sched.c 231 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched_cpupri.h"
  80. #include "workqueue_sched.h"
  81. #include "sched_autogroup.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. /*
  85. * Convert user-nice values [ -20 ... 0 ... 19 ]
  86. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  87. * and back.
  88. */
  89. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  90. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  91. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  92. /*
  93. * 'User priority' is the nice value converted to something we
  94. * can work with better when scaling various scheduler parameters,
  95. * it's a [ 0 ... 39 ] range.
  96. */
  97. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  98. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  99. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  100. /*
  101. * Helpers for converting nanosecond timing to jiffy resolution
  102. */
  103. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  104. #define NICE_0_LOAD SCHED_LOAD_SCALE
  105. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  106. /*
  107. * These are the 'tuning knobs' of the scheduler:
  108. *
  109. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  110. * Timeslices get refilled after they expire.
  111. */
  112. #define DEF_TIMESLICE (100 * HZ / 1000)
  113. /*
  114. * single value that denotes runtime == period, ie unlimited time.
  115. */
  116. #define RUNTIME_INF ((u64)~0ULL)
  117. static inline int rt_policy(int policy)
  118. {
  119. if (policy == SCHED_FIFO || policy == SCHED_RR)
  120. return 1;
  121. return 0;
  122. }
  123. static inline int task_has_rt_policy(struct task_struct *p)
  124. {
  125. return rt_policy(p->policy);
  126. }
  127. /*
  128. * This is the priority-queue data structure of the RT scheduling class:
  129. */
  130. struct rt_prio_array {
  131. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  132. struct list_head queue[MAX_RT_PRIO];
  133. };
  134. struct rt_bandwidth {
  135. /* nests inside the rq lock: */
  136. raw_spinlock_t rt_runtime_lock;
  137. ktime_t rt_period;
  138. u64 rt_runtime;
  139. struct hrtimer rt_period_timer;
  140. };
  141. static struct rt_bandwidth def_rt_bandwidth;
  142. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  143. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  144. {
  145. struct rt_bandwidth *rt_b =
  146. container_of(timer, struct rt_bandwidth, rt_period_timer);
  147. ktime_t now;
  148. int overrun;
  149. int idle = 0;
  150. for (;;) {
  151. now = hrtimer_cb_get_time(timer);
  152. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  153. if (!overrun)
  154. break;
  155. idle = do_sched_rt_period_timer(rt_b, overrun);
  156. }
  157. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  158. }
  159. static
  160. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  161. {
  162. rt_b->rt_period = ns_to_ktime(period);
  163. rt_b->rt_runtime = runtime;
  164. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  165. hrtimer_init(&rt_b->rt_period_timer,
  166. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  167. rt_b->rt_period_timer.function = sched_rt_period_timer;
  168. }
  169. static inline int rt_bandwidth_enabled(void)
  170. {
  171. return sysctl_sched_rt_runtime >= 0;
  172. }
  173. static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  174. {
  175. unsigned long delta;
  176. ktime_t soft, hard, now;
  177. for (;;) {
  178. if (hrtimer_active(period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(period_timer);
  181. hrtimer_forward(period_timer, now, period);
  182. soft = hrtimer_get_softexpires(period_timer);
  183. hard = hrtimer_get_expires(period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. }
  189. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  190. {
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. raw_spin_lock(&rt_b->rt_runtime_lock);
  196. start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
  197. raw_spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_CGROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. struct cfs_bandwidth {
  215. #ifdef CONFIG_CFS_BANDWIDTH
  216. raw_spinlock_t lock;
  217. ktime_t period;
  218. u64 quota, runtime;
  219. s64 hierarchal_quota;
  220. u64 runtime_expires;
  221. int idle, timer_active;
  222. struct hrtimer period_timer;
  223. struct list_head throttled_cfs_rq;
  224. #endif
  225. };
  226. /* task group related information */
  227. struct task_group {
  228. struct cgroup_subsys_state css;
  229. #ifdef CONFIG_FAIR_GROUP_SCHED
  230. /* schedulable entities of this group on each cpu */
  231. struct sched_entity **se;
  232. /* runqueue "owned" by this group on each cpu */
  233. struct cfs_rq **cfs_rq;
  234. unsigned long shares;
  235. atomic_t load_weight;
  236. #endif
  237. #ifdef CONFIG_RT_GROUP_SCHED
  238. struct sched_rt_entity **rt_se;
  239. struct rt_rq **rt_rq;
  240. struct rt_bandwidth rt_bandwidth;
  241. #endif
  242. struct rcu_head rcu;
  243. struct list_head list;
  244. struct task_group *parent;
  245. struct list_head siblings;
  246. struct list_head children;
  247. #ifdef CONFIG_SCHED_AUTOGROUP
  248. struct autogroup *autogroup;
  249. #endif
  250. struct cfs_bandwidth cfs_bandwidth;
  251. };
  252. /* task_group_lock serializes the addition/removal of task groups */
  253. static DEFINE_SPINLOCK(task_group_lock);
  254. #ifdef CONFIG_FAIR_GROUP_SCHED
  255. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  256. /*
  257. * A weight of 0 or 1 can cause arithmetics problems.
  258. * A weight of a cfs_rq is the sum of weights of which entities
  259. * are queued on this cfs_rq, so a weight of a entity should not be
  260. * too large, so as the shares value of a task group.
  261. * (The default weight is 1024 - so there's no practical
  262. * limitation from this.)
  263. */
  264. #define MIN_SHARES (1UL << 1)
  265. #define MAX_SHARES (1UL << 18)
  266. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  267. #endif
  268. /* Default task group.
  269. * Every task in system belong to this group at bootup.
  270. */
  271. struct task_group root_task_group;
  272. #endif /* CONFIG_CGROUP_SCHED */
  273. /* CFS-related fields in a runqueue */
  274. struct cfs_rq {
  275. struct load_weight load;
  276. unsigned long nr_running, h_nr_running;
  277. u64 exec_clock;
  278. u64 min_vruntime;
  279. #ifndef CONFIG_64BIT
  280. u64 min_vruntime_copy;
  281. #endif
  282. struct rb_root tasks_timeline;
  283. struct rb_node *rb_leftmost;
  284. struct list_head tasks;
  285. struct list_head *balance_iterator;
  286. /*
  287. * 'curr' points to currently running entity on this cfs_rq.
  288. * It is set to NULL otherwise (i.e when none are currently running).
  289. */
  290. struct sched_entity *curr, *next, *last, *skip;
  291. #ifdef CONFIG_SCHED_DEBUG
  292. unsigned int nr_spread_over;
  293. #endif
  294. #ifdef CONFIG_FAIR_GROUP_SCHED
  295. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  296. /*
  297. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  298. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  299. * (like users, containers etc.)
  300. *
  301. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  302. * list is used during load balance.
  303. */
  304. int on_list;
  305. struct list_head leaf_cfs_rq_list;
  306. struct task_group *tg; /* group that "owns" this runqueue */
  307. #ifdef CONFIG_SMP
  308. /*
  309. * the part of load.weight contributed by tasks
  310. */
  311. unsigned long task_weight;
  312. /*
  313. * h_load = weight * f(tg)
  314. *
  315. * Where f(tg) is the recursive weight fraction assigned to
  316. * this group.
  317. */
  318. unsigned long h_load;
  319. /*
  320. * Maintaining per-cpu shares distribution for group scheduling
  321. *
  322. * load_stamp is the last time we updated the load average
  323. * load_last is the last time we updated the load average and saw load
  324. * load_unacc_exec_time is currently unaccounted execution time
  325. */
  326. u64 load_avg;
  327. u64 load_period;
  328. u64 load_stamp, load_last, load_unacc_exec_time;
  329. unsigned long load_contribution;
  330. #endif
  331. #ifdef CONFIG_CFS_BANDWIDTH
  332. int runtime_enabled;
  333. u64 runtime_expires;
  334. s64 runtime_remaining;
  335. int throttled;
  336. struct list_head throttled_list;
  337. #endif
  338. #endif
  339. };
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. #ifdef CONFIG_CFS_BANDWIDTH
  342. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  343. {
  344. return &tg->cfs_bandwidth;
  345. }
  346. static inline u64 default_cfs_period(void);
  347. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  348. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  349. {
  350. struct cfs_bandwidth *cfs_b =
  351. container_of(timer, struct cfs_bandwidth, period_timer);
  352. ktime_t now;
  353. int overrun;
  354. int idle = 0;
  355. for (;;) {
  356. now = hrtimer_cb_get_time(timer);
  357. overrun = hrtimer_forward(timer, now, cfs_b->period);
  358. if (!overrun)
  359. break;
  360. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  361. }
  362. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  363. }
  364. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  365. {
  366. raw_spin_lock_init(&cfs_b->lock);
  367. cfs_b->runtime = 0;
  368. cfs_b->quota = RUNTIME_INF;
  369. cfs_b->period = ns_to_ktime(default_cfs_period());
  370. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  371. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  372. cfs_b->period_timer.function = sched_cfs_period_timer;
  373. }
  374. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  375. {
  376. cfs_rq->runtime_enabled = 0;
  377. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  378. }
  379. /* requires cfs_b->lock, may release to reprogram timer */
  380. static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  381. {
  382. /*
  383. * The timer may be active because we're trying to set a new bandwidth
  384. * period or because we're racing with the tear-down path
  385. * (timer_active==0 becomes visible before the hrtimer call-back
  386. * terminates). In either case we ensure that it's re-programmed
  387. */
  388. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  389. raw_spin_unlock(&cfs_b->lock);
  390. /* ensure cfs_b->lock is available while we wait */
  391. hrtimer_cancel(&cfs_b->period_timer);
  392. raw_spin_lock(&cfs_b->lock);
  393. /* if someone else restarted the timer then we're done */
  394. if (cfs_b->timer_active)
  395. return;
  396. }
  397. cfs_b->timer_active = 1;
  398. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  399. }
  400. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  401. {
  402. hrtimer_cancel(&cfs_b->period_timer);
  403. }
  404. #else
  405. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  406. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  407. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  408. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  409. {
  410. return NULL;
  411. }
  412. #endif /* CONFIG_CFS_BANDWIDTH */
  413. #endif /* CONFIG_FAIR_GROUP_SCHED */
  414. /* Real-Time classes' related field in a runqueue: */
  415. struct rt_rq {
  416. struct rt_prio_array active;
  417. unsigned long rt_nr_running;
  418. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  419. struct {
  420. int curr; /* highest queued rt task prio */
  421. #ifdef CONFIG_SMP
  422. int next; /* next highest */
  423. #endif
  424. } highest_prio;
  425. #endif
  426. #ifdef CONFIG_SMP
  427. unsigned long rt_nr_migratory;
  428. unsigned long rt_nr_total;
  429. int overloaded;
  430. struct plist_head pushable_tasks;
  431. #endif
  432. int rt_throttled;
  433. u64 rt_time;
  434. u64 rt_runtime;
  435. /* Nests inside the rq lock: */
  436. raw_spinlock_t rt_runtime_lock;
  437. #ifdef CONFIG_RT_GROUP_SCHED
  438. unsigned long rt_nr_boosted;
  439. struct rq *rq;
  440. struct list_head leaf_rt_rq_list;
  441. struct task_group *tg;
  442. #endif
  443. };
  444. #ifdef CONFIG_SMP
  445. /*
  446. * We add the notion of a root-domain which will be used to define per-domain
  447. * variables. Each exclusive cpuset essentially defines an island domain by
  448. * fully partitioning the member cpus from any other cpuset. Whenever a new
  449. * exclusive cpuset is created, we also create and attach a new root-domain
  450. * object.
  451. *
  452. */
  453. struct root_domain {
  454. atomic_t refcount;
  455. atomic_t rto_count;
  456. struct rcu_head rcu;
  457. cpumask_var_t span;
  458. cpumask_var_t online;
  459. /*
  460. * The "RT overload" flag: it gets set if a CPU has more than
  461. * one runnable RT task.
  462. */
  463. cpumask_var_t rto_mask;
  464. struct cpupri cpupri;
  465. };
  466. /*
  467. * By default the system creates a single root-domain with all cpus as
  468. * members (mimicking the global state we have today).
  469. */
  470. static struct root_domain def_root_domain;
  471. #endif /* CONFIG_SMP */
  472. /*
  473. * This is the main, per-CPU runqueue data structure.
  474. *
  475. * Locking rule: those places that want to lock multiple runqueues
  476. * (such as the load balancing or the thread migration code), lock
  477. * acquire operations must be ordered by ascending &runqueue.
  478. */
  479. struct rq {
  480. /* runqueue lock: */
  481. raw_spinlock_t lock;
  482. /*
  483. * nr_running and cpu_load should be in the same cacheline because
  484. * remote CPUs use both these fields when doing load calculation.
  485. */
  486. unsigned long nr_running;
  487. #define CPU_LOAD_IDX_MAX 5
  488. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  489. unsigned long last_load_update_tick;
  490. #ifdef CONFIG_NO_HZ
  491. u64 nohz_stamp;
  492. unsigned char nohz_balance_kick;
  493. #endif
  494. int skip_clock_update;
  495. /* capture load from *all* tasks on this cpu: */
  496. struct load_weight load;
  497. unsigned long nr_load_updates;
  498. u64 nr_switches;
  499. struct cfs_rq cfs;
  500. struct rt_rq rt;
  501. #ifdef CONFIG_FAIR_GROUP_SCHED
  502. /* list of leaf cfs_rq on this cpu: */
  503. struct list_head leaf_cfs_rq_list;
  504. #endif
  505. #ifdef CONFIG_RT_GROUP_SCHED
  506. struct list_head leaf_rt_rq_list;
  507. #endif
  508. /*
  509. * This is part of a global counter where only the total sum
  510. * over all CPUs matters. A task can increase this counter on
  511. * one CPU and if it got migrated afterwards it may decrease
  512. * it on another CPU. Always updated under the runqueue lock:
  513. */
  514. unsigned long nr_uninterruptible;
  515. struct task_struct *curr, *idle, *stop;
  516. unsigned long next_balance;
  517. struct mm_struct *prev_mm;
  518. u64 clock;
  519. u64 clock_task;
  520. atomic_t nr_iowait;
  521. #ifdef CONFIG_SMP
  522. struct root_domain *rd;
  523. struct sched_domain *sd;
  524. unsigned long cpu_power;
  525. unsigned char idle_at_tick;
  526. /* For active balancing */
  527. int post_schedule;
  528. int active_balance;
  529. int push_cpu;
  530. struct cpu_stop_work active_balance_work;
  531. /* cpu of this runqueue: */
  532. int cpu;
  533. int online;
  534. u64 rt_avg;
  535. u64 age_stamp;
  536. u64 idle_stamp;
  537. u64 avg_idle;
  538. #endif
  539. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  540. u64 prev_irq_time;
  541. #endif
  542. #ifdef CONFIG_PARAVIRT
  543. u64 prev_steal_time;
  544. #endif
  545. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  546. u64 prev_steal_time_rq;
  547. #endif
  548. /* calc_load related fields */
  549. unsigned long calc_load_update;
  550. long calc_load_active;
  551. #ifdef CONFIG_SCHED_HRTICK
  552. #ifdef CONFIG_SMP
  553. int hrtick_csd_pending;
  554. struct call_single_data hrtick_csd;
  555. #endif
  556. struct hrtimer hrtick_timer;
  557. #endif
  558. #ifdef CONFIG_SCHEDSTATS
  559. /* latency stats */
  560. struct sched_info rq_sched_info;
  561. unsigned long long rq_cpu_time;
  562. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  563. /* sys_sched_yield() stats */
  564. unsigned int yld_count;
  565. /* schedule() stats */
  566. unsigned int sched_switch;
  567. unsigned int sched_count;
  568. unsigned int sched_goidle;
  569. /* try_to_wake_up() stats */
  570. unsigned int ttwu_count;
  571. unsigned int ttwu_local;
  572. #endif
  573. #ifdef CONFIG_SMP
  574. struct task_struct *wake_list;
  575. #endif
  576. };
  577. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  578. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  579. static inline int cpu_of(struct rq *rq)
  580. {
  581. #ifdef CONFIG_SMP
  582. return rq->cpu;
  583. #else
  584. return 0;
  585. #endif
  586. }
  587. #define rcu_dereference_check_sched_domain(p) \
  588. rcu_dereference_check((p), \
  589. lockdep_is_held(&sched_domains_mutex))
  590. /*
  591. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  592. * See detach_destroy_domains: synchronize_sched for details.
  593. *
  594. * The domain tree of any CPU may only be accessed from within
  595. * preempt-disabled sections.
  596. */
  597. #define for_each_domain(cpu, __sd) \
  598. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  599. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  600. #define this_rq() (&__get_cpu_var(runqueues))
  601. #define task_rq(p) cpu_rq(task_cpu(p))
  602. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  603. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  604. #ifdef CONFIG_CGROUP_SCHED
  605. /*
  606. * Return the group to which this tasks belongs.
  607. *
  608. * We use task_subsys_state_check() and extend the RCU verification with
  609. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  610. * task it moves into the cgroup. Therefore by holding either of those locks,
  611. * we pin the task to the current cgroup.
  612. */
  613. static inline struct task_group *task_group(struct task_struct *p)
  614. {
  615. struct task_group *tg;
  616. struct cgroup_subsys_state *css;
  617. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  618. lockdep_is_held(&p->pi_lock) ||
  619. lockdep_is_held(&task_rq(p)->lock));
  620. tg = container_of(css, struct task_group, css);
  621. return autogroup_task_group(p, tg);
  622. }
  623. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  624. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  625. {
  626. #ifdef CONFIG_FAIR_GROUP_SCHED
  627. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  628. p->se.parent = task_group(p)->se[cpu];
  629. #endif
  630. #ifdef CONFIG_RT_GROUP_SCHED
  631. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  632. p->rt.parent = task_group(p)->rt_se[cpu];
  633. #endif
  634. }
  635. #else /* CONFIG_CGROUP_SCHED */
  636. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  637. static inline struct task_group *task_group(struct task_struct *p)
  638. {
  639. return NULL;
  640. }
  641. #endif /* CONFIG_CGROUP_SCHED */
  642. static void update_rq_clock_task(struct rq *rq, s64 delta);
  643. static void update_rq_clock(struct rq *rq)
  644. {
  645. s64 delta;
  646. if (rq->skip_clock_update > 0)
  647. return;
  648. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  649. rq->clock += delta;
  650. update_rq_clock_task(rq, delta);
  651. }
  652. /*
  653. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  654. */
  655. #ifdef CONFIG_SCHED_DEBUG
  656. # define const_debug __read_mostly
  657. #else
  658. # define const_debug static const
  659. #endif
  660. /**
  661. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  662. * @cpu: the processor in question.
  663. *
  664. * This interface allows printk to be called with the runqueue lock
  665. * held and know whether or not it is OK to wake up the klogd.
  666. */
  667. int runqueue_is_locked(int cpu)
  668. {
  669. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  670. }
  671. /*
  672. * Debugging: various feature bits
  673. */
  674. #define SCHED_FEAT(name, enabled) \
  675. __SCHED_FEAT_##name ,
  676. enum {
  677. #include "sched_features.h"
  678. };
  679. #undef SCHED_FEAT
  680. #define SCHED_FEAT(name, enabled) \
  681. (1UL << __SCHED_FEAT_##name) * enabled |
  682. const_debug unsigned int sysctl_sched_features =
  683. #include "sched_features.h"
  684. 0;
  685. #undef SCHED_FEAT
  686. #ifdef CONFIG_SCHED_DEBUG
  687. #define SCHED_FEAT(name, enabled) \
  688. #name ,
  689. static __read_mostly char *sched_feat_names[] = {
  690. #include "sched_features.h"
  691. NULL
  692. };
  693. #undef SCHED_FEAT
  694. static int sched_feat_show(struct seq_file *m, void *v)
  695. {
  696. int i;
  697. for (i = 0; sched_feat_names[i]; i++) {
  698. if (!(sysctl_sched_features & (1UL << i)))
  699. seq_puts(m, "NO_");
  700. seq_printf(m, "%s ", sched_feat_names[i]);
  701. }
  702. seq_puts(m, "\n");
  703. return 0;
  704. }
  705. static ssize_t
  706. sched_feat_write(struct file *filp, const char __user *ubuf,
  707. size_t cnt, loff_t *ppos)
  708. {
  709. char buf[64];
  710. char *cmp;
  711. int neg = 0;
  712. int i;
  713. if (cnt > 63)
  714. cnt = 63;
  715. if (copy_from_user(&buf, ubuf, cnt))
  716. return -EFAULT;
  717. buf[cnt] = 0;
  718. cmp = strstrip(buf);
  719. if (strncmp(cmp, "NO_", 3) == 0) {
  720. neg = 1;
  721. cmp += 3;
  722. }
  723. for (i = 0; sched_feat_names[i]; i++) {
  724. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  725. if (neg)
  726. sysctl_sched_features &= ~(1UL << i);
  727. else
  728. sysctl_sched_features |= (1UL << i);
  729. break;
  730. }
  731. }
  732. if (!sched_feat_names[i])
  733. return -EINVAL;
  734. *ppos += cnt;
  735. return cnt;
  736. }
  737. static int sched_feat_open(struct inode *inode, struct file *filp)
  738. {
  739. return single_open(filp, sched_feat_show, NULL);
  740. }
  741. static const struct file_operations sched_feat_fops = {
  742. .open = sched_feat_open,
  743. .write = sched_feat_write,
  744. .read = seq_read,
  745. .llseek = seq_lseek,
  746. .release = single_release,
  747. };
  748. static __init int sched_init_debug(void)
  749. {
  750. debugfs_create_file("sched_features", 0644, NULL, NULL,
  751. &sched_feat_fops);
  752. return 0;
  753. }
  754. late_initcall(sched_init_debug);
  755. #endif
  756. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  757. /*
  758. * Number of tasks to iterate in a single balance run.
  759. * Limited because this is done with IRQs disabled.
  760. */
  761. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  762. /*
  763. * period over which we average the RT time consumption, measured
  764. * in ms.
  765. *
  766. * default: 1s
  767. */
  768. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  769. /*
  770. * period over which we measure -rt task cpu usage in us.
  771. * default: 1s
  772. */
  773. unsigned int sysctl_sched_rt_period = 1000000;
  774. static __read_mostly int scheduler_running;
  775. /*
  776. * part of the period that we allow rt tasks to run in us.
  777. * default: 0.95s
  778. */
  779. int sysctl_sched_rt_runtime = 950000;
  780. static inline u64 global_rt_period(void)
  781. {
  782. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  783. }
  784. static inline u64 global_rt_runtime(void)
  785. {
  786. if (sysctl_sched_rt_runtime < 0)
  787. return RUNTIME_INF;
  788. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  789. }
  790. #ifndef prepare_arch_switch
  791. # define prepare_arch_switch(next) do { } while (0)
  792. #endif
  793. #ifndef finish_arch_switch
  794. # define finish_arch_switch(prev) do { } while (0)
  795. #endif
  796. static inline int task_current(struct rq *rq, struct task_struct *p)
  797. {
  798. return rq->curr == p;
  799. }
  800. static inline int task_running(struct rq *rq, struct task_struct *p)
  801. {
  802. #ifdef CONFIG_SMP
  803. return p->on_cpu;
  804. #else
  805. return task_current(rq, p);
  806. #endif
  807. }
  808. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  809. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  810. {
  811. #ifdef CONFIG_SMP
  812. /*
  813. * We can optimise this out completely for !SMP, because the
  814. * SMP rebalancing from interrupt is the only thing that cares
  815. * here.
  816. */
  817. next->on_cpu = 1;
  818. #endif
  819. }
  820. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  821. {
  822. #ifdef CONFIG_SMP
  823. /*
  824. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  825. * We must ensure this doesn't happen until the switch is completely
  826. * finished.
  827. */
  828. smp_wmb();
  829. prev->on_cpu = 0;
  830. #endif
  831. #ifdef CONFIG_DEBUG_SPINLOCK
  832. /* this is a valid case when another task releases the spinlock */
  833. rq->lock.owner = current;
  834. #endif
  835. /*
  836. * If we are tracking spinlock dependencies then we have to
  837. * fix up the runqueue lock - which gets 'carried over' from
  838. * prev into current:
  839. */
  840. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  841. raw_spin_unlock_irq(&rq->lock);
  842. }
  843. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  844. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  845. {
  846. #ifdef CONFIG_SMP
  847. /*
  848. * We can optimise this out completely for !SMP, because the
  849. * SMP rebalancing from interrupt is the only thing that cares
  850. * here.
  851. */
  852. next->on_cpu = 1;
  853. #endif
  854. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  855. raw_spin_unlock_irq(&rq->lock);
  856. #else
  857. raw_spin_unlock(&rq->lock);
  858. #endif
  859. }
  860. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  861. {
  862. #ifdef CONFIG_SMP
  863. /*
  864. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  865. * We must ensure this doesn't happen until the switch is completely
  866. * finished.
  867. */
  868. smp_wmb();
  869. prev->on_cpu = 0;
  870. #endif
  871. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  872. local_irq_enable();
  873. #endif
  874. }
  875. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  876. /*
  877. * __task_rq_lock - lock the rq @p resides on.
  878. */
  879. static inline struct rq *__task_rq_lock(struct task_struct *p)
  880. __acquires(rq->lock)
  881. {
  882. struct rq *rq;
  883. lockdep_assert_held(&p->pi_lock);
  884. for (;;) {
  885. rq = task_rq(p);
  886. raw_spin_lock(&rq->lock);
  887. if (likely(rq == task_rq(p)))
  888. return rq;
  889. raw_spin_unlock(&rq->lock);
  890. }
  891. }
  892. /*
  893. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  894. */
  895. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  896. __acquires(p->pi_lock)
  897. __acquires(rq->lock)
  898. {
  899. struct rq *rq;
  900. for (;;) {
  901. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  902. rq = task_rq(p);
  903. raw_spin_lock(&rq->lock);
  904. if (likely(rq == task_rq(p)))
  905. return rq;
  906. raw_spin_unlock(&rq->lock);
  907. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  908. }
  909. }
  910. static void __task_rq_unlock(struct rq *rq)
  911. __releases(rq->lock)
  912. {
  913. raw_spin_unlock(&rq->lock);
  914. }
  915. static inline void
  916. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  917. __releases(rq->lock)
  918. __releases(p->pi_lock)
  919. {
  920. raw_spin_unlock(&rq->lock);
  921. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  922. }
  923. /*
  924. * this_rq_lock - lock this runqueue and disable interrupts.
  925. */
  926. static struct rq *this_rq_lock(void)
  927. __acquires(rq->lock)
  928. {
  929. struct rq *rq;
  930. local_irq_disable();
  931. rq = this_rq();
  932. raw_spin_lock(&rq->lock);
  933. return rq;
  934. }
  935. #ifdef CONFIG_SCHED_HRTICK
  936. /*
  937. * Use HR-timers to deliver accurate preemption points.
  938. *
  939. * Its all a bit involved since we cannot program an hrt while holding the
  940. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  941. * reschedule event.
  942. *
  943. * When we get rescheduled we reprogram the hrtick_timer outside of the
  944. * rq->lock.
  945. */
  946. /*
  947. * Use hrtick when:
  948. * - enabled by features
  949. * - hrtimer is actually high res
  950. */
  951. static inline int hrtick_enabled(struct rq *rq)
  952. {
  953. if (!sched_feat(HRTICK))
  954. return 0;
  955. if (!cpu_active(cpu_of(rq)))
  956. return 0;
  957. return hrtimer_is_hres_active(&rq->hrtick_timer);
  958. }
  959. static void hrtick_clear(struct rq *rq)
  960. {
  961. if (hrtimer_active(&rq->hrtick_timer))
  962. hrtimer_cancel(&rq->hrtick_timer);
  963. }
  964. /*
  965. * High-resolution timer tick.
  966. * Runs from hardirq context with interrupts disabled.
  967. */
  968. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  969. {
  970. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  971. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  972. raw_spin_lock(&rq->lock);
  973. update_rq_clock(rq);
  974. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  975. raw_spin_unlock(&rq->lock);
  976. return HRTIMER_NORESTART;
  977. }
  978. #ifdef CONFIG_SMP
  979. /*
  980. * called from hardirq (IPI) context
  981. */
  982. static void __hrtick_start(void *arg)
  983. {
  984. struct rq *rq = arg;
  985. raw_spin_lock(&rq->lock);
  986. hrtimer_restart(&rq->hrtick_timer);
  987. rq->hrtick_csd_pending = 0;
  988. raw_spin_unlock(&rq->lock);
  989. }
  990. /*
  991. * Called to set the hrtick timer state.
  992. *
  993. * called with rq->lock held and irqs disabled
  994. */
  995. static void hrtick_start(struct rq *rq, u64 delay)
  996. {
  997. struct hrtimer *timer = &rq->hrtick_timer;
  998. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  999. hrtimer_set_expires(timer, time);
  1000. if (rq == this_rq()) {
  1001. hrtimer_restart(timer);
  1002. } else if (!rq->hrtick_csd_pending) {
  1003. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  1004. rq->hrtick_csd_pending = 1;
  1005. }
  1006. }
  1007. static int
  1008. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  1009. {
  1010. int cpu = (int)(long)hcpu;
  1011. switch (action) {
  1012. case CPU_UP_CANCELED:
  1013. case CPU_UP_CANCELED_FROZEN:
  1014. case CPU_DOWN_PREPARE:
  1015. case CPU_DOWN_PREPARE_FROZEN:
  1016. case CPU_DEAD:
  1017. case CPU_DEAD_FROZEN:
  1018. hrtick_clear(cpu_rq(cpu));
  1019. return NOTIFY_OK;
  1020. }
  1021. return NOTIFY_DONE;
  1022. }
  1023. static __init void init_hrtick(void)
  1024. {
  1025. hotcpu_notifier(hotplug_hrtick, 0);
  1026. }
  1027. #else
  1028. /*
  1029. * Called to set the hrtick timer state.
  1030. *
  1031. * called with rq->lock held and irqs disabled
  1032. */
  1033. static void hrtick_start(struct rq *rq, u64 delay)
  1034. {
  1035. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  1036. HRTIMER_MODE_REL_PINNED, 0);
  1037. }
  1038. static inline void init_hrtick(void)
  1039. {
  1040. }
  1041. #endif /* CONFIG_SMP */
  1042. static void init_rq_hrtick(struct rq *rq)
  1043. {
  1044. #ifdef CONFIG_SMP
  1045. rq->hrtick_csd_pending = 0;
  1046. rq->hrtick_csd.flags = 0;
  1047. rq->hrtick_csd.func = __hrtick_start;
  1048. rq->hrtick_csd.info = rq;
  1049. #endif
  1050. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1051. rq->hrtick_timer.function = hrtick;
  1052. }
  1053. #else /* CONFIG_SCHED_HRTICK */
  1054. static inline void hrtick_clear(struct rq *rq)
  1055. {
  1056. }
  1057. static inline void init_rq_hrtick(struct rq *rq)
  1058. {
  1059. }
  1060. static inline void init_hrtick(void)
  1061. {
  1062. }
  1063. #endif /* CONFIG_SCHED_HRTICK */
  1064. /*
  1065. * resched_task - mark a task 'to be rescheduled now'.
  1066. *
  1067. * On UP this means the setting of the need_resched flag, on SMP it
  1068. * might also involve a cross-CPU call to trigger the scheduler on
  1069. * the target CPU.
  1070. */
  1071. #ifdef CONFIG_SMP
  1072. #ifndef tsk_is_polling
  1073. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1074. #endif
  1075. static void resched_task(struct task_struct *p)
  1076. {
  1077. int cpu;
  1078. assert_raw_spin_locked(&task_rq(p)->lock);
  1079. if (test_tsk_need_resched(p))
  1080. return;
  1081. set_tsk_need_resched(p);
  1082. cpu = task_cpu(p);
  1083. if (cpu == smp_processor_id())
  1084. return;
  1085. /* NEED_RESCHED must be visible before we test polling */
  1086. smp_mb();
  1087. if (!tsk_is_polling(p))
  1088. smp_send_reschedule(cpu);
  1089. }
  1090. static void resched_cpu(int cpu)
  1091. {
  1092. struct rq *rq = cpu_rq(cpu);
  1093. unsigned long flags;
  1094. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1095. return;
  1096. resched_task(cpu_curr(cpu));
  1097. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1098. }
  1099. #ifdef CONFIG_NO_HZ
  1100. /*
  1101. * In the semi idle case, use the nearest busy cpu for migrating timers
  1102. * from an idle cpu. This is good for power-savings.
  1103. *
  1104. * We don't do similar optimization for completely idle system, as
  1105. * selecting an idle cpu will add more delays to the timers than intended
  1106. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1107. */
  1108. int get_nohz_timer_target(void)
  1109. {
  1110. int cpu = smp_processor_id();
  1111. int i;
  1112. struct sched_domain *sd;
  1113. rcu_read_lock();
  1114. for_each_domain(cpu, sd) {
  1115. for_each_cpu(i, sched_domain_span(sd)) {
  1116. if (!idle_cpu(i)) {
  1117. cpu = i;
  1118. goto unlock;
  1119. }
  1120. }
  1121. }
  1122. unlock:
  1123. rcu_read_unlock();
  1124. return cpu;
  1125. }
  1126. /*
  1127. * When add_timer_on() enqueues a timer into the timer wheel of an
  1128. * idle CPU then this timer might expire before the next timer event
  1129. * which is scheduled to wake up that CPU. In case of a completely
  1130. * idle system the next event might even be infinite time into the
  1131. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1132. * leaves the inner idle loop so the newly added timer is taken into
  1133. * account when the CPU goes back to idle and evaluates the timer
  1134. * wheel for the next timer event.
  1135. */
  1136. void wake_up_idle_cpu(int cpu)
  1137. {
  1138. struct rq *rq = cpu_rq(cpu);
  1139. if (cpu == smp_processor_id())
  1140. return;
  1141. /*
  1142. * This is safe, as this function is called with the timer
  1143. * wheel base lock of (cpu) held. When the CPU is on the way
  1144. * to idle and has not yet set rq->curr to idle then it will
  1145. * be serialized on the timer wheel base lock and take the new
  1146. * timer into account automatically.
  1147. */
  1148. if (rq->curr != rq->idle)
  1149. return;
  1150. /*
  1151. * We can set TIF_RESCHED on the idle task of the other CPU
  1152. * lockless. The worst case is that the other CPU runs the
  1153. * idle task through an additional NOOP schedule()
  1154. */
  1155. set_tsk_need_resched(rq->idle);
  1156. /* NEED_RESCHED must be visible before we test polling */
  1157. smp_mb();
  1158. if (!tsk_is_polling(rq->idle))
  1159. smp_send_reschedule(cpu);
  1160. }
  1161. #endif /* CONFIG_NO_HZ */
  1162. static u64 sched_avg_period(void)
  1163. {
  1164. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1165. }
  1166. static void sched_avg_update(struct rq *rq)
  1167. {
  1168. s64 period = sched_avg_period();
  1169. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1170. /*
  1171. * Inline assembly required to prevent the compiler
  1172. * optimising this loop into a divmod call.
  1173. * See __iter_div_u64_rem() for another example of this.
  1174. */
  1175. asm("" : "+rm" (rq->age_stamp));
  1176. rq->age_stamp += period;
  1177. rq->rt_avg /= 2;
  1178. }
  1179. }
  1180. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1181. {
  1182. rq->rt_avg += rt_delta;
  1183. sched_avg_update(rq);
  1184. }
  1185. #else /* !CONFIG_SMP */
  1186. static void resched_task(struct task_struct *p)
  1187. {
  1188. assert_raw_spin_locked(&task_rq(p)->lock);
  1189. set_tsk_need_resched(p);
  1190. }
  1191. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1192. {
  1193. }
  1194. static void sched_avg_update(struct rq *rq)
  1195. {
  1196. }
  1197. #endif /* CONFIG_SMP */
  1198. #if BITS_PER_LONG == 32
  1199. # define WMULT_CONST (~0UL)
  1200. #else
  1201. # define WMULT_CONST (1UL << 32)
  1202. #endif
  1203. #define WMULT_SHIFT 32
  1204. /*
  1205. * Shift right and round:
  1206. */
  1207. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1208. /*
  1209. * delta *= weight / lw
  1210. */
  1211. static unsigned long
  1212. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1213. struct load_weight *lw)
  1214. {
  1215. u64 tmp;
  1216. /*
  1217. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1218. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1219. * 2^SCHED_LOAD_RESOLUTION.
  1220. */
  1221. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1222. tmp = (u64)delta_exec * scale_load_down(weight);
  1223. else
  1224. tmp = (u64)delta_exec;
  1225. if (!lw->inv_weight) {
  1226. unsigned long w = scale_load_down(lw->weight);
  1227. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1228. lw->inv_weight = 1;
  1229. else if (unlikely(!w))
  1230. lw->inv_weight = WMULT_CONST;
  1231. else
  1232. lw->inv_weight = WMULT_CONST / w;
  1233. }
  1234. /*
  1235. * Check whether we'd overflow the 64-bit multiplication:
  1236. */
  1237. if (unlikely(tmp > WMULT_CONST))
  1238. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1239. WMULT_SHIFT/2);
  1240. else
  1241. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1242. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1243. }
  1244. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1245. {
  1246. lw->weight += inc;
  1247. lw->inv_weight = 0;
  1248. }
  1249. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1250. {
  1251. lw->weight -= dec;
  1252. lw->inv_weight = 0;
  1253. }
  1254. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1255. {
  1256. lw->weight = w;
  1257. lw->inv_weight = 0;
  1258. }
  1259. /*
  1260. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1261. * of tasks with abnormal "nice" values across CPUs the contribution that
  1262. * each task makes to its run queue's load is weighted according to its
  1263. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1264. * scaled version of the new time slice allocation that they receive on time
  1265. * slice expiry etc.
  1266. */
  1267. #define WEIGHT_IDLEPRIO 3
  1268. #define WMULT_IDLEPRIO 1431655765
  1269. /*
  1270. * Nice levels are multiplicative, with a gentle 10% change for every
  1271. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1272. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1273. * that remained on nice 0.
  1274. *
  1275. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1276. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1277. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1278. * If a task goes up by ~10% and another task goes down by ~10% then
  1279. * the relative distance between them is ~25%.)
  1280. */
  1281. static const int prio_to_weight[40] = {
  1282. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1283. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1284. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1285. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1286. /* 0 */ 1024, 820, 655, 526, 423,
  1287. /* 5 */ 335, 272, 215, 172, 137,
  1288. /* 10 */ 110, 87, 70, 56, 45,
  1289. /* 15 */ 36, 29, 23, 18, 15,
  1290. };
  1291. /*
  1292. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1293. *
  1294. * In cases where the weight does not change often, we can use the
  1295. * precalculated inverse to speed up arithmetics by turning divisions
  1296. * into multiplications:
  1297. */
  1298. static const u32 prio_to_wmult[40] = {
  1299. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1300. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1301. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1302. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1303. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1304. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1305. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1306. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1307. };
  1308. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1309. enum cpuacct_stat_index {
  1310. CPUACCT_STAT_USER, /* ... user mode */
  1311. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1312. CPUACCT_STAT_NSTATS,
  1313. };
  1314. #ifdef CONFIG_CGROUP_CPUACCT
  1315. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1316. static void cpuacct_update_stats(struct task_struct *tsk,
  1317. enum cpuacct_stat_index idx, cputime_t val);
  1318. #else
  1319. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1320. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1321. enum cpuacct_stat_index idx, cputime_t val) {}
  1322. #endif
  1323. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1324. {
  1325. update_load_add(&rq->load, load);
  1326. }
  1327. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1328. {
  1329. update_load_sub(&rq->load, load);
  1330. }
  1331. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  1332. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  1333. typedef int (*tg_visitor)(struct task_group *, void *);
  1334. /*
  1335. * Iterate the full tree, calling @down when first entering a node and @up when
  1336. * leaving it for the final time.
  1337. */
  1338. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1339. {
  1340. struct task_group *parent, *child;
  1341. int ret;
  1342. rcu_read_lock();
  1343. parent = &root_task_group;
  1344. down:
  1345. ret = (*down)(parent, data);
  1346. if (ret)
  1347. goto out_unlock;
  1348. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1349. parent = child;
  1350. goto down;
  1351. up:
  1352. continue;
  1353. }
  1354. ret = (*up)(parent, data);
  1355. if (ret)
  1356. goto out_unlock;
  1357. child = parent;
  1358. parent = parent->parent;
  1359. if (parent)
  1360. goto up;
  1361. out_unlock:
  1362. rcu_read_unlock();
  1363. return ret;
  1364. }
  1365. static int tg_nop(struct task_group *tg, void *data)
  1366. {
  1367. return 0;
  1368. }
  1369. #endif
  1370. #ifdef CONFIG_SMP
  1371. /* Used instead of source_load when we know the type == 0 */
  1372. static unsigned long weighted_cpuload(const int cpu)
  1373. {
  1374. return cpu_rq(cpu)->load.weight;
  1375. }
  1376. /*
  1377. * Return a low guess at the load of a migration-source cpu weighted
  1378. * according to the scheduling class and "nice" value.
  1379. *
  1380. * We want to under-estimate the load of migration sources, to
  1381. * balance conservatively.
  1382. */
  1383. static unsigned long source_load(int cpu, int type)
  1384. {
  1385. struct rq *rq = cpu_rq(cpu);
  1386. unsigned long total = weighted_cpuload(cpu);
  1387. if (type == 0 || !sched_feat(LB_BIAS))
  1388. return total;
  1389. return min(rq->cpu_load[type-1], total);
  1390. }
  1391. /*
  1392. * Return a high guess at the load of a migration-target cpu weighted
  1393. * according to the scheduling class and "nice" value.
  1394. */
  1395. static unsigned long target_load(int cpu, int type)
  1396. {
  1397. struct rq *rq = cpu_rq(cpu);
  1398. unsigned long total = weighted_cpuload(cpu);
  1399. if (type == 0 || !sched_feat(LB_BIAS))
  1400. return total;
  1401. return max(rq->cpu_load[type-1], total);
  1402. }
  1403. static unsigned long power_of(int cpu)
  1404. {
  1405. return cpu_rq(cpu)->cpu_power;
  1406. }
  1407. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1408. static unsigned long cpu_avg_load_per_task(int cpu)
  1409. {
  1410. struct rq *rq = cpu_rq(cpu);
  1411. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1412. if (nr_running)
  1413. return rq->load.weight / nr_running;
  1414. return 0;
  1415. }
  1416. #ifdef CONFIG_PREEMPT
  1417. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1418. /*
  1419. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1420. * way at the expense of forcing extra atomic operations in all
  1421. * invocations. This assures that the double_lock is acquired using the
  1422. * same underlying policy as the spinlock_t on this architecture, which
  1423. * reduces latency compared to the unfair variant below. However, it
  1424. * also adds more overhead and therefore may reduce throughput.
  1425. */
  1426. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1427. __releases(this_rq->lock)
  1428. __acquires(busiest->lock)
  1429. __acquires(this_rq->lock)
  1430. {
  1431. raw_spin_unlock(&this_rq->lock);
  1432. double_rq_lock(this_rq, busiest);
  1433. return 1;
  1434. }
  1435. #else
  1436. /*
  1437. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1438. * latency by eliminating extra atomic operations when the locks are
  1439. * already in proper order on entry. This favors lower cpu-ids and will
  1440. * grant the double lock to lower cpus over higher ids under contention,
  1441. * regardless of entry order into the function.
  1442. */
  1443. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1444. __releases(this_rq->lock)
  1445. __acquires(busiest->lock)
  1446. __acquires(this_rq->lock)
  1447. {
  1448. int ret = 0;
  1449. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1450. if (busiest < this_rq) {
  1451. raw_spin_unlock(&this_rq->lock);
  1452. raw_spin_lock(&busiest->lock);
  1453. raw_spin_lock_nested(&this_rq->lock,
  1454. SINGLE_DEPTH_NESTING);
  1455. ret = 1;
  1456. } else
  1457. raw_spin_lock_nested(&busiest->lock,
  1458. SINGLE_DEPTH_NESTING);
  1459. }
  1460. return ret;
  1461. }
  1462. #endif /* CONFIG_PREEMPT */
  1463. /*
  1464. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1465. */
  1466. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. {
  1468. if (unlikely(!irqs_disabled())) {
  1469. /* printk() doesn't work good under rq->lock */
  1470. raw_spin_unlock(&this_rq->lock);
  1471. BUG_ON(1);
  1472. }
  1473. return _double_lock_balance(this_rq, busiest);
  1474. }
  1475. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1476. __releases(busiest->lock)
  1477. {
  1478. raw_spin_unlock(&busiest->lock);
  1479. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1480. }
  1481. /*
  1482. * double_rq_lock - safely lock two runqueues
  1483. *
  1484. * Note this does not disable interrupts like task_rq_lock,
  1485. * you need to do so manually before calling.
  1486. */
  1487. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1488. __acquires(rq1->lock)
  1489. __acquires(rq2->lock)
  1490. {
  1491. BUG_ON(!irqs_disabled());
  1492. if (rq1 == rq2) {
  1493. raw_spin_lock(&rq1->lock);
  1494. __acquire(rq2->lock); /* Fake it out ;) */
  1495. } else {
  1496. if (rq1 < rq2) {
  1497. raw_spin_lock(&rq1->lock);
  1498. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1499. } else {
  1500. raw_spin_lock(&rq2->lock);
  1501. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1502. }
  1503. }
  1504. }
  1505. /*
  1506. * double_rq_unlock - safely unlock two runqueues
  1507. *
  1508. * Note this does not restore interrupts like task_rq_unlock,
  1509. * you need to do so manually after calling.
  1510. */
  1511. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1512. __releases(rq1->lock)
  1513. __releases(rq2->lock)
  1514. {
  1515. raw_spin_unlock(&rq1->lock);
  1516. if (rq1 != rq2)
  1517. raw_spin_unlock(&rq2->lock);
  1518. else
  1519. __release(rq2->lock);
  1520. }
  1521. #else /* CONFIG_SMP */
  1522. /*
  1523. * double_rq_lock - safely lock two runqueues
  1524. *
  1525. * Note this does not disable interrupts like task_rq_lock,
  1526. * you need to do so manually before calling.
  1527. */
  1528. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1529. __acquires(rq1->lock)
  1530. __acquires(rq2->lock)
  1531. {
  1532. BUG_ON(!irqs_disabled());
  1533. BUG_ON(rq1 != rq2);
  1534. raw_spin_lock(&rq1->lock);
  1535. __acquire(rq2->lock); /* Fake it out ;) */
  1536. }
  1537. /*
  1538. * double_rq_unlock - safely unlock two runqueues
  1539. *
  1540. * Note this does not restore interrupts like task_rq_unlock,
  1541. * you need to do so manually after calling.
  1542. */
  1543. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1544. __releases(rq1->lock)
  1545. __releases(rq2->lock)
  1546. {
  1547. BUG_ON(rq1 != rq2);
  1548. raw_spin_unlock(&rq1->lock);
  1549. __release(rq2->lock);
  1550. }
  1551. #endif
  1552. static void calc_load_account_idle(struct rq *this_rq);
  1553. static void update_sysctl(void);
  1554. static int get_update_sysctl_factor(void);
  1555. static void update_cpu_load(struct rq *this_rq);
  1556. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1557. {
  1558. set_task_rq(p, cpu);
  1559. #ifdef CONFIG_SMP
  1560. /*
  1561. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1562. * successfuly executed on another CPU. We must ensure that updates of
  1563. * per-task data have been completed by this moment.
  1564. */
  1565. smp_wmb();
  1566. task_thread_info(p)->cpu = cpu;
  1567. #endif
  1568. }
  1569. static const struct sched_class rt_sched_class;
  1570. #define sched_class_highest (&stop_sched_class)
  1571. #define for_each_class(class) \
  1572. for (class = sched_class_highest; class; class = class->next)
  1573. #include "sched_stats.h"
  1574. static void inc_nr_running(struct rq *rq)
  1575. {
  1576. rq->nr_running++;
  1577. }
  1578. static void dec_nr_running(struct rq *rq)
  1579. {
  1580. rq->nr_running--;
  1581. }
  1582. static void set_load_weight(struct task_struct *p)
  1583. {
  1584. int prio = p->static_prio - MAX_RT_PRIO;
  1585. struct load_weight *load = &p->se.load;
  1586. /*
  1587. * SCHED_IDLE tasks get minimal weight:
  1588. */
  1589. if (p->policy == SCHED_IDLE) {
  1590. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1591. load->inv_weight = WMULT_IDLEPRIO;
  1592. return;
  1593. }
  1594. load->weight = scale_load(prio_to_weight[prio]);
  1595. load->inv_weight = prio_to_wmult[prio];
  1596. }
  1597. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1598. {
  1599. update_rq_clock(rq);
  1600. sched_info_queued(p);
  1601. p->sched_class->enqueue_task(rq, p, flags);
  1602. }
  1603. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1604. {
  1605. update_rq_clock(rq);
  1606. sched_info_dequeued(p);
  1607. p->sched_class->dequeue_task(rq, p, flags);
  1608. }
  1609. /*
  1610. * activate_task - move a task to the runqueue.
  1611. */
  1612. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1613. {
  1614. if (task_contributes_to_load(p))
  1615. rq->nr_uninterruptible--;
  1616. enqueue_task(rq, p, flags);
  1617. }
  1618. /*
  1619. * deactivate_task - remove a task from the runqueue.
  1620. */
  1621. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1622. {
  1623. if (task_contributes_to_load(p))
  1624. rq->nr_uninterruptible++;
  1625. dequeue_task(rq, p, flags);
  1626. }
  1627. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1628. /*
  1629. * There are no locks covering percpu hardirq/softirq time.
  1630. * They are only modified in account_system_vtime, on corresponding CPU
  1631. * with interrupts disabled. So, writes are safe.
  1632. * They are read and saved off onto struct rq in update_rq_clock().
  1633. * This may result in other CPU reading this CPU's irq time and can
  1634. * race with irq/account_system_vtime on this CPU. We would either get old
  1635. * or new value with a side effect of accounting a slice of irq time to wrong
  1636. * task when irq is in progress while we read rq->clock. That is a worthy
  1637. * compromise in place of having locks on each irq in account_system_time.
  1638. */
  1639. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1640. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1641. static DEFINE_PER_CPU(u64, irq_start_time);
  1642. static int sched_clock_irqtime;
  1643. void enable_sched_clock_irqtime(void)
  1644. {
  1645. sched_clock_irqtime = 1;
  1646. }
  1647. void disable_sched_clock_irqtime(void)
  1648. {
  1649. sched_clock_irqtime = 0;
  1650. }
  1651. #ifndef CONFIG_64BIT
  1652. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1653. static inline void irq_time_write_begin(void)
  1654. {
  1655. __this_cpu_inc(irq_time_seq.sequence);
  1656. smp_wmb();
  1657. }
  1658. static inline void irq_time_write_end(void)
  1659. {
  1660. smp_wmb();
  1661. __this_cpu_inc(irq_time_seq.sequence);
  1662. }
  1663. static inline u64 irq_time_read(int cpu)
  1664. {
  1665. u64 irq_time;
  1666. unsigned seq;
  1667. do {
  1668. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1669. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1670. per_cpu(cpu_hardirq_time, cpu);
  1671. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1672. return irq_time;
  1673. }
  1674. #else /* CONFIG_64BIT */
  1675. static inline void irq_time_write_begin(void)
  1676. {
  1677. }
  1678. static inline void irq_time_write_end(void)
  1679. {
  1680. }
  1681. static inline u64 irq_time_read(int cpu)
  1682. {
  1683. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1684. }
  1685. #endif /* CONFIG_64BIT */
  1686. /*
  1687. * Called before incrementing preempt_count on {soft,}irq_enter
  1688. * and before decrementing preempt_count on {soft,}irq_exit.
  1689. */
  1690. void account_system_vtime(struct task_struct *curr)
  1691. {
  1692. unsigned long flags;
  1693. s64 delta;
  1694. int cpu;
  1695. if (!sched_clock_irqtime)
  1696. return;
  1697. local_irq_save(flags);
  1698. cpu = smp_processor_id();
  1699. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1700. __this_cpu_add(irq_start_time, delta);
  1701. irq_time_write_begin();
  1702. /*
  1703. * We do not account for softirq time from ksoftirqd here.
  1704. * We want to continue accounting softirq time to ksoftirqd thread
  1705. * in that case, so as not to confuse scheduler with a special task
  1706. * that do not consume any time, but still wants to run.
  1707. */
  1708. if (hardirq_count())
  1709. __this_cpu_add(cpu_hardirq_time, delta);
  1710. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1711. __this_cpu_add(cpu_softirq_time, delta);
  1712. irq_time_write_end();
  1713. local_irq_restore(flags);
  1714. }
  1715. EXPORT_SYMBOL_GPL(account_system_vtime);
  1716. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1717. #ifdef CONFIG_PARAVIRT
  1718. static inline u64 steal_ticks(u64 steal)
  1719. {
  1720. if (unlikely(steal > NSEC_PER_SEC))
  1721. return div_u64(steal, TICK_NSEC);
  1722. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1723. }
  1724. #endif
  1725. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1726. {
  1727. /*
  1728. * In theory, the compile should just see 0 here, and optimize out the call
  1729. * to sched_rt_avg_update. But I don't trust it...
  1730. */
  1731. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1732. s64 steal = 0, irq_delta = 0;
  1733. #endif
  1734. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1735. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1736. /*
  1737. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1738. * this case when a previous update_rq_clock() happened inside a
  1739. * {soft,}irq region.
  1740. *
  1741. * When this happens, we stop ->clock_task and only update the
  1742. * prev_irq_time stamp to account for the part that fit, so that a next
  1743. * update will consume the rest. This ensures ->clock_task is
  1744. * monotonic.
  1745. *
  1746. * It does however cause some slight miss-attribution of {soft,}irq
  1747. * time, a more accurate solution would be to update the irq_time using
  1748. * the current rq->clock timestamp, except that would require using
  1749. * atomic ops.
  1750. */
  1751. if (irq_delta > delta)
  1752. irq_delta = delta;
  1753. rq->prev_irq_time += irq_delta;
  1754. delta -= irq_delta;
  1755. #endif
  1756. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  1757. if (static_branch((&paravirt_steal_rq_enabled))) {
  1758. u64 st;
  1759. steal = paravirt_steal_clock(cpu_of(rq));
  1760. steal -= rq->prev_steal_time_rq;
  1761. if (unlikely(steal > delta))
  1762. steal = delta;
  1763. st = steal_ticks(steal);
  1764. steal = st * TICK_NSEC;
  1765. rq->prev_steal_time_rq += steal;
  1766. delta -= steal;
  1767. }
  1768. #endif
  1769. rq->clock_task += delta;
  1770. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1771. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  1772. sched_rt_avg_update(rq, irq_delta + steal);
  1773. #endif
  1774. }
  1775. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1776. static int irqtime_account_hi_update(void)
  1777. {
  1778. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1779. unsigned long flags;
  1780. u64 latest_ns;
  1781. int ret = 0;
  1782. local_irq_save(flags);
  1783. latest_ns = this_cpu_read(cpu_hardirq_time);
  1784. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1785. ret = 1;
  1786. local_irq_restore(flags);
  1787. return ret;
  1788. }
  1789. static int irqtime_account_si_update(void)
  1790. {
  1791. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1792. unsigned long flags;
  1793. u64 latest_ns;
  1794. int ret = 0;
  1795. local_irq_save(flags);
  1796. latest_ns = this_cpu_read(cpu_softirq_time);
  1797. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1798. ret = 1;
  1799. local_irq_restore(flags);
  1800. return ret;
  1801. }
  1802. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1803. #define sched_clock_irqtime (0)
  1804. #endif
  1805. #include "sched_idletask.c"
  1806. #include "sched_fair.c"
  1807. #include "sched_rt.c"
  1808. #include "sched_autogroup.c"
  1809. #include "sched_stoptask.c"
  1810. #ifdef CONFIG_SCHED_DEBUG
  1811. # include "sched_debug.c"
  1812. #endif
  1813. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1814. {
  1815. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1816. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1817. if (stop) {
  1818. /*
  1819. * Make it appear like a SCHED_FIFO task, its something
  1820. * userspace knows about and won't get confused about.
  1821. *
  1822. * Also, it will make PI more or less work without too
  1823. * much confusion -- but then, stop work should not
  1824. * rely on PI working anyway.
  1825. */
  1826. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1827. stop->sched_class = &stop_sched_class;
  1828. }
  1829. cpu_rq(cpu)->stop = stop;
  1830. if (old_stop) {
  1831. /*
  1832. * Reset it back to a normal scheduling class so that
  1833. * it can die in pieces.
  1834. */
  1835. old_stop->sched_class = &rt_sched_class;
  1836. }
  1837. }
  1838. /*
  1839. * __normal_prio - return the priority that is based on the static prio
  1840. */
  1841. static inline int __normal_prio(struct task_struct *p)
  1842. {
  1843. return p->static_prio;
  1844. }
  1845. /*
  1846. * Calculate the expected normal priority: i.e. priority
  1847. * without taking RT-inheritance into account. Might be
  1848. * boosted by interactivity modifiers. Changes upon fork,
  1849. * setprio syscalls, and whenever the interactivity
  1850. * estimator recalculates.
  1851. */
  1852. static inline int normal_prio(struct task_struct *p)
  1853. {
  1854. int prio;
  1855. if (task_has_rt_policy(p))
  1856. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1857. else
  1858. prio = __normal_prio(p);
  1859. return prio;
  1860. }
  1861. /*
  1862. * Calculate the current priority, i.e. the priority
  1863. * taken into account by the scheduler. This value might
  1864. * be boosted by RT tasks, or might be boosted by
  1865. * interactivity modifiers. Will be RT if the task got
  1866. * RT-boosted. If not then it returns p->normal_prio.
  1867. */
  1868. static int effective_prio(struct task_struct *p)
  1869. {
  1870. p->normal_prio = normal_prio(p);
  1871. /*
  1872. * If we are RT tasks or we were boosted to RT priority,
  1873. * keep the priority unchanged. Otherwise, update priority
  1874. * to the normal priority:
  1875. */
  1876. if (!rt_prio(p->prio))
  1877. return p->normal_prio;
  1878. return p->prio;
  1879. }
  1880. /**
  1881. * task_curr - is this task currently executing on a CPU?
  1882. * @p: the task in question.
  1883. */
  1884. inline int task_curr(const struct task_struct *p)
  1885. {
  1886. return cpu_curr(task_cpu(p)) == p;
  1887. }
  1888. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1889. const struct sched_class *prev_class,
  1890. int oldprio)
  1891. {
  1892. if (prev_class != p->sched_class) {
  1893. if (prev_class->switched_from)
  1894. prev_class->switched_from(rq, p);
  1895. p->sched_class->switched_to(rq, p);
  1896. } else if (oldprio != p->prio)
  1897. p->sched_class->prio_changed(rq, p, oldprio);
  1898. }
  1899. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1900. {
  1901. const struct sched_class *class;
  1902. if (p->sched_class == rq->curr->sched_class) {
  1903. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1904. } else {
  1905. for_each_class(class) {
  1906. if (class == rq->curr->sched_class)
  1907. break;
  1908. if (class == p->sched_class) {
  1909. resched_task(rq->curr);
  1910. break;
  1911. }
  1912. }
  1913. }
  1914. /*
  1915. * A queue event has occurred, and we're going to schedule. In
  1916. * this case, we can save a useless back to back clock update.
  1917. */
  1918. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1919. rq->skip_clock_update = 1;
  1920. }
  1921. #ifdef CONFIG_SMP
  1922. /*
  1923. * Is this task likely cache-hot:
  1924. */
  1925. static int
  1926. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1927. {
  1928. s64 delta;
  1929. if (p->sched_class != &fair_sched_class)
  1930. return 0;
  1931. if (unlikely(p->policy == SCHED_IDLE))
  1932. return 0;
  1933. /*
  1934. * Buddy candidates are cache hot:
  1935. */
  1936. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1937. (&p->se == cfs_rq_of(&p->se)->next ||
  1938. &p->se == cfs_rq_of(&p->se)->last))
  1939. return 1;
  1940. if (sysctl_sched_migration_cost == -1)
  1941. return 1;
  1942. if (sysctl_sched_migration_cost == 0)
  1943. return 0;
  1944. delta = now - p->se.exec_start;
  1945. return delta < (s64)sysctl_sched_migration_cost;
  1946. }
  1947. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1948. {
  1949. #ifdef CONFIG_SCHED_DEBUG
  1950. /*
  1951. * We should never call set_task_cpu() on a blocked task,
  1952. * ttwu() will sort out the placement.
  1953. */
  1954. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1955. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1956. #ifdef CONFIG_LOCKDEP
  1957. /*
  1958. * The caller should hold either p->pi_lock or rq->lock, when changing
  1959. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1960. *
  1961. * sched_move_task() holds both and thus holding either pins the cgroup,
  1962. * see set_task_rq().
  1963. *
  1964. * Furthermore, all task_rq users should acquire both locks, see
  1965. * task_rq_lock().
  1966. */
  1967. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1968. lockdep_is_held(&task_rq(p)->lock)));
  1969. #endif
  1970. #endif
  1971. trace_sched_migrate_task(p, new_cpu);
  1972. if (task_cpu(p) != new_cpu) {
  1973. p->se.nr_migrations++;
  1974. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1975. }
  1976. __set_task_cpu(p, new_cpu);
  1977. }
  1978. struct migration_arg {
  1979. struct task_struct *task;
  1980. int dest_cpu;
  1981. };
  1982. static int migration_cpu_stop(void *data);
  1983. /*
  1984. * wait_task_inactive - wait for a thread to unschedule.
  1985. *
  1986. * If @match_state is nonzero, it's the @p->state value just checked and
  1987. * not expected to change. If it changes, i.e. @p might have woken up,
  1988. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1989. * we return a positive number (its total switch count). If a second call
  1990. * a short while later returns the same number, the caller can be sure that
  1991. * @p has remained unscheduled the whole time.
  1992. *
  1993. * The caller must ensure that the task *will* unschedule sometime soon,
  1994. * else this function might spin for a *long* time. This function can't
  1995. * be called with interrupts off, or it may introduce deadlock with
  1996. * smp_call_function() if an IPI is sent by the same process we are
  1997. * waiting to become inactive.
  1998. */
  1999. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  2000. {
  2001. unsigned long flags;
  2002. int running, on_rq;
  2003. unsigned long ncsw;
  2004. struct rq *rq;
  2005. for (;;) {
  2006. /*
  2007. * We do the initial early heuristics without holding
  2008. * any task-queue locks at all. We'll only try to get
  2009. * the runqueue lock when things look like they will
  2010. * work out!
  2011. */
  2012. rq = task_rq(p);
  2013. /*
  2014. * If the task is actively running on another CPU
  2015. * still, just relax and busy-wait without holding
  2016. * any locks.
  2017. *
  2018. * NOTE! Since we don't hold any locks, it's not
  2019. * even sure that "rq" stays as the right runqueue!
  2020. * But we don't care, since "task_running()" will
  2021. * return false if the runqueue has changed and p
  2022. * is actually now running somewhere else!
  2023. */
  2024. while (task_running(rq, p)) {
  2025. if (match_state && unlikely(p->state != match_state))
  2026. return 0;
  2027. cpu_relax();
  2028. }
  2029. /*
  2030. * Ok, time to look more closely! We need the rq
  2031. * lock now, to be *sure*. If we're wrong, we'll
  2032. * just go back and repeat.
  2033. */
  2034. rq = task_rq_lock(p, &flags);
  2035. trace_sched_wait_task(p);
  2036. running = task_running(rq, p);
  2037. on_rq = p->on_rq;
  2038. ncsw = 0;
  2039. if (!match_state || p->state == match_state)
  2040. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  2041. task_rq_unlock(rq, p, &flags);
  2042. /*
  2043. * If it changed from the expected state, bail out now.
  2044. */
  2045. if (unlikely(!ncsw))
  2046. break;
  2047. /*
  2048. * Was it really running after all now that we
  2049. * checked with the proper locks actually held?
  2050. *
  2051. * Oops. Go back and try again..
  2052. */
  2053. if (unlikely(running)) {
  2054. cpu_relax();
  2055. continue;
  2056. }
  2057. /*
  2058. * It's not enough that it's not actively running,
  2059. * it must be off the runqueue _entirely_, and not
  2060. * preempted!
  2061. *
  2062. * So if it was still runnable (but just not actively
  2063. * running right now), it's preempted, and we should
  2064. * yield - it could be a while.
  2065. */
  2066. if (unlikely(on_rq)) {
  2067. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  2068. set_current_state(TASK_UNINTERRUPTIBLE);
  2069. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  2070. continue;
  2071. }
  2072. /*
  2073. * Ahh, all good. It wasn't running, and it wasn't
  2074. * runnable, which means that it will never become
  2075. * running in the future either. We're all done!
  2076. */
  2077. break;
  2078. }
  2079. return ncsw;
  2080. }
  2081. /***
  2082. * kick_process - kick a running thread to enter/exit the kernel
  2083. * @p: the to-be-kicked thread
  2084. *
  2085. * Cause a process which is running on another CPU to enter
  2086. * kernel-mode, without any delay. (to get signals handled.)
  2087. *
  2088. * NOTE: this function doesn't have to take the runqueue lock,
  2089. * because all it wants to ensure is that the remote task enters
  2090. * the kernel. If the IPI races and the task has been migrated
  2091. * to another CPU then no harm is done and the purpose has been
  2092. * achieved as well.
  2093. */
  2094. void kick_process(struct task_struct *p)
  2095. {
  2096. int cpu;
  2097. preempt_disable();
  2098. cpu = task_cpu(p);
  2099. if ((cpu != smp_processor_id()) && task_curr(p))
  2100. smp_send_reschedule(cpu);
  2101. preempt_enable();
  2102. }
  2103. EXPORT_SYMBOL_GPL(kick_process);
  2104. #endif /* CONFIG_SMP */
  2105. #ifdef CONFIG_SMP
  2106. /*
  2107. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2108. */
  2109. static int select_fallback_rq(int cpu, struct task_struct *p)
  2110. {
  2111. int dest_cpu;
  2112. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2113. /* Look for allowed, online CPU in same node. */
  2114. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2115. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2116. return dest_cpu;
  2117. /* Any allowed, online CPU? */
  2118. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2119. if (dest_cpu < nr_cpu_ids)
  2120. return dest_cpu;
  2121. /* No more Mr. Nice Guy. */
  2122. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2123. /*
  2124. * Don't tell them about moving exiting tasks or
  2125. * kernel threads (both mm NULL), since they never
  2126. * leave kernel.
  2127. */
  2128. if (p->mm && printk_ratelimit()) {
  2129. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2130. task_pid_nr(p), p->comm, cpu);
  2131. }
  2132. return dest_cpu;
  2133. }
  2134. /*
  2135. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2136. */
  2137. static inline
  2138. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2139. {
  2140. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2141. /*
  2142. * In order not to call set_task_cpu() on a blocking task we need
  2143. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2144. * cpu.
  2145. *
  2146. * Since this is common to all placement strategies, this lives here.
  2147. *
  2148. * [ this allows ->select_task() to simply return task_cpu(p) and
  2149. * not worry about this generic constraint ]
  2150. */
  2151. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2152. !cpu_online(cpu)))
  2153. cpu = select_fallback_rq(task_cpu(p), p);
  2154. return cpu;
  2155. }
  2156. static void update_avg(u64 *avg, u64 sample)
  2157. {
  2158. s64 diff = sample - *avg;
  2159. *avg += diff >> 3;
  2160. }
  2161. #endif
  2162. static void
  2163. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2164. {
  2165. #ifdef CONFIG_SCHEDSTATS
  2166. struct rq *rq = this_rq();
  2167. #ifdef CONFIG_SMP
  2168. int this_cpu = smp_processor_id();
  2169. if (cpu == this_cpu) {
  2170. schedstat_inc(rq, ttwu_local);
  2171. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2172. } else {
  2173. struct sched_domain *sd;
  2174. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2175. rcu_read_lock();
  2176. for_each_domain(this_cpu, sd) {
  2177. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2178. schedstat_inc(sd, ttwu_wake_remote);
  2179. break;
  2180. }
  2181. }
  2182. rcu_read_unlock();
  2183. }
  2184. if (wake_flags & WF_MIGRATED)
  2185. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2186. #endif /* CONFIG_SMP */
  2187. schedstat_inc(rq, ttwu_count);
  2188. schedstat_inc(p, se.statistics.nr_wakeups);
  2189. if (wake_flags & WF_SYNC)
  2190. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2191. #endif /* CONFIG_SCHEDSTATS */
  2192. }
  2193. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2194. {
  2195. activate_task(rq, p, en_flags);
  2196. p->on_rq = 1;
  2197. /* if a worker is waking up, notify workqueue */
  2198. if (p->flags & PF_WQ_WORKER)
  2199. wq_worker_waking_up(p, cpu_of(rq));
  2200. }
  2201. /*
  2202. * Mark the task runnable and perform wakeup-preemption.
  2203. */
  2204. static void
  2205. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2206. {
  2207. trace_sched_wakeup(p, true);
  2208. check_preempt_curr(rq, p, wake_flags);
  2209. p->state = TASK_RUNNING;
  2210. #ifdef CONFIG_SMP
  2211. if (p->sched_class->task_woken)
  2212. p->sched_class->task_woken(rq, p);
  2213. if (rq->idle_stamp) {
  2214. u64 delta = rq->clock - rq->idle_stamp;
  2215. u64 max = 2*sysctl_sched_migration_cost;
  2216. if (delta > max)
  2217. rq->avg_idle = max;
  2218. else
  2219. update_avg(&rq->avg_idle, delta);
  2220. rq->idle_stamp = 0;
  2221. }
  2222. #endif
  2223. }
  2224. static void
  2225. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2226. {
  2227. #ifdef CONFIG_SMP
  2228. if (p->sched_contributes_to_load)
  2229. rq->nr_uninterruptible--;
  2230. #endif
  2231. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2232. ttwu_do_wakeup(rq, p, wake_flags);
  2233. }
  2234. /*
  2235. * Called in case the task @p isn't fully descheduled from its runqueue,
  2236. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2237. * since all we need to do is flip p->state to TASK_RUNNING, since
  2238. * the task is still ->on_rq.
  2239. */
  2240. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2241. {
  2242. struct rq *rq;
  2243. int ret = 0;
  2244. rq = __task_rq_lock(p);
  2245. if (p->on_rq) {
  2246. ttwu_do_wakeup(rq, p, wake_flags);
  2247. ret = 1;
  2248. }
  2249. __task_rq_unlock(rq);
  2250. return ret;
  2251. }
  2252. #ifdef CONFIG_SMP
  2253. static void sched_ttwu_do_pending(struct task_struct *list)
  2254. {
  2255. struct rq *rq = this_rq();
  2256. raw_spin_lock(&rq->lock);
  2257. while (list) {
  2258. struct task_struct *p = list;
  2259. list = list->wake_entry;
  2260. ttwu_do_activate(rq, p, 0);
  2261. }
  2262. raw_spin_unlock(&rq->lock);
  2263. }
  2264. #ifdef CONFIG_HOTPLUG_CPU
  2265. static void sched_ttwu_pending(void)
  2266. {
  2267. struct rq *rq = this_rq();
  2268. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2269. if (!list)
  2270. return;
  2271. sched_ttwu_do_pending(list);
  2272. }
  2273. #endif /* CONFIG_HOTPLUG_CPU */
  2274. void scheduler_ipi(void)
  2275. {
  2276. struct rq *rq = this_rq();
  2277. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2278. if (!list)
  2279. return;
  2280. /*
  2281. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2282. * traditionally all their work was done from the interrupt return
  2283. * path. Now that we actually do some work, we need to make sure
  2284. * we do call them.
  2285. *
  2286. * Some archs already do call them, luckily irq_enter/exit nest
  2287. * properly.
  2288. *
  2289. * Arguably we should visit all archs and update all handlers,
  2290. * however a fair share of IPIs are still resched only so this would
  2291. * somewhat pessimize the simple resched case.
  2292. */
  2293. irq_enter();
  2294. sched_ttwu_do_pending(list);
  2295. irq_exit();
  2296. }
  2297. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2298. {
  2299. struct rq *rq = cpu_rq(cpu);
  2300. struct task_struct *next = rq->wake_list;
  2301. for (;;) {
  2302. struct task_struct *old = next;
  2303. p->wake_entry = next;
  2304. next = cmpxchg(&rq->wake_list, old, p);
  2305. if (next == old)
  2306. break;
  2307. }
  2308. if (!next)
  2309. smp_send_reschedule(cpu);
  2310. }
  2311. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2312. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2313. {
  2314. struct rq *rq;
  2315. int ret = 0;
  2316. rq = __task_rq_lock(p);
  2317. if (p->on_cpu) {
  2318. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2319. ttwu_do_wakeup(rq, p, wake_flags);
  2320. ret = 1;
  2321. }
  2322. __task_rq_unlock(rq);
  2323. return ret;
  2324. }
  2325. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2326. #endif /* CONFIG_SMP */
  2327. static void ttwu_queue(struct task_struct *p, int cpu)
  2328. {
  2329. struct rq *rq = cpu_rq(cpu);
  2330. #if defined(CONFIG_SMP)
  2331. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2332. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2333. ttwu_queue_remote(p, cpu);
  2334. return;
  2335. }
  2336. #endif
  2337. raw_spin_lock(&rq->lock);
  2338. ttwu_do_activate(rq, p, 0);
  2339. raw_spin_unlock(&rq->lock);
  2340. }
  2341. /**
  2342. * try_to_wake_up - wake up a thread
  2343. * @p: the thread to be awakened
  2344. * @state: the mask of task states that can be woken
  2345. * @wake_flags: wake modifier flags (WF_*)
  2346. *
  2347. * Put it on the run-queue if it's not already there. The "current"
  2348. * thread is always on the run-queue (except when the actual
  2349. * re-schedule is in progress), and as such you're allowed to do
  2350. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2351. * runnable without the overhead of this.
  2352. *
  2353. * Returns %true if @p was woken up, %false if it was already running
  2354. * or @state didn't match @p's state.
  2355. */
  2356. static int
  2357. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2358. {
  2359. unsigned long flags;
  2360. int cpu, success = 0;
  2361. smp_wmb();
  2362. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2363. if (!(p->state & state))
  2364. goto out;
  2365. success = 1; /* we're going to change ->state */
  2366. cpu = task_cpu(p);
  2367. if (p->on_rq && ttwu_remote(p, wake_flags))
  2368. goto stat;
  2369. #ifdef CONFIG_SMP
  2370. /*
  2371. * If the owning (remote) cpu is still in the middle of schedule() with
  2372. * this task as prev, wait until its done referencing the task.
  2373. */
  2374. while (p->on_cpu) {
  2375. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2376. /*
  2377. * In case the architecture enables interrupts in
  2378. * context_switch(), we cannot busy wait, since that
  2379. * would lead to deadlocks when an interrupt hits and
  2380. * tries to wake up @prev. So bail and do a complete
  2381. * remote wakeup.
  2382. */
  2383. if (ttwu_activate_remote(p, wake_flags))
  2384. goto stat;
  2385. #else
  2386. cpu_relax();
  2387. #endif
  2388. }
  2389. /*
  2390. * Pairs with the smp_wmb() in finish_lock_switch().
  2391. */
  2392. smp_rmb();
  2393. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2394. p->state = TASK_WAKING;
  2395. if (p->sched_class->task_waking)
  2396. p->sched_class->task_waking(p);
  2397. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2398. if (task_cpu(p) != cpu) {
  2399. wake_flags |= WF_MIGRATED;
  2400. set_task_cpu(p, cpu);
  2401. }
  2402. #endif /* CONFIG_SMP */
  2403. ttwu_queue(p, cpu);
  2404. stat:
  2405. ttwu_stat(p, cpu, wake_flags);
  2406. out:
  2407. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2408. return success;
  2409. }
  2410. /**
  2411. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2412. * @p: the thread to be awakened
  2413. *
  2414. * Put @p on the run-queue if it's not already there. The caller must
  2415. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2416. * the current task.
  2417. */
  2418. static void try_to_wake_up_local(struct task_struct *p)
  2419. {
  2420. struct rq *rq = task_rq(p);
  2421. BUG_ON(rq != this_rq());
  2422. BUG_ON(p == current);
  2423. lockdep_assert_held(&rq->lock);
  2424. if (!raw_spin_trylock(&p->pi_lock)) {
  2425. raw_spin_unlock(&rq->lock);
  2426. raw_spin_lock(&p->pi_lock);
  2427. raw_spin_lock(&rq->lock);
  2428. }
  2429. if (!(p->state & TASK_NORMAL))
  2430. goto out;
  2431. if (!p->on_rq)
  2432. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2433. ttwu_do_wakeup(rq, p, 0);
  2434. ttwu_stat(p, smp_processor_id(), 0);
  2435. out:
  2436. raw_spin_unlock(&p->pi_lock);
  2437. }
  2438. /**
  2439. * wake_up_process - Wake up a specific process
  2440. * @p: The process to be woken up.
  2441. *
  2442. * Attempt to wake up the nominated process and move it to the set of runnable
  2443. * processes. Returns 1 if the process was woken up, 0 if it was already
  2444. * running.
  2445. *
  2446. * It may be assumed that this function implies a write memory barrier before
  2447. * changing the task state if and only if any tasks are woken up.
  2448. */
  2449. int wake_up_process(struct task_struct *p)
  2450. {
  2451. return try_to_wake_up(p, TASK_ALL, 0);
  2452. }
  2453. EXPORT_SYMBOL(wake_up_process);
  2454. int wake_up_state(struct task_struct *p, unsigned int state)
  2455. {
  2456. return try_to_wake_up(p, state, 0);
  2457. }
  2458. /*
  2459. * Perform scheduler related setup for a newly forked process p.
  2460. * p is forked by current.
  2461. *
  2462. * __sched_fork() is basic setup used by init_idle() too:
  2463. */
  2464. static void __sched_fork(struct task_struct *p)
  2465. {
  2466. p->on_rq = 0;
  2467. p->se.on_rq = 0;
  2468. p->se.exec_start = 0;
  2469. p->se.sum_exec_runtime = 0;
  2470. p->se.prev_sum_exec_runtime = 0;
  2471. p->se.nr_migrations = 0;
  2472. p->se.vruntime = 0;
  2473. INIT_LIST_HEAD(&p->se.group_node);
  2474. #ifdef CONFIG_SCHEDSTATS
  2475. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2476. #endif
  2477. INIT_LIST_HEAD(&p->rt.run_list);
  2478. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2479. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2480. #endif
  2481. }
  2482. /*
  2483. * fork()/clone()-time setup:
  2484. */
  2485. void sched_fork(struct task_struct *p)
  2486. {
  2487. unsigned long flags;
  2488. int cpu = get_cpu();
  2489. __sched_fork(p);
  2490. /*
  2491. * We mark the process as running here. This guarantees that
  2492. * nobody will actually run it, and a signal or other external
  2493. * event cannot wake it up and insert it on the runqueue either.
  2494. */
  2495. p->state = TASK_RUNNING;
  2496. /*
  2497. * Make sure we do not leak PI boosting priority to the child.
  2498. */
  2499. p->prio = current->normal_prio;
  2500. /*
  2501. * Revert to default priority/policy on fork if requested.
  2502. */
  2503. if (unlikely(p->sched_reset_on_fork)) {
  2504. if (task_has_rt_policy(p)) {
  2505. p->policy = SCHED_NORMAL;
  2506. p->static_prio = NICE_TO_PRIO(0);
  2507. p->rt_priority = 0;
  2508. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2509. p->static_prio = NICE_TO_PRIO(0);
  2510. p->prio = p->normal_prio = __normal_prio(p);
  2511. set_load_weight(p);
  2512. /*
  2513. * We don't need the reset flag anymore after the fork. It has
  2514. * fulfilled its duty:
  2515. */
  2516. p->sched_reset_on_fork = 0;
  2517. }
  2518. if (!rt_prio(p->prio))
  2519. p->sched_class = &fair_sched_class;
  2520. if (p->sched_class->task_fork)
  2521. p->sched_class->task_fork(p);
  2522. /*
  2523. * The child is not yet in the pid-hash so no cgroup attach races,
  2524. * and the cgroup is pinned to this child due to cgroup_fork()
  2525. * is ran before sched_fork().
  2526. *
  2527. * Silence PROVE_RCU.
  2528. */
  2529. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2530. set_task_cpu(p, cpu);
  2531. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2532. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2533. if (likely(sched_info_on()))
  2534. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2535. #endif
  2536. #if defined(CONFIG_SMP)
  2537. p->on_cpu = 0;
  2538. #endif
  2539. #ifdef CONFIG_PREEMPT_COUNT
  2540. /* Want to start with kernel preemption disabled. */
  2541. task_thread_info(p)->preempt_count = 1;
  2542. #endif
  2543. #ifdef CONFIG_SMP
  2544. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2545. #endif
  2546. put_cpu();
  2547. }
  2548. /*
  2549. * wake_up_new_task - wake up a newly created task for the first time.
  2550. *
  2551. * This function will do some initial scheduler statistics housekeeping
  2552. * that must be done for every newly created context, then puts the task
  2553. * on the runqueue and wakes it.
  2554. */
  2555. void wake_up_new_task(struct task_struct *p)
  2556. {
  2557. unsigned long flags;
  2558. struct rq *rq;
  2559. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2560. #ifdef CONFIG_SMP
  2561. /*
  2562. * Fork balancing, do it here and not earlier because:
  2563. * - cpus_allowed can change in the fork path
  2564. * - any previously selected cpu might disappear through hotplug
  2565. */
  2566. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2567. #endif
  2568. rq = __task_rq_lock(p);
  2569. activate_task(rq, p, 0);
  2570. p->on_rq = 1;
  2571. trace_sched_wakeup_new(p, true);
  2572. check_preempt_curr(rq, p, WF_FORK);
  2573. #ifdef CONFIG_SMP
  2574. if (p->sched_class->task_woken)
  2575. p->sched_class->task_woken(rq, p);
  2576. #endif
  2577. task_rq_unlock(rq, p, &flags);
  2578. }
  2579. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2580. /**
  2581. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2582. * @notifier: notifier struct to register
  2583. */
  2584. void preempt_notifier_register(struct preempt_notifier *notifier)
  2585. {
  2586. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2587. }
  2588. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2589. /**
  2590. * preempt_notifier_unregister - no longer interested in preemption notifications
  2591. * @notifier: notifier struct to unregister
  2592. *
  2593. * This is safe to call from within a preemption notifier.
  2594. */
  2595. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2596. {
  2597. hlist_del(&notifier->link);
  2598. }
  2599. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2600. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2601. {
  2602. struct preempt_notifier *notifier;
  2603. struct hlist_node *node;
  2604. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2605. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2606. }
  2607. static void
  2608. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2609. struct task_struct *next)
  2610. {
  2611. struct preempt_notifier *notifier;
  2612. struct hlist_node *node;
  2613. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2614. notifier->ops->sched_out(notifier, next);
  2615. }
  2616. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2617. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2618. {
  2619. }
  2620. static void
  2621. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2622. struct task_struct *next)
  2623. {
  2624. }
  2625. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2626. /**
  2627. * prepare_task_switch - prepare to switch tasks
  2628. * @rq: the runqueue preparing to switch
  2629. * @prev: the current task that is being switched out
  2630. * @next: the task we are going to switch to.
  2631. *
  2632. * This is called with the rq lock held and interrupts off. It must
  2633. * be paired with a subsequent finish_task_switch after the context
  2634. * switch.
  2635. *
  2636. * prepare_task_switch sets up locking and calls architecture specific
  2637. * hooks.
  2638. */
  2639. static inline void
  2640. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2641. struct task_struct *next)
  2642. {
  2643. sched_info_switch(prev, next);
  2644. perf_event_task_sched_out(prev, next);
  2645. fire_sched_out_preempt_notifiers(prev, next);
  2646. prepare_lock_switch(rq, next);
  2647. prepare_arch_switch(next);
  2648. trace_sched_switch(prev, next);
  2649. }
  2650. /**
  2651. * finish_task_switch - clean up after a task-switch
  2652. * @rq: runqueue associated with task-switch
  2653. * @prev: the thread we just switched away from.
  2654. *
  2655. * finish_task_switch must be called after the context switch, paired
  2656. * with a prepare_task_switch call before the context switch.
  2657. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2658. * and do any other architecture-specific cleanup actions.
  2659. *
  2660. * Note that we may have delayed dropping an mm in context_switch(). If
  2661. * so, we finish that here outside of the runqueue lock. (Doing it
  2662. * with the lock held can cause deadlocks; see schedule() for
  2663. * details.)
  2664. */
  2665. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2666. __releases(rq->lock)
  2667. {
  2668. struct mm_struct *mm = rq->prev_mm;
  2669. long prev_state;
  2670. rq->prev_mm = NULL;
  2671. /*
  2672. * A task struct has one reference for the use as "current".
  2673. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2674. * schedule one last time. The schedule call will never return, and
  2675. * the scheduled task must drop that reference.
  2676. * The test for TASK_DEAD must occur while the runqueue locks are
  2677. * still held, otherwise prev could be scheduled on another cpu, die
  2678. * there before we look at prev->state, and then the reference would
  2679. * be dropped twice.
  2680. * Manfred Spraul <manfred@colorfullife.com>
  2681. */
  2682. prev_state = prev->state;
  2683. finish_arch_switch(prev);
  2684. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2685. local_irq_disable();
  2686. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2687. perf_event_task_sched_in(current);
  2688. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2689. local_irq_enable();
  2690. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2691. finish_lock_switch(rq, prev);
  2692. fire_sched_in_preempt_notifiers(current);
  2693. if (mm)
  2694. mmdrop(mm);
  2695. if (unlikely(prev_state == TASK_DEAD)) {
  2696. /*
  2697. * Remove function-return probe instances associated with this
  2698. * task and put them back on the free list.
  2699. */
  2700. kprobe_flush_task(prev);
  2701. put_task_struct(prev);
  2702. }
  2703. }
  2704. #ifdef CONFIG_SMP
  2705. /* assumes rq->lock is held */
  2706. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2707. {
  2708. if (prev->sched_class->pre_schedule)
  2709. prev->sched_class->pre_schedule(rq, prev);
  2710. }
  2711. /* rq->lock is NOT held, but preemption is disabled */
  2712. static inline void post_schedule(struct rq *rq)
  2713. {
  2714. if (rq->post_schedule) {
  2715. unsigned long flags;
  2716. raw_spin_lock_irqsave(&rq->lock, flags);
  2717. if (rq->curr->sched_class->post_schedule)
  2718. rq->curr->sched_class->post_schedule(rq);
  2719. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2720. rq->post_schedule = 0;
  2721. }
  2722. }
  2723. #else
  2724. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2725. {
  2726. }
  2727. static inline void post_schedule(struct rq *rq)
  2728. {
  2729. }
  2730. #endif
  2731. /**
  2732. * schedule_tail - first thing a freshly forked thread must call.
  2733. * @prev: the thread we just switched away from.
  2734. */
  2735. asmlinkage void schedule_tail(struct task_struct *prev)
  2736. __releases(rq->lock)
  2737. {
  2738. struct rq *rq = this_rq();
  2739. finish_task_switch(rq, prev);
  2740. /*
  2741. * FIXME: do we need to worry about rq being invalidated by the
  2742. * task_switch?
  2743. */
  2744. post_schedule(rq);
  2745. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2746. /* In this case, finish_task_switch does not reenable preemption */
  2747. preempt_enable();
  2748. #endif
  2749. if (current->set_child_tid)
  2750. put_user(task_pid_vnr(current), current->set_child_tid);
  2751. }
  2752. /*
  2753. * context_switch - switch to the new MM and the new
  2754. * thread's register state.
  2755. */
  2756. static inline void
  2757. context_switch(struct rq *rq, struct task_struct *prev,
  2758. struct task_struct *next)
  2759. {
  2760. struct mm_struct *mm, *oldmm;
  2761. prepare_task_switch(rq, prev, next);
  2762. mm = next->mm;
  2763. oldmm = prev->active_mm;
  2764. /*
  2765. * For paravirt, this is coupled with an exit in switch_to to
  2766. * combine the page table reload and the switch backend into
  2767. * one hypercall.
  2768. */
  2769. arch_start_context_switch(prev);
  2770. if (!mm) {
  2771. next->active_mm = oldmm;
  2772. atomic_inc(&oldmm->mm_count);
  2773. enter_lazy_tlb(oldmm, next);
  2774. } else
  2775. switch_mm(oldmm, mm, next);
  2776. if (!prev->mm) {
  2777. prev->active_mm = NULL;
  2778. rq->prev_mm = oldmm;
  2779. }
  2780. /*
  2781. * Since the runqueue lock will be released by the next
  2782. * task (which is an invalid locking op but in the case
  2783. * of the scheduler it's an obvious special-case), so we
  2784. * do an early lockdep release here:
  2785. */
  2786. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2787. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2788. #endif
  2789. /* Here we just switch the register state and the stack. */
  2790. switch_to(prev, next, prev);
  2791. barrier();
  2792. /*
  2793. * this_rq must be evaluated again because prev may have moved
  2794. * CPUs since it called schedule(), thus the 'rq' on its stack
  2795. * frame will be invalid.
  2796. */
  2797. finish_task_switch(this_rq(), prev);
  2798. }
  2799. /*
  2800. * nr_running, nr_uninterruptible and nr_context_switches:
  2801. *
  2802. * externally visible scheduler statistics: current number of runnable
  2803. * threads, current number of uninterruptible-sleeping threads, total
  2804. * number of context switches performed since bootup.
  2805. */
  2806. unsigned long nr_running(void)
  2807. {
  2808. unsigned long i, sum = 0;
  2809. for_each_online_cpu(i)
  2810. sum += cpu_rq(i)->nr_running;
  2811. return sum;
  2812. }
  2813. unsigned long nr_uninterruptible(void)
  2814. {
  2815. unsigned long i, sum = 0;
  2816. for_each_possible_cpu(i)
  2817. sum += cpu_rq(i)->nr_uninterruptible;
  2818. /*
  2819. * Since we read the counters lockless, it might be slightly
  2820. * inaccurate. Do not allow it to go below zero though:
  2821. */
  2822. if (unlikely((long)sum < 0))
  2823. sum = 0;
  2824. return sum;
  2825. }
  2826. unsigned long long nr_context_switches(void)
  2827. {
  2828. int i;
  2829. unsigned long long sum = 0;
  2830. for_each_possible_cpu(i)
  2831. sum += cpu_rq(i)->nr_switches;
  2832. return sum;
  2833. }
  2834. unsigned long nr_iowait(void)
  2835. {
  2836. unsigned long i, sum = 0;
  2837. for_each_possible_cpu(i)
  2838. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2839. return sum;
  2840. }
  2841. unsigned long nr_iowait_cpu(int cpu)
  2842. {
  2843. struct rq *this = cpu_rq(cpu);
  2844. return atomic_read(&this->nr_iowait);
  2845. }
  2846. unsigned long this_cpu_load(void)
  2847. {
  2848. struct rq *this = this_rq();
  2849. return this->cpu_load[0];
  2850. }
  2851. /* Variables and functions for calc_load */
  2852. static atomic_long_t calc_load_tasks;
  2853. static unsigned long calc_load_update;
  2854. unsigned long avenrun[3];
  2855. EXPORT_SYMBOL(avenrun);
  2856. static long calc_load_fold_active(struct rq *this_rq)
  2857. {
  2858. long nr_active, delta = 0;
  2859. nr_active = this_rq->nr_running;
  2860. nr_active += (long) this_rq->nr_uninterruptible;
  2861. if (nr_active != this_rq->calc_load_active) {
  2862. delta = nr_active - this_rq->calc_load_active;
  2863. this_rq->calc_load_active = nr_active;
  2864. }
  2865. return delta;
  2866. }
  2867. static unsigned long
  2868. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2869. {
  2870. load *= exp;
  2871. load += active * (FIXED_1 - exp);
  2872. load += 1UL << (FSHIFT - 1);
  2873. return load >> FSHIFT;
  2874. }
  2875. #ifdef CONFIG_NO_HZ
  2876. /*
  2877. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2878. *
  2879. * When making the ILB scale, we should try to pull this in as well.
  2880. */
  2881. static atomic_long_t calc_load_tasks_idle;
  2882. static void calc_load_account_idle(struct rq *this_rq)
  2883. {
  2884. long delta;
  2885. delta = calc_load_fold_active(this_rq);
  2886. if (delta)
  2887. atomic_long_add(delta, &calc_load_tasks_idle);
  2888. }
  2889. static long calc_load_fold_idle(void)
  2890. {
  2891. long delta = 0;
  2892. /*
  2893. * Its got a race, we don't care...
  2894. */
  2895. if (atomic_long_read(&calc_load_tasks_idle))
  2896. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2897. return delta;
  2898. }
  2899. /**
  2900. * fixed_power_int - compute: x^n, in O(log n) time
  2901. *
  2902. * @x: base of the power
  2903. * @frac_bits: fractional bits of @x
  2904. * @n: power to raise @x to.
  2905. *
  2906. * By exploiting the relation between the definition of the natural power
  2907. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2908. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2909. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2910. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2911. * of course trivially computable in O(log_2 n), the length of our binary
  2912. * vector.
  2913. */
  2914. static unsigned long
  2915. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2916. {
  2917. unsigned long result = 1UL << frac_bits;
  2918. if (n) for (;;) {
  2919. if (n & 1) {
  2920. result *= x;
  2921. result += 1UL << (frac_bits - 1);
  2922. result >>= frac_bits;
  2923. }
  2924. n >>= 1;
  2925. if (!n)
  2926. break;
  2927. x *= x;
  2928. x += 1UL << (frac_bits - 1);
  2929. x >>= frac_bits;
  2930. }
  2931. return result;
  2932. }
  2933. /*
  2934. * a1 = a0 * e + a * (1 - e)
  2935. *
  2936. * a2 = a1 * e + a * (1 - e)
  2937. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2938. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2939. *
  2940. * a3 = a2 * e + a * (1 - e)
  2941. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2942. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2943. *
  2944. * ...
  2945. *
  2946. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2947. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2948. * = a0 * e^n + a * (1 - e^n)
  2949. *
  2950. * [1] application of the geometric series:
  2951. *
  2952. * n 1 - x^(n+1)
  2953. * S_n := \Sum x^i = -------------
  2954. * i=0 1 - x
  2955. */
  2956. static unsigned long
  2957. calc_load_n(unsigned long load, unsigned long exp,
  2958. unsigned long active, unsigned int n)
  2959. {
  2960. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2961. }
  2962. /*
  2963. * NO_HZ can leave us missing all per-cpu ticks calling
  2964. * calc_load_account_active(), but since an idle CPU folds its delta into
  2965. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2966. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2967. *
  2968. * Once we've updated the global active value, we need to apply the exponential
  2969. * weights adjusted to the number of cycles missed.
  2970. */
  2971. static void calc_global_nohz(unsigned long ticks)
  2972. {
  2973. long delta, active, n;
  2974. if (time_before(jiffies, calc_load_update))
  2975. return;
  2976. /*
  2977. * If we crossed a calc_load_update boundary, make sure to fold
  2978. * any pending idle changes, the respective CPUs might have
  2979. * missed the tick driven calc_load_account_active() update
  2980. * due to NO_HZ.
  2981. */
  2982. delta = calc_load_fold_idle();
  2983. if (delta)
  2984. atomic_long_add(delta, &calc_load_tasks);
  2985. /*
  2986. * If we were idle for multiple load cycles, apply them.
  2987. */
  2988. if (ticks >= LOAD_FREQ) {
  2989. n = ticks / LOAD_FREQ;
  2990. active = atomic_long_read(&calc_load_tasks);
  2991. active = active > 0 ? active * FIXED_1 : 0;
  2992. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2993. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2994. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2995. calc_load_update += n * LOAD_FREQ;
  2996. }
  2997. /*
  2998. * Its possible the remainder of the above division also crosses
  2999. * a LOAD_FREQ period, the regular check in calc_global_load()
  3000. * which comes after this will take care of that.
  3001. *
  3002. * Consider us being 11 ticks before a cycle completion, and us
  3003. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  3004. * age us 4 cycles, and the test in calc_global_load() will
  3005. * pick up the final one.
  3006. */
  3007. }
  3008. #else
  3009. static void calc_load_account_idle(struct rq *this_rq)
  3010. {
  3011. }
  3012. static inline long calc_load_fold_idle(void)
  3013. {
  3014. return 0;
  3015. }
  3016. static void calc_global_nohz(unsigned long ticks)
  3017. {
  3018. }
  3019. #endif
  3020. /**
  3021. * get_avenrun - get the load average array
  3022. * @loads: pointer to dest load array
  3023. * @offset: offset to add
  3024. * @shift: shift count to shift the result left
  3025. *
  3026. * These values are estimates at best, so no need for locking.
  3027. */
  3028. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  3029. {
  3030. loads[0] = (avenrun[0] + offset) << shift;
  3031. loads[1] = (avenrun[1] + offset) << shift;
  3032. loads[2] = (avenrun[2] + offset) << shift;
  3033. }
  3034. /*
  3035. * calc_load - update the avenrun load estimates 10 ticks after the
  3036. * CPUs have updated calc_load_tasks.
  3037. */
  3038. void calc_global_load(unsigned long ticks)
  3039. {
  3040. long active;
  3041. calc_global_nohz(ticks);
  3042. if (time_before(jiffies, calc_load_update + 10))
  3043. return;
  3044. active = atomic_long_read(&calc_load_tasks);
  3045. active = active > 0 ? active * FIXED_1 : 0;
  3046. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  3047. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  3048. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  3049. calc_load_update += LOAD_FREQ;
  3050. }
  3051. /*
  3052. * Called from update_cpu_load() to periodically update this CPU's
  3053. * active count.
  3054. */
  3055. static void calc_load_account_active(struct rq *this_rq)
  3056. {
  3057. long delta;
  3058. if (time_before(jiffies, this_rq->calc_load_update))
  3059. return;
  3060. delta = calc_load_fold_active(this_rq);
  3061. delta += calc_load_fold_idle();
  3062. if (delta)
  3063. atomic_long_add(delta, &calc_load_tasks);
  3064. this_rq->calc_load_update += LOAD_FREQ;
  3065. }
  3066. /*
  3067. * The exact cpuload at various idx values, calculated at every tick would be
  3068. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3069. *
  3070. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3071. * on nth tick when cpu may be busy, then we have:
  3072. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3073. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3074. *
  3075. * decay_load_missed() below does efficient calculation of
  3076. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3077. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3078. *
  3079. * The calculation is approximated on a 128 point scale.
  3080. * degrade_zero_ticks is the number of ticks after which load at any
  3081. * particular idx is approximated to be zero.
  3082. * degrade_factor is a precomputed table, a row for each load idx.
  3083. * Each column corresponds to degradation factor for a power of two ticks,
  3084. * based on 128 point scale.
  3085. * Example:
  3086. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3087. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3088. *
  3089. * With this power of 2 load factors, we can degrade the load n times
  3090. * by looking at 1 bits in n and doing as many mult/shift instead of
  3091. * n mult/shifts needed by the exact degradation.
  3092. */
  3093. #define DEGRADE_SHIFT 7
  3094. static const unsigned char
  3095. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3096. static const unsigned char
  3097. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3098. {0, 0, 0, 0, 0, 0, 0, 0},
  3099. {64, 32, 8, 0, 0, 0, 0, 0},
  3100. {96, 72, 40, 12, 1, 0, 0},
  3101. {112, 98, 75, 43, 15, 1, 0},
  3102. {120, 112, 98, 76, 45, 16, 2} };
  3103. /*
  3104. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3105. * would be when CPU is idle and so we just decay the old load without
  3106. * adding any new load.
  3107. */
  3108. static unsigned long
  3109. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3110. {
  3111. int j = 0;
  3112. if (!missed_updates)
  3113. return load;
  3114. if (missed_updates >= degrade_zero_ticks[idx])
  3115. return 0;
  3116. if (idx == 1)
  3117. return load >> missed_updates;
  3118. while (missed_updates) {
  3119. if (missed_updates % 2)
  3120. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3121. missed_updates >>= 1;
  3122. j++;
  3123. }
  3124. return load;
  3125. }
  3126. /*
  3127. * Update rq->cpu_load[] statistics. This function is usually called every
  3128. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3129. * every tick. We fix it up based on jiffies.
  3130. */
  3131. static void update_cpu_load(struct rq *this_rq)
  3132. {
  3133. unsigned long this_load = this_rq->load.weight;
  3134. unsigned long curr_jiffies = jiffies;
  3135. unsigned long pending_updates;
  3136. int i, scale;
  3137. this_rq->nr_load_updates++;
  3138. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3139. if (curr_jiffies == this_rq->last_load_update_tick)
  3140. return;
  3141. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3142. this_rq->last_load_update_tick = curr_jiffies;
  3143. /* Update our load: */
  3144. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3145. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3146. unsigned long old_load, new_load;
  3147. /* scale is effectively 1 << i now, and >> i divides by scale */
  3148. old_load = this_rq->cpu_load[i];
  3149. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3150. new_load = this_load;
  3151. /*
  3152. * Round up the averaging division if load is increasing. This
  3153. * prevents us from getting stuck on 9 if the load is 10, for
  3154. * example.
  3155. */
  3156. if (new_load > old_load)
  3157. new_load += scale - 1;
  3158. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3159. }
  3160. sched_avg_update(this_rq);
  3161. }
  3162. static void update_cpu_load_active(struct rq *this_rq)
  3163. {
  3164. update_cpu_load(this_rq);
  3165. calc_load_account_active(this_rq);
  3166. }
  3167. #ifdef CONFIG_SMP
  3168. /*
  3169. * sched_exec - execve() is a valuable balancing opportunity, because at
  3170. * this point the task has the smallest effective memory and cache footprint.
  3171. */
  3172. void sched_exec(void)
  3173. {
  3174. struct task_struct *p = current;
  3175. unsigned long flags;
  3176. int dest_cpu;
  3177. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3178. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3179. if (dest_cpu == smp_processor_id())
  3180. goto unlock;
  3181. if (likely(cpu_active(dest_cpu))) {
  3182. struct migration_arg arg = { p, dest_cpu };
  3183. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3184. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3185. return;
  3186. }
  3187. unlock:
  3188. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3189. }
  3190. #endif
  3191. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3192. EXPORT_PER_CPU_SYMBOL(kstat);
  3193. /*
  3194. * Return any ns on the sched_clock that have not yet been accounted in
  3195. * @p in case that task is currently running.
  3196. *
  3197. * Called with task_rq_lock() held on @rq.
  3198. */
  3199. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3200. {
  3201. u64 ns = 0;
  3202. if (task_current(rq, p)) {
  3203. update_rq_clock(rq);
  3204. ns = rq->clock_task - p->se.exec_start;
  3205. if ((s64)ns < 0)
  3206. ns = 0;
  3207. }
  3208. return ns;
  3209. }
  3210. unsigned long long task_delta_exec(struct task_struct *p)
  3211. {
  3212. unsigned long flags;
  3213. struct rq *rq;
  3214. u64 ns = 0;
  3215. rq = task_rq_lock(p, &flags);
  3216. ns = do_task_delta_exec(p, rq);
  3217. task_rq_unlock(rq, p, &flags);
  3218. return ns;
  3219. }
  3220. /*
  3221. * Return accounted runtime for the task.
  3222. * In case the task is currently running, return the runtime plus current's
  3223. * pending runtime that have not been accounted yet.
  3224. */
  3225. unsigned long long task_sched_runtime(struct task_struct *p)
  3226. {
  3227. unsigned long flags;
  3228. struct rq *rq;
  3229. u64 ns = 0;
  3230. rq = task_rq_lock(p, &flags);
  3231. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3232. task_rq_unlock(rq, p, &flags);
  3233. return ns;
  3234. }
  3235. /*
  3236. * Return sum_exec_runtime for the thread group.
  3237. * In case the task is currently running, return the sum plus current's
  3238. * pending runtime that have not been accounted yet.
  3239. *
  3240. * Note that the thread group might have other running tasks as well,
  3241. * so the return value not includes other pending runtime that other
  3242. * running tasks might have.
  3243. */
  3244. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3245. {
  3246. struct task_cputime totals;
  3247. unsigned long flags;
  3248. struct rq *rq;
  3249. u64 ns;
  3250. rq = task_rq_lock(p, &flags);
  3251. thread_group_cputime(p, &totals);
  3252. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3253. task_rq_unlock(rq, p, &flags);
  3254. return ns;
  3255. }
  3256. /*
  3257. * Account user cpu time to a process.
  3258. * @p: the process that the cpu time gets accounted to
  3259. * @cputime: the cpu time spent in user space since the last update
  3260. * @cputime_scaled: cputime scaled by cpu frequency
  3261. */
  3262. void account_user_time(struct task_struct *p, cputime_t cputime,
  3263. cputime_t cputime_scaled)
  3264. {
  3265. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3266. cputime64_t tmp;
  3267. /* Add user time to process. */
  3268. p->utime = cputime_add(p->utime, cputime);
  3269. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3270. account_group_user_time(p, cputime);
  3271. /* Add user time to cpustat. */
  3272. tmp = cputime_to_cputime64(cputime);
  3273. if (TASK_NICE(p) > 0)
  3274. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3275. else
  3276. cpustat->user = cputime64_add(cpustat->user, tmp);
  3277. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3278. /* Account for user time used */
  3279. acct_update_integrals(p);
  3280. }
  3281. /*
  3282. * Account guest cpu time to a process.
  3283. * @p: the process that the cpu time gets accounted to
  3284. * @cputime: the cpu time spent in virtual machine since the last update
  3285. * @cputime_scaled: cputime scaled by cpu frequency
  3286. */
  3287. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3288. cputime_t cputime_scaled)
  3289. {
  3290. cputime64_t tmp;
  3291. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3292. tmp = cputime_to_cputime64(cputime);
  3293. /* Add guest time to process. */
  3294. p->utime = cputime_add(p->utime, cputime);
  3295. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3296. account_group_user_time(p, cputime);
  3297. p->gtime = cputime_add(p->gtime, cputime);
  3298. /* Add guest time to cpustat. */
  3299. if (TASK_NICE(p) > 0) {
  3300. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3301. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3302. } else {
  3303. cpustat->user = cputime64_add(cpustat->user, tmp);
  3304. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3305. }
  3306. }
  3307. /*
  3308. * Account system cpu time to a process and desired cpustat field
  3309. * @p: the process that the cpu time gets accounted to
  3310. * @cputime: the cpu time spent in kernel space since the last update
  3311. * @cputime_scaled: cputime scaled by cpu frequency
  3312. * @target_cputime64: pointer to cpustat field that has to be updated
  3313. */
  3314. static inline
  3315. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3316. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3317. {
  3318. cputime64_t tmp = cputime_to_cputime64(cputime);
  3319. /* Add system time to process. */
  3320. p->stime = cputime_add(p->stime, cputime);
  3321. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3322. account_group_system_time(p, cputime);
  3323. /* Add system time to cpustat. */
  3324. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3325. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3326. /* Account for system time used */
  3327. acct_update_integrals(p);
  3328. }
  3329. /*
  3330. * Account system cpu time to a process.
  3331. * @p: the process that the cpu time gets accounted to
  3332. * @hardirq_offset: the offset to subtract from hardirq_count()
  3333. * @cputime: the cpu time spent in kernel space since the last update
  3334. * @cputime_scaled: cputime scaled by cpu frequency
  3335. */
  3336. void account_system_time(struct task_struct *p, int hardirq_offset,
  3337. cputime_t cputime, cputime_t cputime_scaled)
  3338. {
  3339. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3340. cputime64_t *target_cputime64;
  3341. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3342. account_guest_time(p, cputime, cputime_scaled);
  3343. return;
  3344. }
  3345. if (hardirq_count() - hardirq_offset)
  3346. target_cputime64 = &cpustat->irq;
  3347. else if (in_serving_softirq())
  3348. target_cputime64 = &cpustat->softirq;
  3349. else
  3350. target_cputime64 = &cpustat->system;
  3351. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3352. }
  3353. /*
  3354. * Account for involuntary wait time.
  3355. * @cputime: the cpu time spent in involuntary wait
  3356. */
  3357. void account_steal_time(cputime_t cputime)
  3358. {
  3359. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3360. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3361. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3362. }
  3363. /*
  3364. * Account for idle time.
  3365. * @cputime: the cpu time spent in idle wait
  3366. */
  3367. void account_idle_time(cputime_t cputime)
  3368. {
  3369. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3370. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3371. struct rq *rq = this_rq();
  3372. if (atomic_read(&rq->nr_iowait) > 0)
  3373. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3374. else
  3375. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3376. }
  3377. static __always_inline bool steal_account_process_tick(void)
  3378. {
  3379. #ifdef CONFIG_PARAVIRT
  3380. if (static_branch(&paravirt_steal_enabled)) {
  3381. u64 steal, st = 0;
  3382. steal = paravirt_steal_clock(smp_processor_id());
  3383. steal -= this_rq()->prev_steal_time;
  3384. st = steal_ticks(steal);
  3385. this_rq()->prev_steal_time += st * TICK_NSEC;
  3386. account_steal_time(st);
  3387. return st;
  3388. }
  3389. #endif
  3390. return false;
  3391. }
  3392. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3393. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3394. /*
  3395. * Account a tick to a process and cpustat
  3396. * @p: the process that the cpu time gets accounted to
  3397. * @user_tick: is the tick from userspace
  3398. * @rq: the pointer to rq
  3399. *
  3400. * Tick demultiplexing follows the order
  3401. * - pending hardirq update
  3402. * - pending softirq update
  3403. * - user_time
  3404. * - idle_time
  3405. * - system time
  3406. * - check for guest_time
  3407. * - else account as system_time
  3408. *
  3409. * Check for hardirq is done both for system and user time as there is
  3410. * no timer going off while we are on hardirq and hence we may never get an
  3411. * opportunity to update it solely in system time.
  3412. * p->stime and friends are only updated on system time and not on irq
  3413. * softirq as those do not count in task exec_runtime any more.
  3414. */
  3415. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3416. struct rq *rq)
  3417. {
  3418. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3419. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3420. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3421. if (steal_account_process_tick())
  3422. return;
  3423. if (irqtime_account_hi_update()) {
  3424. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3425. } else if (irqtime_account_si_update()) {
  3426. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3427. } else if (this_cpu_ksoftirqd() == p) {
  3428. /*
  3429. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3430. * So, we have to handle it separately here.
  3431. * Also, p->stime needs to be updated for ksoftirqd.
  3432. */
  3433. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3434. &cpustat->softirq);
  3435. } else if (user_tick) {
  3436. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3437. } else if (p == rq->idle) {
  3438. account_idle_time(cputime_one_jiffy);
  3439. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3440. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3441. } else {
  3442. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3443. &cpustat->system);
  3444. }
  3445. }
  3446. static void irqtime_account_idle_ticks(int ticks)
  3447. {
  3448. int i;
  3449. struct rq *rq = this_rq();
  3450. for (i = 0; i < ticks; i++)
  3451. irqtime_account_process_tick(current, 0, rq);
  3452. }
  3453. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3454. static void irqtime_account_idle_ticks(int ticks) {}
  3455. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3456. struct rq *rq) {}
  3457. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3458. /*
  3459. * Account a single tick of cpu time.
  3460. * @p: the process that the cpu time gets accounted to
  3461. * @user_tick: indicates if the tick is a user or a system tick
  3462. */
  3463. void account_process_tick(struct task_struct *p, int user_tick)
  3464. {
  3465. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3466. struct rq *rq = this_rq();
  3467. if (sched_clock_irqtime) {
  3468. irqtime_account_process_tick(p, user_tick, rq);
  3469. return;
  3470. }
  3471. if (steal_account_process_tick())
  3472. return;
  3473. if (user_tick)
  3474. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3475. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3476. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3477. one_jiffy_scaled);
  3478. else
  3479. account_idle_time(cputime_one_jiffy);
  3480. }
  3481. /*
  3482. * Account multiple ticks of steal time.
  3483. * @p: the process from which the cpu time has been stolen
  3484. * @ticks: number of stolen ticks
  3485. */
  3486. void account_steal_ticks(unsigned long ticks)
  3487. {
  3488. account_steal_time(jiffies_to_cputime(ticks));
  3489. }
  3490. /*
  3491. * Account multiple ticks of idle time.
  3492. * @ticks: number of stolen ticks
  3493. */
  3494. void account_idle_ticks(unsigned long ticks)
  3495. {
  3496. if (sched_clock_irqtime) {
  3497. irqtime_account_idle_ticks(ticks);
  3498. return;
  3499. }
  3500. account_idle_time(jiffies_to_cputime(ticks));
  3501. }
  3502. #endif
  3503. /*
  3504. * Use precise platform statistics if available:
  3505. */
  3506. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3507. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3508. {
  3509. *ut = p->utime;
  3510. *st = p->stime;
  3511. }
  3512. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3513. {
  3514. struct task_cputime cputime;
  3515. thread_group_cputime(p, &cputime);
  3516. *ut = cputime.utime;
  3517. *st = cputime.stime;
  3518. }
  3519. #else
  3520. #ifndef nsecs_to_cputime
  3521. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3522. #endif
  3523. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3524. {
  3525. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3526. /*
  3527. * Use CFS's precise accounting:
  3528. */
  3529. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3530. if (total) {
  3531. u64 temp = rtime;
  3532. temp *= utime;
  3533. do_div(temp, total);
  3534. utime = (cputime_t)temp;
  3535. } else
  3536. utime = rtime;
  3537. /*
  3538. * Compare with previous values, to keep monotonicity:
  3539. */
  3540. p->prev_utime = max(p->prev_utime, utime);
  3541. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3542. *ut = p->prev_utime;
  3543. *st = p->prev_stime;
  3544. }
  3545. /*
  3546. * Must be called with siglock held.
  3547. */
  3548. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3549. {
  3550. struct signal_struct *sig = p->signal;
  3551. struct task_cputime cputime;
  3552. cputime_t rtime, utime, total;
  3553. thread_group_cputime(p, &cputime);
  3554. total = cputime_add(cputime.utime, cputime.stime);
  3555. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3556. if (total) {
  3557. u64 temp = rtime;
  3558. temp *= cputime.utime;
  3559. do_div(temp, total);
  3560. utime = (cputime_t)temp;
  3561. } else
  3562. utime = rtime;
  3563. sig->prev_utime = max(sig->prev_utime, utime);
  3564. sig->prev_stime = max(sig->prev_stime,
  3565. cputime_sub(rtime, sig->prev_utime));
  3566. *ut = sig->prev_utime;
  3567. *st = sig->prev_stime;
  3568. }
  3569. #endif
  3570. /*
  3571. * This function gets called by the timer code, with HZ frequency.
  3572. * We call it with interrupts disabled.
  3573. */
  3574. void scheduler_tick(void)
  3575. {
  3576. int cpu = smp_processor_id();
  3577. struct rq *rq = cpu_rq(cpu);
  3578. struct task_struct *curr = rq->curr;
  3579. sched_clock_tick();
  3580. raw_spin_lock(&rq->lock);
  3581. update_rq_clock(rq);
  3582. update_cpu_load_active(rq);
  3583. curr->sched_class->task_tick(rq, curr, 0);
  3584. raw_spin_unlock(&rq->lock);
  3585. perf_event_task_tick();
  3586. #ifdef CONFIG_SMP
  3587. rq->idle_at_tick = idle_cpu(cpu);
  3588. trigger_load_balance(rq, cpu);
  3589. #endif
  3590. }
  3591. notrace unsigned long get_parent_ip(unsigned long addr)
  3592. {
  3593. if (in_lock_functions(addr)) {
  3594. addr = CALLER_ADDR2;
  3595. if (in_lock_functions(addr))
  3596. addr = CALLER_ADDR3;
  3597. }
  3598. return addr;
  3599. }
  3600. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3601. defined(CONFIG_PREEMPT_TRACER))
  3602. void __kprobes add_preempt_count(int val)
  3603. {
  3604. #ifdef CONFIG_DEBUG_PREEMPT
  3605. /*
  3606. * Underflow?
  3607. */
  3608. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3609. return;
  3610. #endif
  3611. preempt_count() += val;
  3612. #ifdef CONFIG_DEBUG_PREEMPT
  3613. /*
  3614. * Spinlock count overflowing soon?
  3615. */
  3616. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3617. PREEMPT_MASK - 10);
  3618. #endif
  3619. if (preempt_count() == val)
  3620. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3621. }
  3622. EXPORT_SYMBOL(add_preempt_count);
  3623. void __kprobes sub_preempt_count(int val)
  3624. {
  3625. #ifdef CONFIG_DEBUG_PREEMPT
  3626. /*
  3627. * Underflow?
  3628. */
  3629. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3630. return;
  3631. /*
  3632. * Is the spinlock portion underflowing?
  3633. */
  3634. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3635. !(preempt_count() & PREEMPT_MASK)))
  3636. return;
  3637. #endif
  3638. if (preempt_count() == val)
  3639. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3640. preempt_count() -= val;
  3641. }
  3642. EXPORT_SYMBOL(sub_preempt_count);
  3643. #endif
  3644. /*
  3645. * Print scheduling while atomic bug:
  3646. */
  3647. static noinline void __schedule_bug(struct task_struct *prev)
  3648. {
  3649. struct pt_regs *regs = get_irq_regs();
  3650. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3651. prev->comm, prev->pid, preempt_count());
  3652. debug_show_held_locks(prev);
  3653. print_modules();
  3654. if (irqs_disabled())
  3655. print_irqtrace_events(prev);
  3656. if (regs)
  3657. show_regs(regs);
  3658. else
  3659. dump_stack();
  3660. }
  3661. /*
  3662. * Various schedule()-time debugging checks and statistics:
  3663. */
  3664. static inline void schedule_debug(struct task_struct *prev)
  3665. {
  3666. /*
  3667. * Test if we are atomic. Since do_exit() needs to call into
  3668. * schedule() atomically, we ignore that path for now.
  3669. * Otherwise, whine if we are scheduling when we should not be.
  3670. */
  3671. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3672. __schedule_bug(prev);
  3673. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3674. schedstat_inc(this_rq(), sched_count);
  3675. }
  3676. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3677. {
  3678. if (prev->on_rq || rq->skip_clock_update < 0)
  3679. update_rq_clock(rq);
  3680. prev->sched_class->put_prev_task(rq, prev);
  3681. }
  3682. /*
  3683. * Pick up the highest-prio task:
  3684. */
  3685. static inline struct task_struct *
  3686. pick_next_task(struct rq *rq)
  3687. {
  3688. const struct sched_class *class;
  3689. struct task_struct *p;
  3690. /*
  3691. * Optimization: we know that if all tasks are in
  3692. * the fair class we can call that function directly:
  3693. */
  3694. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  3695. p = fair_sched_class.pick_next_task(rq);
  3696. if (likely(p))
  3697. return p;
  3698. }
  3699. for_each_class(class) {
  3700. p = class->pick_next_task(rq);
  3701. if (p)
  3702. return p;
  3703. }
  3704. BUG(); /* the idle class will always have a runnable task */
  3705. }
  3706. /*
  3707. * schedule() is the main scheduler function.
  3708. */
  3709. asmlinkage void __sched schedule(void)
  3710. {
  3711. struct task_struct *prev, *next;
  3712. unsigned long *switch_count;
  3713. struct rq *rq;
  3714. int cpu;
  3715. need_resched:
  3716. preempt_disable();
  3717. cpu = smp_processor_id();
  3718. rq = cpu_rq(cpu);
  3719. rcu_note_context_switch(cpu);
  3720. prev = rq->curr;
  3721. schedule_debug(prev);
  3722. if (sched_feat(HRTICK))
  3723. hrtick_clear(rq);
  3724. raw_spin_lock_irq(&rq->lock);
  3725. switch_count = &prev->nivcsw;
  3726. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3727. if (unlikely(signal_pending_state(prev->state, prev))) {
  3728. prev->state = TASK_RUNNING;
  3729. } else {
  3730. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3731. prev->on_rq = 0;
  3732. /*
  3733. * If a worker went to sleep, notify and ask workqueue
  3734. * whether it wants to wake up a task to maintain
  3735. * concurrency.
  3736. */
  3737. if (prev->flags & PF_WQ_WORKER) {
  3738. struct task_struct *to_wakeup;
  3739. to_wakeup = wq_worker_sleeping(prev, cpu);
  3740. if (to_wakeup)
  3741. try_to_wake_up_local(to_wakeup);
  3742. }
  3743. /*
  3744. * If we are going to sleep and we have plugged IO
  3745. * queued, make sure to submit it to avoid deadlocks.
  3746. */
  3747. if (blk_needs_flush_plug(prev)) {
  3748. raw_spin_unlock(&rq->lock);
  3749. blk_schedule_flush_plug(prev);
  3750. raw_spin_lock(&rq->lock);
  3751. }
  3752. }
  3753. switch_count = &prev->nvcsw;
  3754. }
  3755. pre_schedule(rq, prev);
  3756. if (unlikely(!rq->nr_running))
  3757. idle_balance(cpu, rq);
  3758. put_prev_task(rq, prev);
  3759. next = pick_next_task(rq);
  3760. clear_tsk_need_resched(prev);
  3761. rq->skip_clock_update = 0;
  3762. if (likely(prev != next)) {
  3763. rq->nr_switches++;
  3764. rq->curr = next;
  3765. ++*switch_count;
  3766. context_switch(rq, prev, next); /* unlocks the rq */
  3767. /*
  3768. * The context switch have flipped the stack from under us
  3769. * and restored the local variables which were saved when
  3770. * this task called schedule() in the past. prev == current
  3771. * is still correct, but it can be moved to another cpu/rq.
  3772. */
  3773. cpu = smp_processor_id();
  3774. rq = cpu_rq(cpu);
  3775. } else
  3776. raw_spin_unlock_irq(&rq->lock);
  3777. post_schedule(rq);
  3778. preempt_enable_no_resched();
  3779. if (need_resched())
  3780. goto need_resched;
  3781. }
  3782. EXPORT_SYMBOL(schedule);
  3783. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3784. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3785. {
  3786. if (lock->owner != owner)
  3787. return false;
  3788. /*
  3789. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3790. * lock->owner still matches owner, if that fails, owner might
  3791. * point to free()d memory, if it still matches, the rcu_read_lock()
  3792. * ensures the memory stays valid.
  3793. */
  3794. barrier();
  3795. return owner->on_cpu;
  3796. }
  3797. /*
  3798. * Look out! "owner" is an entirely speculative pointer
  3799. * access and not reliable.
  3800. */
  3801. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3802. {
  3803. if (!sched_feat(OWNER_SPIN))
  3804. return 0;
  3805. rcu_read_lock();
  3806. while (owner_running(lock, owner)) {
  3807. if (need_resched())
  3808. break;
  3809. arch_mutex_cpu_relax();
  3810. }
  3811. rcu_read_unlock();
  3812. /*
  3813. * We break out the loop above on need_resched() and when the
  3814. * owner changed, which is a sign for heavy contention. Return
  3815. * success only when lock->owner is NULL.
  3816. */
  3817. return lock->owner == NULL;
  3818. }
  3819. #endif
  3820. #ifdef CONFIG_PREEMPT
  3821. /*
  3822. * this is the entry point to schedule() from in-kernel preemption
  3823. * off of preempt_enable. Kernel preemptions off return from interrupt
  3824. * occur there and call schedule directly.
  3825. */
  3826. asmlinkage void __sched notrace preempt_schedule(void)
  3827. {
  3828. struct thread_info *ti = current_thread_info();
  3829. /*
  3830. * If there is a non-zero preempt_count or interrupts are disabled,
  3831. * we do not want to preempt the current task. Just return..
  3832. */
  3833. if (likely(ti->preempt_count || irqs_disabled()))
  3834. return;
  3835. do {
  3836. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3837. schedule();
  3838. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3839. /*
  3840. * Check again in case we missed a preemption opportunity
  3841. * between schedule and now.
  3842. */
  3843. barrier();
  3844. } while (need_resched());
  3845. }
  3846. EXPORT_SYMBOL(preempt_schedule);
  3847. /*
  3848. * this is the entry point to schedule() from kernel preemption
  3849. * off of irq context.
  3850. * Note, that this is called and return with irqs disabled. This will
  3851. * protect us against recursive calling from irq.
  3852. */
  3853. asmlinkage void __sched preempt_schedule_irq(void)
  3854. {
  3855. struct thread_info *ti = current_thread_info();
  3856. /* Catch callers which need to be fixed */
  3857. BUG_ON(ti->preempt_count || !irqs_disabled());
  3858. do {
  3859. add_preempt_count(PREEMPT_ACTIVE);
  3860. local_irq_enable();
  3861. schedule();
  3862. local_irq_disable();
  3863. sub_preempt_count(PREEMPT_ACTIVE);
  3864. /*
  3865. * Check again in case we missed a preemption opportunity
  3866. * between schedule and now.
  3867. */
  3868. barrier();
  3869. } while (need_resched());
  3870. }
  3871. #endif /* CONFIG_PREEMPT */
  3872. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3873. void *key)
  3874. {
  3875. return try_to_wake_up(curr->private, mode, wake_flags);
  3876. }
  3877. EXPORT_SYMBOL(default_wake_function);
  3878. /*
  3879. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3880. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3881. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3882. *
  3883. * There are circumstances in which we can try to wake a task which has already
  3884. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3885. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3886. */
  3887. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3888. int nr_exclusive, int wake_flags, void *key)
  3889. {
  3890. wait_queue_t *curr, *next;
  3891. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3892. unsigned flags = curr->flags;
  3893. if (curr->func(curr, mode, wake_flags, key) &&
  3894. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3895. break;
  3896. }
  3897. }
  3898. /**
  3899. * __wake_up - wake up threads blocked on a waitqueue.
  3900. * @q: the waitqueue
  3901. * @mode: which threads
  3902. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3903. * @key: is directly passed to the wakeup function
  3904. *
  3905. * It may be assumed that this function implies a write memory barrier before
  3906. * changing the task state if and only if any tasks are woken up.
  3907. */
  3908. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3909. int nr_exclusive, void *key)
  3910. {
  3911. unsigned long flags;
  3912. spin_lock_irqsave(&q->lock, flags);
  3913. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3914. spin_unlock_irqrestore(&q->lock, flags);
  3915. }
  3916. EXPORT_SYMBOL(__wake_up);
  3917. /*
  3918. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3919. */
  3920. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3921. {
  3922. __wake_up_common(q, mode, 1, 0, NULL);
  3923. }
  3924. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3925. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3926. {
  3927. __wake_up_common(q, mode, 1, 0, key);
  3928. }
  3929. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3930. /**
  3931. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3932. * @q: the waitqueue
  3933. * @mode: which threads
  3934. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3935. * @key: opaque value to be passed to wakeup targets
  3936. *
  3937. * The sync wakeup differs that the waker knows that it will schedule
  3938. * away soon, so while the target thread will be woken up, it will not
  3939. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3940. * with each other. This can prevent needless bouncing between CPUs.
  3941. *
  3942. * On UP it can prevent extra preemption.
  3943. *
  3944. * It may be assumed that this function implies a write memory barrier before
  3945. * changing the task state if and only if any tasks are woken up.
  3946. */
  3947. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3948. int nr_exclusive, void *key)
  3949. {
  3950. unsigned long flags;
  3951. int wake_flags = WF_SYNC;
  3952. if (unlikely(!q))
  3953. return;
  3954. if (unlikely(!nr_exclusive))
  3955. wake_flags = 0;
  3956. spin_lock_irqsave(&q->lock, flags);
  3957. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3958. spin_unlock_irqrestore(&q->lock, flags);
  3959. }
  3960. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3961. /*
  3962. * __wake_up_sync - see __wake_up_sync_key()
  3963. */
  3964. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3965. {
  3966. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3967. }
  3968. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3969. /**
  3970. * complete: - signals a single thread waiting on this completion
  3971. * @x: holds the state of this particular completion
  3972. *
  3973. * This will wake up a single thread waiting on this completion. Threads will be
  3974. * awakened in the same order in which they were queued.
  3975. *
  3976. * See also complete_all(), wait_for_completion() and related routines.
  3977. *
  3978. * It may be assumed that this function implies a write memory barrier before
  3979. * changing the task state if and only if any tasks are woken up.
  3980. */
  3981. void complete(struct completion *x)
  3982. {
  3983. unsigned long flags;
  3984. spin_lock_irqsave(&x->wait.lock, flags);
  3985. x->done++;
  3986. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3987. spin_unlock_irqrestore(&x->wait.lock, flags);
  3988. }
  3989. EXPORT_SYMBOL(complete);
  3990. /**
  3991. * complete_all: - signals all threads waiting on this completion
  3992. * @x: holds the state of this particular completion
  3993. *
  3994. * This will wake up all threads waiting on this particular completion event.
  3995. *
  3996. * It may be assumed that this function implies a write memory barrier before
  3997. * changing the task state if and only if any tasks are woken up.
  3998. */
  3999. void complete_all(struct completion *x)
  4000. {
  4001. unsigned long flags;
  4002. spin_lock_irqsave(&x->wait.lock, flags);
  4003. x->done += UINT_MAX/2;
  4004. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4005. spin_unlock_irqrestore(&x->wait.lock, flags);
  4006. }
  4007. EXPORT_SYMBOL(complete_all);
  4008. static inline long __sched
  4009. do_wait_for_common(struct completion *x, long timeout, int state)
  4010. {
  4011. if (!x->done) {
  4012. DECLARE_WAITQUEUE(wait, current);
  4013. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  4014. do {
  4015. if (signal_pending_state(state, current)) {
  4016. timeout = -ERESTARTSYS;
  4017. break;
  4018. }
  4019. __set_current_state(state);
  4020. spin_unlock_irq(&x->wait.lock);
  4021. timeout = schedule_timeout(timeout);
  4022. spin_lock_irq(&x->wait.lock);
  4023. } while (!x->done && timeout);
  4024. __remove_wait_queue(&x->wait, &wait);
  4025. if (!x->done)
  4026. return timeout;
  4027. }
  4028. x->done--;
  4029. return timeout ?: 1;
  4030. }
  4031. static long __sched
  4032. wait_for_common(struct completion *x, long timeout, int state)
  4033. {
  4034. might_sleep();
  4035. spin_lock_irq(&x->wait.lock);
  4036. timeout = do_wait_for_common(x, timeout, state);
  4037. spin_unlock_irq(&x->wait.lock);
  4038. return timeout;
  4039. }
  4040. /**
  4041. * wait_for_completion: - waits for completion of a task
  4042. * @x: holds the state of this particular completion
  4043. *
  4044. * This waits to be signaled for completion of a specific task. It is NOT
  4045. * interruptible and there is no timeout.
  4046. *
  4047. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4048. * and interrupt capability. Also see complete().
  4049. */
  4050. void __sched wait_for_completion(struct completion *x)
  4051. {
  4052. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4053. }
  4054. EXPORT_SYMBOL(wait_for_completion);
  4055. /**
  4056. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4057. * @x: holds the state of this particular completion
  4058. * @timeout: timeout value in jiffies
  4059. *
  4060. * This waits for either a completion of a specific task to be signaled or for a
  4061. * specified timeout to expire. The timeout is in jiffies. It is not
  4062. * interruptible.
  4063. */
  4064. unsigned long __sched
  4065. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4066. {
  4067. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4068. }
  4069. EXPORT_SYMBOL(wait_for_completion_timeout);
  4070. /**
  4071. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4072. * @x: holds the state of this particular completion
  4073. *
  4074. * This waits for completion of a specific task to be signaled. It is
  4075. * interruptible.
  4076. */
  4077. int __sched wait_for_completion_interruptible(struct completion *x)
  4078. {
  4079. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4080. if (t == -ERESTARTSYS)
  4081. return t;
  4082. return 0;
  4083. }
  4084. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4085. /**
  4086. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4087. * @x: holds the state of this particular completion
  4088. * @timeout: timeout value in jiffies
  4089. *
  4090. * This waits for either a completion of a specific task to be signaled or for a
  4091. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4092. */
  4093. long __sched
  4094. wait_for_completion_interruptible_timeout(struct completion *x,
  4095. unsigned long timeout)
  4096. {
  4097. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4098. }
  4099. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4100. /**
  4101. * wait_for_completion_killable: - waits for completion of a task (killable)
  4102. * @x: holds the state of this particular completion
  4103. *
  4104. * This waits to be signaled for completion of a specific task. It can be
  4105. * interrupted by a kill signal.
  4106. */
  4107. int __sched wait_for_completion_killable(struct completion *x)
  4108. {
  4109. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4110. if (t == -ERESTARTSYS)
  4111. return t;
  4112. return 0;
  4113. }
  4114. EXPORT_SYMBOL(wait_for_completion_killable);
  4115. /**
  4116. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4117. * @x: holds the state of this particular completion
  4118. * @timeout: timeout value in jiffies
  4119. *
  4120. * This waits for either a completion of a specific task to be
  4121. * signaled or for a specified timeout to expire. It can be
  4122. * interrupted by a kill signal. The timeout is in jiffies.
  4123. */
  4124. long __sched
  4125. wait_for_completion_killable_timeout(struct completion *x,
  4126. unsigned long timeout)
  4127. {
  4128. return wait_for_common(x, timeout, TASK_KILLABLE);
  4129. }
  4130. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4131. /**
  4132. * try_wait_for_completion - try to decrement a completion without blocking
  4133. * @x: completion structure
  4134. *
  4135. * Returns: 0 if a decrement cannot be done without blocking
  4136. * 1 if a decrement succeeded.
  4137. *
  4138. * If a completion is being used as a counting completion,
  4139. * attempt to decrement the counter without blocking. This
  4140. * enables us to avoid waiting if the resource the completion
  4141. * is protecting is not available.
  4142. */
  4143. bool try_wait_for_completion(struct completion *x)
  4144. {
  4145. unsigned long flags;
  4146. int ret = 1;
  4147. spin_lock_irqsave(&x->wait.lock, flags);
  4148. if (!x->done)
  4149. ret = 0;
  4150. else
  4151. x->done--;
  4152. spin_unlock_irqrestore(&x->wait.lock, flags);
  4153. return ret;
  4154. }
  4155. EXPORT_SYMBOL(try_wait_for_completion);
  4156. /**
  4157. * completion_done - Test to see if a completion has any waiters
  4158. * @x: completion structure
  4159. *
  4160. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4161. * 1 if there are no waiters.
  4162. *
  4163. */
  4164. bool completion_done(struct completion *x)
  4165. {
  4166. unsigned long flags;
  4167. int ret = 1;
  4168. spin_lock_irqsave(&x->wait.lock, flags);
  4169. if (!x->done)
  4170. ret = 0;
  4171. spin_unlock_irqrestore(&x->wait.lock, flags);
  4172. return ret;
  4173. }
  4174. EXPORT_SYMBOL(completion_done);
  4175. static long __sched
  4176. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4177. {
  4178. unsigned long flags;
  4179. wait_queue_t wait;
  4180. init_waitqueue_entry(&wait, current);
  4181. __set_current_state(state);
  4182. spin_lock_irqsave(&q->lock, flags);
  4183. __add_wait_queue(q, &wait);
  4184. spin_unlock(&q->lock);
  4185. timeout = schedule_timeout(timeout);
  4186. spin_lock_irq(&q->lock);
  4187. __remove_wait_queue(q, &wait);
  4188. spin_unlock_irqrestore(&q->lock, flags);
  4189. return timeout;
  4190. }
  4191. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4192. {
  4193. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4194. }
  4195. EXPORT_SYMBOL(interruptible_sleep_on);
  4196. long __sched
  4197. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4198. {
  4199. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4200. }
  4201. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4202. void __sched sleep_on(wait_queue_head_t *q)
  4203. {
  4204. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4205. }
  4206. EXPORT_SYMBOL(sleep_on);
  4207. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4208. {
  4209. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4210. }
  4211. EXPORT_SYMBOL(sleep_on_timeout);
  4212. #ifdef CONFIG_RT_MUTEXES
  4213. /*
  4214. * rt_mutex_setprio - set the current priority of a task
  4215. * @p: task
  4216. * @prio: prio value (kernel-internal form)
  4217. *
  4218. * This function changes the 'effective' priority of a task. It does
  4219. * not touch ->normal_prio like __setscheduler().
  4220. *
  4221. * Used by the rt_mutex code to implement priority inheritance logic.
  4222. */
  4223. void rt_mutex_setprio(struct task_struct *p, int prio)
  4224. {
  4225. int oldprio, on_rq, running;
  4226. struct rq *rq;
  4227. const struct sched_class *prev_class;
  4228. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4229. rq = __task_rq_lock(p);
  4230. trace_sched_pi_setprio(p, prio);
  4231. oldprio = p->prio;
  4232. prev_class = p->sched_class;
  4233. on_rq = p->on_rq;
  4234. running = task_current(rq, p);
  4235. if (on_rq)
  4236. dequeue_task(rq, p, 0);
  4237. if (running)
  4238. p->sched_class->put_prev_task(rq, p);
  4239. if (rt_prio(prio))
  4240. p->sched_class = &rt_sched_class;
  4241. else
  4242. p->sched_class = &fair_sched_class;
  4243. p->prio = prio;
  4244. if (running)
  4245. p->sched_class->set_curr_task(rq);
  4246. if (on_rq)
  4247. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4248. check_class_changed(rq, p, prev_class, oldprio);
  4249. __task_rq_unlock(rq);
  4250. }
  4251. #endif
  4252. void set_user_nice(struct task_struct *p, long nice)
  4253. {
  4254. int old_prio, delta, on_rq;
  4255. unsigned long flags;
  4256. struct rq *rq;
  4257. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4258. return;
  4259. /*
  4260. * We have to be careful, if called from sys_setpriority(),
  4261. * the task might be in the middle of scheduling on another CPU.
  4262. */
  4263. rq = task_rq_lock(p, &flags);
  4264. /*
  4265. * The RT priorities are set via sched_setscheduler(), but we still
  4266. * allow the 'normal' nice value to be set - but as expected
  4267. * it wont have any effect on scheduling until the task is
  4268. * SCHED_FIFO/SCHED_RR:
  4269. */
  4270. if (task_has_rt_policy(p)) {
  4271. p->static_prio = NICE_TO_PRIO(nice);
  4272. goto out_unlock;
  4273. }
  4274. on_rq = p->on_rq;
  4275. if (on_rq)
  4276. dequeue_task(rq, p, 0);
  4277. p->static_prio = NICE_TO_PRIO(nice);
  4278. set_load_weight(p);
  4279. old_prio = p->prio;
  4280. p->prio = effective_prio(p);
  4281. delta = p->prio - old_prio;
  4282. if (on_rq) {
  4283. enqueue_task(rq, p, 0);
  4284. /*
  4285. * If the task increased its priority or is running and
  4286. * lowered its priority, then reschedule its CPU:
  4287. */
  4288. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4289. resched_task(rq->curr);
  4290. }
  4291. out_unlock:
  4292. task_rq_unlock(rq, p, &flags);
  4293. }
  4294. EXPORT_SYMBOL(set_user_nice);
  4295. /*
  4296. * can_nice - check if a task can reduce its nice value
  4297. * @p: task
  4298. * @nice: nice value
  4299. */
  4300. int can_nice(const struct task_struct *p, const int nice)
  4301. {
  4302. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4303. int nice_rlim = 20 - nice;
  4304. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4305. capable(CAP_SYS_NICE));
  4306. }
  4307. #ifdef __ARCH_WANT_SYS_NICE
  4308. /*
  4309. * sys_nice - change the priority of the current process.
  4310. * @increment: priority increment
  4311. *
  4312. * sys_setpriority is a more generic, but much slower function that
  4313. * does similar things.
  4314. */
  4315. SYSCALL_DEFINE1(nice, int, increment)
  4316. {
  4317. long nice, retval;
  4318. /*
  4319. * Setpriority might change our priority at the same moment.
  4320. * We don't have to worry. Conceptually one call occurs first
  4321. * and we have a single winner.
  4322. */
  4323. if (increment < -40)
  4324. increment = -40;
  4325. if (increment > 40)
  4326. increment = 40;
  4327. nice = TASK_NICE(current) + increment;
  4328. if (nice < -20)
  4329. nice = -20;
  4330. if (nice > 19)
  4331. nice = 19;
  4332. if (increment < 0 && !can_nice(current, nice))
  4333. return -EPERM;
  4334. retval = security_task_setnice(current, nice);
  4335. if (retval)
  4336. return retval;
  4337. set_user_nice(current, nice);
  4338. return 0;
  4339. }
  4340. #endif
  4341. /**
  4342. * task_prio - return the priority value of a given task.
  4343. * @p: the task in question.
  4344. *
  4345. * This is the priority value as seen by users in /proc.
  4346. * RT tasks are offset by -200. Normal tasks are centered
  4347. * around 0, value goes from -16 to +15.
  4348. */
  4349. int task_prio(const struct task_struct *p)
  4350. {
  4351. return p->prio - MAX_RT_PRIO;
  4352. }
  4353. /**
  4354. * task_nice - return the nice value of a given task.
  4355. * @p: the task in question.
  4356. */
  4357. int task_nice(const struct task_struct *p)
  4358. {
  4359. return TASK_NICE(p);
  4360. }
  4361. EXPORT_SYMBOL(task_nice);
  4362. /**
  4363. * idle_cpu - is a given cpu idle currently?
  4364. * @cpu: the processor in question.
  4365. */
  4366. int idle_cpu(int cpu)
  4367. {
  4368. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4369. }
  4370. /**
  4371. * idle_task - return the idle task for a given cpu.
  4372. * @cpu: the processor in question.
  4373. */
  4374. struct task_struct *idle_task(int cpu)
  4375. {
  4376. return cpu_rq(cpu)->idle;
  4377. }
  4378. /**
  4379. * find_process_by_pid - find a process with a matching PID value.
  4380. * @pid: the pid in question.
  4381. */
  4382. static struct task_struct *find_process_by_pid(pid_t pid)
  4383. {
  4384. return pid ? find_task_by_vpid(pid) : current;
  4385. }
  4386. /* Actually do priority change: must hold rq lock. */
  4387. static void
  4388. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4389. {
  4390. p->policy = policy;
  4391. p->rt_priority = prio;
  4392. p->normal_prio = normal_prio(p);
  4393. /* we are holding p->pi_lock already */
  4394. p->prio = rt_mutex_getprio(p);
  4395. if (rt_prio(p->prio))
  4396. p->sched_class = &rt_sched_class;
  4397. else
  4398. p->sched_class = &fair_sched_class;
  4399. set_load_weight(p);
  4400. }
  4401. /*
  4402. * check the target process has a UID that matches the current process's
  4403. */
  4404. static bool check_same_owner(struct task_struct *p)
  4405. {
  4406. const struct cred *cred = current_cred(), *pcred;
  4407. bool match;
  4408. rcu_read_lock();
  4409. pcred = __task_cred(p);
  4410. if (cred->user->user_ns == pcred->user->user_ns)
  4411. match = (cred->euid == pcred->euid ||
  4412. cred->euid == pcred->uid);
  4413. else
  4414. match = false;
  4415. rcu_read_unlock();
  4416. return match;
  4417. }
  4418. static int __sched_setscheduler(struct task_struct *p, int policy,
  4419. const struct sched_param *param, bool user)
  4420. {
  4421. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4422. unsigned long flags;
  4423. const struct sched_class *prev_class;
  4424. struct rq *rq;
  4425. int reset_on_fork;
  4426. /* may grab non-irq protected spin_locks */
  4427. BUG_ON(in_interrupt());
  4428. recheck:
  4429. /* double check policy once rq lock held */
  4430. if (policy < 0) {
  4431. reset_on_fork = p->sched_reset_on_fork;
  4432. policy = oldpolicy = p->policy;
  4433. } else {
  4434. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4435. policy &= ~SCHED_RESET_ON_FORK;
  4436. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4437. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4438. policy != SCHED_IDLE)
  4439. return -EINVAL;
  4440. }
  4441. /*
  4442. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4443. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4444. * SCHED_BATCH and SCHED_IDLE is 0.
  4445. */
  4446. if (param->sched_priority < 0 ||
  4447. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4448. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4449. return -EINVAL;
  4450. if (rt_policy(policy) != (param->sched_priority != 0))
  4451. return -EINVAL;
  4452. /*
  4453. * Allow unprivileged RT tasks to decrease priority:
  4454. */
  4455. if (user && !capable(CAP_SYS_NICE)) {
  4456. if (rt_policy(policy)) {
  4457. unsigned long rlim_rtprio =
  4458. task_rlimit(p, RLIMIT_RTPRIO);
  4459. /* can't set/change the rt policy */
  4460. if (policy != p->policy && !rlim_rtprio)
  4461. return -EPERM;
  4462. /* can't increase priority */
  4463. if (param->sched_priority > p->rt_priority &&
  4464. param->sched_priority > rlim_rtprio)
  4465. return -EPERM;
  4466. }
  4467. /*
  4468. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4469. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4470. */
  4471. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4472. if (!can_nice(p, TASK_NICE(p)))
  4473. return -EPERM;
  4474. }
  4475. /* can't change other user's priorities */
  4476. if (!check_same_owner(p))
  4477. return -EPERM;
  4478. /* Normal users shall not reset the sched_reset_on_fork flag */
  4479. if (p->sched_reset_on_fork && !reset_on_fork)
  4480. return -EPERM;
  4481. }
  4482. if (user) {
  4483. retval = security_task_setscheduler(p);
  4484. if (retval)
  4485. return retval;
  4486. }
  4487. /*
  4488. * make sure no PI-waiters arrive (or leave) while we are
  4489. * changing the priority of the task:
  4490. *
  4491. * To be able to change p->policy safely, the appropriate
  4492. * runqueue lock must be held.
  4493. */
  4494. rq = task_rq_lock(p, &flags);
  4495. /*
  4496. * Changing the policy of the stop threads its a very bad idea
  4497. */
  4498. if (p == rq->stop) {
  4499. task_rq_unlock(rq, p, &flags);
  4500. return -EINVAL;
  4501. }
  4502. /*
  4503. * If not changing anything there's no need to proceed further:
  4504. */
  4505. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4506. param->sched_priority == p->rt_priority))) {
  4507. __task_rq_unlock(rq);
  4508. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4509. return 0;
  4510. }
  4511. #ifdef CONFIG_RT_GROUP_SCHED
  4512. if (user) {
  4513. /*
  4514. * Do not allow realtime tasks into groups that have no runtime
  4515. * assigned.
  4516. */
  4517. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4518. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4519. !task_group_is_autogroup(task_group(p))) {
  4520. task_rq_unlock(rq, p, &flags);
  4521. return -EPERM;
  4522. }
  4523. }
  4524. #endif
  4525. /* recheck policy now with rq lock held */
  4526. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4527. policy = oldpolicy = -1;
  4528. task_rq_unlock(rq, p, &flags);
  4529. goto recheck;
  4530. }
  4531. on_rq = p->on_rq;
  4532. running = task_current(rq, p);
  4533. if (on_rq)
  4534. deactivate_task(rq, p, 0);
  4535. if (running)
  4536. p->sched_class->put_prev_task(rq, p);
  4537. p->sched_reset_on_fork = reset_on_fork;
  4538. oldprio = p->prio;
  4539. prev_class = p->sched_class;
  4540. __setscheduler(rq, p, policy, param->sched_priority);
  4541. if (running)
  4542. p->sched_class->set_curr_task(rq);
  4543. if (on_rq)
  4544. activate_task(rq, p, 0);
  4545. check_class_changed(rq, p, prev_class, oldprio);
  4546. task_rq_unlock(rq, p, &flags);
  4547. rt_mutex_adjust_pi(p);
  4548. return 0;
  4549. }
  4550. /**
  4551. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4552. * @p: the task in question.
  4553. * @policy: new policy.
  4554. * @param: structure containing the new RT priority.
  4555. *
  4556. * NOTE that the task may be already dead.
  4557. */
  4558. int sched_setscheduler(struct task_struct *p, int policy,
  4559. const struct sched_param *param)
  4560. {
  4561. return __sched_setscheduler(p, policy, param, true);
  4562. }
  4563. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4564. /**
  4565. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4566. * @p: the task in question.
  4567. * @policy: new policy.
  4568. * @param: structure containing the new RT priority.
  4569. *
  4570. * Just like sched_setscheduler, only don't bother checking if the
  4571. * current context has permission. For example, this is needed in
  4572. * stop_machine(): we create temporary high priority worker threads,
  4573. * but our caller might not have that capability.
  4574. */
  4575. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4576. const struct sched_param *param)
  4577. {
  4578. return __sched_setscheduler(p, policy, param, false);
  4579. }
  4580. static int
  4581. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4582. {
  4583. struct sched_param lparam;
  4584. struct task_struct *p;
  4585. int retval;
  4586. if (!param || pid < 0)
  4587. return -EINVAL;
  4588. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4589. return -EFAULT;
  4590. rcu_read_lock();
  4591. retval = -ESRCH;
  4592. p = find_process_by_pid(pid);
  4593. if (p != NULL)
  4594. retval = sched_setscheduler(p, policy, &lparam);
  4595. rcu_read_unlock();
  4596. return retval;
  4597. }
  4598. /**
  4599. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4600. * @pid: the pid in question.
  4601. * @policy: new policy.
  4602. * @param: structure containing the new RT priority.
  4603. */
  4604. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4605. struct sched_param __user *, param)
  4606. {
  4607. /* negative values for policy are not valid */
  4608. if (policy < 0)
  4609. return -EINVAL;
  4610. return do_sched_setscheduler(pid, policy, param);
  4611. }
  4612. /**
  4613. * sys_sched_setparam - set/change the RT priority of a thread
  4614. * @pid: the pid in question.
  4615. * @param: structure containing the new RT priority.
  4616. */
  4617. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4618. {
  4619. return do_sched_setscheduler(pid, -1, param);
  4620. }
  4621. /**
  4622. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4623. * @pid: the pid in question.
  4624. */
  4625. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4626. {
  4627. struct task_struct *p;
  4628. int retval;
  4629. if (pid < 0)
  4630. return -EINVAL;
  4631. retval = -ESRCH;
  4632. rcu_read_lock();
  4633. p = find_process_by_pid(pid);
  4634. if (p) {
  4635. retval = security_task_getscheduler(p);
  4636. if (!retval)
  4637. retval = p->policy
  4638. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4639. }
  4640. rcu_read_unlock();
  4641. return retval;
  4642. }
  4643. /**
  4644. * sys_sched_getparam - get the RT priority of a thread
  4645. * @pid: the pid in question.
  4646. * @param: structure containing the RT priority.
  4647. */
  4648. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4649. {
  4650. struct sched_param lp;
  4651. struct task_struct *p;
  4652. int retval;
  4653. if (!param || pid < 0)
  4654. return -EINVAL;
  4655. rcu_read_lock();
  4656. p = find_process_by_pid(pid);
  4657. retval = -ESRCH;
  4658. if (!p)
  4659. goto out_unlock;
  4660. retval = security_task_getscheduler(p);
  4661. if (retval)
  4662. goto out_unlock;
  4663. lp.sched_priority = p->rt_priority;
  4664. rcu_read_unlock();
  4665. /*
  4666. * This one might sleep, we cannot do it with a spinlock held ...
  4667. */
  4668. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4669. return retval;
  4670. out_unlock:
  4671. rcu_read_unlock();
  4672. return retval;
  4673. }
  4674. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4675. {
  4676. cpumask_var_t cpus_allowed, new_mask;
  4677. struct task_struct *p;
  4678. int retval;
  4679. get_online_cpus();
  4680. rcu_read_lock();
  4681. p = find_process_by_pid(pid);
  4682. if (!p) {
  4683. rcu_read_unlock();
  4684. put_online_cpus();
  4685. return -ESRCH;
  4686. }
  4687. /* Prevent p going away */
  4688. get_task_struct(p);
  4689. rcu_read_unlock();
  4690. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4691. retval = -ENOMEM;
  4692. goto out_put_task;
  4693. }
  4694. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4695. retval = -ENOMEM;
  4696. goto out_free_cpus_allowed;
  4697. }
  4698. retval = -EPERM;
  4699. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4700. goto out_unlock;
  4701. retval = security_task_setscheduler(p);
  4702. if (retval)
  4703. goto out_unlock;
  4704. cpuset_cpus_allowed(p, cpus_allowed);
  4705. cpumask_and(new_mask, in_mask, cpus_allowed);
  4706. again:
  4707. retval = set_cpus_allowed_ptr(p, new_mask);
  4708. if (!retval) {
  4709. cpuset_cpus_allowed(p, cpus_allowed);
  4710. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4711. /*
  4712. * We must have raced with a concurrent cpuset
  4713. * update. Just reset the cpus_allowed to the
  4714. * cpuset's cpus_allowed
  4715. */
  4716. cpumask_copy(new_mask, cpus_allowed);
  4717. goto again;
  4718. }
  4719. }
  4720. out_unlock:
  4721. free_cpumask_var(new_mask);
  4722. out_free_cpus_allowed:
  4723. free_cpumask_var(cpus_allowed);
  4724. out_put_task:
  4725. put_task_struct(p);
  4726. put_online_cpus();
  4727. return retval;
  4728. }
  4729. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4730. struct cpumask *new_mask)
  4731. {
  4732. if (len < cpumask_size())
  4733. cpumask_clear(new_mask);
  4734. else if (len > cpumask_size())
  4735. len = cpumask_size();
  4736. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4737. }
  4738. /**
  4739. * sys_sched_setaffinity - set the cpu affinity of a process
  4740. * @pid: pid of the process
  4741. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4742. * @user_mask_ptr: user-space pointer to the new cpu mask
  4743. */
  4744. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4745. unsigned long __user *, user_mask_ptr)
  4746. {
  4747. cpumask_var_t new_mask;
  4748. int retval;
  4749. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4750. return -ENOMEM;
  4751. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4752. if (retval == 0)
  4753. retval = sched_setaffinity(pid, new_mask);
  4754. free_cpumask_var(new_mask);
  4755. return retval;
  4756. }
  4757. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4758. {
  4759. struct task_struct *p;
  4760. unsigned long flags;
  4761. int retval;
  4762. get_online_cpus();
  4763. rcu_read_lock();
  4764. retval = -ESRCH;
  4765. p = find_process_by_pid(pid);
  4766. if (!p)
  4767. goto out_unlock;
  4768. retval = security_task_getscheduler(p);
  4769. if (retval)
  4770. goto out_unlock;
  4771. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4772. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4773. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4774. out_unlock:
  4775. rcu_read_unlock();
  4776. put_online_cpus();
  4777. return retval;
  4778. }
  4779. /**
  4780. * sys_sched_getaffinity - get the cpu affinity of a process
  4781. * @pid: pid of the process
  4782. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4783. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4784. */
  4785. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4786. unsigned long __user *, user_mask_ptr)
  4787. {
  4788. int ret;
  4789. cpumask_var_t mask;
  4790. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4791. return -EINVAL;
  4792. if (len & (sizeof(unsigned long)-1))
  4793. return -EINVAL;
  4794. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4795. return -ENOMEM;
  4796. ret = sched_getaffinity(pid, mask);
  4797. if (ret == 0) {
  4798. size_t retlen = min_t(size_t, len, cpumask_size());
  4799. if (copy_to_user(user_mask_ptr, mask, retlen))
  4800. ret = -EFAULT;
  4801. else
  4802. ret = retlen;
  4803. }
  4804. free_cpumask_var(mask);
  4805. return ret;
  4806. }
  4807. /**
  4808. * sys_sched_yield - yield the current processor to other threads.
  4809. *
  4810. * This function yields the current CPU to other tasks. If there are no
  4811. * other threads running on this CPU then this function will return.
  4812. */
  4813. SYSCALL_DEFINE0(sched_yield)
  4814. {
  4815. struct rq *rq = this_rq_lock();
  4816. schedstat_inc(rq, yld_count);
  4817. current->sched_class->yield_task(rq);
  4818. /*
  4819. * Since we are going to call schedule() anyway, there's
  4820. * no need to preempt or enable interrupts:
  4821. */
  4822. __release(rq->lock);
  4823. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4824. do_raw_spin_unlock(&rq->lock);
  4825. preempt_enable_no_resched();
  4826. schedule();
  4827. return 0;
  4828. }
  4829. static inline int should_resched(void)
  4830. {
  4831. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4832. }
  4833. static void __cond_resched(void)
  4834. {
  4835. add_preempt_count(PREEMPT_ACTIVE);
  4836. schedule();
  4837. sub_preempt_count(PREEMPT_ACTIVE);
  4838. }
  4839. int __sched _cond_resched(void)
  4840. {
  4841. if (should_resched()) {
  4842. __cond_resched();
  4843. return 1;
  4844. }
  4845. return 0;
  4846. }
  4847. EXPORT_SYMBOL(_cond_resched);
  4848. /*
  4849. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4850. * call schedule, and on return reacquire the lock.
  4851. *
  4852. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4853. * operations here to prevent schedule() from being called twice (once via
  4854. * spin_unlock(), once by hand).
  4855. */
  4856. int __cond_resched_lock(spinlock_t *lock)
  4857. {
  4858. int resched = should_resched();
  4859. int ret = 0;
  4860. lockdep_assert_held(lock);
  4861. if (spin_needbreak(lock) || resched) {
  4862. spin_unlock(lock);
  4863. if (resched)
  4864. __cond_resched();
  4865. else
  4866. cpu_relax();
  4867. ret = 1;
  4868. spin_lock(lock);
  4869. }
  4870. return ret;
  4871. }
  4872. EXPORT_SYMBOL(__cond_resched_lock);
  4873. int __sched __cond_resched_softirq(void)
  4874. {
  4875. BUG_ON(!in_softirq());
  4876. if (should_resched()) {
  4877. local_bh_enable();
  4878. __cond_resched();
  4879. local_bh_disable();
  4880. return 1;
  4881. }
  4882. return 0;
  4883. }
  4884. EXPORT_SYMBOL(__cond_resched_softirq);
  4885. /**
  4886. * yield - yield the current processor to other threads.
  4887. *
  4888. * This is a shortcut for kernel-space yielding - it marks the
  4889. * thread runnable and calls sys_sched_yield().
  4890. */
  4891. void __sched yield(void)
  4892. {
  4893. set_current_state(TASK_RUNNING);
  4894. sys_sched_yield();
  4895. }
  4896. EXPORT_SYMBOL(yield);
  4897. /**
  4898. * yield_to - yield the current processor to another thread in
  4899. * your thread group, or accelerate that thread toward the
  4900. * processor it's on.
  4901. * @p: target task
  4902. * @preempt: whether task preemption is allowed or not
  4903. *
  4904. * It's the caller's job to ensure that the target task struct
  4905. * can't go away on us before we can do any checks.
  4906. *
  4907. * Returns true if we indeed boosted the target task.
  4908. */
  4909. bool __sched yield_to(struct task_struct *p, bool preempt)
  4910. {
  4911. struct task_struct *curr = current;
  4912. struct rq *rq, *p_rq;
  4913. unsigned long flags;
  4914. bool yielded = 0;
  4915. local_irq_save(flags);
  4916. rq = this_rq();
  4917. again:
  4918. p_rq = task_rq(p);
  4919. double_rq_lock(rq, p_rq);
  4920. while (task_rq(p) != p_rq) {
  4921. double_rq_unlock(rq, p_rq);
  4922. goto again;
  4923. }
  4924. if (!curr->sched_class->yield_to_task)
  4925. goto out;
  4926. if (curr->sched_class != p->sched_class)
  4927. goto out;
  4928. if (task_running(p_rq, p) || p->state)
  4929. goto out;
  4930. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4931. if (yielded) {
  4932. schedstat_inc(rq, yld_count);
  4933. /*
  4934. * Make p's CPU reschedule; pick_next_entity takes care of
  4935. * fairness.
  4936. */
  4937. if (preempt && rq != p_rq)
  4938. resched_task(p_rq->curr);
  4939. }
  4940. out:
  4941. double_rq_unlock(rq, p_rq);
  4942. local_irq_restore(flags);
  4943. if (yielded)
  4944. schedule();
  4945. return yielded;
  4946. }
  4947. EXPORT_SYMBOL_GPL(yield_to);
  4948. /*
  4949. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4950. * that process accounting knows that this is a task in IO wait state.
  4951. */
  4952. void __sched io_schedule(void)
  4953. {
  4954. struct rq *rq = raw_rq();
  4955. delayacct_blkio_start();
  4956. atomic_inc(&rq->nr_iowait);
  4957. blk_flush_plug(current);
  4958. current->in_iowait = 1;
  4959. schedule();
  4960. current->in_iowait = 0;
  4961. atomic_dec(&rq->nr_iowait);
  4962. delayacct_blkio_end();
  4963. }
  4964. EXPORT_SYMBOL(io_schedule);
  4965. long __sched io_schedule_timeout(long timeout)
  4966. {
  4967. struct rq *rq = raw_rq();
  4968. long ret;
  4969. delayacct_blkio_start();
  4970. atomic_inc(&rq->nr_iowait);
  4971. blk_flush_plug(current);
  4972. current->in_iowait = 1;
  4973. ret = schedule_timeout(timeout);
  4974. current->in_iowait = 0;
  4975. atomic_dec(&rq->nr_iowait);
  4976. delayacct_blkio_end();
  4977. return ret;
  4978. }
  4979. /**
  4980. * sys_sched_get_priority_max - return maximum RT priority.
  4981. * @policy: scheduling class.
  4982. *
  4983. * this syscall returns the maximum rt_priority that can be used
  4984. * by a given scheduling class.
  4985. */
  4986. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4987. {
  4988. int ret = -EINVAL;
  4989. switch (policy) {
  4990. case SCHED_FIFO:
  4991. case SCHED_RR:
  4992. ret = MAX_USER_RT_PRIO-1;
  4993. break;
  4994. case SCHED_NORMAL:
  4995. case SCHED_BATCH:
  4996. case SCHED_IDLE:
  4997. ret = 0;
  4998. break;
  4999. }
  5000. return ret;
  5001. }
  5002. /**
  5003. * sys_sched_get_priority_min - return minimum RT priority.
  5004. * @policy: scheduling class.
  5005. *
  5006. * this syscall returns the minimum rt_priority that can be used
  5007. * by a given scheduling class.
  5008. */
  5009. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5010. {
  5011. int ret = -EINVAL;
  5012. switch (policy) {
  5013. case SCHED_FIFO:
  5014. case SCHED_RR:
  5015. ret = 1;
  5016. break;
  5017. case SCHED_NORMAL:
  5018. case SCHED_BATCH:
  5019. case SCHED_IDLE:
  5020. ret = 0;
  5021. }
  5022. return ret;
  5023. }
  5024. /**
  5025. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5026. * @pid: pid of the process.
  5027. * @interval: userspace pointer to the timeslice value.
  5028. *
  5029. * this syscall writes the default timeslice value of a given process
  5030. * into the user-space timespec buffer. A value of '0' means infinity.
  5031. */
  5032. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5033. struct timespec __user *, interval)
  5034. {
  5035. struct task_struct *p;
  5036. unsigned int time_slice;
  5037. unsigned long flags;
  5038. struct rq *rq;
  5039. int retval;
  5040. struct timespec t;
  5041. if (pid < 0)
  5042. return -EINVAL;
  5043. retval = -ESRCH;
  5044. rcu_read_lock();
  5045. p = find_process_by_pid(pid);
  5046. if (!p)
  5047. goto out_unlock;
  5048. retval = security_task_getscheduler(p);
  5049. if (retval)
  5050. goto out_unlock;
  5051. rq = task_rq_lock(p, &flags);
  5052. time_slice = p->sched_class->get_rr_interval(rq, p);
  5053. task_rq_unlock(rq, p, &flags);
  5054. rcu_read_unlock();
  5055. jiffies_to_timespec(time_slice, &t);
  5056. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5057. return retval;
  5058. out_unlock:
  5059. rcu_read_unlock();
  5060. return retval;
  5061. }
  5062. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5063. void sched_show_task(struct task_struct *p)
  5064. {
  5065. unsigned long free = 0;
  5066. unsigned state;
  5067. state = p->state ? __ffs(p->state) + 1 : 0;
  5068. printk(KERN_INFO "%-15.15s %c", p->comm,
  5069. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5070. #if BITS_PER_LONG == 32
  5071. if (state == TASK_RUNNING)
  5072. printk(KERN_CONT " running ");
  5073. else
  5074. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5075. #else
  5076. if (state == TASK_RUNNING)
  5077. printk(KERN_CONT " running task ");
  5078. else
  5079. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5080. #endif
  5081. #ifdef CONFIG_DEBUG_STACK_USAGE
  5082. free = stack_not_used(p);
  5083. #endif
  5084. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5085. task_pid_nr(p), task_pid_nr(p->real_parent),
  5086. (unsigned long)task_thread_info(p)->flags);
  5087. show_stack(p, NULL);
  5088. }
  5089. void show_state_filter(unsigned long state_filter)
  5090. {
  5091. struct task_struct *g, *p;
  5092. #if BITS_PER_LONG == 32
  5093. printk(KERN_INFO
  5094. " task PC stack pid father\n");
  5095. #else
  5096. printk(KERN_INFO
  5097. " task PC stack pid father\n");
  5098. #endif
  5099. read_lock(&tasklist_lock);
  5100. do_each_thread(g, p) {
  5101. /*
  5102. * reset the NMI-timeout, listing all files on a slow
  5103. * console might take a lot of time:
  5104. */
  5105. touch_nmi_watchdog();
  5106. if (!state_filter || (p->state & state_filter))
  5107. sched_show_task(p);
  5108. } while_each_thread(g, p);
  5109. touch_all_softlockup_watchdogs();
  5110. #ifdef CONFIG_SCHED_DEBUG
  5111. sysrq_sched_debug_show();
  5112. #endif
  5113. read_unlock(&tasklist_lock);
  5114. /*
  5115. * Only show locks if all tasks are dumped:
  5116. */
  5117. if (!state_filter)
  5118. debug_show_all_locks();
  5119. }
  5120. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5121. {
  5122. idle->sched_class = &idle_sched_class;
  5123. }
  5124. /**
  5125. * init_idle - set up an idle thread for a given CPU
  5126. * @idle: task in question
  5127. * @cpu: cpu the idle task belongs to
  5128. *
  5129. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5130. * flag, to make booting more robust.
  5131. */
  5132. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5133. {
  5134. struct rq *rq = cpu_rq(cpu);
  5135. unsigned long flags;
  5136. raw_spin_lock_irqsave(&rq->lock, flags);
  5137. __sched_fork(idle);
  5138. idle->state = TASK_RUNNING;
  5139. idle->se.exec_start = sched_clock();
  5140. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5141. /*
  5142. * We're having a chicken and egg problem, even though we are
  5143. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5144. * lockdep check in task_group() will fail.
  5145. *
  5146. * Similar case to sched_fork(). / Alternatively we could
  5147. * use task_rq_lock() here and obtain the other rq->lock.
  5148. *
  5149. * Silence PROVE_RCU
  5150. */
  5151. rcu_read_lock();
  5152. __set_task_cpu(idle, cpu);
  5153. rcu_read_unlock();
  5154. rq->curr = rq->idle = idle;
  5155. #if defined(CONFIG_SMP)
  5156. idle->on_cpu = 1;
  5157. #endif
  5158. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5159. /* Set the preempt count _outside_ the spinlocks! */
  5160. task_thread_info(idle)->preempt_count = 0;
  5161. /*
  5162. * The idle tasks have their own, simple scheduling class:
  5163. */
  5164. idle->sched_class = &idle_sched_class;
  5165. ftrace_graph_init_idle_task(idle, cpu);
  5166. }
  5167. /*
  5168. * In a system that switches off the HZ timer nohz_cpu_mask
  5169. * indicates which cpus entered this state. This is used
  5170. * in the rcu update to wait only for active cpus. For system
  5171. * which do not switch off the HZ timer nohz_cpu_mask should
  5172. * always be CPU_BITS_NONE.
  5173. */
  5174. cpumask_var_t nohz_cpu_mask;
  5175. /*
  5176. * Increase the granularity value when there are more CPUs,
  5177. * because with more CPUs the 'effective latency' as visible
  5178. * to users decreases. But the relationship is not linear,
  5179. * so pick a second-best guess by going with the log2 of the
  5180. * number of CPUs.
  5181. *
  5182. * This idea comes from the SD scheduler of Con Kolivas:
  5183. */
  5184. static int get_update_sysctl_factor(void)
  5185. {
  5186. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5187. unsigned int factor;
  5188. switch (sysctl_sched_tunable_scaling) {
  5189. case SCHED_TUNABLESCALING_NONE:
  5190. factor = 1;
  5191. break;
  5192. case SCHED_TUNABLESCALING_LINEAR:
  5193. factor = cpus;
  5194. break;
  5195. case SCHED_TUNABLESCALING_LOG:
  5196. default:
  5197. factor = 1 + ilog2(cpus);
  5198. break;
  5199. }
  5200. return factor;
  5201. }
  5202. static void update_sysctl(void)
  5203. {
  5204. unsigned int factor = get_update_sysctl_factor();
  5205. #define SET_SYSCTL(name) \
  5206. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5207. SET_SYSCTL(sched_min_granularity);
  5208. SET_SYSCTL(sched_latency);
  5209. SET_SYSCTL(sched_wakeup_granularity);
  5210. #undef SET_SYSCTL
  5211. }
  5212. static inline void sched_init_granularity(void)
  5213. {
  5214. update_sysctl();
  5215. }
  5216. #ifdef CONFIG_SMP
  5217. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5218. {
  5219. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5220. p->sched_class->set_cpus_allowed(p, new_mask);
  5221. else {
  5222. cpumask_copy(&p->cpus_allowed, new_mask);
  5223. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5224. }
  5225. }
  5226. /*
  5227. * This is how migration works:
  5228. *
  5229. * 1) we invoke migration_cpu_stop() on the target CPU using
  5230. * stop_one_cpu().
  5231. * 2) stopper starts to run (implicitly forcing the migrated thread
  5232. * off the CPU)
  5233. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5234. * 4) if it's in the wrong runqueue then the migration thread removes
  5235. * it and puts it into the right queue.
  5236. * 5) stopper completes and stop_one_cpu() returns and the migration
  5237. * is done.
  5238. */
  5239. /*
  5240. * Change a given task's CPU affinity. Migrate the thread to a
  5241. * proper CPU and schedule it away if the CPU it's executing on
  5242. * is removed from the allowed bitmask.
  5243. *
  5244. * NOTE: the caller must have a valid reference to the task, the
  5245. * task must not exit() & deallocate itself prematurely. The
  5246. * call is not atomic; no spinlocks may be held.
  5247. */
  5248. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5249. {
  5250. unsigned long flags;
  5251. struct rq *rq;
  5252. unsigned int dest_cpu;
  5253. int ret = 0;
  5254. rq = task_rq_lock(p, &flags);
  5255. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5256. goto out;
  5257. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5258. ret = -EINVAL;
  5259. goto out;
  5260. }
  5261. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5262. ret = -EINVAL;
  5263. goto out;
  5264. }
  5265. do_set_cpus_allowed(p, new_mask);
  5266. /* Can the task run on the task's current CPU? If so, we're done */
  5267. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5268. goto out;
  5269. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5270. if (p->on_rq) {
  5271. struct migration_arg arg = { p, dest_cpu };
  5272. /* Need help from migration thread: drop lock and wait. */
  5273. task_rq_unlock(rq, p, &flags);
  5274. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5275. tlb_migrate_finish(p->mm);
  5276. return 0;
  5277. }
  5278. out:
  5279. task_rq_unlock(rq, p, &flags);
  5280. return ret;
  5281. }
  5282. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5283. /*
  5284. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5285. * this because either it can't run here any more (set_cpus_allowed()
  5286. * away from this CPU, or CPU going down), or because we're
  5287. * attempting to rebalance this task on exec (sched_exec).
  5288. *
  5289. * So we race with normal scheduler movements, but that's OK, as long
  5290. * as the task is no longer on this CPU.
  5291. *
  5292. * Returns non-zero if task was successfully migrated.
  5293. */
  5294. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5295. {
  5296. struct rq *rq_dest, *rq_src;
  5297. int ret = 0;
  5298. if (unlikely(!cpu_active(dest_cpu)))
  5299. return ret;
  5300. rq_src = cpu_rq(src_cpu);
  5301. rq_dest = cpu_rq(dest_cpu);
  5302. raw_spin_lock(&p->pi_lock);
  5303. double_rq_lock(rq_src, rq_dest);
  5304. /* Already moved. */
  5305. if (task_cpu(p) != src_cpu)
  5306. goto done;
  5307. /* Affinity changed (again). */
  5308. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5309. goto fail;
  5310. /*
  5311. * If we're not on a rq, the next wake-up will ensure we're
  5312. * placed properly.
  5313. */
  5314. if (p->on_rq) {
  5315. deactivate_task(rq_src, p, 0);
  5316. set_task_cpu(p, dest_cpu);
  5317. activate_task(rq_dest, p, 0);
  5318. check_preempt_curr(rq_dest, p, 0);
  5319. }
  5320. done:
  5321. ret = 1;
  5322. fail:
  5323. double_rq_unlock(rq_src, rq_dest);
  5324. raw_spin_unlock(&p->pi_lock);
  5325. return ret;
  5326. }
  5327. /*
  5328. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5329. * and performs thread migration by bumping thread off CPU then
  5330. * 'pushing' onto another runqueue.
  5331. */
  5332. static int migration_cpu_stop(void *data)
  5333. {
  5334. struct migration_arg *arg = data;
  5335. /*
  5336. * The original target cpu might have gone down and we might
  5337. * be on another cpu but it doesn't matter.
  5338. */
  5339. local_irq_disable();
  5340. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5341. local_irq_enable();
  5342. return 0;
  5343. }
  5344. #ifdef CONFIG_HOTPLUG_CPU
  5345. /*
  5346. * Ensures that the idle task is using init_mm right before its cpu goes
  5347. * offline.
  5348. */
  5349. void idle_task_exit(void)
  5350. {
  5351. struct mm_struct *mm = current->active_mm;
  5352. BUG_ON(cpu_online(smp_processor_id()));
  5353. if (mm != &init_mm)
  5354. switch_mm(mm, &init_mm, current);
  5355. mmdrop(mm);
  5356. }
  5357. /*
  5358. * While a dead CPU has no uninterruptible tasks queued at this point,
  5359. * it might still have a nonzero ->nr_uninterruptible counter, because
  5360. * for performance reasons the counter is not stricly tracking tasks to
  5361. * their home CPUs. So we just add the counter to another CPU's counter,
  5362. * to keep the global sum constant after CPU-down:
  5363. */
  5364. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5365. {
  5366. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5367. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5368. rq_src->nr_uninterruptible = 0;
  5369. }
  5370. /*
  5371. * remove the tasks which were accounted by rq from calc_load_tasks.
  5372. */
  5373. static void calc_global_load_remove(struct rq *rq)
  5374. {
  5375. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5376. rq->calc_load_active = 0;
  5377. }
  5378. /*
  5379. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5380. * try_to_wake_up()->select_task_rq().
  5381. *
  5382. * Called with rq->lock held even though we'er in stop_machine() and
  5383. * there's no concurrency possible, we hold the required locks anyway
  5384. * because of lock validation efforts.
  5385. */
  5386. static void migrate_tasks(unsigned int dead_cpu)
  5387. {
  5388. struct rq *rq = cpu_rq(dead_cpu);
  5389. struct task_struct *next, *stop = rq->stop;
  5390. int dest_cpu;
  5391. /*
  5392. * Fudge the rq selection such that the below task selection loop
  5393. * doesn't get stuck on the currently eligible stop task.
  5394. *
  5395. * We're currently inside stop_machine() and the rq is either stuck
  5396. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5397. * either way we should never end up calling schedule() until we're
  5398. * done here.
  5399. */
  5400. rq->stop = NULL;
  5401. for ( ; ; ) {
  5402. /*
  5403. * There's this thread running, bail when that's the only
  5404. * remaining thread.
  5405. */
  5406. if (rq->nr_running == 1)
  5407. break;
  5408. next = pick_next_task(rq);
  5409. BUG_ON(!next);
  5410. next->sched_class->put_prev_task(rq, next);
  5411. /* Find suitable destination for @next, with force if needed. */
  5412. dest_cpu = select_fallback_rq(dead_cpu, next);
  5413. raw_spin_unlock(&rq->lock);
  5414. __migrate_task(next, dead_cpu, dest_cpu);
  5415. raw_spin_lock(&rq->lock);
  5416. }
  5417. rq->stop = stop;
  5418. }
  5419. #endif /* CONFIG_HOTPLUG_CPU */
  5420. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5421. static struct ctl_table sd_ctl_dir[] = {
  5422. {
  5423. .procname = "sched_domain",
  5424. .mode = 0555,
  5425. },
  5426. {}
  5427. };
  5428. static struct ctl_table sd_ctl_root[] = {
  5429. {
  5430. .procname = "kernel",
  5431. .mode = 0555,
  5432. .child = sd_ctl_dir,
  5433. },
  5434. {}
  5435. };
  5436. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5437. {
  5438. struct ctl_table *entry =
  5439. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5440. return entry;
  5441. }
  5442. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5443. {
  5444. struct ctl_table *entry;
  5445. /*
  5446. * In the intermediate directories, both the child directory and
  5447. * procname are dynamically allocated and could fail but the mode
  5448. * will always be set. In the lowest directory the names are
  5449. * static strings and all have proc handlers.
  5450. */
  5451. for (entry = *tablep; entry->mode; entry++) {
  5452. if (entry->child)
  5453. sd_free_ctl_entry(&entry->child);
  5454. if (entry->proc_handler == NULL)
  5455. kfree(entry->procname);
  5456. }
  5457. kfree(*tablep);
  5458. *tablep = NULL;
  5459. }
  5460. static void
  5461. set_table_entry(struct ctl_table *entry,
  5462. const char *procname, void *data, int maxlen,
  5463. mode_t mode, proc_handler *proc_handler)
  5464. {
  5465. entry->procname = procname;
  5466. entry->data = data;
  5467. entry->maxlen = maxlen;
  5468. entry->mode = mode;
  5469. entry->proc_handler = proc_handler;
  5470. }
  5471. static struct ctl_table *
  5472. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5473. {
  5474. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5475. if (table == NULL)
  5476. return NULL;
  5477. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5478. sizeof(long), 0644, proc_doulongvec_minmax);
  5479. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5480. sizeof(long), 0644, proc_doulongvec_minmax);
  5481. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5482. sizeof(int), 0644, proc_dointvec_minmax);
  5483. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5484. sizeof(int), 0644, proc_dointvec_minmax);
  5485. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5486. sizeof(int), 0644, proc_dointvec_minmax);
  5487. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5488. sizeof(int), 0644, proc_dointvec_minmax);
  5489. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5490. sizeof(int), 0644, proc_dointvec_minmax);
  5491. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5492. sizeof(int), 0644, proc_dointvec_minmax);
  5493. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5494. sizeof(int), 0644, proc_dointvec_minmax);
  5495. set_table_entry(&table[9], "cache_nice_tries",
  5496. &sd->cache_nice_tries,
  5497. sizeof(int), 0644, proc_dointvec_minmax);
  5498. set_table_entry(&table[10], "flags", &sd->flags,
  5499. sizeof(int), 0644, proc_dointvec_minmax);
  5500. set_table_entry(&table[11], "name", sd->name,
  5501. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5502. /* &table[12] is terminator */
  5503. return table;
  5504. }
  5505. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5506. {
  5507. struct ctl_table *entry, *table;
  5508. struct sched_domain *sd;
  5509. int domain_num = 0, i;
  5510. char buf[32];
  5511. for_each_domain(cpu, sd)
  5512. domain_num++;
  5513. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5514. if (table == NULL)
  5515. return NULL;
  5516. i = 0;
  5517. for_each_domain(cpu, sd) {
  5518. snprintf(buf, 32, "domain%d", i);
  5519. entry->procname = kstrdup(buf, GFP_KERNEL);
  5520. entry->mode = 0555;
  5521. entry->child = sd_alloc_ctl_domain_table(sd);
  5522. entry++;
  5523. i++;
  5524. }
  5525. return table;
  5526. }
  5527. static struct ctl_table_header *sd_sysctl_header;
  5528. static void register_sched_domain_sysctl(void)
  5529. {
  5530. int i, cpu_num = num_possible_cpus();
  5531. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5532. char buf[32];
  5533. WARN_ON(sd_ctl_dir[0].child);
  5534. sd_ctl_dir[0].child = entry;
  5535. if (entry == NULL)
  5536. return;
  5537. for_each_possible_cpu(i) {
  5538. snprintf(buf, 32, "cpu%d", i);
  5539. entry->procname = kstrdup(buf, GFP_KERNEL);
  5540. entry->mode = 0555;
  5541. entry->child = sd_alloc_ctl_cpu_table(i);
  5542. entry++;
  5543. }
  5544. WARN_ON(sd_sysctl_header);
  5545. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5546. }
  5547. /* may be called multiple times per register */
  5548. static void unregister_sched_domain_sysctl(void)
  5549. {
  5550. if (sd_sysctl_header)
  5551. unregister_sysctl_table(sd_sysctl_header);
  5552. sd_sysctl_header = NULL;
  5553. if (sd_ctl_dir[0].child)
  5554. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5555. }
  5556. #else
  5557. static void register_sched_domain_sysctl(void)
  5558. {
  5559. }
  5560. static void unregister_sched_domain_sysctl(void)
  5561. {
  5562. }
  5563. #endif
  5564. static void set_rq_online(struct rq *rq)
  5565. {
  5566. if (!rq->online) {
  5567. const struct sched_class *class;
  5568. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5569. rq->online = 1;
  5570. for_each_class(class) {
  5571. if (class->rq_online)
  5572. class->rq_online(rq);
  5573. }
  5574. }
  5575. }
  5576. static void set_rq_offline(struct rq *rq)
  5577. {
  5578. if (rq->online) {
  5579. const struct sched_class *class;
  5580. for_each_class(class) {
  5581. if (class->rq_offline)
  5582. class->rq_offline(rq);
  5583. }
  5584. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5585. rq->online = 0;
  5586. }
  5587. }
  5588. /*
  5589. * migration_call - callback that gets triggered when a CPU is added.
  5590. * Here we can start up the necessary migration thread for the new CPU.
  5591. */
  5592. static int __cpuinit
  5593. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5594. {
  5595. int cpu = (long)hcpu;
  5596. unsigned long flags;
  5597. struct rq *rq = cpu_rq(cpu);
  5598. switch (action & ~CPU_TASKS_FROZEN) {
  5599. case CPU_UP_PREPARE:
  5600. rq->calc_load_update = calc_load_update;
  5601. break;
  5602. case CPU_ONLINE:
  5603. /* Update our root-domain */
  5604. raw_spin_lock_irqsave(&rq->lock, flags);
  5605. if (rq->rd) {
  5606. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5607. set_rq_online(rq);
  5608. }
  5609. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5610. break;
  5611. #ifdef CONFIG_HOTPLUG_CPU
  5612. case CPU_DYING:
  5613. sched_ttwu_pending();
  5614. /* Update our root-domain */
  5615. raw_spin_lock_irqsave(&rq->lock, flags);
  5616. if (rq->rd) {
  5617. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5618. set_rq_offline(rq);
  5619. }
  5620. migrate_tasks(cpu);
  5621. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5622. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5623. migrate_nr_uninterruptible(rq);
  5624. calc_global_load_remove(rq);
  5625. break;
  5626. #endif
  5627. }
  5628. update_max_interval();
  5629. return NOTIFY_OK;
  5630. }
  5631. /*
  5632. * Register at high priority so that task migration (migrate_all_tasks)
  5633. * happens before everything else. This has to be lower priority than
  5634. * the notifier in the perf_event subsystem, though.
  5635. */
  5636. static struct notifier_block __cpuinitdata migration_notifier = {
  5637. .notifier_call = migration_call,
  5638. .priority = CPU_PRI_MIGRATION,
  5639. };
  5640. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5641. unsigned long action, void *hcpu)
  5642. {
  5643. switch (action & ~CPU_TASKS_FROZEN) {
  5644. case CPU_ONLINE:
  5645. case CPU_DOWN_FAILED:
  5646. set_cpu_active((long)hcpu, true);
  5647. return NOTIFY_OK;
  5648. default:
  5649. return NOTIFY_DONE;
  5650. }
  5651. }
  5652. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5653. unsigned long action, void *hcpu)
  5654. {
  5655. switch (action & ~CPU_TASKS_FROZEN) {
  5656. case CPU_DOWN_PREPARE:
  5657. set_cpu_active((long)hcpu, false);
  5658. return NOTIFY_OK;
  5659. default:
  5660. return NOTIFY_DONE;
  5661. }
  5662. }
  5663. static int __init migration_init(void)
  5664. {
  5665. void *cpu = (void *)(long)smp_processor_id();
  5666. int err;
  5667. /* Initialize migration for the boot CPU */
  5668. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5669. BUG_ON(err == NOTIFY_BAD);
  5670. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5671. register_cpu_notifier(&migration_notifier);
  5672. /* Register cpu active notifiers */
  5673. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5674. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5675. return 0;
  5676. }
  5677. early_initcall(migration_init);
  5678. #endif
  5679. #ifdef CONFIG_SMP
  5680. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5681. #ifdef CONFIG_SCHED_DEBUG
  5682. static __read_mostly int sched_domain_debug_enabled;
  5683. static int __init sched_domain_debug_setup(char *str)
  5684. {
  5685. sched_domain_debug_enabled = 1;
  5686. return 0;
  5687. }
  5688. early_param("sched_debug", sched_domain_debug_setup);
  5689. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5690. struct cpumask *groupmask)
  5691. {
  5692. struct sched_group *group = sd->groups;
  5693. char str[256];
  5694. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5695. cpumask_clear(groupmask);
  5696. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5697. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5698. printk("does not load-balance\n");
  5699. if (sd->parent)
  5700. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5701. " has parent");
  5702. return -1;
  5703. }
  5704. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5705. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5706. printk(KERN_ERR "ERROR: domain->span does not contain "
  5707. "CPU%d\n", cpu);
  5708. }
  5709. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5710. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5711. " CPU%d\n", cpu);
  5712. }
  5713. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5714. do {
  5715. if (!group) {
  5716. printk("\n");
  5717. printk(KERN_ERR "ERROR: group is NULL\n");
  5718. break;
  5719. }
  5720. if (!group->sgp->power) {
  5721. printk(KERN_CONT "\n");
  5722. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5723. "set\n");
  5724. break;
  5725. }
  5726. if (!cpumask_weight(sched_group_cpus(group))) {
  5727. printk(KERN_CONT "\n");
  5728. printk(KERN_ERR "ERROR: empty group\n");
  5729. break;
  5730. }
  5731. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5732. printk(KERN_CONT "\n");
  5733. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5734. break;
  5735. }
  5736. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5737. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5738. printk(KERN_CONT " %s", str);
  5739. if (group->sgp->power != SCHED_POWER_SCALE) {
  5740. printk(KERN_CONT " (cpu_power = %d)",
  5741. group->sgp->power);
  5742. }
  5743. group = group->next;
  5744. } while (group != sd->groups);
  5745. printk(KERN_CONT "\n");
  5746. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5747. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5748. if (sd->parent &&
  5749. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5750. printk(KERN_ERR "ERROR: parent span is not a superset "
  5751. "of domain->span\n");
  5752. return 0;
  5753. }
  5754. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5755. {
  5756. int level = 0;
  5757. if (!sched_domain_debug_enabled)
  5758. return;
  5759. if (!sd) {
  5760. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5761. return;
  5762. }
  5763. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5764. for (;;) {
  5765. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5766. break;
  5767. level++;
  5768. sd = sd->parent;
  5769. if (!sd)
  5770. break;
  5771. }
  5772. }
  5773. #else /* !CONFIG_SCHED_DEBUG */
  5774. # define sched_domain_debug(sd, cpu) do { } while (0)
  5775. #endif /* CONFIG_SCHED_DEBUG */
  5776. static int sd_degenerate(struct sched_domain *sd)
  5777. {
  5778. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5779. return 1;
  5780. /* Following flags need at least 2 groups */
  5781. if (sd->flags & (SD_LOAD_BALANCE |
  5782. SD_BALANCE_NEWIDLE |
  5783. SD_BALANCE_FORK |
  5784. SD_BALANCE_EXEC |
  5785. SD_SHARE_CPUPOWER |
  5786. SD_SHARE_PKG_RESOURCES)) {
  5787. if (sd->groups != sd->groups->next)
  5788. return 0;
  5789. }
  5790. /* Following flags don't use groups */
  5791. if (sd->flags & (SD_WAKE_AFFINE))
  5792. return 0;
  5793. return 1;
  5794. }
  5795. static int
  5796. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5797. {
  5798. unsigned long cflags = sd->flags, pflags = parent->flags;
  5799. if (sd_degenerate(parent))
  5800. return 1;
  5801. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5802. return 0;
  5803. /* Flags needing groups don't count if only 1 group in parent */
  5804. if (parent->groups == parent->groups->next) {
  5805. pflags &= ~(SD_LOAD_BALANCE |
  5806. SD_BALANCE_NEWIDLE |
  5807. SD_BALANCE_FORK |
  5808. SD_BALANCE_EXEC |
  5809. SD_SHARE_CPUPOWER |
  5810. SD_SHARE_PKG_RESOURCES);
  5811. if (nr_node_ids == 1)
  5812. pflags &= ~SD_SERIALIZE;
  5813. }
  5814. if (~cflags & pflags)
  5815. return 0;
  5816. return 1;
  5817. }
  5818. static void free_rootdomain(struct rcu_head *rcu)
  5819. {
  5820. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5821. cpupri_cleanup(&rd->cpupri);
  5822. free_cpumask_var(rd->rto_mask);
  5823. free_cpumask_var(rd->online);
  5824. free_cpumask_var(rd->span);
  5825. kfree(rd);
  5826. }
  5827. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5828. {
  5829. struct root_domain *old_rd = NULL;
  5830. unsigned long flags;
  5831. raw_spin_lock_irqsave(&rq->lock, flags);
  5832. if (rq->rd) {
  5833. old_rd = rq->rd;
  5834. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5835. set_rq_offline(rq);
  5836. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5837. /*
  5838. * If we dont want to free the old_rt yet then
  5839. * set old_rd to NULL to skip the freeing later
  5840. * in this function:
  5841. */
  5842. if (!atomic_dec_and_test(&old_rd->refcount))
  5843. old_rd = NULL;
  5844. }
  5845. atomic_inc(&rd->refcount);
  5846. rq->rd = rd;
  5847. cpumask_set_cpu(rq->cpu, rd->span);
  5848. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5849. set_rq_online(rq);
  5850. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5851. if (old_rd)
  5852. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5853. }
  5854. static int init_rootdomain(struct root_domain *rd)
  5855. {
  5856. memset(rd, 0, sizeof(*rd));
  5857. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5858. goto out;
  5859. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5860. goto free_span;
  5861. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5862. goto free_online;
  5863. if (cpupri_init(&rd->cpupri) != 0)
  5864. goto free_rto_mask;
  5865. return 0;
  5866. free_rto_mask:
  5867. free_cpumask_var(rd->rto_mask);
  5868. free_online:
  5869. free_cpumask_var(rd->online);
  5870. free_span:
  5871. free_cpumask_var(rd->span);
  5872. out:
  5873. return -ENOMEM;
  5874. }
  5875. static void init_defrootdomain(void)
  5876. {
  5877. init_rootdomain(&def_root_domain);
  5878. atomic_set(&def_root_domain.refcount, 1);
  5879. }
  5880. static struct root_domain *alloc_rootdomain(void)
  5881. {
  5882. struct root_domain *rd;
  5883. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5884. if (!rd)
  5885. return NULL;
  5886. if (init_rootdomain(rd) != 0) {
  5887. kfree(rd);
  5888. return NULL;
  5889. }
  5890. return rd;
  5891. }
  5892. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5893. {
  5894. struct sched_group *tmp, *first;
  5895. if (!sg)
  5896. return;
  5897. first = sg;
  5898. do {
  5899. tmp = sg->next;
  5900. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5901. kfree(sg->sgp);
  5902. kfree(sg);
  5903. sg = tmp;
  5904. } while (sg != first);
  5905. }
  5906. static void free_sched_domain(struct rcu_head *rcu)
  5907. {
  5908. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5909. /*
  5910. * If its an overlapping domain it has private groups, iterate and
  5911. * nuke them all.
  5912. */
  5913. if (sd->flags & SD_OVERLAP) {
  5914. free_sched_groups(sd->groups, 1);
  5915. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5916. kfree(sd->groups->sgp);
  5917. kfree(sd->groups);
  5918. }
  5919. kfree(sd);
  5920. }
  5921. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5922. {
  5923. call_rcu(&sd->rcu, free_sched_domain);
  5924. }
  5925. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5926. {
  5927. for (; sd; sd = sd->parent)
  5928. destroy_sched_domain(sd, cpu);
  5929. }
  5930. /*
  5931. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5932. * hold the hotplug lock.
  5933. */
  5934. static void
  5935. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5936. {
  5937. struct rq *rq = cpu_rq(cpu);
  5938. struct sched_domain *tmp;
  5939. /* Remove the sched domains which do not contribute to scheduling. */
  5940. for (tmp = sd; tmp; ) {
  5941. struct sched_domain *parent = tmp->parent;
  5942. if (!parent)
  5943. break;
  5944. if (sd_parent_degenerate(tmp, parent)) {
  5945. tmp->parent = parent->parent;
  5946. if (parent->parent)
  5947. parent->parent->child = tmp;
  5948. destroy_sched_domain(parent, cpu);
  5949. } else
  5950. tmp = tmp->parent;
  5951. }
  5952. if (sd && sd_degenerate(sd)) {
  5953. tmp = sd;
  5954. sd = sd->parent;
  5955. destroy_sched_domain(tmp, cpu);
  5956. if (sd)
  5957. sd->child = NULL;
  5958. }
  5959. sched_domain_debug(sd, cpu);
  5960. rq_attach_root(rq, rd);
  5961. tmp = rq->sd;
  5962. rcu_assign_pointer(rq->sd, sd);
  5963. destroy_sched_domains(tmp, cpu);
  5964. }
  5965. /* cpus with isolated domains */
  5966. static cpumask_var_t cpu_isolated_map;
  5967. /* Setup the mask of cpus configured for isolated domains */
  5968. static int __init isolated_cpu_setup(char *str)
  5969. {
  5970. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5971. cpulist_parse(str, cpu_isolated_map);
  5972. return 1;
  5973. }
  5974. __setup("isolcpus=", isolated_cpu_setup);
  5975. #define SD_NODES_PER_DOMAIN 16
  5976. #ifdef CONFIG_NUMA
  5977. /**
  5978. * find_next_best_node - find the next node to include in a sched_domain
  5979. * @node: node whose sched_domain we're building
  5980. * @used_nodes: nodes already in the sched_domain
  5981. *
  5982. * Find the next node to include in a given scheduling domain. Simply
  5983. * finds the closest node not already in the @used_nodes map.
  5984. *
  5985. * Should use nodemask_t.
  5986. */
  5987. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5988. {
  5989. int i, n, val, min_val, best_node = -1;
  5990. min_val = INT_MAX;
  5991. for (i = 0; i < nr_node_ids; i++) {
  5992. /* Start at @node */
  5993. n = (node + i) % nr_node_ids;
  5994. if (!nr_cpus_node(n))
  5995. continue;
  5996. /* Skip already used nodes */
  5997. if (node_isset(n, *used_nodes))
  5998. continue;
  5999. /* Simple min distance search */
  6000. val = node_distance(node, n);
  6001. if (val < min_val) {
  6002. min_val = val;
  6003. best_node = n;
  6004. }
  6005. }
  6006. if (best_node != -1)
  6007. node_set(best_node, *used_nodes);
  6008. return best_node;
  6009. }
  6010. /**
  6011. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6012. * @node: node whose cpumask we're constructing
  6013. * @span: resulting cpumask
  6014. *
  6015. * Given a node, construct a good cpumask for its sched_domain to span. It
  6016. * should be one that prevents unnecessary balancing, but also spreads tasks
  6017. * out optimally.
  6018. */
  6019. static void sched_domain_node_span(int node, struct cpumask *span)
  6020. {
  6021. nodemask_t used_nodes;
  6022. int i;
  6023. cpumask_clear(span);
  6024. nodes_clear(used_nodes);
  6025. cpumask_or(span, span, cpumask_of_node(node));
  6026. node_set(node, used_nodes);
  6027. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6028. int next_node = find_next_best_node(node, &used_nodes);
  6029. if (next_node < 0)
  6030. break;
  6031. cpumask_or(span, span, cpumask_of_node(next_node));
  6032. }
  6033. }
  6034. static const struct cpumask *cpu_node_mask(int cpu)
  6035. {
  6036. lockdep_assert_held(&sched_domains_mutex);
  6037. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  6038. return sched_domains_tmpmask;
  6039. }
  6040. static const struct cpumask *cpu_allnodes_mask(int cpu)
  6041. {
  6042. return cpu_possible_mask;
  6043. }
  6044. #endif /* CONFIG_NUMA */
  6045. static const struct cpumask *cpu_cpu_mask(int cpu)
  6046. {
  6047. return cpumask_of_node(cpu_to_node(cpu));
  6048. }
  6049. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6050. struct sd_data {
  6051. struct sched_domain **__percpu sd;
  6052. struct sched_group **__percpu sg;
  6053. struct sched_group_power **__percpu sgp;
  6054. };
  6055. struct s_data {
  6056. struct sched_domain ** __percpu sd;
  6057. struct root_domain *rd;
  6058. };
  6059. enum s_alloc {
  6060. sa_rootdomain,
  6061. sa_sd,
  6062. sa_sd_storage,
  6063. sa_none,
  6064. };
  6065. struct sched_domain_topology_level;
  6066. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  6067. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  6068. #define SDTL_OVERLAP 0x01
  6069. struct sched_domain_topology_level {
  6070. sched_domain_init_f init;
  6071. sched_domain_mask_f mask;
  6072. int flags;
  6073. struct sd_data data;
  6074. };
  6075. static int
  6076. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  6077. {
  6078. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  6079. const struct cpumask *span = sched_domain_span(sd);
  6080. struct cpumask *covered = sched_domains_tmpmask;
  6081. struct sd_data *sdd = sd->private;
  6082. struct sched_domain *child;
  6083. int i;
  6084. cpumask_clear(covered);
  6085. for_each_cpu(i, span) {
  6086. struct cpumask *sg_span;
  6087. if (cpumask_test_cpu(i, covered))
  6088. continue;
  6089. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6090. GFP_KERNEL, cpu_to_node(i));
  6091. if (!sg)
  6092. goto fail;
  6093. sg_span = sched_group_cpus(sg);
  6094. child = *per_cpu_ptr(sdd->sd, i);
  6095. if (child->child) {
  6096. child = child->child;
  6097. cpumask_copy(sg_span, sched_domain_span(child));
  6098. } else
  6099. cpumask_set_cpu(i, sg_span);
  6100. cpumask_or(covered, covered, sg_span);
  6101. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  6102. atomic_inc(&sg->sgp->ref);
  6103. if (cpumask_test_cpu(cpu, sg_span))
  6104. groups = sg;
  6105. if (!first)
  6106. first = sg;
  6107. if (last)
  6108. last->next = sg;
  6109. last = sg;
  6110. last->next = first;
  6111. }
  6112. sd->groups = groups;
  6113. return 0;
  6114. fail:
  6115. free_sched_groups(first, 0);
  6116. return -ENOMEM;
  6117. }
  6118. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  6119. {
  6120. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  6121. struct sched_domain *child = sd->child;
  6122. if (child)
  6123. cpu = cpumask_first(sched_domain_span(child));
  6124. if (sg) {
  6125. *sg = *per_cpu_ptr(sdd->sg, cpu);
  6126. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  6127. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  6128. }
  6129. return cpu;
  6130. }
  6131. /*
  6132. * build_sched_groups will build a circular linked list of the groups
  6133. * covered by the given span, and will set each group's ->cpumask correctly,
  6134. * and ->cpu_power to 0.
  6135. *
  6136. * Assumes the sched_domain tree is fully constructed
  6137. */
  6138. static int
  6139. build_sched_groups(struct sched_domain *sd, int cpu)
  6140. {
  6141. struct sched_group *first = NULL, *last = NULL;
  6142. struct sd_data *sdd = sd->private;
  6143. const struct cpumask *span = sched_domain_span(sd);
  6144. struct cpumask *covered;
  6145. int i;
  6146. get_group(cpu, sdd, &sd->groups);
  6147. atomic_inc(&sd->groups->ref);
  6148. if (cpu != cpumask_first(sched_domain_span(sd)))
  6149. return 0;
  6150. lockdep_assert_held(&sched_domains_mutex);
  6151. covered = sched_domains_tmpmask;
  6152. cpumask_clear(covered);
  6153. for_each_cpu(i, span) {
  6154. struct sched_group *sg;
  6155. int group = get_group(i, sdd, &sg);
  6156. int j;
  6157. if (cpumask_test_cpu(i, covered))
  6158. continue;
  6159. cpumask_clear(sched_group_cpus(sg));
  6160. sg->sgp->power = 0;
  6161. for_each_cpu(j, span) {
  6162. if (get_group(j, sdd, NULL) != group)
  6163. continue;
  6164. cpumask_set_cpu(j, covered);
  6165. cpumask_set_cpu(j, sched_group_cpus(sg));
  6166. }
  6167. if (!first)
  6168. first = sg;
  6169. if (last)
  6170. last->next = sg;
  6171. last = sg;
  6172. }
  6173. last->next = first;
  6174. return 0;
  6175. }
  6176. /*
  6177. * Initialize sched groups cpu_power.
  6178. *
  6179. * cpu_power indicates the capacity of sched group, which is used while
  6180. * distributing the load between different sched groups in a sched domain.
  6181. * Typically cpu_power for all the groups in a sched domain will be same unless
  6182. * there are asymmetries in the topology. If there are asymmetries, group
  6183. * having more cpu_power will pickup more load compared to the group having
  6184. * less cpu_power.
  6185. */
  6186. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6187. {
  6188. struct sched_group *sg = sd->groups;
  6189. WARN_ON(!sd || !sg);
  6190. do {
  6191. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6192. sg = sg->next;
  6193. } while (sg != sd->groups);
  6194. if (cpu != group_first_cpu(sg))
  6195. return;
  6196. update_group_power(sd, cpu);
  6197. }
  6198. /*
  6199. * Initializers for schedule domains
  6200. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6201. */
  6202. #ifdef CONFIG_SCHED_DEBUG
  6203. # define SD_INIT_NAME(sd, type) sd->name = #type
  6204. #else
  6205. # define SD_INIT_NAME(sd, type) do { } while (0)
  6206. #endif
  6207. #define SD_INIT_FUNC(type) \
  6208. static noinline struct sched_domain * \
  6209. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6210. { \
  6211. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6212. *sd = SD_##type##_INIT; \
  6213. SD_INIT_NAME(sd, type); \
  6214. sd->private = &tl->data; \
  6215. return sd; \
  6216. }
  6217. SD_INIT_FUNC(CPU)
  6218. #ifdef CONFIG_NUMA
  6219. SD_INIT_FUNC(ALLNODES)
  6220. SD_INIT_FUNC(NODE)
  6221. #endif
  6222. #ifdef CONFIG_SCHED_SMT
  6223. SD_INIT_FUNC(SIBLING)
  6224. #endif
  6225. #ifdef CONFIG_SCHED_MC
  6226. SD_INIT_FUNC(MC)
  6227. #endif
  6228. #ifdef CONFIG_SCHED_BOOK
  6229. SD_INIT_FUNC(BOOK)
  6230. #endif
  6231. static int default_relax_domain_level = -1;
  6232. int sched_domain_level_max;
  6233. static int __init setup_relax_domain_level(char *str)
  6234. {
  6235. unsigned long val;
  6236. val = simple_strtoul(str, NULL, 0);
  6237. if (val < sched_domain_level_max)
  6238. default_relax_domain_level = val;
  6239. return 1;
  6240. }
  6241. __setup("relax_domain_level=", setup_relax_domain_level);
  6242. static void set_domain_attribute(struct sched_domain *sd,
  6243. struct sched_domain_attr *attr)
  6244. {
  6245. int request;
  6246. if (!attr || attr->relax_domain_level < 0) {
  6247. if (default_relax_domain_level < 0)
  6248. return;
  6249. else
  6250. request = default_relax_domain_level;
  6251. } else
  6252. request = attr->relax_domain_level;
  6253. if (request < sd->level) {
  6254. /* turn off idle balance on this domain */
  6255. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6256. } else {
  6257. /* turn on idle balance on this domain */
  6258. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6259. }
  6260. }
  6261. static void __sdt_free(const struct cpumask *cpu_map);
  6262. static int __sdt_alloc(const struct cpumask *cpu_map);
  6263. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6264. const struct cpumask *cpu_map)
  6265. {
  6266. switch (what) {
  6267. case sa_rootdomain:
  6268. if (!atomic_read(&d->rd->refcount))
  6269. free_rootdomain(&d->rd->rcu); /* fall through */
  6270. case sa_sd:
  6271. free_percpu(d->sd); /* fall through */
  6272. case sa_sd_storage:
  6273. __sdt_free(cpu_map); /* fall through */
  6274. case sa_none:
  6275. break;
  6276. }
  6277. }
  6278. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6279. const struct cpumask *cpu_map)
  6280. {
  6281. memset(d, 0, sizeof(*d));
  6282. if (__sdt_alloc(cpu_map))
  6283. return sa_sd_storage;
  6284. d->sd = alloc_percpu(struct sched_domain *);
  6285. if (!d->sd)
  6286. return sa_sd_storage;
  6287. d->rd = alloc_rootdomain();
  6288. if (!d->rd)
  6289. return sa_sd;
  6290. return sa_rootdomain;
  6291. }
  6292. /*
  6293. * NULL the sd_data elements we've used to build the sched_domain and
  6294. * sched_group structure so that the subsequent __free_domain_allocs()
  6295. * will not free the data we're using.
  6296. */
  6297. static void claim_allocations(int cpu, struct sched_domain *sd)
  6298. {
  6299. struct sd_data *sdd = sd->private;
  6300. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6301. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6302. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6303. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6304. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6305. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6306. }
  6307. #ifdef CONFIG_SCHED_SMT
  6308. static const struct cpumask *cpu_smt_mask(int cpu)
  6309. {
  6310. return topology_thread_cpumask(cpu);
  6311. }
  6312. #endif
  6313. /*
  6314. * Topology list, bottom-up.
  6315. */
  6316. static struct sched_domain_topology_level default_topology[] = {
  6317. #ifdef CONFIG_SCHED_SMT
  6318. { sd_init_SIBLING, cpu_smt_mask, },
  6319. #endif
  6320. #ifdef CONFIG_SCHED_MC
  6321. { sd_init_MC, cpu_coregroup_mask, },
  6322. #endif
  6323. #ifdef CONFIG_SCHED_BOOK
  6324. { sd_init_BOOK, cpu_book_mask, },
  6325. #endif
  6326. { sd_init_CPU, cpu_cpu_mask, },
  6327. #ifdef CONFIG_NUMA
  6328. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6329. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6330. #endif
  6331. { NULL, },
  6332. };
  6333. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6334. static int __sdt_alloc(const struct cpumask *cpu_map)
  6335. {
  6336. struct sched_domain_topology_level *tl;
  6337. int j;
  6338. for (tl = sched_domain_topology; tl->init; tl++) {
  6339. struct sd_data *sdd = &tl->data;
  6340. sdd->sd = alloc_percpu(struct sched_domain *);
  6341. if (!sdd->sd)
  6342. return -ENOMEM;
  6343. sdd->sg = alloc_percpu(struct sched_group *);
  6344. if (!sdd->sg)
  6345. return -ENOMEM;
  6346. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6347. if (!sdd->sgp)
  6348. return -ENOMEM;
  6349. for_each_cpu(j, cpu_map) {
  6350. struct sched_domain *sd;
  6351. struct sched_group *sg;
  6352. struct sched_group_power *sgp;
  6353. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6354. GFP_KERNEL, cpu_to_node(j));
  6355. if (!sd)
  6356. return -ENOMEM;
  6357. *per_cpu_ptr(sdd->sd, j) = sd;
  6358. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6359. GFP_KERNEL, cpu_to_node(j));
  6360. if (!sg)
  6361. return -ENOMEM;
  6362. *per_cpu_ptr(sdd->sg, j) = sg;
  6363. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6364. GFP_KERNEL, cpu_to_node(j));
  6365. if (!sgp)
  6366. return -ENOMEM;
  6367. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6368. }
  6369. }
  6370. return 0;
  6371. }
  6372. static void __sdt_free(const struct cpumask *cpu_map)
  6373. {
  6374. struct sched_domain_topology_level *tl;
  6375. int j;
  6376. for (tl = sched_domain_topology; tl->init; tl++) {
  6377. struct sd_data *sdd = &tl->data;
  6378. for_each_cpu(j, cpu_map) {
  6379. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6380. if (sd && (sd->flags & SD_OVERLAP))
  6381. free_sched_groups(sd->groups, 0);
  6382. kfree(*per_cpu_ptr(sdd->sg, j));
  6383. kfree(*per_cpu_ptr(sdd->sgp, j));
  6384. }
  6385. free_percpu(sdd->sd);
  6386. free_percpu(sdd->sg);
  6387. free_percpu(sdd->sgp);
  6388. }
  6389. }
  6390. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6391. struct s_data *d, const struct cpumask *cpu_map,
  6392. struct sched_domain_attr *attr, struct sched_domain *child,
  6393. int cpu)
  6394. {
  6395. struct sched_domain *sd = tl->init(tl, cpu);
  6396. if (!sd)
  6397. return child;
  6398. set_domain_attribute(sd, attr);
  6399. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6400. if (child) {
  6401. sd->level = child->level + 1;
  6402. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6403. child->parent = sd;
  6404. }
  6405. sd->child = child;
  6406. return sd;
  6407. }
  6408. /*
  6409. * Build sched domains for a given set of cpus and attach the sched domains
  6410. * to the individual cpus
  6411. */
  6412. static int build_sched_domains(const struct cpumask *cpu_map,
  6413. struct sched_domain_attr *attr)
  6414. {
  6415. enum s_alloc alloc_state = sa_none;
  6416. struct sched_domain *sd;
  6417. struct s_data d;
  6418. int i, ret = -ENOMEM;
  6419. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6420. if (alloc_state != sa_rootdomain)
  6421. goto error;
  6422. /* Set up domains for cpus specified by the cpu_map. */
  6423. for_each_cpu(i, cpu_map) {
  6424. struct sched_domain_topology_level *tl;
  6425. sd = NULL;
  6426. for (tl = sched_domain_topology; tl->init; tl++) {
  6427. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6428. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6429. sd->flags |= SD_OVERLAP;
  6430. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6431. break;
  6432. }
  6433. while (sd->child)
  6434. sd = sd->child;
  6435. *per_cpu_ptr(d.sd, i) = sd;
  6436. }
  6437. /* Build the groups for the domains */
  6438. for_each_cpu(i, cpu_map) {
  6439. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6440. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6441. if (sd->flags & SD_OVERLAP) {
  6442. if (build_overlap_sched_groups(sd, i))
  6443. goto error;
  6444. } else {
  6445. if (build_sched_groups(sd, i))
  6446. goto error;
  6447. }
  6448. }
  6449. }
  6450. /* Calculate CPU power for physical packages and nodes */
  6451. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6452. if (!cpumask_test_cpu(i, cpu_map))
  6453. continue;
  6454. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6455. claim_allocations(i, sd);
  6456. init_sched_groups_power(i, sd);
  6457. }
  6458. }
  6459. /* Attach the domains */
  6460. rcu_read_lock();
  6461. for_each_cpu(i, cpu_map) {
  6462. sd = *per_cpu_ptr(d.sd, i);
  6463. cpu_attach_domain(sd, d.rd, i);
  6464. }
  6465. rcu_read_unlock();
  6466. ret = 0;
  6467. error:
  6468. __free_domain_allocs(&d, alloc_state, cpu_map);
  6469. return ret;
  6470. }
  6471. static cpumask_var_t *doms_cur; /* current sched domains */
  6472. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6473. static struct sched_domain_attr *dattr_cur;
  6474. /* attribues of custom domains in 'doms_cur' */
  6475. /*
  6476. * Special case: If a kmalloc of a doms_cur partition (array of
  6477. * cpumask) fails, then fallback to a single sched domain,
  6478. * as determined by the single cpumask fallback_doms.
  6479. */
  6480. static cpumask_var_t fallback_doms;
  6481. /*
  6482. * arch_update_cpu_topology lets virtualized architectures update the
  6483. * cpu core maps. It is supposed to return 1 if the topology changed
  6484. * or 0 if it stayed the same.
  6485. */
  6486. int __attribute__((weak)) arch_update_cpu_topology(void)
  6487. {
  6488. return 0;
  6489. }
  6490. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6491. {
  6492. int i;
  6493. cpumask_var_t *doms;
  6494. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6495. if (!doms)
  6496. return NULL;
  6497. for (i = 0; i < ndoms; i++) {
  6498. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6499. free_sched_domains(doms, i);
  6500. return NULL;
  6501. }
  6502. }
  6503. return doms;
  6504. }
  6505. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6506. {
  6507. unsigned int i;
  6508. for (i = 0; i < ndoms; i++)
  6509. free_cpumask_var(doms[i]);
  6510. kfree(doms);
  6511. }
  6512. /*
  6513. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6514. * For now this just excludes isolated cpus, but could be used to
  6515. * exclude other special cases in the future.
  6516. */
  6517. static int init_sched_domains(const struct cpumask *cpu_map)
  6518. {
  6519. int err;
  6520. arch_update_cpu_topology();
  6521. ndoms_cur = 1;
  6522. doms_cur = alloc_sched_domains(ndoms_cur);
  6523. if (!doms_cur)
  6524. doms_cur = &fallback_doms;
  6525. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6526. dattr_cur = NULL;
  6527. err = build_sched_domains(doms_cur[0], NULL);
  6528. register_sched_domain_sysctl();
  6529. return err;
  6530. }
  6531. /*
  6532. * Detach sched domains from a group of cpus specified in cpu_map
  6533. * These cpus will now be attached to the NULL domain
  6534. */
  6535. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6536. {
  6537. int i;
  6538. rcu_read_lock();
  6539. for_each_cpu(i, cpu_map)
  6540. cpu_attach_domain(NULL, &def_root_domain, i);
  6541. rcu_read_unlock();
  6542. }
  6543. /* handle null as "default" */
  6544. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6545. struct sched_domain_attr *new, int idx_new)
  6546. {
  6547. struct sched_domain_attr tmp;
  6548. /* fast path */
  6549. if (!new && !cur)
  6550. return 1;
  6551. tmp = SD_ATTR_INIT;
  6552. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6553. new ? (new + idx_new) : &tmp,
  6554. sizeof(struct sched_domain_attr));
  6555. }
  6556. /*
  6557. * Partition sched domains as specified by the 'ndoms_new'
  6558. * cpumasks in the array doms_new[] of cpumasks. This compares
  6559. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6560. * It destroys each deleted domain and builds each new domain.
  6561. *
  6562. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6563. * The masks don't intersect (don't overlap.) We should setup one
  6564. * sched domain for each mask. CPUs not in any of the cpumasks will
  6565. * not be load balanced. If the same cpumask appears both in the
  6566. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6567. * it as it is.
  6568. *
  6569. * The passed in 'doms_new' should be allocated using
  6570. * alloc_sched_domains. This routine takes ownership of it and will
  6571. * free_sched_domains it when done with it. If the caller failed the
  6572. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6573. * and partition_sched_domains() will fallback to the single partition
  6574. * 'fallback_doms', it also forces the domains to be rebuilt.
  6575. *
  6576. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6577. * ndoms_new == 0 is a special case for destroying existing domains,
  6578. * and it will not create the default domain.
  6579. *
  6580. * Call with hotplug lock held
  6581. */
  6582. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6583. struct sched_domain_attr *dattr_new)
  6584. {
  6585. int i, j, n;
  6586. int new_topology;
  6587. mutex_lock(&sched_domains_mutex);
  6588. /* always unregister in case we don't destroy any domains */
  6589. unregister_sched_domain_sysctl();
  6590. /* Let architecture update cpu core mappings. */
  6591. new_topology = arch_update_cpu_topology();
  6592. n = doms_new ? ndoms_new : 0;
  6593. /* Destroy deleted domains */
  6594. for (i = 0; i < ndoms_cur; i++) {
  6595. for (j = 0; j < n && !new_topology; j++) {
  6596. if (cpumask_equal(doms_cur[i], doms_new[j])
  6597. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6598. goto match1;
  6599. }
  6600. /* no match - a current sched domain not in new doms_new[] */
  6601. detach_destroy_domains(doms_cur[i]);
  6602. match1:
  6603. ;
  6604. }
  6605. if (doms_new == NULL) {
  6606. ndoms_cur = 0;
  6607. doms_new = &fallback_doms;
  6608. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6609. WARN_ON_ONCE(dattr_new);
  6610. }
  6611. /* Build new domains */
  6612. for (i = 0; i < ndoms_new; i++) {
  6613. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6614. if (cpumask_equal(doms_new[i], doms_cur[j])
  6615. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6616. goto match2;
  6617. }
  6618. /* no match - add a new doms_new */
  6619. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6620. match2:
  6621. ;
  6622. }
  6623. /* Remember the new sched domains */
  6624. if (doms_cur != &fallback_doms)
  6625. free_sched_domains(doms_cur, ndoms_cur);
  6626. kfree(dattr_cur); /* kfree(NULL) is safe */
  6627. doms_cur = doms_new;
  6628. dattr_cur = dattr_new;
  6629. ndoms_cur = ndoms_new;
  6630. register_sched_domain_sysctl();
  6631. mutex_unlock(&sched_domains_mutex);
  6632. }
  6633. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6634. static void reinit_sched_domains(void)
  6635. {
  6636. get_online_cpus();
  6637. /* Destroy domains first to force the rebuild */
  6638. partition_sched_domains(0, NULL, NULL);
  6639. rebuild_sched_domains();
  6640. put_online_cpus();
  6641. }
  6642. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6643. {
  6644. unsigned int level = 0;
  6645. if (sscanf(buf, "%u", &level) != 1)
  6646. return -EINVAL;
  6647. /*
  6648. * level is always be positive so don't check for
  6649. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6650. * What happens on 0 or 1 byte write,
  6651. * need to check for count as well?
  6652. */
  6653. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6654. return -EINVAL;
  6655. if (smt)
  6656. sched_smt_power_savings = level;
  6657. else
  6658. sched_mc_power_savings = level;
  6659. reinit_sched_domains();
  6660. return count;
  6661. }
  6662. #ifdef CONFIG_SCHED_MC
  6663. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6664. struct sysdev_class_attribute *attr,
  6665. char *page)
  6666. {
  6667. return sprintf(page, "%u\n", sched_mc_power_savings);
  6668. }
  6669. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6670. struct sysdev_class_attribute *attr,
  6671. const char *buf, size_t count)
  6672. {
  6673. return sched_power_savings_store(buf, count, 0);
  6674. }
  6675. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6676. sched_mc_power_savings_show,
  6677. sched_mc_power_savings_store);
  6678. #endif
  6679. #ifdef CONFIG_SCHED_SMT
  6680. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6681. struct sysdev_class_attribute *attr,
  6682. char *page)
  6683. {
  6684. return sprintf(page, "%u\n", sched_smt_power_savings);
  6685. }
  6686. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6687. struct sysdev_class_attribute *attr,
  6688. const char *buf, size_t count)
  6689. {
  6690. return sched_power_savings_store(buf, count, 1);
  6691. }
  6692. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6693. sched_smt_power_savings_show,
  6694. sched_smt_power_savings_store);
  6695. #endif
  6696. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6697. {
  6698. int err = 0;
  6699. #ifdef CONFIG_SCHED_SMT
  6700. if (smt_capable())
  6701. err = sysfs_create_file(&cls->kset.kobj,
  6702. &attr_sched_smt_power_savings.attr);
  6703. #endif
  6704. #ifdef CONFIG_SCHED_MC
  6705. if (!err && mc_capable())
  6706. err = sysfs_create_file(&cls->kset.kobj,
  6707. &attr_sched_mc_power_savings.attr);
  6708. #endif
  6709. return err;
  6710. }
  6711. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6712. /*
  6713. * Update cpusets according to cpu_active mask. If cpusets are
  6714. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6715. * around partition_sched_domains().
  6716. */
  6717. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6718. void *hcpu)
  6719. {
  6720. switch (action & ~CPU_TASKS_FROZEN) {
  6721. case CPU_ONLINE:
  6722. case CPU_DOWN_FAILED:
  6723. cpuset_update_active_cpus();
  6724. return NOTIFY_OK;
  6725. default:
  6726. return NOTIFY_DONE;
  6727. }
  6728. }
  6729. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6730. void *hcpu)
  6731. {
  6732. switch (action & ~CPU_TASKS_FROZEN) {
  6733. case CPU_DOWN_PREPARE:
  6734. cpuset_update_active_cpus();
  6735. return NOTIFY_OK;
  6736. default:
  6737. return NOTIFY_DONE;
  6738. }
  6739. }
  6740. static int update_runtime(struct notifier_block *nfb,
  6741. unsigned long action, void *hcpu)
  6742. {
  6743. int cpu = (int)(long)hcpu;
  6744. switch (action) {
  6745. case CPU_DOWN_PREPARE:
  6746. case CPU_DOWN_PREPARE_FROZEN:
  6747. disable_runtime(cpu_rq(cpu));
  6748. return NOTIFY_OK;
  6749. case CPU_DOWN_FAILED:
  6750. case CPU_DOWN_FAILED_FROZEN:
  6751. case CPU_ONLINE:
  6752. case CPU_ONLINE_FROZEN:
  6753. enable_runtime(cpu_rq(cpu));
  6754. return NOTIFY_OK;
  6755. default:
  6756. return NOTIFY_DONE;
  6757. }
  6758. }
  6759. void __init sched_init_smp(void)
  6760. {
  6761. cpumask_var_t non_isolated_cpus;
  6762. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6763. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6764. get_online_cpus();
  6765. mutex_lock(&sched_domains_mutex);
  6766. init_sched_domains(cpu_active_mask);
  6767. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6768. if (cpumask_empty(non_isolated_cpus))
  6769. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6770. mutex_unlock(&sched_domains_mutex);
  6771. put_online_cpus();
  6772. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6773. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6774. /* RT runtime code needs to handle some hotplug events */
  6775. hotcpu_notifier(update_runtime, 0);
  6776. init_hrtick();
  6777. /* Move init over to a non-isolated CPU */
  6778. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6779. BUG();
  6780. sched_init_granularity();
  6781. free_cpumask_var(non_isolated_cpus);
  6782. init_sched_rt_class();
  6783. }
  6784. #else
  6785. void __init sched_init_smp(void)
  6786. {
  6787. sched_init_granularity();
  6788. }
  6789. #endif /* CONFIG_SMP */
  6790. const_debug unsigned int sysctl_timer_migration = 1;
  6791. int in_sched_functions(unsigned long addr)
  6792. {
  6793. return in_lock_functions(addr) ||
  6794. (addr >= (unsigned long)__sched_text_start
  6795. && addr < (unsigned long)__sched_text_end);
  6796. }
  6797. static void init_cfs_rq(struct cfs_rq *cfs_rq)
  6798. {
  6799. cfs_rq->tasks_timeline = RB_ROOT;
  6800. INIT_LIST_HEAD(&cfs_rq->tasks);
  6801. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6802. #ifndef CONFIG_64BIT
  6803. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6804. #endif
  6805. }
  6806. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6807. {
  6808. struct rt_prio_array *array;
  6809. int i;
  6810. array = &rt_rq->active;
  6811. for (i = 0; i < MAX_RT_PRIO; i++) {
  6812. INIT_LIST_HEAD(array->queue + i);
  6813. __clear_bit(i, array->bitmap);
  6814. }
  6815. /* delimiter for bitsearch: */
  6816. __set_bit(MAX_RT_PRIO, array->bitmap);
  6817. #if defined CONFIG_SMP
  6818. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6819. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6820. rt_rq->rt_nr_migratory = 0;
  6821. rt_rq->overloaded = 0;
  6822. plist_head_init(&rt_rq->pushable_tasks);
  6823. #endif
  6824. rt_rq->rt_time = 0;
  6825. rt_rq->rt_throttled = 0;
  6826. rt_rq->rt_runtime = 0;
  6827. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6828. }
  6829. #ifdef CONFIG_FAIR_GROUP_SCHED
  6830. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6831. struct sched_entity *se, int cpu,
  6832. struct sched_entity *parent)
  6833. {
  6834. struct rq *rq = cpu_rq(cpu);
  6835. cfs_rq->tg = tg;
  6836. cfs_rq->rq = rq;
  6837. #ifdef CONFIG_SMP
  6838. /* allow initial update_cfs_load() to truncate */
  6839. cfs_rq->load_stamp = 1;
  6840. #endif
  6841. init_cfs_rq_runtime(cfs_rq);
  6842. tg->cfs_rq[cpu] = cfs_rq;
  6843. tg->se[cpu] = se;
  6844. /* se could be NULL for root_task_group */
  6845. if (!se)
  6846. return;
  6847. if (!parent)
  6848. se->cfs_rq = &rq->cfs;
  6849. else
  6850. se->cfs_rq = parent->my_q;
  6851. se->my_q = cfs_rq;
  6852. update_load_set(&se->load, 0);
  6853. se->parent = parent;
  6854. }
  6855. #endif
  6856. #ifdef CONFIG_RT_GROUP_SCHED
  6857. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6858. struct sched_rt_entity *rt_se, int cpu,
  6859. struct sched_rt_entity *parent)
  6860. {
  6861. struct rq *rq = cpu_rq(cpu);
  6862. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6863. rt_rq->rt_nr_boosted = 0;
  6864. rt_rq->rq = rq;
  6865. rt_rq->tg = tg;
  6866. tg->rt_rq[cpu] = rt_rq;
  6867. tg->rt_se[cpu] = rt_se;
  6868. if (!rt_se)
  6869. return;
  6870. if (!parent)
  6871. rt_se->rt_rq = &rq->rt;
  6872. else
  6873. rt_se->rt_rq = parent->my_q;
  6874. rt_se->my_q = rt_rq;
  6875. rt_se->parent = parent;
  6876. INIT_LIST_HEAD(&rt_se->run_list);
  6877. }
  6878. #endif
  6879. void __init sched_init(void)
  6880. {
  6881. int i, j;
  6882. unsigned long alloc_size = 0, ptr;
  6883. #ifdef CONFIG_FAIR_GROUP_SCHED
  6884. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6885. #endif
  6886. #ifdef CONFIG_RT_GROUP_SCHED
  6887. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6888. #endif
  6889. #ifdef CONFIG_CPUMASK_OFFSTACK
  6890. alloc_size += num_possible_cpus() * cpumask_size();
  6891. #endif
  6892. if (alloc_size) {
  6893. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6894. #ifdef CONFIG_FAIR_GROUP_SCHED
  6895. root_task_group.se = (struct sched_entity **)ptr;
  6896. ptr += nr_cpu_ids * sizeof(void **);
  6897. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6898. ptr += nr_cpu_ids * sizeof(void **);
  6899. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6900. #ifdef CONFIG_RT_GROUP_SCHED
  6901. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6902. ptr += nr_cpu_ids * sizeof(void **);
  6903. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6904. ptr += nr_cpu_ids * sizeof(void **);
  6905. #endif /* CONFIG_RT_GROUP_SCHED */
  6906. #ifdef CONFIG_CPUMASK_OFFSTACK
  6907. for_each_possible_cpu(i) {
  6908. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6909. ptr += cpumask_size();
  6910. }
  6911. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6912. }
  6913. #ifdef CONFIG_SMP
  6914. init_defrootdomain();
  6915. #endif
  6916. init_rt_bandwidth(&def_rt_bandwidth,
  6917. global_rt_period(), global_rt_runtime());
  6918. #ifdef CONFIG_RT_GROUP_SCHED
  6919. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6920. global_rt_period(), global_rt_runtime());
  6921. #endif /* CONFIG_RT_GROUP_SCHED */
  6922. #ifdef CONFIG_CGROUP_SCHED
  6923. list_add(&root_task_group.list, &task_groups);
  6924. INIT_LIST_HEAD(&root_task_group.children);
  6925. autogroup_init(&init_task);
  6926. #endif /* CONFIG_CGROUP_SCHED */
  6927. for_each_possible_cpu(i) {
  6928. struct rq *rq;
  6929. rq = cpu_rq(i);
  6930. raw_spin_lock_init(&rq->lock);
  6931. rq->nr_running = 0;
  6932. rq->calc_load_active = 0;
  6933. rq->calc_load_update = jiffies + LOAD_FREQ;
  6934. init_cfs_rq(&rq->cfs);
  6935. init_rt_rq(&rq->rt, rq);
  6936. #ifdef CONFIG_FAIR_GROUP_SCHED
  6937. root_task_group.shares = root_task_group_load;
  6938. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6939. /*
  6940. * How much cpu bandwidth does root_task_group get?
  6941. *
  6942. * In case of task-groups formed thr' the cgroup filesystem, it
  6943. * gets 100% of the cpu resources in the system. This overall
  6944. * system cpu resource is divided among the tasks of
  6945. * root_task_group and its child task-groups in a fair manner,
  6946. * based on each entity's (task or task-group's) weight
  6947. * (se->load.weight).
  6948. *
  6949. * In other words, if root_task_group has 10 tasks of weight
  6950. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6951. * then A0's share of the cpu resource is:
  6952. *
  6953. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6954. *
  6955. * We achieve this by letting root_task_group's tasks sit
  6956. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6957. */
  6958. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6959. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6960. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6961. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6962. #ifdef CONFIG_RT_GROUP_SCHED
  6963. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6964. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6965. #endif
  6966. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6967. rq->cpu_load[j] = 0;
  6968. rq->last_load_update_tick = jiffies;
  6969. #ifdef CONFIG_SMP
  6970. rq->sd = NULL;
  6971. rq->rd = NULL;
  6972. rq->cpu_power = SCHED_POWER_SCALE;
  6973. rq->post_schedule = 0;
  6974. rq->active_balance = 0;
  6975. rq->next_balance = jiffies;
  6976. rq->push_cpu = 0;
  6977. rq->cpu = i;
  6978. rq->online = 0;
  6979. rq->idle_stamp = 0;
  6980. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6981. rq_attach_root(rq, &def_root_domain);
  6982. #ifdef CONFIG_NO_HZ
  6983. rq->nohz_balance_kick = 0;
  6984. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6985. #endif
  6986. #endif
  6987. init_rq_hrtick(rq);
  6988. atomic_set(&rq->nr_iowait, 0);
  6989. }
  6990. set_load_weight(&init_task);
  6991. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6992. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6993. #endif
  6994. #ifdef CONFIG_SMP
  6995. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6996. #endif
  6997. #ifdef CONFIG_RT_MUTEXES
  6998. plist_head_init(&init_task.pi_waiters);
  6999. #endif
  7000. /*
  7001. * The boot idle thread does lazy MMU switching as well:
  7002. */
  7003. atomic_inc(&init_mm.mm_count);
  7004. enter_lazy_tlb(&init_mm, current);
  7005. /*
  7006. * Make us the idle thread. Technically, schedule() should not be
  7007. * called from this thread, however somewhere below it might be,
  7008. * but because we are the idle thread, we just pick up running again
  7009. * when this runqueue becomes "idle".
  7010. */
  7011. init_idle(current, smp_processor_id());
  7012. calc_load_update = jiffies + LOAD_FREQ;
  7013. /*
  7014. * During early bootup we pretend to be a normal task:
  7015. */
  7016. current->sched_class = &fair_sched_class;
  7017. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7018. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7019. #ifdef CONFIG_SMP
  7020. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  7021. #ifdef CONFIG_NO_HZ
  7022. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7023. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7024. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7025. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7026. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7027. #endif
  7028. /* May be allocated at isolcpus cmdline parse time */
  7029. if (cpu_isolated_map == NULL)
  7030. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7031. #endif /* SMP */
  7032. scheduler_running = 1;
  7033. }
  7034. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  7035. static inline int preempt_count_equals(int preempt_offset)
  7036. {
  7037. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7038. return (nested == preempt_offset);
  7039. }
  7040. void __might_sleep(const char *file, int line, int preempt_offset)
  7041. {
  7042. static unsigned long prev_jiffy; /* ratelimiting */
  7043. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7044. system_state != SYSTEM_RUNNING || oops_in_progress)
  7045. return;
  7046. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7047. return;
  7048. prev_jiffy = jiffies;
  7049. printk(KERN_ERR
  7050. "BUG: sleeping function called from invalid context at %s:%d\n",
  7051. file, line);
  7052. printk(KERN_ERR
  7053. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7054. in_atomic(), irqs_disabled(),
  7055. current->pid, current->comm);
  7056. debug_show_held_locks(current);
  7057. if (irqs_disabled())
  7058. print_irqtrace_events(current);
  7059. dump_stack();
  7060. }
  7061. EXPORT_SYMBOL(__might_sleep);
  7062. #endif
  7063. #ifdef CONFIG_MAGIC_SYSRQ
  7064. static void normalize_task(struct rq *rq, struct task_struct *p)
  7065. {
  7066. const struct sched_class *prev_class = p->sched_class;
  7067. int old_prio = p->prio;
  7068. int on_rq;
  7069. on_rq = p->on_rq;
  7070. if (on_rq)
  7071. deactivate_task(rq, p, 0);
  7072. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7073. if (on_rq) {
  7074. activate_task(rq, p, 0);
  7075. resched_task(rq->curr);
  7076. }
  7077. check_class_changed(rq, p, prev_class, old_prio);
  7078. }
  7079. void normalize_rt_tasks(void)
  7080. {
  7081. struct task_struct *g, *p;
  7082. unsigned long flags;
  7083. struct rq *rq;
  7084. read_lock_irqsave(&tasklist_lock, flags);
  7085. do_each_thread(g, p) {
  7086. /*
  7087. * Only normalize user tasks:
  7088. */
  7089. if (!p->mm)
  7090. continue;
  7091. p->se.exec_start = 0;
  7092. #ifdef CONFIG_SCHEDSTATS
  7093. p->se.statistics.wait_start = 0;
  7094. p->se.statistics.sleep_start = 0;
  7095. p->se.statistics.block_start = 0;
  7096. #endif
  7097. if (!rt_task(p)) {
  7098. /*
  7099. * Renice negative nice level userspace
  7100. * tasks back to 0:
  7101. */
  7102. if (TASK_NICE(p) < 0 && p->mm)
  7103. set_user_nice(p, 0);
  7104. continue;
  7105. }
  7106. raw_spin_lock(&p->pi_lock);
  7107. rq = __task_rq_lock(p);
  7108. normalize_task(rq, p);
  7109. __task_rq_unlock(rq);
  7110. raw_spin_unlock(&p->pi_lock);
  7111. } while_each_thread(g, p);
  7112. read_unlock_irqrestore(&tasklist_lock, flags);
  7113. }
  7114. #endif /* CONFIG_MAGIC_SYSRQ */
  7115. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7116. /*
  7117. * These functions are only useful for the IA64 MCA handling, or kdb.
  7118. *
  7119. * They can only be called when the whole system has been
  7120. * stopped - every CPU needs to be quiescent, and no scheduling
  7121. * activity can take place. Using them for anything else would
  7122. * be a serious bug, and as a result, they aren't even visible
  7123. * under any other configuration.
  7124. */
  7125. /**
  7126. * curr_task - return the current task for a given cpu.
  7127. * @cpu: the processor in question.
  7128. *
  7129. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7130. */
  7131. struct task_struct *curr_task(int cpu)
  7132. {
  7133. return cpu_curr(cpu);
  7134. }
  7135. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7136. #ifdef CONFIG_IA64
  7137. /**
  7138. * set_curr_task - set the current task for a given cpu.
  7139. * @cpu: the processor in question.
  7140. * @p: the task pointer to set.
  7141. *
  7142. * Description: This function must only be used when non-maskable interrupts
  7143. * are serviced on a separate stack. It allows the architecture to switch the
  7144. * notion of the current task on a cpu in a non-blocking manner. This function
  7145. * must be called with all CPU's synchronized, and interrupts disabled, the
  7146. * and caller must save the original value of the current task (see
  7147. * curr_task() above) and restore that value before reenabling interrupts and
  7148. * re-starting the system.
  7149. *
  7150. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7151. */
  7152. void set_curr_task(int cpu, struct task_struct *p)
  7153. {
  7154. cpu_curr(cpu) = p;
  7155. }
  7156. #endif
  7157. #ifdef CONFIG_FAIR_GROUP_SCHED
  7158. static void free_fair_sched_group(struct task_group *tg)
  7159. {
  7160. int i;
  7161. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7162. for_each_possible_cpu(i) {
  7163. if (tg->cfs_rq)
  7164. kfree(tg->cfs_rq[i]);
  7165. if (tg->se)
  7166. kfree(tg->se[i]);
  7167. }
  7168. kfree(tg->cfs_rq);
  7169. kfree(tg->se);
  7170. }
  7171. static
  7172. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7173. {
  7174. struct cfs_rq *cfs_rq;
  7175. struct sched_entity *se;
  7176. int i;
  7177. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7178. if (!tg->cfs_rq)
  7179. goto err;
  7180. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7181. if (!tg->se)
  7182. goto err;
  7183. tg->shares = NICE_0_LOAD;
  7184. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7185. for_each_possible_cpu(i) {
  7186. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7187. GFP_KERNEL, cpu_to_node(i));
  7188. if (!cfs_rq)
  7189. goto err;
  7190. se = kzalloc_node(sizeof(struct sched_entity),
  7191. GFP_KERNEL, cpu_to_node(i));
  7192. if (!se)
  7193. goto err_free_rq;
  7194. init_cfs_rq(cfs_rq);
  7195. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7196. }
  7197. return 1;
  7198. err_free_rq:
  7199. kfree(cfs_rq);
  7200. err:
  7201. return 0;
  7202. }
  7203. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7204. {
  7205. struct rq *rq = cpu_rq(cpu);
  7206. unsigned long flags;
  7207. /*
  7208. * Only empty task groups can be destroyed; so we can speculatively
  7209. * check on_list without danger of it being re-added.
  7210. */
  7211. if (!tg->cfs_rq[cpu]->on_list)
  7212. return;
  7213. raw_spin_lock_irqsave(&rq->lock, flags);
  7214. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7215. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7216. }
  7217. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7218. static inline void free_fair_sched_group(struct task_group *tg)
  7219. {
  7220. }
  7221. static inline
  7222. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7223. {
  7224. return 1;
  7225. }
  7226. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7227. {
  7228. }
  7229. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7230. #ifdef CONFIG_RT_GROUP_SCHED
  7231. static void free_rt_sched_group(struct task_group *tg)
  7232. {
  7233. int i;
  7234. if (tg->rt_se)
  7235. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7236. for_each_possible_cpu(i) {
  7237. if (tg->rt_rq)
  7238. kfree(tg->rt_rq[i]);
  7239. if (tg->rt_se)
  7240. kfree(tg->rt_se[i]);
  7241. }
  7242. kfree(tg->rt_rq);
  7243. kfree(tg->rt_se);
  7244. }
  7245. static
  7246. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7247. {
  7248. struct rt_rq *rt_rq;
  7249. struct sched_rt_entity *rt_se;
  7250. int i;
  7251. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7252. if (!tg->rt_rq)
  7253. goto err;
  7254. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7255. if (!tg->rt_se)
  7256. goto err;
  7257. init_rt_bandwidth(&tg->rt_bandwidth,
  7258. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7259. for_each_possible_cpu(i) {
  7260. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7261. GFP_KERNEL, cpu_to_node(i));
  7262. if (!rt_rq)
  7263. goto err;
  7264. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7265. GFP_KERNEL, cpu_to_node(i));
  7266. if (!rt_se)
  7267. goto err_free_rq;
  7268. init_rt_rq(rt_rq, cpu_rq(i));
  7269. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7270. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7271. }
  7272. return 1;
  7273. err_free_rq:
  7274. kfree(rt_rq);
  7275. err:
  7276. return 0;
  7277. }
  7278. #else /* !CONFIG_RT_GROUP_SCHED */
  7279. static inline void free_rt_sched_group(struct task_group *tg)
  7280. {
  7281. }
  7282. static inline
  7283. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7284. {
  7285. return 1;
  7286. }
  7287. #endif /* CONFIG_RT_GROUP_SCHED */
  7288. #ifdef CONFIG_CGROUP_SCHED
  7289. static void free_sched_group(struct task_group *tg)
  7290. {
  7291. free_fair_sched_group(tg);
  7292. free_rt_sched_group(tg);
  7293. autogroup_free(tg);
  7294. kfree(tg);
  7295. }
  7296. /* allocate runqueue etc for a new task group */
  7297. struct task_group *sched_create_group(struct task_group *parent)
  7298. {
  7299. struct task_group *tg;
  7300. unsigned long flags;
  7301. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7302. if (!tg)
  7303. return ERR_PTR(-ENOMEM);
  7304. if (!alloc_fair_sched_group(tg, parent))
  7305. goto err;
  7306. if (!alloc_rt_sched_group(tg, parent))
  7307. goto err;
  7308. spin_lock_irqsave(&task_group_lock, flags);
  7309. list_add_rcu(&tg->list, &task_groups);
  7310. WARN_ON(!parent); /* root should already exist */
  7311. tg->parent = parent;
  7312. INIT_LIST_HEAD(&tg->children);
  7313. list_add_rcu(&tg->siblings, &parent->children);
  7314. spin_unlock_irqrestore(&task_group_lock, flags);
  7315. return tg;
  7316. err:
  7317. free_sched_group(tg);
  7318. return ERR_PTR(-ENOMEM);
  7319. }
  7320. /* rcu callback to free various structures associated with a task group */
  7321. static void free_sched_group_rcu(struct rcu_head *rhp)
  7322. {
  7323. /* now it should be safe to free those cfs_rqs */
  7324. free_sched_group(container_of(rhp, struct task_group, rcu));
  7325. }
  7326. /* Destroy runqueue etc associated with a task group */
  7327. void sched_destroy_group(struct task_group *tg)
  7328. {
  7329. unsigned long flags;
  7330. int i;
  7331. /* end participation in shares distribution */
  7332. for_each_possible_cpu(i)
  7333. unregister_fair_sched_group(tg, i);
  7334. spin_lock_irqsave(&task_group_lock, flags);
  7335. list_del_rcu(&tg->list);
  7336. list_del_rcu(&tg->siblings);
  7337. spin_unlock_irqrestore(&task_group_lock, flags);
  7338. /* wait for possible concurrent references to cfs_rqs complete */
  7339. call_rcu(&tg->rcu, free_sched_group_rcu);
  7340. }
  7341. /* change task's runqueue when it moves between groups.
  7342. * The caller of this function should have put the task in its new group
  7343. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7344. * reflect its new group.
  7345. */
  7346. void sched_move_task(struct task_struct *tsk)
  7347. {
  7348. int on_rq, running;
  7349. unsigned long flags;
  7350. struct rq *rq;
  7351. rq = task_rq_lock(tsk, &flags);
  7352. running = task_current(rq, tsk);
  7353. on_rq = tsk->on_rq;
  7354. if (on_rq)
  7355. dequeue_task(rq, tsk, 0);
  7356. if (unlikely(running))
  7357. tsk->sched_class->put_prev_task(rq, tsk);
  7358. #ifdef CONFIG_FAIR_GROUP_SCHED
  7359. if (tsk->sched_class->task_move_group)
  7360. tsk->sched_class->task_move_group(tsk, on_rq);
  7361. else
  7362. #endif
  7363. set_task_rq(tsk, task_cpu(tsk));
  7364. if (unlikely(running))
  7365. tsk->sched_class->set_curr_task(rq);
  7366. if (on_rq)
  7367. enqueue_task(rq, tsk, 0);
  7368. task_rq_unlock(rq, tsk, &flags);
  7369. }
  7370. #endif /* CONFIG_CGROUP_SCHED */
  7371. #ifdef CONFIG_FAIR_GROUP_SCHED
  7372. static DEFINE_MUTEX(shares_mutex);
  7373. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7374. {
  7375. int i;
  7376. unsigned long flags;
  7377. /*
  7378. * We can't change the weight of the root cgroup.
  7379. */
  7380. if (!tg->se[0])
  7381. return -EINVAL;
  7382. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7383. mutex_lock(&shares_mutex);
  7384. if (tg->shares == shares)
  7385. goto done;
  7386. tg->shares = shares;
  7387. for_each_possible_cpu(i) {
  7388. struct rq *rq = cpu_rq(i);
  7389. struct sched_entity *se;
  7390. se = tg->se[i];
  7391. /* Propagate contribution to hierarchy */
  7392. raw_spin_lock_irqsave(&rq->lock, flags);
  7393. for_each_sched_entity(se)
  7394. update_cfs_shares(group_cfs_rq(se));
  7395. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7396. }
  7397. done:
  7398. mutex_unlock(&shares_mutex);
  7399. return 0;
  7400. }
  7401. unsigned long sched_group_shares(struct task_group *tg)
  7402. {
  7403. return tg->shares;
  7404. }
  7405. #endif
  7406. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  7407. static unsigned long to_ratio(u64 period, u64 runtime)
  7408. {
  7409. if (runtime == RUNTIME_INF)
  7410. return 1ULL << 20;
  7411. return div64_u64(runtime << 20, period);
  7412. }
  7413. #endif
  7414. #ifdef CONFIG_RT_GROUP_SCHED
  7415. /*
  7416. * Ensure that the real time constraints are schedulable.
  7417. */
  7418. static DEFINE_MUTEX(rt_constraints_mutex);
  7419. /* Must be called with tasklist_lock held */
  7420. static inline int tg_has_rt_tasks(struct task_group *tg)
  7421. {
  7422. struct task_struct *g, *p;
  7423. do_each_thread(g, p) {
  7424. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7425. return 1;
  7426. } while_each_thread(g, p);
  7427. return 0;
  7428. }
  7429. struct rt_schedulable_data {
  7430. struct task_group *tg;
  7431. u64 rt_period;
  7432. u64 rt_runtime;
  7433. };
  7434. static int tg_rt_schedulable(struct task_group *tg, void *data)
  7435. {
  7436. struct rt_schedulable_data *d = data;
  7437. struct task_group *child;
  7438. unsigned long total, sum = 0;
  7439. u64 period, runtime;
  7440. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7441. runtime = tg->rt_bandwidth.rt_runtime;
  7442. if (tg == d->tg) {
  7443. period = d->rt_period;
  7444. runtime = d->rt_runtime;
  7445. }
  7446. /*
  7447. * Cannot have more runtime than the period.
  7448. */
  7449. if (runtime > period && runtime != RUNTIME_INF)
  7450. return -EINVAL;
  7451. /*
  7452. * Ensure we don't starve existing RT tasks.
  7453. */
  7454. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7455. return -EBUSY;
  7456. total = to_ratio(period, runtime);
  7457. /*
  7458. * Nobody can have more than the global setting allows.
  7459. */
  7460. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7461. return -EINVAL;
  7462. /*
  7463. * The sum of our children's runtime should not exceed our own.
  7464. */
  7465. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7466. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7467. runtime = child->rt_bandwidth.rt_runtime;
  7468. if (child == d->tg) {
  7469. period = d->rt_period;
  7470. runtime = d->rt_runtime;
  7471. }
  7472. sum += to_ratio(period, runtime);
  7473. }
  7474. if (sum > total)
  7475. return -EINVAL;
  7476. return 0;
  7477. }
  7478. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7479. {
  7480. struct rt_schedulable_data data = {
  7481. .tg = tg,
  7482. .rt_period = period,
  7483. .rt_runtime = runtime,
  7484. };
  7485. return walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  7486. }
  7487. static int tg_set_rt_bandwidth(struct task_group *tg,
  7488. u64 rt_period, u64 rt_runtime)
  7489. {
  7490. int i, err = 0;
  7491. mutex_lock(&rt_constraints_mutex);
  7492. read_lock(&tasklist_lock);
  7493. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7494. if (err)
  7495. goto unlock;
  7496. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7497. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7498. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7499. for_each_possible_cpu(i) {
  7500. struct rt_rq *rt_rq = tg->rt_rq[i];
  7501. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7502. rt_rq->rt_runtime = rt_runtime;
  7503. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7504. }
  7505. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7506. unlock:
  7507. read_unlock(&tasklist_lock);
  7508. mutex_unlock(&rt_constraints_mutex);
  7509. return err;
  7510. }
  7511. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7512. {
  7513. u64 rt_runtime, rt_period;
  7514. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7515. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7516. if (rt_runtime_us < 0)
  7517. rt_runtime = RUNTIME_INF;
  7518. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7519. }
  7520. long sched_group_rt_runtime(struct task_group *tg)
  7521. {
  7522. u64 rt_runtime_us;
  7523. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7524. return -1;
  7525. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7526. do_div(rt_runtime_us, NSEC_PER_USEC);
  7527. return rt_runtime_us;
  7528. }
  7529. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7530. {
  7531. u64 rt_runtime, rt_period;
  7532. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7533. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7534. if (rt_period == 0)
  7535. return -EINVAL;
  7536. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7537. }
  7538. long sched_group_rt_period(struct task_group *tg)
  7539. {
  7540. u64 rt_period_us;
  7541. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7542. do_div(rt_period_us, NSEC_PER_USEC);
  7543. return rt_period_us;
  7544. }
  7545. static int sched_rt_global_constraints(void)
  7546. {
  7547. u64 runtime, period;
  7548. int ret = 0;
  7549. if (sysctl_sched_rt_period <= 0)
  7550. return -EINVAL;
  7551. runtime = global_rt_runtime();
  7552. period = global_rt_period();
  7553. /*
  7554. * Sanity check on the sysctl variables.
  7555. */
  7556. if (runtime > period && runtime != RUNTIME_INF)
  7557. return -EINVAL;
  7558. mutex_lock(&rt_constraints_mutex);
  7559. read_lock(&tasklist_lock);
  7560. ret = __rt_schedulable(NULL, 0, 0);
  7561. read_unlock(&tasklist_lock);
  7562. mutex_unlock(&rt_constraints_mutex);
  7563. return ret;
  7564. }
  7565. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7566. {
  7567. /* Don't accept realtime tasks when there is no way for them to run */
  7568. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7569. return 0;
  7570. return 1;
  7571. }
  7572. #else /* !CONFIG_RT_GROUP_SCHED */
  7573. static int sched_rt_global_constraints(void)
  7574. {
  7575. unsigned long flags;
  7576. int i;
  7577. if (sysctl_sched_rt_period <= 0)
  7578. return -EINVAL;
  7579. /*
  7580. * There's always some RT tasks in the root group
  7581. * -- migration, kstopmachine etc..
  7582. */
  7583. if (sysctl_sched_rt_runtime == 0)
  7584. return -EBUSY;
  7585. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7586. for_each_possible_cpu(i) {
  7587. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7588. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7589. rt_rq->rt_runtime = global_rt_runtime();
  7590. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7591. }
  7592. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7593. return 0;
  7594. }
  7595. #endif /* CONFIG_RT_GROUP_SCHED */
  7596. int sched_rt_handler(struct ctl_table *table, int write,
  7597. void __user *buffer, size_t *lenp,
  7598. loff_t *ppos)
  7599. {
  7600. int ret;
  7601. int old_period, old_runtime;
  7602. static DEFINE_MUTEX(mutex);
  7603. mutex_lock(&mutex);
  7604. old_period = sysctl_sched_rt_period;
  7605. old_runtime = sysctl_sched_rt_runtime;
  7606. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7607. if (!ret && write) {
  7608. ret = sched_rt_global_constraints();
  7609. if (ret) {
  7610. sysctl_sched_rt_period = old_period;
  7611. sysctl_sched_rt_runtime = old_runtime;
  7612. } else {
  7613. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7614. def_rt_bandwidth.rt_period =
  7615. ns_to_ktime(global_rt_period());
  7616. }
  7617. }
  7618. mutex_unlock(&mutex);
  7619. return ret;
  7620. }
  7621. #ifdef CONFIG_CGROUP_SCHED
  7622. /* return corresponding task_group object of a cgroup */
  7623. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7624. {
  7625. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7626. struct task_group, css);
  7627. }
  7628. static struct cgroup_subsys_state *
  7629. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7630. {
  7631. struct task_group *tg, *parent;
  7632. if (!cgrp->parent) {
  7633. /* This is early initialization for the top cgroup */
  7634. return &root_task_group.css;
  7635. }
  7636. parent = cgroup_tg(cgrp->parent);
  7637. tg = sched_create_group(parent);
  7638. if (IS_ERR(tg))
  7639. return ERR_PTR(-ENOMEM);
  7640. return &tg->css;
  7641. }
  7642. static void
  7643. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7644. {
  7645. struct task_group *tg = cgroup_tg(cgrp);
  7646. sched_destroy_group(tg);
  7647. }
  7648. static int
  7649. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7650. {
  7651. #ifdef CONFIG_RT_GROUP_SCHED
  7652. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7653. return -EINVAL;
  7654. #else
  7655. /* We don't support RT-tasks being in separate groups */
  7656. if (tsk->sched_class != &fair_sched_class)
  7657. return -EINVAL;
  7658. #endif
  7659. return 0;
  7660. }
  7661. static void
  7662. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7663. {
  7664. sched_move_task(tsk);
  7665. }
  7666. static void
  7667. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7668. struct cgroup *old_cgrp, struct task_struct *task)
  7669. {
  7670. /*
  7671. * cgroup_exit() is called in the copy_process() failure path.
  7672. * Ignore this case since the task hasn't ran yet, this avoids
  7673. * trying to poke a half freed task state from generic code.
  7674. */
  7675. if (!(task->flags & PF_EXITING))
  7676. return;
  7677. sched_move_task(task);
  7678. }
  7679. #ifdef CONFIG_FAIR_GROUP_SCHED
  7680. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7681. u64 shareval)
  7682. {
  7683. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7684. }
  7685. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7686. {
  7687. struct task_group *tg = cgroup_tg(cgrp);
  7688. return (u64) scale_load_down(tg->shares);
  7689. }
  7690. #ifdef CONFIG_CFS_BANDWIDTH
  7691. static DEFINE_MUTEX(cfs_constraints_mutex);
  7692. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7693. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7694. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7695. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7696. {
  7697. int i, ret = 0, runtime_enabled;
  7698. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7699. if (tg == &root_task_group)
  7700. return -EINVAL;
  7701. /*
  7702. * Ensure we have at some amount of bandwidth every period. This is
  7703. * to prevent reaching a state of large arrears when throttled via
  7704. * entity_tick() resulting in prolonged exit starvation.
  7705. */
  7706. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7707. return -EINVAL;
  7708. /*
  7709. * Likewise, bound things on the otherside by preventing insane quota
  7710. * periods. This also allows us to normalize in computing quota
  7711. * feasibility.
  7712. */
  7713. if (period > max_cfs_quota_period)
  7714. return -EINVAL;
  7715. mutex_lock(&cfs_constraints_mutex);
  7716. ret = __cfs_schedulable(tg, period, quota);
  7717. if (ret)
  7718. goto out_unlock;
  7719. runtime_enabled = quota != RUNTIME_INF;
  7720. raw_spin_lock_irq(&cfs_b->lock);
  7721. cfs_b->period = ns_to_ktime(period);
  7722. cfs_b->quota = quota;
  7723. __refill_cfs_bandwidth_runtime(cfs_b);
  7724. /* restart the period timer (if active) to handle new period expiry */
  7725. if (runtime_enabled && cfs_b->timer_active) {
  7726. /* force a reprogram */
  7727. cfs_b->timer_active = 0;
  7728. __start_cfs_bandwidth(cfs_b);
  7729. }
  7730. raw_spin_unlock_irq(&cfs_b->lock);
  7731. for_each_possible_cpu(i) {
  7732. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7733. struct rq *rq = rq_of(cfs_rq);
  7734. raw_spin_lock_irq(&rq->lock);
  7735. cfs_rq->runtime_enabled = runtime_enabled;
  7736. cfs_rq->runtime_remaining = 0;
  7737. raw_spin_unlock_irq(&rq->lock);
  7738. }
  7739. out_unlock:
  7740. mutex_unlock(&cfs_constraints_mutex);
  7741. return ret;
  7742. }
  7743. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7744. {
  7745. u64 quota, period;
  7746. period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7747. if (cfs_quota_us < 0)
  7748. quota = RUNTIME_INF;
  7749. else
  7750. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7751. return tg_set_cfs_bandwidth(tg, period, quota);
  7752. }
  7753. long tg_get_cfs_quota(struct task_group *tg)
  7754. {
  7755. u64 quota_us;
  7756. if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
  7757. return -1;
  7758. quota_us = tg_cfs_bandwidth(tg)->quota;
  7759. do_div(quota_us, NSEC_PER_USEC);
  7760. return quota_us;
  7761. }
  7762. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7763. {
  7764. u64 quota, period;
  7765. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7766. quota = tg_cfs_bandwidth(tg)->quota;
  7767. if (period <= 0)
  7768. return -EINVAL;
  7769. return tg_set_cfs_bandwidth(tg, period, quota);
  7770. }
  7771. long tg_get_cfs_period(struct task_group *tg)
  7772. {
  7773. u64 cfs_period_us;
  7774. cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7775. do_div(cfs_period_us, NSEC_PER_USEC);
  7776. return cfs_period_us;
  7777. }
  7778. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  7779. {
  7780. return tg_get_cfs_quota(cgroup_tg(cgrp));
  7781. }
  7782. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  7783. s64 cfs_quota_us)
  7784. {
  7785. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  7786. }
  7787. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7788. {
  7789. return tg_get_cfs_period(cgroup_tg(cgrp));
  7790. }
  7791. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7792. u64 cfs_period_us)
  7793. {
  7794. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  7795. }
  7796. struct cfs_schedulable_data {
  7797. struct task_group *tg;
  7798. u64 period, quota;
  7799. };
  7800. /*
  7801. * normalize group quota/period to be quota/max_period
  7802. * note: units are usecs
  7803. */
  7804. static u64 normalize_cfs_quota(struct task_group *tg,
  7805. struct cfs_schedulable_data *d)
  7806. {
  7807. u64 quota, period;
  7808. if (tg == d->tg) {
  7809. period = d->period;
  7810. quota = d->quota;
  7811. } else {
  7812. period = tg_get_cfs_period(tg);
  7813. quota = tg_get_cfs_quota(tg);
  7814. }
  7815. /* note: these should typically be equivalent */
  7816. if (quota == RUNTIME_INF || quota == -1)
  7817. return RUNTIME_INF;
  7818. return to_ratio(period, quota);
  7819. }
  7820. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7821. {
  7822. struct cfs_schedulable_data *d = data;
  7823. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7824. s64 quota = 0, parent_quota = -1;
  7825. if (!tg->parent) {
  7826. quota = RUNTIME_INF;
  7827. } else {
  7828. struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
  7829. quota = normalize_cfs_quota(tg, d);
  7830. parent_quota = parent_b->hierarchal_quota;
  7831. /*
  7832. * ensure max(child_quota) <= parent_quota, inherit when no
  7833. * limit is set
  7834. */
  7835. if (quota == RUNTIME_INF)
  7836. quota = parent_quota;
  7837. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7838. return -EINVAL;
  7839. }
  7840. cfs_b->hierarchal_quota = quota;
  7841. return 0;
  7842. }
  7843. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7844. {
  7845. struct cfs_schedulable_data data = {
  7846. .tg = tg,
  7847. .period = period,
  7848. .quota = quota,
  7849. };
  7850. if (quota != RUNTIME_INF) {
  7851. do_div(data.period, NSEC_PER_USEC);
  7852. do_div(data.quota, NSEC_PER_USEC);
  7853. }
  7854. return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7855. }
  7856. #endif /* CONFIG_CFS_BANDWIDTH */
  7857. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7858. #ifdef CONFIG_RT_GROUP_SCHED
  7859. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7860. s64 val)
  7861. {
  7862. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7863. }
  7864. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7865. {
  7866. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7867. }
  7868. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7869. u64 rt_period_us)
  7870. {
  7871. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7872. }
  7873. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7874. {
  7875. return sched_group_rt_period(cgroup_tg(cgrp));
  7876. }
  7877. #endif /* CONFIG_RT_GROUP_SCHED */
  7878. static struct cftype cpu_files[] = {
  7879. #ifdef CONFIG_FAIR_GROUP_SCHED
  7880. {
  7881. .name = "shares",
  7882. .read_u64 = cpu_shares_read_u64,
  7883. .write_u64 = cpu_shares_write_u64,
  7884. },
  7885. #endif
  7886. #ifdef CONFIG_CFS_BANDWIDTH
  7887. {
  7888. .name = "cfs_quota_us",
  7889. .read_s64 = cpu_cfs_quota_read_s64,
  7890. .write_s64 = cpu_cfs_quota_write_s64,
  7891. },
  7892. {
  7893. .name = "cfs_period_us",
  7894. .read_u64 = cpu_cfs_period_read_u64,
  7895. .write_u64 = cpu_cfs_period_write_u64,
  7896. },
  7897. #endif
  7898. #ifdef CONFIG_RT_GROUP_SCHED
  7899. {
  7900. .name = "rt_runtime_us",
  7901. .read_s64 = cpu_rt_runtime_read,
  7902. .write_s64 = cpu_rt_runtime_write,
  7903. },
  7904. {
  7905. .name = "rt_period_us",
  7906. .read_u64 = cpu_rt_period_read_uint,
  7907. .write_u64 = cpu_rt_period_write_uint,
  7908. },
  7909. #endif
  7910. };
  7911. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7912. {
  7913. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7914. }
  7915. struct cgroup_subsys cpu_cgroup_subsys = {
  7916. .name = "cpu",
  7917. .create = cpu_cgroup_create,
  7918. .destroy = cpu_cgroup_destroy,
  7919. .can_attach_task = cpu_cgroup_can_attach_task,
  7920. .attach_task = cpu_cgroup_attach_task,
  7921. .exit = cpu_cgroup_exit,
  7922. .populate = cpu_cgroup_populate,
  7923. .subsys_id = cpu_cgroup_subsys_id,
  7924. .early_init = 1,
  7925. };
  7926. #endif /* CONFIG_CGROUP_SCHED */
  7927. #ifdef CONFIG_CGROUP_CPUACCT
  7928. /*
  7929. * CPU accounting code for task groups.
  7930. *
  7931. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7932. * (balbir@in.ibm.com).
  7933. */
  7934. /* track cpu usage of a group of tasks and its child groups */
  7935. struct cpuacct {
  7936. struct cgroup_subsys_state css;
  7937. /* cpuusage holds pointer to a u64-type object on every cpu */
  7938. u64 __percpu *cpuusage;
  7939. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7940. struct cpuacct *parent;
  7941. };
  7942. struct cgroup_subsys cpuacct_subsys;
  7943. /* return cpu accounting group corresponding to this container */
  7944. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7945. {
  7946. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7947. struct cpuacct, css);
  7948. }
  7949. /* return cpu accounting group to which this task belongs */
  7950. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7951. {
  7952. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7953. struct cpuacct, css);
  7954. }
  7955. /* create a new cpu accounting group */
  7956. static struct cgroup_subsys_state *cpuacct_create(
  7957. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7958. {
  7959. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7960. int i;
  7961. if (!ca)
  7962. goto out;
  7963. ca->cpuusage = alloc_percpu(u64);
  7964. if (!ca->cpuusage)
  7965. goto out_free_ca;
  7966. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7967. if (percpu_counter_init(&ca->cpustat[i], 0))
  7968. goto out_free_counters;
  7969. if (cgrp->parent)
  7970. ca->parent = cgroup_ca(cgrp->parent);
  7971. return &ca->css;
  7972. out_free_counters:
  7973. while (--i >= 0)
  7974. percpu_counter_destroy(&ca->cpustat[i]);
  7975. free_percpu(ca->cpuusage);
  7976. out_free_ca:
  7977. kfree(ca);
  7978. out:
  7979. return ERR_PTR(-ENOMEM);
  7980. }
  7981. /* destroy an existing cpu accounting group */
  7982. static void
  7983. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7984. {
  7985. struct cpuacct *ca = cgroup_ca(cgrp);
  7986. int i;
  7987. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7988. percpu_counter_destroy(&ca->cpustat[i]);
  7989. free_percpu(ca->cpuusage);
  7990. kfree(ca);
  7991. }
  7992. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7993. {
  7994. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7995. u64 data;
  7996. #ifndef CONFIG_64BIT
  7997. /*
  7998. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7999. */
  8000. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8001. data = *cpuusage;
  8002. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8003. #else
  8004. data = *cpuusage;
  8005. #endif
  8006. return data;
  8007. }
  8008. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8009. {
  8010. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8011. #ifndef CONFIG_64BIT
  8012. /*
  8013. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8014. */
  8015. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  8016. *cpuusage = val;
  8017. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  8018. #else
  8019. *cpuusage = val;
  8020. #endif
  8021. }
  8022. /* return total cpu usage (in nanoseconds) of a group */
  8023. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8024. {
  8025. struct cpuacct *ca = cgroup_ca(cgrp);
  8026. u64 totalcpuusage = 0;
  8027. int i;
  8028. for_each_present_cpu(i)
  8029. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8030. return totalcpuusage;
  8031. }
  8032. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8033. u64 reset)
  8034. {
  8035. struct cpuacct *ca = cgroup_ca(cgrp);
  8036. int err = 0;
  8037. int i;
  8038. if (reset) {
  8039. err = -EINVAL;
  8040. goto out;
  8041. }
  8042. for_each_present_cpu(i)
  8043. cpuacct_cpuusage_write(ca, i, 0);
  8044. out:
  8045. return err;
  8046. }
  8047. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8048. struct seq_file *m)
  8049. {
  8050. struct cpuacct *ca = cgroup_ca(cgroup);
  8051. u64 percpu;
  8052. int i;
  8053. for_each_present_cpu(i) {
  8054. percpu = cpuacct_cpuusage_read(ca, i);
  8055. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8056. }
  8057. seq_printf(m, "\n");
  8058. return 0;
  8059. }
  8060. static const char *cpuacct_stat_desc[] = {
  8061. [CPUACCT_STAT_USER] = "user",
  8062. [CPUACCT_STAT_SYSTEM] = "system",
  8063. };
  8064. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8065. struct cgroup_map_cb *cb)
  8066. {
  8067. struct cpuacct *ca = cgroup_ca(cgrp);
  8068. int i;
  8069. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8070. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8071. val = cputime64_to_clock_t(val);
  8072. cb->fill(cb, cpuacct_stat_desc[i], val);
  8073. }
  8074. return 0;
  8075. }
  8076. static struct cftype files[] = {
  8077. {
  8078. .name = "usage",
  8079. .read_u64 = cpuusage_read,
  8080. .write_u64 = cpuusage_write,
  8081. },
  8082. {
  8083. .name = "usage_percpu",
  8084. .read_seq_string = cpuacct_percpu_seq_read,
  8085. },
  8086. {
  8087. .name = "stat",
  8088. .read_map = cpuacct_stats_show,
  8089. },
  8090. };
  8091. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8092. {
  8093. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8094. }
  8095. /*
  8096. * charge this task's execution time to its accounting group.
  8097. *
  8098. * called with rq->lock held.
  8099. */
  8100. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8101. {
  8102. struct cpuacct *ca;
  8103. int cpu;
  8104. if (unlikely(!cpuacct_subsys.active))
  8105. return;
  8106. cpu = task_cpu(tsk);
  8107. rcu_read_lock();
  8108. ca = task_ca(tsk);
  8109. for (; ca; ca = ca->parent) {
  8110. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8111. *cpuusage += cputime;
  8112. }
  8113. rcu_read_unlock();
  8114. }
  8115. /*
  8116. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8117. * in cputime_t units. As a result, cpuacct_update_stats calls
  8118. * percpu_counter_add with values large enough to always overflow the
  8119. * per cpu batch limit causing bad SMP scalability.
  8120. *
  8121. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8122. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8123. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8124. */
  8125. #ifdef CONFIG_SMP
  8126. #define CPUACCT_BATCH \
  8127. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8128. #else
  8129. #define CPUACCT_BATCH 0
  8130. #endif
  8131. /*
  8132. * Charge the system/user time to the task's accounting group.
  8133. */
  8134. static void cpuacct_update_stats(struct task_struct *tsk,
  8135. enum cpuacct_stat_index idx, cputime_t val)
  8136. {
  8137. struct cpuacct *ca;
  8138. int batch = CPUACCT_BATCH;
  8139. if (unlikely(!cpuacct_subsys.active))
  8140. return;
  8141. rcu_read_lock();
  8142. ca = task_ca(tsk);
  8143. do {
  8144. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8145. ca = ca->parent;
  8146. } while (ca);
  8147. rcu_read_unlock();
  8148. }
  8149. struct cgroup_subsys cpuacct_subsys = {
  8150. .name = "cpuacct",
  8151. .create = cpuacct_create,
  8152. .destroy = cpuacct_destroy,
  8153. .populate = cpuacct_populate,
  8154. .subsys_id = cpuacct_subsys_id,
  8155. };
  8156. #endif /* CONFIG_CGROUP_CPUACCT */