mtdpart.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
  9. *
  10. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  11. * added support for read_oob, write_oob
  12. */
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. #include <linux/list.h>
  18. #include <linux/config.h>
  19. #include <linux/kmod.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/partitions.h>
  22. #include <linux/mtd/compatmac.h>
  23. /* Our partition linked list */
  24. static LIST_HEAD(mtd_partitions);
  25. /* Our partition node structure */
  26. struct mtd_part {
  27. struct mtd_info mtd;
  28. struct mtd_info *master;
  29. u_int32_t offset;
  30. int index;
  31. struct list_head list;
  32. int registered;
  33. };
  34. /*
  35. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  36. * the pointer to that structure with this macro.
  37. */
  38. #define PART(x) ((struct mtd_part *)(x))
  39. /*
  40. * MTD methods which simply translate the effective address and pass through
  41. * to the _real_ device.
  42. */
  43. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  44. size_t *retlen, u_char *buf)
  45. {
  46. struct mtd_part *part = PART(mtd);
  47. if (from >= mtd->size)
  48. len = 0;
  49. else if (from + len > mtd->size)
  50. len = mtd->size - from;
  51. return part->master->read (part->master, from + part->offset,
  52. len, retlen, buf);
  53. }
  54. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  55. size_t *retlen, u_char **buf)
  56. {
  57. struct mtd_part *part = PART(mtd);
  58. if (from >= mtd->size)
  59. len = 0;
  60. else if (from + len > mtd->size)
  61. len = mtd->size - from;
  62. return part->master->point (part->master, from + part->offset,
  63. len, retlen, buf);
  64. }
  65. static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
  66. {
  67. struct mtd_part *part = PART(mtd);
  68. part->master->unpoint (part->master, addr, from + part->offset, len);
  69. }
  70. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  71. struct mtd_oob_ops *ops)
  72. {
  73. struct mtd_part *part = PART(mtd);
  74. if (from >= mtd->size)
  75. return -EINVAL;
  76. if (from + ops->len > mtd->size)
  77. return -EINVAL;
  78. return part->master->read_oob(part->master, from + part->offset, ops);
  79. }
  80. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  81. size_t *retlen, u_char *buf)
  82. {
  83. struct mtd_part *part = PART(mtd);
  84. return part->master->read_user_prot_reg (part->master, from,
  85. len, retlen, buf);
  86. }
  87. static int part_get_user_prot_info (struct mtd_info *mtd,
  88. struct otp_info *buf, size_t len)
  89. {
  90. struct mtd_part *part = PART(mtd);
  91. return part->master->get_user_prot_info (part->master, buf, len);
  92. }
  93. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  94. size_t *retlen, u_char *buf)
  95. {
  96. struct mtd_part *part = PART(mtd);
  97. return part->master->read_fact_prot_reg (part->master, from,
  98. len, retlen, buf);
  99. }
  100. static int part_get_fact_prot_info (struct mtd_info *mtd,
  101. struct otp_info *buf, size_t len)
  102. {
  103. struct mtd_part *part = PART(mtd);
  104. return part->master->get_fact_prot_info (part->master, buf, len);
  105. }
  106. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  107. size_t *retlen, const u_char *buf)
  108. {
  109. struct mtd_part *part = PART(mtd);
  110. if (!(mtd->flags & MTD_WRITEABLE))
  111. return -EROFS;
  112. if (to >= mtd->size)
  113. len = 0;
  114. else if (to + len > mtd->size)
  115. len = mtd->size - to;
  116. return part->master->write (part->master, to + part->offset,
  117. len, retlen, buf);
  118. }
  119. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  120. struct mtd_oob_ops *ops)
  121. {
  122. struct mtd_part *part = PART(mtd);
  123. if (!(mtd->flags & MTD_WRITEABLE))
  124. return -EROFS;
  125. if (to >= mtd->size)
  126. return -EINVAL;
  127. if (to + ops->len > mtd->size)
  128. return -EINVAL;
  129. return part->master->write_oob(part->master, to + part->offset, ops);
  130. }
  131. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  132. size_t *retlen, u_char *buf)
  133. {
  134. struct mtd_part *part = PART(mtd);
  135. return part->master->write_user_prot_reg (part->master, from,
  136. len, retlen, buf);
  137. }
  138. static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
  139. {
  140. struct mtd_part *part = PART(mtd);
  141. return part->master->lock_user_prot_reg (part->master, from, len);
  142. }
  143. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  144. unsigned long count, loff_t to, size_t *retlen)
  145. {
  146. struct mtd_part *part = PART(mtd);
  147. if (!(mtd->flags & MTD_WRITEABLE))
  148. return -EROFS;
  149. return part->master->writev (part->master, vecs, count,
  150. to + part->offset, retlen);
  151. }
  152. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  153. {
  154. struct mtd_part *part = PART(mtd);
  155. int ret;
  156. if (!(mtd->flags & MTD_WRITEABLE))
  157. return -EROFS;
  158. if (instr->addr >= mtd->size)
  159. return -EINVAL;
  160. instr->addr += part->offset;
  161. ret = part->master->erase(part->master, instr);
  162. return ret;
  163. }
  164. void mtd_erase_callback(struct erase_info *instr)
  165. {
  166. if (instr->mtd->erase == part_erase) {
  167. struct mtd_part *part = PART(instr->mtd);
  168. if (instr->fail_addr != 0xffffffff)
  169. instr->fail_addr -= part->offset;
  170. instr->addr -= part->offset;
  171. }
  172. if (instr->callback)
  173. instr->callback(instr);
  174. }
  175. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  176. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  177. {
  178. struct mtd_part *part = PART(mtd);
  179. if ((len + ofs) > mtd->size)
  180. return -EINVAL;
  181. return part->master->lock(part->master, ofs + part->offset, len);
  182. }
  183. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  184. {
  185. struct mtd_part *part = PART(mtd);
  186. if ((len + ofs) > mtd->size)
  187. return -EINVAL;
  188. return part->master->unlock(part->master, ofs + part->offset, len);
  189. }
  190. static void part_sync(struct mtd_info *mtd)
  191. {
  192. struct mtd_part *part = PART(mtd);
  193. part->master->sync(part->master);
  194. }
  195. static int part_suspend(struct mtd_info *mtd)
  196. {
  197. struct mtd_part *part = PART(mtd);
  198. return part->master->suspend(part->master);
  199. }
  200. static void part_resume(struct mtd_info *mtd)
  201. {
  202. struct mtd_part *part = PART(mtd);
  203. part->master->resume(part->master);
  204. }
  205. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  206. {
  207. struct mtd_part *part = PART(mtd);
  208. if (ofs >= mtd->size)
  209. return -EINVAL;
  210. ofs += part->offset;
  211. return part->master->block_isbad(part->master, ofs);
  212. }
  213. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  214. {
  215. struct mtd_part *part = PART(mtd);
  216. if (!(mtd->flags & MTD_WRITEABLE))
  217. return -EROFS;
  218. if (ofs >= mtd->size)
  219. return -EINVAL;
  220. ofs += part->offset;
  221. return part->master->block_markbad(part->master, ofs);
  222. }
  223. /*
  224. * This function unregisters and destroy all slave MTD objects which are
  225. * attached to the given master MTD object.
  226. */
  227. int del_mtd_partitions(struct mtd_info *master)
  228. {
  229. struct list_head *node;
  230. struct mtd_part *slave;
  231. for (node = mtd_partitions.next;
  232. node != &mtd_partitions;
  233. node = node->next) {
  234. slave = list_entry(node, struct mtd_part, list);
  235. if (slave->master == master) {
  236. struct list_head *prev = node->prev;
  237. __list_del(prev, node->next);
  238. if(slave->registered)
  239. del_mtd_device(&slave->mtd);
  240. kfree(slave);
  241. node = prev;
  242. }
  243. }
  244. return 0;
  245. }
  246. /*
  247. * This function, given a master MTD object and a partition table, creates
  248. * and registers slave MTD objects which are bound to the master according to
  249. * the partition definitions.
  250. * (Q: should we register the master MTD object as well?)
  251. */
  252. int add_mtd_partitions(struct mtd_info *master,
  253. const struct mtd_partition *parts,
  254. int nbparts)
  255. {
  256. struct mtd_part *slave;
  257. u_int32_t cur_offset = 0;
  258. int i;
  259. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  260. for (i = 0; i < nbparts; i++) {
  261. /* allocate the partition structure */
  262. slave = kmalloc (sizeof(*slave), GFP_KERNEL);
  263. if (!slave) {
  264. printk ("memory allocation error while creating partitions for \"%s\"\n",
  265. master->name);
  266. del_mtd_partitions(master);
  267. return -ENOMEM;
  268. }
  269. memset(slave, 0, sizeof(*slave));
  270. list_add(&slave->list, &mtd_partitions);
  271. /* set up the MTD object for this partition */
  272. slave->mtd.type = master->type;
  273. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  274. slave->mtd.size = parts[i].size;
  275. slave->mtd.writesize = master->writesize;
  276. slave->mtd.oobsize = master->oobsize;
  277. slave->mtd.ecctype = master->ecctype;
  278. slave->mtd.eccsize = master->eccsize;
  279. slave->mtd.name = parts[i].name;
  280. slave->mtd.bank_size = master->bank_size;
  281. slave->mtd.owner = master->owner;
  282. slave->mtd.read = part_read;
  283. slave->mtd.write = part_write;
  284. if(master->point && master->unpoint){
  285. slave->mtd.point = part_point;
  286. slave->mtd.unpoint = part_unpoint;
  287. }
  288. if (master->read_oob)
  289. slave->mtd.read_oob = part_read_oob;
  290. if (master->write_oob)
  291. slave->mtd.write_oob = part_write_oob;
  292. if(master->read_user_prot_reg)
  293. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  294. if(master->read_fact_prot_reg)
  295. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  296. if(master->write_user_prot_reg)
  297. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  298. if(master->lock_user_prot_reg)
  299. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  300. if(master->get_user_prot_info)
  301. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  302. if(master->get_fact_prot_info)
  303. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  304. if (master->sync)
  305. slave->mtd.sync = part_sync;
  306. if (!i && master->suspend && master->resume) {
  307. slave->mtd.suspend = part_suspend;
  308. slave->mtd.resume = part_resume;
  309. }
  310. if (master->writev)
  311. slave->mtd.writev = part_writev;
  312. if (master->lock)
  313. slave->mtd.lock = part_lock;
  314. if (master->unlock)
  315. slave->mtd.unlock = part_unlock;
  316. if (master->block_isbad)
  317. slave->mtd.block_isbad = part_block_isbad;
  318. if (master->block_markbad)
  319. slave->mtd.block_markbad = part_block_markbad;
  320. slave->mtd.erase = part_erase;
  321. slave->master = master;
  322. slave->offset = parts[i].offset;
  323. slave->index = i;
  324. if (slave->offset == MTDPART_OFS_APPEND)
  325. slave->offset = cur_offset;
  326. if (slave->offset == MTDPART_OFS_NXTBLK) {
  327. slave->offset = cur_offset;
  328. if ((cur_offset % master->erasesize) != 0) {
  329. /* Round up to next erasesize */
  330. slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
  331. printk(KERN_NOTICE "Moving partition %d: "
  332. "0x%08x -> 0x%08x\n", i,
  333. cur_offset, slave->offset);
  334. }
  335. }
  336. if (slave->mtd.size == MTDPART_SIZ_FULL)
  337. slave->mtd.size = master->size - slave->offset;
  338. cur_offset = slave->offset + slave->mtd.size;
  339. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  340. slave->offset + slave->mtd.size, slave->mtd.name);
  341. /* let's do some sanity checks */
  342. if (slave->offset >= master->size) {
  343. /* let's register it anyway to preserve ordering */
  344. slave->offset = 0;
  345. slave->mtd.size = 0;
  346. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  347. parts[i].name);
  348. }
  349. if (slave->offset + slave->mtd.size > master->size) {
  350. slave->mtd.size = master->size - slave->offset;
  351. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  352. parts[i].name, master->name, slave->mtd.size);
  353. }
  354. if (master->numeraseregions>1) {
  355. /* Deal with variable erase size stuff */
  356. int i;
  357. struct mtd_erase_region_info *regions = master->eraseregions;
  358. /* Find the first erase regions which is part of this partition. */
  359. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  360. ;
  361. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  362. if (slave->mtd.erasesize < regions[i].erasesize) {
  363. slave->mtd.erasesize = regions[i].erasesize;
  364. }
  365. }
  366. } else {
  367. /* Single erase size */
  368. slave->mtd.erasesize = master->erasesize;
  369. }
  370. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  371. (slave->offset % slave->mtd.erasesize)) {
  372. /* Doesn't start on a boundary of major erase size */
  373. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  374. slave->mtd.flags &= ~MTD_WRITEABLE;
  375. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  376. parts[i].name);
  377. }
  378. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  379. (slave->mtd.size % slave->mtd.erasesize)) {
  380. slave->mtd.flags &= ~MTD_WRITEABLE;
  381. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  382. parts[i].name);
  383. }
  384. slave->mtd.ecclayout = master->ecclayout;
  385. if(parts[i].mtdp)
  386. { /* store the object pointer (caller may or may not register it */
  387. *parts[i].mtdp = &slave->mtd;
  388. slave->registered = 0;
  389. }
  390. else
  391. {
  392. /* register our partition */
  393. add_mtd_device(&slave->mtd);
  394. slave->registered = 1;
  395. }
  396. }
  397. return 0;
  398. }
  399. EXPORT_SYMBOL(add_mtd_partitions);
  400. EXPORT_SYMBOL(del_mtd_partitions);
  401. static DEFINE_SPINLOCK(part_parser_lock);
  402. static LIST_HEAD(part_parsers);
  403. static struct mtd_part_parser *get_partition_parser(const char *name)
  404. {
  405. struct list_head *this;
  406. void *ret = NULL;
  407. spin_lock(&part_parser_lock);
  408. list_for_each(this, &part_parsers) {
  409. struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
  410. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  411. ret = p;
  412. break;
  413. }
  414. }
  415. spin_unlock(&part_parser_lock);
  416. return ret;
  417. }
  418. int register_mtd_parser(struct mtd_part_parser *p)
  419. {
  420. spin_lock(&part_parser_lock);
  421. list_add(&p->list, &part_parsers);
  422. spin_unlock(&part_parser_lock);
  423. return 0;
  424. }
  425. int deregister_mtd_parser(struct mtd_part_parser *p)
  426. {
  427. spin_lock(&part_parser_lock);
  428. list_del(&p->list);
  429. spin_unlock(&part_parser_lock);
  430. return 0;
  431. }
  432. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  433. struct mtd_partition **pparts, unsigned long origin)
  434. {
  435. struct mtd_part_parser *parser;
  436. int ret = 0;
  437. for ( ; ret <= 0 && *types; types++) {
  438. parser = get_partition_parser(*types);
  439. #ifdef CONFIG_KMOD
  440. if (!parser && !request_module("%s", *types))
  441. parser = get_partition_parser(*types);
  442. #endif
  443. if (!parser) {
  444. printk(KERN_NOTICE "%s partition parsing not available\n",
  445. *types);
  446. continue;
  447. }
  448. ret = (*parser->parse_fn)(master, pparts, origin);
  449. if (ret > 0) {
  450. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  451. ret, parser->name, master->name);
  452. }
  453. put_partition_parser(parser);
  454. }
  455. return ret;
  456. }
  457. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  458. EXPORT_SYMBOL_GPL(register_mtd_parser);
  459. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  460. MODULE_LICENSE("GPL");
  461. MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
  462. MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");