev, (quota - work_done));
  861. } else if ((irqstatus >= C_CAN_MSG_OBJ_TX_FIRST) &&
  862. (irqstatus <= C_CAN_MSG_OBJ_TX_LAST)) {
  863. /* handle events corresponding to transmit message objects */
  864. c_can_do_tx(dev);
  865. }
  866. end:
  867. if (work_done < quota) {
  868. napi_complete(napi);
  869. /* enable all IRQs */
  870. c_can_enable_all_interrupts(priv, ENABLE_ALL_INTERRUPTS);
  871. }
  872. return work_done;
  873. }
  874. static irqreturn_t c_can_isr(int irq, void *dev_id)
  875. {
  876. u16 irqstatus;
  877. struct net_device *dev = (struct net_device *)dev_id;
  878. struct c_can_priv *priv = netdev_priv(dev);
  879. irqstatus = priv->read_reg(priv, &priv->regs->interrupt);
  880. if (!irqstatus)
  881. return IRQ_NONE;
  882. /* disable all interrupts and schedule the NAPI */
  883. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  884. napi_schedule(&priv->napi);
  885. return IRQ_HANDLED;
  886. }
  887. static int c_can_open(struct net_device *dev)
  888. {
  889. int err;
  890. struct c_can_priv *priv = netdev_priv(dev);
  891. /* open the can device */
  892. err = open_candev(dev);
  893. if (err) {
  894. netdev_err(dev, "failed to open can device\n");
  895. return err;
  896. }
  897. /* register interrupt handler */
  898. err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
  899. dev);
  900. if (err < 0) {
  901. netdev_err(dev, "failed to request interrupt\n");
  902. goto exit_irq_fail;
  903. }
  904. /* start the c_can controller */
  905. c_can_start(dev);
  906. napi_enable(&priv->napi);
  907. netif_start_queue(dev);
  908. return 0;
  909. exit_irq_fail:
  910. close_candev(dev);
  911. return err;
  912. }
  913. static int c_can_close(struct net_device *dev)
  914. {
  915. struct c_can_priv *priv = netdev_priv(dev);
  916. netif_stop_queue(dev);
  917. napi_disable(&priv->napi);
  918. c_can_stop(dev);
  919. free_irq(dev->irq, dev);
  920. close_candev(dev);
  921. return 0;
  922. }
  923. struct net_device *alloc_c_can_dev(void)
  924. {
  925. struct net_device *dev;
  926. struct c_can_priv *priv;
  927. dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
  928. if (!dev)
  929. return NULL;
  930. priv = netdev_priv(dev);
  931. netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
  932. priv->dev = dev;
  933. priv->can.bittiming_const = &c_can_bittiming_const;
  934. priv->can.do_set_mode = c_can_set_mode;
  935. priv->can.do_get_berr_counter = c_can_get_berr_counter;
  936. priv->can.ctrlmode_supported = CAN_CTRLMODE_ONE_SHOT |
  937. CAN_CTRLMODE_LOOPBACK |
  938. CAN_CTRLMODE_LISTENONLY |
  939. CAN_CTRLMODE_BERR_REPORTING;
  940. return dev;
  941. }
  942. EXPORT_SYMBOL_GPL(alloc_c_can_dev);
  943. void free_c_can_dev(struct net_device *dev)
  944. {
  945. free_candev(dev);
  946. }
  947. EXPORT_SYMBOL_GPL(free_c_can_dev);
  948. static const struct net_device_ops c_can_netdev_ops = {
  949. .ndo_open = c_can_open,
  950. .ndo_stop = c_can_close,
  951. .ndo_start_xmit = c_can_start_xmit,
  952. };
  953. int register_c_can_dev(struct net_device *dev)
  954. {
  955. dev->flags |= IFF_ECHO; /* we support local echo */
  956. dev->netdev_ops = &c_can_netdev_ops;
  957. return register_candev(dev);
  958. }
  959. EXPORT_SYMBOL_GPL(register_c_can_dev);
  960. void unregister_c_can_dev(struct net_device *dev)
  961. {
  962. struct c_can_priv *priv = netdev_priv(dev);
  963. /* disable all interrupts */
  964. c_can_enable_all_interrupts(priv, DISABLE_ALL_INTERRUPTS);
  965. unregister_candev(dev);
  966. }
  967. EXPORT_SYMBOL_GPL(unregister_c_can_dev);
  968. MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
  969. MODULE_LICENSE("GPL v2");
  970. MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");