tegra-kbc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. /*
  2. * Keyboard class input driver for the NVIDIA Tegra SoC internal matrix
  3. * keyboard controller
  4. *
  5. * Copyright (c) 2009-2011, NVIDIA Corporation.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/input.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/delay.h>
  25. #include <linux/io.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/clk.h>
  28. #include <linux/slab.h>
  29. #include <mach/clk.h>
  30. #include <mach/kbc.h>
  31. #define KBC_MAX_DEBOUNCE_CNT 0x3ffu
  32. /* KBC row scan time and delay for beginning the row scan. */
  33. #define KBC_ROW_SCAN_TIME 16
  34. #define KBC_ROW_SCAN_DLY 5
  35. /* KBC uses a 32KHz clock so a cycle = 1/32Khz */
  36. #define KBC_CYCLE_USEC 32
  37. /* KBC Registers */
  38. /* KBC Control Register */
  39. #define KBC_CONTROL_0 0x0
  40. #define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14)
  41. #define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4)
  42. #define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3)
  43. #define KBC_CONTROL_KBC_EN (1 << 0)
  44. /* KBC Interrupt Register */
  45. #define KBC_INT_0 0x4
  46. #define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2)
  47. #define KBC_ROW_CFG0_0 0x8
  48. #define KBC_COL_CFG0_0 0x18
  49. #define KBC_INIT_DLY_0 0x28
  50. #define KBC_RPT_DLY_0 0x2c
  51. #define KBC_KP_ENT0_0 0x30
  52. #define KBC_KP_ENT1_0 0x34
  53. #define KBC_ROW0_MASK_0 0x38
  54. #define KBC_ROW_SHIFT 3
  55. struct tegra_kbc {
  56. void __iomem *mmio;
  57. struct input_dev *idev;
  58. unsigned int irq;
  59. unsigned int wake_enable_rows;
  60. unsigned int wake_enable_cols;
  61. spinlock_t lock;
  62. unsigned int repoll_dly;
  63. unsigned long cp_dly_jiffies;
  64. const struct tegra_kbc_platform_data *pdata;
  65. unsigned short keycode[KBC_MAX_KEY];
  66. unsigned short current_keys[KBC_MAX_KPENT];
  67. unsigned int num_pressed_keys;
  68. struct timer_list timer;
  69. struct clk *clk;
  70. };
  71. static const u32 tegra_kbc_default_keymap[] = {
  72. KEY(0, 2, KEY_W),
  73. KEY(0, 3, KEY_S),
  74. KEY(0, 4, KEY_A),
  75. KEY(0, 5, KEY_Z),
  76. KEY(0, 7, KEY_FN),
  77. KEY(1, 7, KEY_LEFTMETA),
  78. KEY(2, 6, KEY_RIGHTALT),
  79. KEY(2, 7, KEY_LEFTALT),
  80. KEY(3, 0, KEY_5),
  81. KEY(3, 1, KEY_4),
  82. KEY(3, 2, KEY_R),
  83. KEY(3, 3, KEY_E),
  84. KEY(3, 4, KEY_F),
  85. KEY(3, 5, KEY_D),
  86. KEY(3, 6, KEY_X),
  87. KEY(4, 0, KEY_7),
  88. KEY(4, 1, KEY_6),
  89. KEY(4, 2, KEY_T),
  90. KEY(4, 3, KEY_H),
  91. KEY(4, 4, KEY_G),
  92. KEY(4, 5, KEY_V),
  93. KEY(4, 6, KEY_C),
  94. KEY(4, 7, KEY_SPACE),
  95. KEY(5, 0, KEY_9),
  96. KEY(5, 1, KEY_8),
  97. KEY(5, 2, KEY_U),
  98. KEY(5, 3, KEY_Y),
  99. KEY(5, 4, KEY_J),
  100. KEY(5, 5, KEY_N),
  101. KEY(5, 6, KEY_B),
  102. KEY(5, 7, KEY_BACKSLASH),
  103. KEY(6, 0, KEY_MINUS),
  104. KEY(6, 1, KEY_0),
  105. KEY(6, 2, KEY_O),
  106. KEY(6, 3, KEY_I),
  107. KEY(6, 4, KEY_L),
  108. KEY(6, 5, KEY_K),
  109. KEY(6, 6, KEY_COMMA),
  110. KEY(6, 7, KEY_M),
  111. KEY(7, 1, KEY_EQUAL),
  112. KEY(7, 2, KEY_RIGHTBRACE),
  113. KEY(7, 3, KEY_ENTER),
  114. KEY(7, 7, KEY_MENU),
  115. KEY(8, 4, KEY_RIGHTSHIFT),
  116. KEY(8, 5, KEY_LEFTSHIFT),
  117. KEY(9, 5, KEY_RIGHTCTRL),
  118. KEY(9, 7, KEY_LEFTCTRL),
  119. KEY(11, 0, KEY_LEFTBRACE),
  120. KEY(11, 1, KEY_P),
  121. KEY(11, 2, KEY_APOSTROPHE),
  122. KEY(11, 3, KEY_SEMICOLON),
  123. KEY(11, 4, KEY_SLASH),
  124. KEY(11, 5, KEY_DOT),
  125. KEY(12, 0, KEY_F10),
  126. KEY(12, 1, KEY_F9),
  127. KEY(12, 2, KEY_BACKSPACE),
  128. KEY(12, 3, KEY_3),
  129. KEY(12, 4, KEY_2),
  130. KEY(12, 5, KEY_UP),
  131. KEY(12, 6, KEY_PRINT),
  132. KEY(12, 7, KEY_PAUSE),
  133. KEY(13, 0, KEY_INSERT),
  134. KEY(13, 1, KEY_DELETE),
  135. KEY(13, 3, KEY_PAGEUP),
  136. KEY(13, 4, KEY_PAGEDOWN),
  137. KEY(13, 5, KEY_RIGHT),
  138. KEY(13, 6, KEY_DOWN),
  139. KEY(13, 7, KEY_LEFT),
  140. KEY(14, 0, KEY_F11),
  141. KEY(14, 1, KEY_F12),
  142. KEY(14, 2, KEY_F8),
  143. KEY(14, 3, KEY_Q),
  144. KEY(14, 4, KEY_F4),
  145. KEY(14, 5, KEY_F3),
  146. KEY(14, 6, KEY_1),
  147. KEY(14, 7, KEY_F7),
  148. KEY(15, 0, KEY_ESC),
  149. KEY(15, 1, KEY_GRAVE),
  150. KEY(15, 2, KEY_F5),
  151. KEY(15, 3, KEY_TAB),
  152. KEY(15, 4, KEY_F1),
  153. KEY(15, 5, KEY_F2),
  154. KEY(15, 6, KEY_CAPSLOCK),
  155. KEY(15, 7, KEY_F6),
  156. };
  157. static const struct matrix_keymap_data tegra_kbc_default_keymap_data = {
  158. .keymap = tegra_kbc_default_keymap,
  159. .keymap_size = ARRAY_SIZE(tegra_kbc_default_keymap),
  160. };
  161. static void tegra_kbc_report_released_keys(struct input_dev *input,
  162. unsigned short old_keycodes[],
  163. unsigned int old_num_keys,
  164. unsigned short new_keycodes[],
  165. unsigned int new_num_keys)
  166. {
  167. unsigned int i, j;
  168. for (i = 0; i < old_num_keys; i++) {
  169. for (j = 0; j < new_num_keys; j++)
  170. if (old_keycodes[i] == new_keycodes[j])
  171. break;
  172. if (j == new_num_keys)
  173. input_report_key(input, old_keycodes[i], 0);
  174. }
  175. }
  176. static void tegra_kbc_report_pressed_keys(struct input_dev *input,
  177. unsigned char scancodes[],
  178. unsigned short keycodes[],
  179. unsigned int num_pressed_keys)
  180. {
  181. unsigned int i;
  182. for (i = 0; i < num_pressed_keys; i++) {
  183. input_event(input, EV_MSC, MSC_SCAN, scancodes[i]);
  184. input_report_key(input, keycodes[i], 1);
  185. }
  186. }
  187. static void tegra_kbc_report_keys(struct tegra_kbc *kbc)
  188. {
  189. unsigned char scancodes[KBC_MAX_KPENT];
  190. unsigned short keycodes[KBC_MAX_KPENT];
  191. u32 val = 0;
  192. unsigned int i;
  193. unsigned int num_down = 0;
  194. unsigned long flags;
  195. spin_lock_irqsave(&kbc->lock, flags);
  196. for (i = 0; i < KBC_MAX_KPENT; i++) {
  197. if ((i % 4) == 0)
  198. val = readl(kbc->mmio + KBC_KP_ENT0_0 + i);
  199. if (val & 0x80) {
  200. unsigned int col = val & 0x07;
  201. unsigned int row = (val >> 3) & 0x0f;
  202. unsigned char scancode =
  203. MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT);
  204. scancodes[num_down] = scancode;
  205. keycodes[num_down++] = kbc->keycode[scancode];
  206. }
  207. val >>= 8;
  208. }
  209. spin_unlock_irqrestore(&kbc->lock, flags);
  210. tegra_kbc_report_released_keys(kbc->idev,
  211. kbc->current_keys, kbc->num_pressed_keys,
  212. keycodes, num_down);
  213. tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down);
  214. input_sync(kbc->idev);
  215. memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys));
  216. kbc->num_pressed_keys = num_down;
  217. }
  218. static void tegra_kbc_keypress_timer(unsigned long data)
  219. {
  220. struct tegra_kbc *kbc = (struct tegra_kbc *)data;
  221. unsigned long flags;
  222. u32 val;
  223. unsigned int i;
  224. val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf;
  225. if (val) {
  226. unsigned long dly;
  227. tegra_kbc_report_keys(kbc);
  228. /*
  229. * If more than one keys are pressed we need not wait
  230. * for the repoll delay.
  231. */
  232. dly = (val == 1) ? kbc->repoll_dly : 1;
  233. mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly));
  234. } else {
  235. /* Release any pressed keys and exit the polling loop */
  236. for (i = 0; i < kbc->num_pressed_keys; i++)
  237. input_report_key(kbc->idev, kbc->current_keys[i], 0);
  238. input_sync(kbc->idev);
  239. kbc->num_pressed_keys = 0;
  240. /* All keys are released so enable the keypress interrupt */
  241. spin_lock_irqsave(&kbc->lock, flags);
  242. val = readl(kbc->mmio + KBC_CONTROL_0);
  243. val |= KBC_CONTROL_FIFO_CNT_INT_EN;
  244. writel(val, kbc->mmio + KBC_CONTROL_0);
  245. spin_unlock_irqrestore(&kbc->lock, flags);
  246. }
  247. }
  248. static irqreturn_t tegra_kbc_isr(int irq, void *args)
  249. {
  250. struct tegra_kbc *kbc = args;
  251. u32 val, ctl;
  252. /*
  253. * Until all keys are released, defer further processing to
  254. * the polling loop in tegra_kbc_keypress_timer
  255. */
  256. ctl = readl(kbc->mmio + KBC_CONTROL_0);
  257. ctl &= ~KBC_CONTROL_FIFO_CNT_INT_EN;
  258. writel(ctl, kbc->mmio + KBC_CONTROL_0);
  259. /*
  260. * Quickly bail out & reenable interrupts if the fifo threshold
  261. * count interrupt wasn't the interrupt source
  262. */
  263. val = readl(kbc->mmio + KBC_INT_0);
  264. writel(val, kbc->mmio + KBC_INT_0);
  265. if (val & KBC_INT_FIFO_CNT_INT_STATUS) {
  266. /*
  267. * Schedule timer to run when hardware is in continuous
  268. * polling mode.
  269. */
  270. mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies);
  271. } else {
  272. ctl |= KBC_CONTROL_FIFO_CNT_INT_EN;
  273. writel(ctl, kbc->mmio + KBC_CONTROL_0);
  274. }
  275. return IRQ_HANDLED;
  276. }
  277. static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter)
  278. {
  279. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  280. int i;
  281. unsigned int rst_val;
  282. BUG_ON(pdata->wake_cnt > KBC_MAX_KEY);
  283. rst_val = (filter && pdata->wake_cnt) ? ~0 : 0;
  284. for (i = 0; i < KBC_MAX_ROW; i++)
  285. writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4);
  286. if (filter) {
  287. for (i = 0; i < pdata->wake_cnt; i++) {
  288. u32 val, addr;
  289. addr = pdata->wake_cfg[i].row * 4 + KBC_ROW0_MASK_0;
  290. val = readl(kbc->mmio + addr);
  291. val &= ~(1 << pdata->wake_cfg[i].col);
  292. writel(val, kbc->mmio + addr);
  293. }
  294. }
  295. }
  296. static void tegra_kbc_config_pins(struct tegra_kbc *kbc)
  297. {
  298. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  299. int i;
  300. for (i = 0; i < KBC_MAX_GPIO; i++) {
  301. u32 r_shft = 5 * (i % 6);
  302. u32 c_shft = 4 * (i % 8);
  303. u32 r_mask = 0x1f << r_shft;
  304. u32 c_mask = 0x0f << c_shft;
  305. u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0;
  306. u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0;
  307. u32 row_cfg = readl(kbc->mmio + r_offs);
  308. u32 col_cfg = readl(kbc->mmio + c_offs);
  309. row_cfg &= ~r_mask;
  310. col_cfg &= ~c_mask;
  311. if (pdata->pin_cfg[i].is_row)
  312. row_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << r_shft;
  313. else
  314. col_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << c_shft;
  315. writel(row_cfg, kbc->mmio + r_offs);
  316. writel(col_cfg, kbc->mmio + c_offs);
  317. }
  318. }
  319. static int tegra_kbc_start(struct tegra_kbc *kbc)
  320. {
  321. const struct tegra_kbc_platform_data *pdata = kbc->pdata;
  322. unsigned long flags;
  323. unsigned int debounce_cnt;
  324. u32 val = 0;
  325. clk_enable(kbc->clk);
  326. /* Reset the KBC controller to clear all previous status.*/
  327. tegra_periph_reset_assert(kbc->clk);
  328. udelay(100);
  329. tegra_periph_reset_deassert(kbc->clk);
  330. udelay(100);
  331. tegra_kbc_config_pins(kbc);
  332. tegra_kbc_setup_wakekeys(kbc, false);
  333. writel(pdata->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0);
  334. /* Keyboard debounce count is maximum of 12 bits. */
  335. debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
  336. val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt);
  337. val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */
  338. val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */
  339. val |= KBC_CONTROL_KBC_EN; /* enable */
  340. writel(val, kbc->mmio + KBC_CONTROL_0);
  341. /*
  342. * Compute the delay(ns) from interrupt mode to continuous polling
  343. * mode so the timer routine is scheduled appropriately.
  344. */
  345. val = readl(kbc->mmio + KBC_INIT_DLY_0);
  346. kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32);
  347. kbc->num_pressed_keys = 0;
  348. /*
  349. * Atomically clear out any remaining entries in the key FIFO
  350. * and enable keyboard interrupts.
  351. */
  352. spin_lock_irqsave(&kbc->lock, flags);
  353. while (1) {
  354. val = readl(kbc->mmio + KBC_INT_0);
  355. val >>= 4;
  356. if (!val)
  357. break;
  358. val = readl(kbc->mmio + KBC_KP_ENT0_0);
  359. val = readl(kbc->mmio + KBC_KP_ENT1_0);
  360. }
  361. writel(0x7, kbc->mmio + KBC_INT_0);
  362. spin_unlock_irqrestore(&kbc->lock, flags);
  363. enable_irq(kbc->irq);
  364. return 0;
  365. }
  366. static void tegra_kbc_stop(struct tegra_kbc *kbc)
  367. {
  368. unsigned long flags;
  369. u32 val;
  370. spin_lock_irqsave(&kbc->lock, flags);
  371. val = readl(kbc->mmio + KBC_CONTROL_0);
  372. val &= ~1;
  373. writel(val, kbc->mmio + KBC_CONTROL_0);
  374. spin_unlock_irqrestore(&kbc->lock, flags);
  375. disable_irq(kbc->irq);
  376. del_timer_sync(&kbc->timer);
  377. clk_disable(kbc->clk);
  378. }
  379. static int tegra_kbc_open(struct input_dev *dev)
  380. {
  381. struct tegra_kbc *kbc = input_get_drvdata(dev);
  382. return tegra_kbc_start(kbc);
  383. }
  384. static void tegra_kbc_close(struct input_dev *dev)
  385. {
  386. struct tegra_kbc *kbc = input_get_drvdata(dev);
  387. return tegra_kbc_stop(kbc);
  388. }
  389. static bool __devinit
  390. tegra_kbc_check_pin_cfg(const struct tegra_kbc_platform_data *pdata,
  391. struct device *dev, unsigned int *num_rows)
  392. {
  393. int i;
  394. *num_rows = 0;
  395. for (i = 0; i < KBC_MAX_GPIO; i++) {
  396. const struct tegra_kbc_pin_cfg *pin_cfg = &pdata->pin_cfg[i];
  397. if (pin_cfg->is_row) {
  398. if (pin_cfg->num >= KBC_MAX_ROW) {
  399. dev_err(dev,
  400. "pin_cfg[%d]: invalid row number %d\n",
  401. i, pin_cfg->num);
  402. return false;
  403. }
  404. (*num_rows)++;
  405. } else {
  406. if (pin_cfg->num >= KBC_MAX_COL) {
  407. dev_err(dev,
  408. "pin_cfg[%d]: invalid column number %d\n",
  409. i, pin_cfg->num);
  410. return false;
  411. }
  412. }
  413. }
  414. return true;
  415. }
  416. static int __devinit tegra_kbc_probe(struct platform_device *pdev)
  417. {
  418. const struct tegra_kbc_platform_data *pdata = pdev->dev.platform_data;
  419. const struct matrix_keymap_data *keymap_data;
  420. struct tegra_kbc *kbc;
  421. struct input_dev *input_dev;
  422. struct resource *res;
  423. int irq;
  424. int err;
  425. int i;
  426. int num_rows = 0;
  427. unsigned int debounce_cnt;
  428. unsigned int scan_time_rows;
  429. if (!pdata)
  430. return -EINVAL;
  431. if (!tegra_kbc_check_pin_cfg(pdata, &pdev->dev, &num_rows))
  432. return -EINVAL;
  433. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  434. if (!res) {
  435. dev_err(&pdev->dev, "failed to get I/O memory\n");
  436. return -ENXIO;
  437. }
  438. irq = platform_get_irq(pdev, 0);
  439. if (irq < 0) {
  440. dev_err(&pdev->dev, "failed to get keyboard IRQ\n");
  441. return -ENXIO;
  442. }
  443. kbc = kzalloc(sizeof(*kbc), GFP_KERNEL);
  444. input_dev = input_allocate_device();
  445. if (!kbc || !input_dev) {
  446. err = -ENOMEM;
  447. goto err_free_mem;
  448. }
  449. kbc->pdata = pdata;
  450. kbc->idev = input_dev;
  451. kbc->irq = irq;
  452. spin_lock_init(&kbc->lock);
  453. setup_timer(&kbc->timer, tegra_kbc_keypress_timer, (unsigned long)kbc);
  454. res = request_mem_region(res->start, resource_size(res), pdev->name);
  455. if (!res) {
  456. dev_err(&pdev->dev, "failed to request I/O memory\n");
  457. err = -EBUSY;
  458. goto err_free_mem;
  459. }
  460. kbc->mmio = ioremap(res->start, resource_size(res));
  461. if (!kbc->mmio) {
  462. dev_err(&pdev->dev, "failed to remap I/O memory\n");
  463. err = -ENXIO;
  464. goto err_free_mem_region;
  465. }
  466. kbc->clk = clk_get(&pdev->dev, NULL);
  467. if (IS_ERR(kbc->clk)) {
  468. dev_err(&pdev->dev, "failed to get keyboard clock\n");
  469. err = PTR_ERR(kbc->clk);
  470. goto err_iounmap;
  471. }
  472. kbc->wake_enable_rows = 0;
  473. kbc->wake_enable_cols = 0;
  474. for (i = 0; i < pdata->wake_cnt; i++) {
  475. kbc->wake_enable_rows |= (1 << pdata->wake_cfg[i].row);
  476. kbc->wake_enable_cols |= (1 << pdata->wake_cfg[i].col);
  477. }
  478. /*
  479. * The time delay between two consecutive reads of the FIFO is
  480. * the sum of the repeat time and the time taken for scanning
  481. * the rows. There is an additional delay before the row scanning
  482. * starts. The repoll delay is computed in milliseconds.
  483. */
  484. debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT);
  485. scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows;
  486. kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + pdata->repeat_cnt;
  487. kbc->repoll_dly = ((kbc->repoll_dly * KBC_CYCLE_USEC) + 999) / 1000;
  488. input_dev->name = pdev->name;
  489. input_dev->id.bustype = BUS_HOST;
  490. input_dev->dev.parent = &pdev->dev;
  491. input_dev->open = tegra_kbc_open;
  492. input_dev->close = tegra_kbc_close;
  493. input_set_drvdata(input_dev, kbc);
  494. input_dev->evbit[0] = BIT_MASK(EV_KEY);
  495. input_set_capability(input_dev, EV_MSC, MSC_SCAN);
  496. input_dev->keycode = kbc->keycode;
  497. input_dev->keycodesize = sizeof(kbc->keycode[0]);
  498. input_dev->keycodemax = ARRAY_SIZE(kbc->keycode);
  499. keymap_data = pdata->keymap_data ?: &tegra_kbc_default_keymap_data;
  500. matrix_keypad_build_keymap(keymap_data, KBC_ROW_SHIFT,
  501. input_dev->keycode, input_dev->keybit);
  502. err = request_irq(kbc->irq, tegra_kbc_isr, IRQF_TRIGGER_HIGH,
  503. pdev->name, kbc);
  504. if (err) {
  505. dev_err(&pdev->dev, "failed to request keyboard IRQ\n");
  506. goto err_put_clk;
  507. }
  508. disable_irq(kbc->irq);
  509. err = input_register_device(kbc->idev);
  510. if (err) {
  511. dev_err(&pdev->dev, "failed to register input device\n");
  512. goto err_free_irq;
  513. }
  514. platform_set_drvdata(pdev, kbc);
  515. device_init_wakeup(&pdev->dev, pdata->wakeup);
  516. return 0;
  517. err_free_irq:
  518. free_irq(kbc->irq, pdev);
  519. err_put_clk:
  520. clk_put(kbc->clk);
  521. err_iounmap:
  522. iounmap(kbc->mmio);
  523. err_free_mem_region:
  524. release_mem_region(res->start, resource_size(res));
  525. err_free_mem:
  526. input_free_device(kbc->idev);
  527. kfree(kbc);
  528. return err;
  529. }
  530. static int __devexit tegra_kbc_remove(struct platform_device *pdev)
  531. {
  532. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  533. struct resource *res;
  534. free_irq(kbc->irq, pdev);
  535. clk_put(kbc->clk);
  536. input_unregister_device(kbc->idev);
  537. iounmap(kbc->mmio);
  538. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  539. release_mem_region(res->start, resource_size(res));
  540. kfree(kbc);
  541. platform_set_drvdata(pdev, NULL);
  542. return 0;
  543. }
  544. #ifdef CONFIG_PM_SLEEP
  545. static int tegra_kbc_suspend(struct device *dev)
  546. {
  547. struct platform_device *pdev = to_platform_device(dev);
  548. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  549. if (device_may_wakeup(&pdev->dev)) {
  550. tegra_kbc_setup_wakekeys(kbc, true);
  551. enable_irq_wake(kbc->irq);
  552. /* Forcefully clear the interrupt status */
  553. writel(0x7, kbc->mmio + KBC_INT_0);
  554. msleep(30);
  555. } else {
  556. mutex_lock(&kbc->idev->mutex);
  557. if (kbc->idev->users)
  558. tegra_kbc_stop(kbc);
  559. mutex_unlock(&kbc->idev->mutex);
  560. }
  561. return 0;
  562. }
  563. static int tegra_kbc_resume(struct device *dev)
  564. {
  565. struct platform_device *pdev = to_platform_device(dev);
  566. struct tegra_kbc *kbc = platform_get_drvdata(pdev);
  567. int err = 0;
  568. if (device_may_wakeup(&pdev->dev)) {
  569. disable_irq_wake(kbc->irq);
  570. tegra_kbc_setup_wakekeys(kbc, false);
  571. } else {
  572. mutex_lock(&kbc->idev->mutex);
  573. if (kbc->idev->users)
  574. err = tegra_kbc_start(kbc);
  575. mutex_unlock(&kbc->idev->mutex);
  576. }
  577. return err;
  578. }
  579. #endif
  580. static SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops, tegra_kbc_suspend, tegra_kbc_resume);
  581. static struct platform_driver tegra_kbc_driver = {
  582. .probe = tegra_kbc_probe,
  583. .remove = __devexit_p(tegra_kbc_remove),
  584. .driver = {
  585. .name = "tegra-kbc",
  586. .owner = THIS_MODULE,
  587. .pm = &tegra_kbc_pm_ops,
  588. },
  589. };
  590. static void __exit tegra_kbc_exit(void)
  591. {
  592. platform_driver_unregister(&tegra_kbc_driver);
  593. }
  594. module_exit(tegra_kbc_exit);
  595. static int __init tegra_kbc_init(void)
  596. {
  597. return platform_driver_register(&tegra_kbc_driver);
  598. }
  599. module_init(tegra_kbc_init);
  600. MODULE_LICENSE("GPL");
  601. MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>");
  602. MODULE_DESCRIPTION("Tegra matrix keyboard controller driver");
  603. MODULE_ALIAS("platform:tegra-kbc");