input.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  12. #include <linux/init.h>
  13. #include <linux/types.h>
  14. #include <linux/input/mt.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/major.h>
  19. #include <linux/proc_fs.h>
  20. #include <linux/sched.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/poll.h>
  23. #include <linux/device.h>
  24. #include <linux/mutex.h>
  25. #include <linux/rcupdate.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multi-touch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. synchronize_rcu();
  372. out:
  373. mutex_unlock(&dev->mutex);
  374. return retval;
  375. }
  376. EXPORT_SYMBOL(input_grab_device);
  377. static void __input_release_device(struct input_handle *handle)
  378. {
  379. struct input_dev *dev = handle->dev;
  380. if (dev->grab == handle) {
  381. rcu_assign_pointer(dev->grab, NULL);
  382. /* Make sure input_pass_event() notices that grab is gone */
  383. synchronize_rcu();
  384. list_for_each_entry(handle, &dev->h_list, d_node)
  385. if (handle->open && handle->handler->start)
  386. handle->handler->start(handle);
  387. }
  388. }
  389. /**
  390. * input_release_device - release previously grabbed device
  391. * @handle: input handle that owns the device
  392. *
  393. * Releases previously grabbed device so that other input handles can
  394. * start receiving input events. Upon release all handlers attached
  395. * to the device have their start() method called so they have a change
  396. * to synchronize device state with the rest of the system.
  397. */
  398. void input_release_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. mutex_unlock(&dev->mutex);
  404. }
  405. EXPORT_SYMBOL(input_release_device);
  406. /**
  407. * input_open_device - open input device
  408. * @handle: handle through which device is being accessed
  409. *
  410. * This function should be called by input handlers when they
  411. * want to start receive events from given input device.
  412. */
  413. int input_open_device(struct input_handle *handle)
  414. {
  415. struct input_dev *dev = handle->dev;
  416. int retval;
  417. retval = mutex_lock_interruptible(&dev->mutex);
  418. if (retval)
  419. return retval;
  420. if (dev->going_away) {
  421. retval = -ENODEV;
  422. goto out;
  423. }
  424. handle->open++;
  425. if (!dev->users++ && dev->open)
  426. retval = dev->open(dev);
  427. if (retval) {
  428. dev->users--;
  429. if (!--handle->open) {
  430. /*
  431. * Make sure we are not delivering any more events
  432. * through this handle
  433. */
  434. synchronize_rcu();
  435. }
  436. }
  437. out:
  438. mutex_unlock(&dev->mutex);
  439. return retval;
  440. }
  441. EXPORT_SYMBOL(input_open_device);
  442. int input_flush_device(struct input_handle *handle, struct file *file)
  443. {
  444. struct input_dev *dev = handle->dev;
  445. int retval;
  446. retval = mutex_lock_interruptible(&dev->mutex);
  447. if (retval)
  448. return retval;
  449. if (dev->flush)
  450. retval = dev->flush(dev, file);
  451. mutex_unlock(&dev->mutex);
  452. return retval;
  453. }
  454. EXPORT_SYMBOL(input_flush_device);
  455. /**
  456. * input_close_device - close input device
  457. * @handle: handle through which device is being accessed
  458. *
  459. * This function should be called by input handlers when they
  460. * want to stop receive events from given input device.
  461. */
  462. void input_close_device(struct input_handle *handle)
  463. {
  464. struct input_dev *dev = handle->dev;
  465. mutex_lock(&dev->mutex);
  466. __input_release_device(handle);
  467. if (!--dev->users && dev->close)
  468. dev->close(dev);
  469. if (!--handle->open) {
  470. /*
  471. * synchronize_rcu() makes sure that input_pass_event()
  472. * completed and that no more input events are delivered
  473. * through this handle
  474. */
  475. synchronize_rcu();
  476. }
  477. mutex_unlock(&dev->mutex);
  478. }
  479. EXPORT_SYMBOL(input_close_device);
  480. /*
  481. * Simulate keyup events for all keys that are marked as pressed.
  482. * The function must be called with dev->event_lock held.
  483. */
  484. static void input_dev_release_keys(struct input_dev *dev)
  485. {
  486. int code;
  487. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  488. for (code = 0; code <= KEY_MAX; code++) {
  489. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  490. __test_and_clear_bit(code, dev->key)) {
  491. input_pass_event(dev, EV_KEY, code, 0);
  492. }
  493. }
  494. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  495. }
  496. }
  497. /*
  498. * Prepare device for unregistering
  499. */
  500. static void input_disconnect_device(struct input_dev *dev)
  501. {
  502. struct input_handle *handle;
  503. /*
  504. * Mark device as going away. Note that we take dev->mutex here
  505. * not to protect access to dev->going_away but rather to ensure
  506. * that there are no threads in the middle of input_open_device()
  507. */
  508. mutex_lock(&dev->mutex);
  509. dev->going_away = true;
  510. mutex_unlock(&dev->mutex);
  511. spin_lock_irq(&dev->event_lock);
  512. /*
  513. * Simulate keyup events for all pressed keys so that handlers
  514. * are not left with "stuck" keys. The driver may continue
  515. * generate events even after we done here but they will not
  516. * reach any handlers.
  517. */
  518. input_dev_release_keys(dev);
  519. list_for_each_entry(handle, &dev->h_list, d_node)
  520. handle->open = 0;
  521. spin_unlock_irq(&dev->event_lock);
  522. }
  523. /**
  524. * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
  525. * @ke: keymap entry containing scancode to be converted.
  526. * @scancode: pointer to the location where converted scancode should
  527. * be stored.
  528. *
  529. * This function is used to convert scancode stored in &struct keymap_entry
  530. * into scalar form understood by legacy keymap handling methods. These
  531. * methods expect scancodes to be represented as 'unsigned int'.
  532. */
  533. int input_scancode_to_scalar(const struct input_keymap_entry *ke,
  534. unsigned int *scancode)
  535. {
  536. switch (ke->len) {
  537. case 1:
  538. *scancode = *((u8 *)ke->scancode);
  539. break;
  540. case 2:
  541. *scancode = *((u16 *)ke->scancode);
  542. break;
  543. case 4:
  544. *scancode = *((u32 *)ke->scancode);
  545. break;
  546. default:
  547. return -EINVAL;
  548. }
  549. return 0;
  550. }
  551. EXPORT_SYMBOL(input_scancode_to_scalar);
  552. /*
  553. * Those routines handle the default case where no [gs]etkeycode() is
  554. * defined. In this case, an array indexed by the scancode is used.
  555. */
  556. static unsigned int input_fetch_keycode(struct input_dev *dev,
  557. unsigned int index)
  558. {
  559. switch (dev->keycodesize) {
  560. case 1:
  561. return ((u8 *)dev->keycode)[index];
  562. case 2:
  563. return ((u16 *)dev->keycode)[index];
  564. default:
  565. return ((u32 *)dev->keycode)[index];
  566. }
  567. }
  568. static int input_default_getkeycode(struct input_dev *dev,
  569. struct input_keymap_entry *ke)
  570. {
  571. unsigned int index;
  572. int error;
  573. if (!dev->keycodesize)
  574. return -EINVAL;
  575. if (ke->flags & INPUT_KEYMAP_BY_INDEX)
  576. index = ke->index;
  577. else {
  578. error = input_scancode_to_scalar(ke, &index);
  579. if (error)
  580. return error;
  581. }
  582. if (index >= dev->keycodemax)
  583. return -EINVAL;
  584. ke->keycode = input_fetch_keycode(dev, index);
  585. ke->index = index;
  586. ke->len = sizeof(index);
  587. memcpy(ke->scancode, &index, sizeof(index));
  588. return 0;
  589. }
  590. static int input_default_setkeycode(struct input_dev *dev,
  591. const struct input_keymap_entry *ke,
  592. unsigned int *old_keycode)
  593. {
  594. unsigned int index;
  595. int error;
  596. int i;
  597. if (!dev->keycodesize)
  598. return -EINVAL;
  599. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  600. index = ke->index;
  601. } else {
  602. error = input_scancode_to_scalar(ke, &index);
  603. if (error)
  604. return error;
  605. }
  606. if (index >= dev->keycodemax)
  607. return -EINVAL;
  608. if (dev->keycodesize < sizeof(ke->keycode) &&
  609. (ke->keycode >> (dev->keycodesize * 8)))
  610. return -EINVAL;
  611. switch (dev->keycodesize) {
  612. case 1: {
  613. u8 *k = (u8 *)dev->keycode;
  614. *old_keycode = k[index];
  615. k[index] = ke->keycode;
  616. break;
  617. }
  618. case 2: {
  619. u16 *k = (u16 *)dev->keycode;
  620. *old_keycode = k[index];
  621. k[index] = ke->keycode;
  622. break;
  623. }
  624. default: {
  625. u32 *k = (u32 *)dev->keycode;
  626. *old_keycode = k[index];
  627. k[index] = ke->keycode;
  628. break;
  629. }
  630. }
  631. __clear_bit(*old_keycode, dev->keybit);
  632. __set_bit(ke->keycode, dev->keybit);
  633. for (i = 0; i < dev->keycodemax; i++) {
  634. if (input_fetch_keycode(dev, i) == *old_keycode) {
  635. __set_bit(*old_keycode, dev->keybit);
  636. break; /* Setting the bit twice is useless, so break */
  637. }
  638. }
  639. return 0;
  640. }
  641. /**
  642. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  643. * @dev: input device which keymap is being queried
  644. * @ke: keymap entry
  645. *
  646. * This function should be called by anyone interested in retrieving current
  647. * keymap. Presently evdev handlers use it.
  648. */
  649. int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
  650. {
  651. unsigned long flags;
  652. int retval;
  653. spin_lock_irqsave(&dev->event_lock, flags);
  654. if (dev->getkeycode) {
  655. /*
  656. * Support for legacy drivers, that don't implement the new
  657. * ioctls
  658. */
  659. u32 scancode = ke->index;
  660. memcpy(ke->scancode, &scancode, sizeof(scancode));
  661. ke->len = sizeof(scancode);
  662. retval = dev->getkeycode(dev, scancode, &ke->keycode);
  663. } else {
  664. retval = dev->getkeycode_new(dev, ke);
  665. }
  666. spin_unlock_irqrestore(&dev->event_lock, flags);
  667. return retval;
  668. }
  669. EXPORT_SYMBOL(input_get_keycode);
  670. /**
  671. * input_set_keycode - attribute a keycode to a given scancode
  672. * @dev: input device which keymap is being updated
  673. * @ke: new keymap entry
  674. *
  675. * This function should be called by anyone needing to update current
  676. * keymap. Presently keyboard and evdev handlers use it.
  677. */
  678. int input_set_keycode(struct input_dev *dev,
  679. const struct input_keymap_entry *ke)
  680. {
  681. unsigned long flags;
  682. unsigned int old_keycode;
  683. int retval;
  684. if (ke->keycode > KEY_MAX)
  685. return -EINVAL;
  686. spin_lock_irqsave(&dev->event_lock, flags);
  687. if (dev->setkeycode) {
  688. /*
  689. * Support for legacy drivers, that don't implement the new
  690. * ioctls
  691. */
  692. unsigned int scancode;
  693. retval = input_scancode_to_scalar(ke, &scancode);
  694. if (retval)
  695. goto out;
  696. /*
  697. * We need to know the old scancode, in order to generate a
  698. * keyup effect, if the set operation happens successfully
  699. */
  700. if (!dev->getkeycode) {
  701. retval = -EINVAL;
  702. goto out;
  703. }
  704. retval = dev->getkeycode(dev, scancode, &old_keycode);
  705. if (retval)
  706. goto out;
  707. retval = dev->setkeycode(dev, scancode, ke->keycode);
  708. } else {
  709. retval = dev->setkeycode_new(dev, ke, &old_keycode);
  710. }
  711. if (retval)
  712. goto out;
  713. /* Make sure KEY_RESERVED did not get enabled. */
  714. __clear_bit(KEY_RESERVED, dev->keybit);
  715. /*
  716. * Simulate keyup event if keycode is not present
  717. * in the keymap anymore
  718. */
  719. if (test_bit(EV_KEY, dev->evbit) &&
  720. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  721. __test_and_clear_bit(old_keycode, dev->key)) {
  722. input_pass_event(dev, EV_KEY, old_keycode, 0);
  723. if (dev->sync)
  724. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  725. }
  726. out:
  727. spin_unlock_irqrestore(&dev->event_lock, flags);
  728. return retval;
  729. }
  730. EXPORT_SYMBOL(input_set_keycode);
  731. #define MATCH_BIT(bit, max) \
  732. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  733. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  734. break; \
  735. if (i != BITS_TO_LONGS(max)) \
  736. continue;
  737. static const struct input_device_id *input_match_device(struct input_handler *handler,
  738. struct input_dev *dev)
  739. {
  740. const struct input_device_id *id;
  741. int i;
  742. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  743. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  744. if (id->bustype != dev->id.bustype)
  745. continue;
  746. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  747. if (id->vendor != dev->id.vendor)
  748. continue;
  749. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  750. if (id->product != dev->id.product)
  751. continue;
  752. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  753. if (id->version != dev->id.version)
  754. continue;
  755. MATCH_BIT(evbit, EV_MAX);
  756. MATCH_BIT(keybit, KEY_MAX);
  757. MATCH_BIT(relbit, REL_MAX);
  758. MATCH_BIT(absbit, ABS_MAX);
  759. MATCH_BIT(mscbit, MSC_MAX);
  760. MATCH_BIT(ledbit, LED_MAX);
  761. MATCH_BIT(sndbit, SND_MAX);
  762. MATCH_BIT(ffbit, FF_MAX);
  763. MATCH_BIT(swbit, SW_MAX);
  764. if (!handler->match || handler->match(handler, dev))
  765. return id;
  766. }
  767. return NULL;
  768. }
  769. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  770. {
  771. const struct input_device_id *id;
  772. int error;
  773. id = input_match_device(handler, dev);
  774. if (!id)
  775. return -ENODEV;
  776. error = handler->connect(handler, dev, id);
  777. if (error && error != -ENODEV)
  778. pr_err("failed to attach handler %s to device %s, error: %d\n",
  779. handler->name, kobject_name(&dev->dev.kobj), error);
  780. return error;
  781. }
  782. #ifdef CONFIG_COMPAT
  783. static int input_bits_to_string(char *buf, int buf_size,
  784. unsigned long bits, bool skip_empty)
  785. {
  786. int len = 0;
  787. if (INPUT_COMPAT_TEST) {
  788. u32 dword = bits >> 32;
  789. if (dword || !skip_empty)
  790. len += snprintf(buf, buf_size, "%x ", dword);
  791. dword = bits & 0xffffffffUL;
  792. if (dword || !skip_empty || len)
  793. len += snprintf(buf + len, max(buf_size - len, 0),
  794. "%x", dword);
  795. } else {
  796. if (bits || !skip_empty)
  797. len += snprintf(buf, buf_size, "%lx", bits);
  798. }
  799. return len;
  800. }
  801. #else /* !CONFIG_COMPAT */
  802. static int input_bits_to_string(char *buf, int buf_size,
  803. unsigned long bits, bool skip_empty)
  804. {
  805. return bits || !skip_empty ?
  806. snprintf(buf, buf_size, "%lx", bits) : 0;
  807. }
  808. #endif
  809. #ifdef CONFIG_PROC_FS
  810. static struct proc_dir_entry *proc_bus_input_dir;
  811. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  812. static int input_devices_state;
  813. static inline void input_wakeup_procfs_readers(void)
  814. {
  815. input_devices_state++;
  816. wake_up(&input_devices_poll_wait);
  817. }
  818. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  819. {
  820. poll_wait(file, &input_devices_poll_wait, wait);
  821. if (file->f_version != input_devices_state) {
  822. file->f_version = input_devices_state;
  823. return POLLIN | POLLRDNORM;
  824. }
  825. return 0;
  826. }
  827. union input_seq_state {
  828. struct {
  829. unsigned short pos;
  830. bool mutex_acquired;
  831. };
  832. void *p;
  833. };
  834. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  835. {
  836. union input_seq_state *state = (union input_seq_state *)&seq->private;
  837. int error;
  838. /* We need to fit into seq->private pointer */
  839. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  840. error = mutex_lock_interruptible(&input_mutex);
  841. if (error) {
  842. state->mutex_acquired = false;
  843. return ERR_PTR(error);
  844. }
  845. state->mutex_acquired = true;
  846. return seq_list_start(&input_dev_list, *pos);
  847. }
  848. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  849. {
  850. return seq_list_next(v, &input_dev_list, pos);
  851. }
  852. static void input_seq_stop(struct seq_file *seq, void *v)
  853. {
  854. union input_seq_state *state = (union input_seq_state *)&seq->private;
  855. if (state->mutex_acquired)
  856. mutex_unlock(&input_mutex);
  857. }
  858. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  859. unsigned long *bitmap, int max)
  860. {
  861. int i;
  862. bool skip_empty = true;
  863. char buf[18];
  864. seq_printf(seq, "B: %s=", name);
  865. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  866. if (input_bits_to_string(buf, sizeof(buf),
  867. bitmap[i], skip_empty)) {
  868. skip_empty = false;
  869. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  870. }
  871. }
  872. /*
  873. * If no output was produced print a single 0.
  874. */
  875. if (skip_empty)
  876. seq_puts(seq, "0");
  877. seq_putc(seq, '\n');
  878. }
  879. static int input_devices_seq_show(struct seq_file *seq, void *v)
  880. {
  881. struct input_dev *dev = container_of(v, struct input_dev, node);
  882. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  883. struct input_handle *handle;
  884. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  885. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  886. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  887. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  888. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  889. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  890. seq_printf(seq, "H: Handlers=");
  891. list_for_each_entry(handle, &dev->h_list, d_node)
  892. seq_printf(seq, "%s ", handle->name);
  893. seq_putc(seq, '\n');
  894. input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
  895. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  896. if (test_bit(EV_KEY, dev->evbit))
  897. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  898. if (test_bit(EV_REL, dev->evbit))
  899. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  900. if (test_bit(EV_ABS, dev->evbit))
  901. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  902. if (test_bit(EV_MSC, dev->evbit))
  903. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  904. if (test_bit(EV_LED, dev->evbit))
  905. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  906. if (test_bit(EV_SND, dev->evbit))
  907. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  908. if (test_bit(EV_FF, dev->evbit))
  909. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  910. if (test_bit(EV_SW, dev->evbit))
  911. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  912. seq_putc(seq, '\n');
  913. kfree(path);
  914. return 0;
  915. }
  916. static const struct seq_operations input_devices_seq_ops = {
  917. .start = input_devices_seq_start,
  918. .next = input_devices_seq_next,
  919. .stop = input_seq_stop,
  920. .show = input_devices_seq_show,
  921. };
  922. static int input_proc_devices_open(struct inode *inode, struct file *file)
  923. {
  924. return seq_open(file, &input_devices_seq_ops);
  925. }
  926. static const struct file_operations input_devices_fileops = {
  927. .owner = THIS_MODULE,
  928. .open = input_proc_devices_open,
  929. .poll = input_proc_devices_poll,
  930. .read = seq_read,
  931. .llseek = seq_lseek,
  932. .release = seq_release,
  933. };
  934. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  935. {
  936. union input_seq_state *state = (union input_seq_state *)&seq->private;
  937. int error;
  938. /* We need to fit into seq->private pointer */
  939. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  940. error = mutex_lock_interruptible(&input_mutex);
  941. if (error) {
  942. state->mutex_acquired = false;
  943. return ERR_PTR(error);
  944. }
  945. state->mutex_acquired = true;
  946. state->pos = *pos;
  947. return seq_list_start(&input_handler_list, *pos);
  948. }
  949. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  950. {
  951. union input_seq_state *state = (union input_seq_state *)&seq->private;
  952. state->pos = *pos + 1;
  953. return seq_list_next(v, &input_handler_list, pos);
  954. }
  955. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  956. {
  957. struct input_handler *handler = container_of(v, struct input_handler, node);
  958. union input_seq_state *state = (union input_seq_state *)&seq->private;
  959. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  960. if (handler->filter)
  961. seq_puts(seq, " (filter)");
  962. if (handler->fops)
  963. seq_printf(seq, " Minor=%d", handler->minor);
  964. seq_putc(seq, '\n');
  965. return 0;
  966. }
  967. static const struct seq_operations input_handlers_seq_ops = {
  968. .start = input_handlers_seq_start,
  969. .next = input_handlers_seq_next,
  970. .stop = input_seq_stop,
  971. .show = input_handlers_seq_show,
  972. };
  973. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  974. {
  975. return seq_open(file, &input_handlers_seq_ops);
  976. }
  977. static const struct file_operations input_handlers_fileops = {
  978. .owner = THIS_MODULE,
  979. .open = input_proc_handlers_open,
  980. .read = seq_read,
  981. .llseek = seq_lseek,
  982. .release = seq_release,
  983. };
  984. static int __init input_proc_init(void)
  985. {
  986. struct proc_dir_entry *entry;
  987. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  988. if (!proc_bus_input_dir)
  989. return -ENOMEM;
  990. entry = proc_create("devices", 0, proc_bus_input_dir,
  991. &input_devices_fileops);
  992. if (!entry)
  993. goto fail1;
  994. entry = proc_create("handlers", 0, proc_bus_input_dir,
  995. &input_handlers_fileops);
  996. if (!entry)
  997. goto fail2;
  998. return 0;
  999. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  1000. fail1: remove_proc_entry("bus/input", NULL);
  1001. return -ENOMEM;
  1002. }
  1003. static void input_proc_exit(void)
  1004. {
  1005. remove_proc_entry("devices", proc_bus_input_dir);
  1006. remove_proc_entry("handlers", proc_bus_input_dir);
  1007. remove_proc_entry("bus/input", NULL);
  1008. }
  1009. #else /* !CONFIG_PROC_FS */
  1010. static inline void input_wakeup_procfs_readers(void) { }
  1011. static inline int input_proc_init(void) { return 0; }
  1012. static inline void input_proc_exit(void) { }
  1013. #endif
  1014. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  1015. static ssize_t input_dev_show_##name(struct device *dev, \
  1016. struct device_attribute *attr, \
  1017. char *buf) \
  1018. { \
  1019. struct input_dev *input_dev = to_input_dev(dev); \
  1020. \
  1021. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  1022. input_dev->name ? input_dev->name : ""); \
  1023. } \
  1024. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  1025. INPUT_DEV_STRING_ATTR_SHOW(name);
  1026. INPUT_DEV_STRING_ATTR_SHOW(phys);
  1027. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  1028. static int input_print_modalias_bits(char *buf, int size,
  1029. char name, unsigned long *bm,
  1030. unsigned int min_bit, unsigned int max_bit)
  1031. {
  1032. int len = 0, i;
  1033. len += snprintf(buf, max(size, 0), "%c", name);
  1034. for (i = min_bit; i < max_bit; i++)
  1035. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  1036. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  1037. return len;
  1038. }
  1039. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  1040. int add_cr)
  1041. {
  1042. int len;
  1043. len = snprintf(buf, max(size, 0),
  1044. "input:b%04Xv%04Xp%04Xe%04X-",
  1045. id->id.bustype, id->id.vendor,
  1046. id->id.product, id->id.version);
  1047. len += input_print_modalias_bits(buf + len, size - len,
  1048. 'e', id->evbit, 0, EV_MAX);
  1049. len += input_print_modalias_bits(buf + len, size - len,
  1050. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  1051. len += input_print_modalias_bits(buf + len, size - len,
  1052. 'r', id->relbit, 0, REL_MAX);
  1053. len += input_print_modalias_bits(buf + len, size - len,
  1054. 'a', id->absbit, 0, ABS_MAX);
  1055. len += input_print_modalias_bits(buf + len, size - len,
  1056. 'm', id->mscbit, 0, MSC_MAX);
  1057. len += input_print_modalias_bits(buf + len, size - len,
  1058. 'l', id->ledbit, 0, LED_MAX);
  1059. len += input_print_modalias_bits(buf + len, size - len,
  1060. 's', id->sndbit, 0, SND_MAX);
  1061. len += input_print_modalias_bits(buf + len, size - len,
  1062. 'f', id->ffbit, 0, FF_MAX);
  1063. len += input_print_modalias_bits(buf + len, size - len,
  1064. 'w', id->swbit, 0, SW_MAX);
  1065. if (add_cr)
  1066. len += snprintf(buf + len, max(size - len, 0), "\n");
  1067. return len;
  1068. }
  1069. static ssize_t input_dev_show_modalias(struct device *dev,
  1070. struct device_attribute *attr,
  1071. char *buf)
  1072. {
  1073. struct input_dev *id = to_input_dev(dev);
  1074. ssize_t len;
  1075. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  1076. return min_t(int, len, PAGE_SIZE);
  1077. }
  1078. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  1079. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1080. int max, int add_cr);
  1081. static ssize_t input_dev_show_properties(struct device *dev,
  1082. struct device_attribute *attr,
  1083. char *buf)
  1084. {
  1085. struct input_dev *input_dev = to_input_dev(dev);
  1086. int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
  1087. INPUT_PROP_MAX, true);
  1088. return min_t(int, len, PAGE_SIZE);
  1089. }
  1090. static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
  1091. static struct attribute *input_dev_attrs[] = {
  1092. &dev_attr_name.attr,
  1093. &dev_attr_phys.attr,
  1094. &dev_attr_uniq.attr,
  1095. &dev_attr_modalias.attr,
  1096. &dev_attr_properties.attr,
  1097. NULL
  1098. };
  1099. static struct attribute_group input_dev_attr_group = {
  1100. .attrs = input_dev_attrs,
  1101. };
  1102. #define INPUT_DEV_ID_ATTR(name) \
  1103. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1104. struct device_attribute *attr, \
  1105. char *buf) \
  1106. { \
  1107. struct input_dev *input_dev = to_input_dev(dev); \
  1108. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1109. } \
  1110. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1111. INPUT_DEV_ID_ATTR(bustype);
  1112. INPUT_DEV_ID_ATTR(vendor);
  1113. INPUT_DEV_ID_ATTR(product);
  1114. INPUT_DEV_ID_ATTR(version);
  1115. static struct attribute *input_dev_id_attrs[] = {
  1116. &dev_attr_bustype.attr,
  1117. &dev_attr_vendor.attr,
  1118. &dev_attr_product.attr,
  1119. &dev_attr_version.attr,
  1120. NULL
  1121. };
  1122. static struct attribute_group input_dev_id_attr_group = {
  1123. .name = "id",
  1124. .attrs = input_dev_id_attrs,
  1125. };
  1126. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1127. int max, int add_cr)
  1128. {
  1129. int i;
  1130. int len = 0;
  1131. bool skip_empty = true;
  1132. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1133. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1134. bitmap[i], skip_empty);
  1135. if (len) {
  1136. skip_empty = false;
  1137. if (i > 0)
  1138. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1139. }
  1140. }
  1141. /*
  1142. * If no output was produced print a single 0.
  1143. */
  1144. if (len == 0)
  1145. len = snprintf(buf, buf_size, "%d", 0);
  1146. if (add_cr)
  1147. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1148. return len;
  1149. }
  1150. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1151. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1152. struct device_attribute *attr, \
  1153. char *buf) \
  1154. { \
  1155. struct input_dev *input_dev = to_input_dev(dev); \
  1156. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1157. input_dev->bm##bit, ev##_MAX, \
  1158. true); \
  1159. return min_t(int, len, PAGE_SIZE); \
  1160. } \
  1161. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1162. INPUT_DEV_CAP_ATTR(EV, ev);
  1163. INPUT_DEV_CAP_ATTR(KEY, key);
  1164. INPUT_DEV_CAP_ATTR(REL, rel);
  1165. INPUT_DEV_CAP_ATTR(ABS, abs);
  1166. INPUT_DEV_CAP_ATTR(MSC, msc);
  1167. INPUT_DEV_CAP_ATTR(LED, led);
  1168. INPUT_DEV_CAP_ATTR(SND, snd);
  1169. INPUT_DEV_CAP_ATTR(FF, ff);
  1170. INPUT_DEV_CAP_ATTR(SW, sw);
  1171. static struct attribute *input_dev_caps_attrs[] = {
  1172. &dev_attr_ev.attr,
  1173. &dev_attr_key.attr,
  1174. &dev_attr_rel.attr,
  1175. &dev_attr_abs.attr,
  1176. &dev_attr_msc.attr,
  1177. &dev_attr_led.attr,
  1178. &dev_attr_snd.attr,
  1179. &dev_attr_ff.attr,
  1180. &dev_attr_sw.attr,
  1181. NULL
  1182. };
  1183. static struct attribute_group input_dev_caps_attr_group = {
  1184. .name = "capabilities",
  1185. .attrs = input_dev_caps_attrs,
  1186. };
  1187. static const struct attribute_group *input_dev_attr_groups[] = {
  1188. &input_dev_attr_group,
  1189. &input_dev_id_attr_group,
  1190. &input_dev_caps_attr_group,
  1191. NULL
  1192. };
  1193. static void input_dev_release(struct device *device)
  1194. {
  1195. struct input_dev *dev = to_input_dev(device);
  1196. input_ff_destroy(dev);
  1197. input_mt_destroy_slots(dev);
  1198. kfree(dev->absinfo);
  1199. kfree(dev);
  1200. module_put(THIS_MODULE);
  1201. }
  1202. /*
  1203. * Input uevent interface - loading event handlers based on
  1204. * device bitfields.
  1205. */
  1206. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1207. const char *name, unsigned long *bitmap, int max)
  1208. {
  1209. int len;
  1210. if (add_uevent_var(env, "%s", name))
  1211. return -ENOMEM;
  1212. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1213. sizeof(env->buf) - env->buflen,
  1214. bitmap, max, false);
  1215. if (len >= (sizeof(env->buf) - env->buflen))
  1216. return -ENOMEM;
  1217. env->buflen += len;
  1218. return 0;
  1219. }
  1220. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1221. struct input_dev *dev)
  1222. {
  1223. int len;
  1224. if (add_uevent_var(env, "MODALIAS="))
  1225. return -ENOMEM;
  1226. len = input_print_modalias(&env->buf[env->buflen - 1],
  1227. sizeof(env->buf) - env->buflen,
  1228. dev, 0);
  1229. if (len >= (sizeof(env->buf) - env->buflen))
  1230. return -ENOMEM;
  1231. env->buflen += len;
  1232. return 0;
  1233. }
  1234. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1235. do { \
  1236. int err = add_uevent_var(env, fmt, val); \
  1237. if (err) \
  1238. return err; \
  1239. } while (0)
  1240. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1241. do { \
  1242. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1243. if (err) \
  1244. return err; \
  1245. } while (0)
  1246. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1247. do { \
  1248. int err = input_add_uevent_modalias_var(env, dev); \
  1249. if (err) \
  1250. return err; \
  1251. } while (0)
  1252. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1253. {
  1254. struct input_dev *dev = to_input_dev(device);
  1255. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1256. dev->id.bustype, dev->id.vendor,
  1257. dev->id.product, dev->id.version);
  1258. if (dev->name)
  1259. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1260. if (dev->phys)
  1261. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1262. if (dev->uniq)
  1263. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1264. INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
  1265. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1266. if (test_bit(EV_KEY, dev->evbit))
  1267. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1268. if (test_bit(EV_REL, dev->evbit))
  1269. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1270. if (test_bit(EV_ABS, dev->evbit))
  1271. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1272. if (test_bit(EV_MSC, dev->evbit))
  1273. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1274. if (test_bit(EV_LED, dev->evbit))
  1275. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1276. if (test_bit(EV_SND, dev->evbit))
  1277. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1278. if (test_bit(EV_FF, dev->evbit))
  1279. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1280. if (test_bit(EV_SW, dev->evbit))
  1281. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1282. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1283. return 0;
  1284. }
  1285. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1286. do { \
  1287. int i; \
  1288. bool active; \
  1289. \
  1290. if (!test_bit(EV_##type, dev->evbit)) \
  1291. break; \
  1292. \
  1293. for (i = 0; i < type##_MAX; i++) { \
  1294. if (!test_bit(i, dev->bits##bit)) \
  1295. continue; \
  1296. \
  1297. active = test_bit(i, dev->bits); \
  1298. if (!active && !on) \
  1299. continue; \
  1300. \
  1301. dev->event(dev, EV_##type, i, on ? active : 0); \
  1302. } \
  1303. } while (0)
  1304. static void input_dev_toggle(struct input_dev *dev, bool activate)
  1305. {
  1306. if (!dev->event)
  1307. return;
  1308. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1309. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1310. if (activate && test_bit(EV_REP, dev->evbit)) {
  1311. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1312. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1313. }
  1314. }
  1315. /**
  1316. * input_reset_device() - reset/restore the state of input device
  1317. * @dev: input device whose state needs to be reset
  1318. *
  1319. * This function tries to reset the state of an opened input device and
  1320. * bring internal state and state if the hardware in sync with each other.
  1321. * We mark all keys as released, restore LED state, repeat rate, etc.
  1322. */
  1323. void input_reset_device(struct input_dev *dev)
  1324. {
  1325. mutex_lock(&dev->mutex);
  1326. if (dev->users) {
  1327. input_dev_toggle(dev, true);
  1328. /*
  1329. * Keys that have been pressed at suspend time are unlikely
  1330. * to be still pressed when we resume.
  1331. */
  1332. spin_lock_irq(&dev->event_lock);
  1333. input_dev_release_keys(dev);
  1334. spin_unlock_irq(&dev->event_lock);
  1335. }
  1336. mutex_unlock(&dev->mutex);
  1337. }
  1338. EXPORT_SYMBOL(input_reset_device);
  1339. #ifdef CONFIG_PM
  1340. static int input_dev_suspend(struct device *dev)
  1341. {
  1342. struct input_dev *input_dev = to_input_dev(dev);
  1343. mutex_lock(&input_dev->mutex);
  1344. if (input_dev->users)
  1345. input_dev_toggle(input_dev, false);
  1346. mutex_unlock(&input_dev->mutex);
  1347. return 0;
  1348. }
  1349. static int input_dev_resume(struct device *dev)
  1350. {
  1351. struct input_dev *input_dev = to_input_dev(dev);
  1352. input_reset_device(input_dev);
  1353. return 0;
  1354. }
  1355. static const struct dev_pm_ops input_dev_pm_ops = {
  1356. .suspend = input_dev_suspend,
  1357. .resume = input_dev_resume,
  1358. .poweroff = input_dev_suspend,
  1359. .restore = input_dev_resume,
  1360. };
  1361. #endif /* CONFIG_PM */
  1362. static struct device_type input_dev_type = {
  1363. .groups = input_dev_attr_groups,
  1364. .release = input_dev_release,
  1365. .uevent = input_dev_uevent,
  1366. #ifdef CONFIG_PM
  1367. .pm = &input_dev_pm_ops,
  1368. #endif
  1369. };
  1370. static char *input_devnode(struct device *dev, mode_t *mode)
  1371. {
  1372. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1373. }
  1374. struct class input_class = {
  1375. .name = "input",
  1376. .devnode = input_devnode,
  1377. };
  1378. EXPORT_SYMBOL_GPL(input_class);
  1379. /**
  1380. * input_allocate_device - allocate memory for new input device
  1381. *
  1382. * Returns prepared struct input_dev or NULL.
  1383. *
  1384. * NOTE: Use input_free_device() to free devices that have not been
  1385. * registered; input_unregister_device() should be used for already
  1386. * registered devices.
  1387. */
  1388. struct input_dev *input_allocate_device(void)
  1389. {
  1390. struct input_dev *dev;
  1391. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1392. if (dev) {
  1393. dev->dev.type = &input_dev_type;
  1394. dev->dev.class = &input_class;
  1395. device_initialize(&dev->dev);
  1396. mutex_init(&dev->mutex);
  1397. spin_lock_init(&dev->event_lock);
  1398. INIT_LIST_HEAD(&dev->h_list);
  1399. INIT_LIST_HEAD(&dev->node);
  1400. __module_get(THIS_MODULE);
  1401. }
  1402. return dev;
  1403. }
  1404. EXPORT_SYMBOL(input_allocate_device);
  1405. /**
  1406. * input_free_device - free memory occupied by input_dev structure
  1407. * @dev: input device to free
  1408. *
  1409. * This function should only be used if input_register_device()
  1410. * was not called yet or if it failed. Once device was registered
  1411. * use input_unregister_device() and memory will be freed once last
  1412. * reference to the device is dropped.
  1413. *
  1414. * Device should be allocated by input_allocate_device().
  1415. *
  1416. * NOTE: If there are references to the input device then memory
  1417. * will not be freed until last reference is dropped.
  1418. */
  1419. void input_free_device(struct input_dev *dev)
  1420. {
  1421. if (dev)
  1422. input_put_device(dev);
  1423. }
  1424. EXPORT_SYMBOL(input_free_device);
  1425. /**
  1426. * input_set_capability - mark device as capable of a certain event
  1427. * @dev: device that is capable of emitting or accepting event
  1428. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1429. * @code: event code
  1430. *
  1431. * In addition to setting up corresponding bit in appropriate capability
  1432. * bitmap the function also adjusts dev->evbit.
  1433. */
  1434. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1435. {
  1436. switch (type) {
  1437. case EV_KEY:
  1438. __set_bit(code, dev->keybit);
  1439. break;
  1440. case EV_REL:
  1441. __set_bit(code, dev->relbit);
  1442. break;
  1443. case EV_ABS:
  1444. __set_bit(code, dev->absbit);
  1445. break;
  1446. case EV_MSC:
  1447. __set_bit(code, dev->mscbit);
  1448. break;
  1449. case EV_SW:
  1450. __set_bit(code, dev->swbit);
  1451. break;
  1452. case EV_LED:
  1453. __set_bit(code, dev->ledbit);
  1454. break;
  1455. case EV_SND:
  1456. __set_bit(code, dev->sndbit);
  1457. break;
  1458. case EV_FF:
  1459. __set_bit(code, dev->ffbit);
  1460. break;
  1461. case EV_PWR:
  1462. /* do nothing */
  1463. break;
  1464. default:
  1465. pr_err("input_set_capability: unknown type %u (code %u)\n",
  1466. type, code);
  1467. dump_stack();
  1468. return;
  1469. }
  1470. __set_bit(type, dev->evbit);
  1471. }
  1472. EXPORT_SYMBOL(input_set_capability);
  1473. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1474. do { \
  1475. if (!test_bit(EV_##type, dev->evbit)) \
  1476. memset(dev->bits##bit, 0, \
  1477. sizeof(dev->bits##bit)); \
  1478. } while (0)
  1479. static void input_cleanse_bitmasks(struct input_dev *dev)
  1480. {
  1481. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1482. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1483. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1484. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1485. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1486. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1487. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1488. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1489. }
  1490. /**
  1491. * input_register_device - register device with input core
  1492. * @dev: device to be registered
  1493. *
  1494. * This function registers device with input core. The device must be
  1495. * allocated with input_allocate_device() and all it's capabilities
  1496. * set up before registering.
  1497. * If function fails the device must be freed with input_free_device().
  1498. * Once device has been successfully registered it can be unregistered
  1499. * with input_unregister_device(); input_free_device() should not be
  1500. * called in this case.
  1501. */
  1502. int input_register_device(struct input_dev *dev)
  1503. {
  1504. static atomic_t input_no = ATOMIC_INIT(0);
  1505. struct input_handler *handler;
  1506. const char *path;
  1507. int error;
  1508. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1509. __set_bit(EV_SYN, dev->evbit);
  1510. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1511. __clear_bit(KEY_RESERVED, dev->keybit);
  1512. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1513. input_cleanse_bitmasks(dev);
  1514. /*
  1515. * If delay and period are pre-set by the driver, then autorepeating
  1516. * is handled by the driver itself and we don't do it in input.c.
  1517. */
  1518. init_timer(&dev->timer);
  1519. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1520. dev->timer.data = (long) dev;
  1521. dev->timer.function = input_repeat_key;
  1522. dev->rep[REP_DELAY] = 250;
  1523. dev->rep[REP_PERIOD] = 33;
  1524. }
  1525. if (!dev->getkeycode && !dev->getkeycode_new)
  1526. dev->getkeycode_new = input_default_getkeycode;
  1527. if (!dev->setkeycode && !dev->setkeycode_new)
  1528. dev->setkeycode_new = input_default_setkeycode;
  1529. dev_set_name(&dev->dev, "input%ld",
  1530. (unsigned long) atomic_inc_return(&input_no) - 1);
  1531. error = device_add(&dev->dev);
  1532. if (error)
  1533. return error;
  1534. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1535. pr_info("%s as %s\n",
  1536. dev->name ? dev->name : "Unspecified device",
  1537. path ? path : "N/A");
  1538. kfree(path);
  1539. error = mutex_lock_interruptible(&input_mutex);
  1540. if (error) {
  1541. device_del(&dev->dev);
  1542. return error;
  1543. }
  1544. list_add_tail(&dev->node, &input_dev_list);
  1545. list_for_each_entry(handler, &input_handler_list, node)
  1546. input_attach_handler(dev, handler);
  1547. input_wakeup_procfs_readers();
  1548. mutex_unlock(&input_mutex);
  1549. return 0;
  1550. }
  1551. EXPORT_SYMBOL(input_register_device);
  1552. /**
  1553. * input_unregister_device - unregister previously registered device
  1554. * @dev: device to be unregistered
  1555. *
  1556. * This function unregisters an input device. Once device is unregistered
  1557. * the caller should not try to access it as it may get freed at any moment.
  1558. */
  1559. void input_unregister_device(struct input_dev *dev)
  1560. {
  1561. struct input_handle *handle, *next;
  1562. input_disconnect_device(dev);
  1563. mutex_lock(&input_mutex);
  1564. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1565. handle->handler->disconnect(handle);
  1566. WARN_ON(!list_empty(&dev->h_list));
  1567. del_timer_sync(&dev->timer);
  1568. list_del_init(&dev->node);
  1569. input_wakeup_procfs_readers();
  1570. mutex_unlock(&input_mutex);
  1571. device_unregister(&dev->dev);
  1572. }
  1573. EXPORT_SYMBOL(input_unregister_device);
  1574. /**
  1575. * input_register_handler - register a new input handler
  1576. * @handler: handler to be registered
  1577. *
  1578. * This function registers a new input handler (interface) for input
  1579. * devices in the system and attaches it to all input devices that
  1580. * are compatible with the handler.
  1581. */
  1582. int input_register_handler(struct input_handler *handler)
  1583. {
  1584. struct input_dev *dev;
  1585. int retval;
  1586. retval = mutex_lock_interruptible(&input_mutex);
  1587. if (retval)
  1588. return retval;
  1589. INIT_LIST_HEAD(&handler->h_list);
  1590. if (handler->fops != NULL) {
  1591. if (input_table[handler->minor >> 5]) {
  1592. retval = -EBUSY;
  1593. goto out;
  1594. }
  1595. input_table[handler->minor >> 5] = handler;
  1596. }
  1597. list_add_tail(&handler->node, &input_handler_list);
  1598. list_for_each_entry(dev, &input_dev_list, node)
  1599. input_attach_handler(dev, handler);
  1600. input_wakeup_procfs_readers();
  1601. out:
  1602. mutex_unlock(&input_mutex);
  1603. return retval;
  1604. }
  1605. EXPORT_SYMBOL(input_register_handler);
  1606. /**
  1607. * input_unregister_handler - unregisters an input handler
  1608. * @handler: handler to be unregistered
  1609. *
  1610. * This function disconnects a handler from its input devices and
  1611. * removes it from lists of known handlers.
  1612. */
  1613. void input_unregister_handler(struct input_handler *handler)
  1614. {
  1615. struct input_handle *handle, *next;
  1616. mutex_lock(&input_mutex);
  1617. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1618. handler->disconnect(handle);
  1619. WARN_ON(!list_empty(&handler->h_list));
  1620. list_del_init(&handler->node);
  1621. if (handler->fops != NULL)
  1622. input_table[handler->minor >> 5] = NULL;
  1623. input_wakeup_procfs_readers();
  1624. mutex_unlock(&input_mutex);
  1625. }
  1626. EXPORT_SYMBOL(input_unregister_handler);
  1627. /**
  1628. * input_handler_for_each_handle - handle iterator
  1629. * @handler: input handler to iterate
  1630. * @data: data for the callback
  1631. * @fn: function to be called for each handle
  1632. *
  1633. * Iterate over @bus's list of devices, and call @fn for each, passing
  1634. * it @data and stop when @fn returns a non-zero value. The function is
  1635. * using RCU to traverse the list and therefore may be usind in atonic
  1636. * contexts. The @fn callback is invoked from RCU critical section and
  1637. * thus must not sleep.
  1638. */
  1639. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1640. int (*fn)(struct input_handle *, void *))
  1641. {
  1642. struct input_handle *handle;
  1643. int retval = 0;
  1644. rcu_read_lock();
  1645. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1646. retval = fn(handle, data);
  1647. if (retval)
  1648. break;
  1649. }
  1650. rcu_read_unlock();
  1651. return retval;
  1652. }
  1653. EXPORT_SYMBOL(input_handler_for_each_handle);
  1654. /**
  1655. * input_register_handle - register a new input handle
  1656. * @handle: handle to register
  1657. *
  1658. * This function puts a new input handle onto device's
  1659. * and handler's lists so that events can flow through
  1660. * it once it is opened using input_open_device().
  1661. *
  1662. * This function is supposed to be called from handler's
  1663. * connect() method.
  1664. */
  1665. int input_register_handle(struct input_handle *handle)
  1666. {
  1667. struct input_handler *handler = handle->handler;
  1668. struct input_dev *dev = handle->dev;
  1669. int error;
  1670. /*
  1671. * We take dev->mutex here to prevent race with
  1672. * input_release_device().
  1673. */
  1674. error = mutex_lock_interruptible(&dev->mutex);
  1675. if (error)
  1676. return error;
  1677. /*
  1678. * Filters go to the head of the list, normal handlers
  1679. * to the tail.
  1680. */
  1681. if (handler->filter)
  1682. list_add_rcu(&handle->d_node, &dev->h_list);
  1683. else
  1684. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1685. mutex_unlock(&dev->mutex);
  1686. /*
  1687. * Since we are supposed to be called from ->connect()
  1688. * which is mutually exclusive with ->disconnect()
  1689. * we can't be racing with input_unregister_handle()
  1690. * and so separate lock is not needed here.
  1691. */
  1692. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1693. if (handler->start)
  1694. handler->start(handle);
  1695. return 0;
  1696. }
  1697. EXPORT_SYMBOL(input_register_handle);
  1698. /**
  1699. * input_unregister_handle - unregister an input handle
  1700. * @handle: handle to unregister
  1701. *
  1702. * This function removes input handle from device's
  1703. * and handler's lists.
  1704. *
  1705. * This function is supposed to be called from handler's
  1706. * disconnect() method.
  1707. */
  1708. void input_unregister_handle(struct input_handle *handle)
  1709. {
  1710. struct input_dev *dev = handle->dev;
  1711. list_del_rcu(&handle->h_node);
  1712. /*
  1713. * Take dev->mutex to prevent race with input_release_device().
  1714. */
  1715. mutex_lock(&dev->mutex);
  1716. list_del_rcu(&handle->d_node);
  1717. mutex_unlock(&dev->mutex);
  1718. synchronize_rcu();
  1719. }
  1720. EXPORT_SYMBOL(input_unregister_handle);
  1721. static int input_open_file(struct inode *inode, struct file *file)
  1722. {
  1723. struct input_handler *handler;
  1724. const struct file_operations *old_fops, *new_fops = NULL;
  1725. int err;
  1726. err = mutex_lock_interruptible(&input_mutex);
  1727. if (err)
  1728. return err;
  1729. /* No load-on-demand here? */
  1730. handler = input_table[iminor(inode) >> 5];
  1731. if (handler)
  1732. new_fops = fops_get(handler->fops);
  1733. mutex_unlock(&input_mutex);
  1734. /*
  1735. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1736. * not "no device". Oh, well...
  1737. */
  1738. if (!new_fops || !new_fops->open) {
  1739. fops_put(new_fops);
  1740. err = -ENODEV;
  1741. goto out;
  1742. }
  1743. old_fops = file->f_op;
  1744. file->f_op = new_fops;
  1745. err = new_fops->open(inode, file);
  1746. if (err) {
  1747. fops_put(file->f_op);
  1748. file->f_op = fops_get(old_fops);
  1749. }
  1750. fops_put(old_fops);
  1751. out:
  1752. return err;
  1753. }
  1754. static const struct file_operations input_fops = {
  1755. .owner = THIS_MODULE,
  1756. .open = input_open_file,
  1757. .llseek = noop_llseek,
  1758. };
  1759. static int __init input_init(void)
  1760. {
  1761. int err;
  1762. err = class_register(&input_class);
  1763. if (err) {
  1764. pr_err("unable to register input_dev class\n");
  1765. return err;
  1766. }
  1767. err = input_proc_init();
  1768. if (err)
  1769. goto fail1;
  1770. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1771. if (err) {
  1772. pr_err("unable to register char major %d", INPUT_MAJOR);
  1773. goto fail2;
  1774. }
  1775. return 0;
  1776. fail2: input_proc_exit();
  1777. fail1: class_unregister(&input_class);
  1778. return err;
  1779. }
  1780. static void __exit input_exit(void)
  1781. {
  1782. input_proc_exit();
  1783. unregister_chrdev(INPUT_MAJOR, "input");
  1784. class_unregister(&input_class);
  1785. }
  1786. subsys_initcall(input_init);
  1787. module_exit(input_exit);