rx.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/socket.h>
  11. #include <linux/in.h>
  12. #include <linux/slab.h>
  13. #include <linux/ip.h>
  14. #include <linux/tcp.h>
  15. #include <linux/udp.h>
  16. #include <linux/prefetch.h>
  17. #include <linux/moduleparam.h>
  18. #include <net/ip.h>
  19. #include <net/checksum.h>
  20. #include "net_driver.h"
  21. #include "efx.h"
  22. #include "nic.h"
  23. #include "selftest.h"
  24. #include "workarounds.h"
  25. /* Number of RX descriptors pushed at once. */
  26. #define EFX_RX_BATCH 8
  27. /* Maximum length for an RX descriptor sharing a page */
  28. #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \
  29. - EFX_PAGE_IP_ALIGN)
  30. /* Size of buffer allocated for skb header area. */
  31. #define EFX_SKB_HEADERS 64u
  32. /* This is the percentage fill level below which new RX descriptors
  33. * will be added to the RX descriptor ring.
  34. */
  35. static unsigned int rx_refill_threshold;
  36. /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
  37. #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
  38. EFX_RX_USR_BUF_SIZE)
  39. /*
  40. * RX maximum head room required.
  41. *
  42. * This must be at least 1 to prevent overflow, plus one packet-worth
  43. * to allow pipelined receives.
  44. */
  45. #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  46. static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
  47. {
  48. return page_address(buf->page) + buf->page_offset;
  49. }
  50. static inline u32 efx_rx_buf_hash(const u8 *eh)
  51. {
  52. /* The ethernet header is always directly after any hash. */
  53. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
  54. return __le32_to_cpup((const __le32 *)(eh - 4));
  55. #else
  56. const u8 *data = eh - 4;
  57. return (u32)data[0] |
  58. (u32)data[1] << 8 |
  59. (u32)data[2] << 16 |
  60. (u32)data[3] << 24;
  61. #endif
  62. }
  63. static inline struct efx_rx_buffer *
  64. efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
  65. {
  66. if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
  67. return efx_rx_buffer(rx_queue, 0);
  68. else
  69. return rx_buf + 1;
  70. }
  71. /**
  72. * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
  73. *
  74. * @rx_queue: Efx RX queue
  75. *
  76. * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
  77. * and populates struct efx_rx_buffers for each one. Return a negative error
  78. * code or 0 on success. If a single page can be split between two buffers,
  79. * then the page will either be inserted fully, or not at at all.
  80. */
  81. static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
  82. {
  83. struct efx_nic *efx = rx_queue->efx;
  84. struct efx_rx_buffer *rx_buf;
  85. struct page *page;
  86. unsigned int page_offset;
  87. struct efx_rx_page_state *state;
  88. dma_addr_t dma_addr;
  89. unsigned index, count;
  90. /* We can split a page between two buffers */
  91. BUILD_BUG_ON(EFX_RX_BATCH & 1);
  92. for (count = 0; count < EFX_RX_BATCH; ++count) {
  93. page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
  94. efx->rx_buffer_order);
  95. if (unlikely(page == NULL))
  96. return -ENOMEM;
  97. dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
  98. PAGE_SIZE << efx->rx_buffer_order,
  99. DMA_FROM_DEVICE);
  100. if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
  101. __free_pages(page, efx->rx_buffer_order);
  102. return -EIO;
  103. }
  104. state = page_address(page);
  105. state->refcnt = 0;
  106. state->dma_addr = dma_addr;
  107. dma_addr += sizeof(struct efx_rx_page_state);
  108. page_offset = sizeof(struct efx_rx_page_state);
  109. split:
  110. index = rx_queue->added_count & rx_queue->ptr_mask;
  111. rx_buf = efx_rx_buffer(rx_queue, index);
  112. rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
  113. rx_buf->page = page;
  114. rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
  115. rx_buf->len = efx->rx_dma_len;
  116. rx_buf->flags = 0;
  117. ++rx_queue->added_count;
  118. ++state->refcnt;
  119. if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) {
  120. /* Use the second half of the page */
  121. get_page(page);
  122. dma_addr += (PAGE_SIZE >> 1);
  123. page_offset += (PAGE_SIZE >> 1);
  124. ++count;
  125. goto split;
  126. }
  127. }
  128. return 0;
  129. }
  130. static void efx_unmap_rx_buffer(struct efx_nic *efx,
  131. struct efx_rx_buffer *rx_buf,
  132. unsigned int used_len)
  133. {
  134. if (rx_buf->page) {
  135. struct efx_rx_page_state *state;
  136. state = page_address(rx_buf->page);
  137. if (--state->refcnt == 0) {
  138. dma_unmap_page(&efx->pci_dev->dev,
  139. state->dma_addr,
  140. PAGE_SIZE << efx->rx_buffer_order,
  141. DMA_FROM_DEVICE);
  142. } else if (used_len) {
  143. dma_sync_single_for_cpu(&efx->pci_dev->dev,
  144. rx_buf->dma_addr, used_len,
  145. DMA_FROM_DEVICE);
  146. }
  147. }
  148. }
  149. static void efx_free_rx_buffer(struct efx_nic *efx,
  150. struct efx_rx_buffer *rx_buf)
  151. {
  152. if (rx_buf->page) {
  153. __free_pages(rx_buf->page, efx->rx_buffer_order);
  154. rx_buf->page = NULL;
  155. }
  156. }
  157. static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
  158. struct efx_rx_buffer *rx_buf)
  159. {
  160. efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
  161. efx_free_rx_buffer(rx_queue->efx, rx_buf);
  162. }
  163. /* Attempt to resurrect the other receive buffer that used to share this page,
  164. * which had previously been passed up to the kernel and freed. */
  165. static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
  166. struct efx_rx_buffer *rx_buf)
  167. {
  168. struct efx_rx_page_state *state = page_address(rx_buf->page);
  169. struct efx_rx_buffer *new_buf;
  170. unsigned fill_level, index;
  171. /* +1 because efx_rx_packet() incremented removed_count. +1 because
  172. * we'd like to insert an additional descriptor whilst leaving
  173. * EFX_RXD_HEAD_ROOM for the non-recycle path */
  174. fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
  175. if (unlikely(fill_level > rx_queue->max_fill)) {
  176. /* We could place "state" on a list, and drain the list in
  177. * efx_fast_push_rx_descriptors(). For now, this will do. */
  178. return;
  179. }
  180. ++state->refcnt;
  181. get_page(rx_buf->page);
  182. index = rx_queue->added_count & rx_queue->ptr_mask;
  183. new_buf = efx_rx_buffer(rx_queue, index);
  184. new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
  185. new_buf->page = rx_buf->page;
  186. new_buf->len = rx_buf->len;
  187. ++rx_queue->added_count;
  188. }
  189. /* Recycle buffers directly back into the rx_queue. There is always
  190. * room to add these buffer, because we've just popped them.
  191. */
  192. static void efx_recycle_rx_buffers(struct efx_channel *channel,
  193. struct efx_rx_buffer *rx_buf,
  194. unsigned int n_frags)
  195. {
  196. struct efx_nic *efx = channel->efx;
  197. struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  198. struct efx_rx_buffer *new_buf;
  199. unsigned index;
  200. do {
  201. rx_buf->flags = 0;
  202. if (efx->rx_dma_len <= EFX_RX_HALF_PAGE &&
  203. page_count(rx_buf->page) == 1)
  204. efx_resurrect_rx_buffer(rx_queue, rx_buf);
  205. index = rx_queue->added_count & rx_queue->ptr_mask;
  206. new_buf = efx_rx_buffer(rx_queue, index);
  207. memcpy(new_buf, rx_buf, sizeof(*new_buf));
  208. rx_buf->page = NULL;
  209. ++rx_queue->added_count;
  210. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  211. } while (--n_frags);
  212. }
  213. /**
  214. * efx_fast_push_rx_descriptors - push new RX descriptors quickly
  215. * @rx_queue: RX descriptor queue
  216. *
  217. * This will aim to fill the RX descriptor queue up to
  218. * @rx_queue->@max_fill. If there is insufficient atomic
  219. * memory to do so, a slow fill will be scheduled.
  220. *
  221. * The caller must provide serialisation (none is used here). In practise,
  222. * this means this function must run from the NAPI handler, or be called
  223. * when NAPI is disabled.
  224. */
  225. void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
  226. {
  227. unsigned fill_level;
  228. int space, rc = 0;
  229. /* Calculate current fill level, and exit if we don't need to fill */
  230. fill_level = (rx_queue->added_count - rx_queue->removed_count);
  231. EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
  232. if (fill_level >= rx_queue->fast_fill_trigger)
  233. goto out;
  234. /* Record minimum fill level */
  235. if (unlikely(fill_level < rx_queue->min_fill)) {
  236. if (fill_level)
  237. rx_queue->min_fill = fill_level;
  238. }
  239. space = rx_queue->max_fill - fill_level;
  240. EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
  241. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  242. "RX queue %d fast-filling descriptor ring from"
  243. " level %d to level %d\n",
  244. efx_rx_queue_index(rx_queue), fill_level,
  245. rx_queue->max_fill);
  246. do {
  247. rc = efx_init_rx_buffers(rx_queue);
  248. if (unlikely(rc)) {
  249. /* Ensure that we don't leave the rx queue empty */
  250. if (rx_queue->added_count == rx_queue->removed_count)
  251. efx_schedule_slow_fill(rx_queue);
  252. goto out;
  253. }
  254. } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
  255. netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
  256. "RX queue %d fast-filled descriptor ring "
  257. "to level %d\n", efx_rx_queue_index(rx_queue),
  258. rx_queue->added_count - rx_queue->removed_count);
  259. out:
  260. if (rx_queue->notified_count != rx_queue->added_count)
  261. efx_nic_notify_rx_desc(rx_queue);
  262. }
  263. void efx_rx_slow_fill(unsigned long context)
  264. {
  265. struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
  266. /* Post an event to cause NAPI to run and refill the queue */
  267. efx_nic_generate_fill_event(rx_queue);
  268. ++rx_queue->slow_fill_count;
  269. }
  270. static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
  271. struct efx_rx_buffer *rx_buf,
  272. int len)
  273. {
  274. struct efx_nic *efx = rx_queue->efx;
  275. unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
  276. if (likely(len <= max_len))
  277. return;
  278. /* The packet must be discarded, but this is only a fatal error
  279. * if the caller indicated it was
  280. */
  281. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  282. if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
  283. if (net_ratelimit())
  284. netif_err(efx, rx_err, efx->net_dev,
  285. " RX queue %d seriously overlength "
  286. "RX event (0x%x > 0x%x+0x%x). Leaking\n",
  287. efx_rx_queue_index(rx_queue), len, max_len,
  288. efx->type->rx_buffer_padding);
  289. efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
  290. } else {
  291. if (net_ratelimit())
  292. netif_err(efx, rx_err, efx->net_dev,
  293. " RX queue %d overlength RX event "
  294. "(0x%x > 0x%x)\n",
  295. efx_rx_queue_index(rx_queue), len, max_len);
  296. }
  297. efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
  298. }
  299. /* Pass a received packet up through GRO. GRO can handle pages
  300. * regardless of checksum state and skbs with a good checksum.
  301. */
  302. static void
  303. efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
  304. unsigned int n_frags, u8 *eh)
  305. {
  306. struct napi_struct *napi = &channel->napi_str;
  307. gro_result_t gro_result;
  308. struct efx_nic *efx = channel->efx;
  309. struct sk_buff *skb;
  310. skb = napi_get_frags(napi);
  311. if (unlikely(!skb)) {
  312. while (n_frags--) {
  313. put_page(rx_buf->page);
  314. rx_buf->page = NULL;
  315. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  316. }
  317. return;
  318. }
  319. if (efx->net_dev->features & NETIF_F_RXHASH)
  320. skb->rxhash = efx_rx_buf_hash(eh);
  321. skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
  322. CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
  323. for (;;) {
  324. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  325. rx_buf->page, rx_buf->page_offset,
  326. rx_buf->len);
  327. rx_buf->page = NULL;
  328. skb->len += rx_buf->len;
  329. if (skb_shinfo(skb)->nr_frags == n_frags)
  330. break;
  331. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  332. }
  333. skb->data_len = skb->len;
  334. skb->truesize += n_frags * efx->rx_buffer_truesize;
  335. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  336. gro_result = napi_gro_frags(napi);
  337. if (gro_result != GRO_DROP)
  338. channel->irq_mod_score += 2;
  339. }
  340. /* Allocate and construct an SKB around page fragments */
  341. static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
  342. struct efx_rx_buffer *rx_buf,
  343. unsigned int n_frags,
  344. u8 *eh, int hdr_len)
  345. {
  346. struct efx_nic *efx = channel->efx;
  347. struct sk_buff *skb;
  348. /* Allocate an SKB to store the headers */
  349. skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
  350. if (unlikely(skb == NULL))
  351. return NULL;
  352. EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
  353. skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
  354. memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
  355. /* Append the remaining page(s) onto the frag list */
  356. if (rx_buf->len > hdr_len) {
  357. rx_buf->page_offset += hdr_len;
  358. rx_buf->len -= hdr_len;
  359. for (;;) {
  360. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  361. rx_buf->page, rx_buf->page_offset,
  362. rx_buf->len);
  363. rx_buf->page = NULL;
  364. skb->len += rx_buf->len;
  365. skb->data_len += rx_buf->len;
  366. if (skb_shinfo(skb)->nr_frags == n_frags)
  367. break;
  368. rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
  369. }
  370. } else {
  371. __free_pages(rx_buf->page, efx->rx_buffer_order);
  372. rx_buf->page = NULL;
  373. n_frags = 0;
  374. }
  375. skb->truesize += n_frags * efx->rx_buffer_truesize;
  376. /* Move past the ethernet header */
  377. skb->protocol = eth_type_trans(skb, efx->net_dev);
  378. return skb;
  379. }
  380. void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
  381. unsigned int n_frags, unsigned int len, u16 flags)
  382. {
  383. struct efx_nic *efx = rx_queue->efx;
  384. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  385. struct efx_rx_buffer *rx_buf;
  386. rx_buf = efx_rx_buffer(rx_queue, index);
  387. rx_buf->flags |= flags;
  388. /* Validate the number of fragments and completed length */
  389. if (n_frags == 1) {
  390. efx_rx_packet__check_len(rx_queue, rx_buf, len);
  391. } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
  392. unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
  393. unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
  394. unlikely(!efx->rx_scatter)) {
  395. /* If this isn't an explicit discard request, either
  396. * the hardware or the driver is broken.
  397. */
  398. WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
  399. rx_buf->flags |= EFX_RX_PKT_DISCARD;
  400. }
  401. netif_vdbg(efx, rx_status, efx->net_dev,
  402. "RX queue %d received ids %x-%x len %d %s%s\n",
  403. efx_rx_queue_index(rx_queue), index,
  404. (index + n_frags - 1) & rx_queue->ptr_mask, len,
  405. (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
  406. (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
  407. /* Discard packet, if instructed to do so. Process the
  408. * previous receive first.
  409. */
  410. if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
  411. efx_rx_flush_packet(channel);
  412. efx_recycle_rx_buffers(channel, rx_buf, n_frags);
  413. return;
  414. }
  415. if (n_frags == 1)
  416. rx_buf->len = len;
  417. /* Release and/or sync DMA mapping - assumes all RX buffers
  418. * consumed in-order per RX queue
  419. */
  420. efx_unmap_rx_buffer(efx, rx_buf, rx_buf->len);
  421. /* Prefetch nice and early so data will (hopefully) be in cache by
  422. * the time we look at it.
  423. */
  424. prefetch(efx_rx_buf_va(rx_buf));
  425. rx_buf->page_offset += efx->type->rx_buffer_hash_size;
  426. rx_buf->len -= efx->type->rx_buffer_hash_size;
  427. if (n_frags > 1) {
  428. /* Release/sync DMA mapping for additional fragments.
  429. * Fix length for last fragment.
  430. */
  431. unsigned int tail_frags = n_frags - 1;
  432. for (;;) {
  433. rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
  434. if (--tail_frags == 0)
  435. break;
  436. efx_unmap_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
  437. }
  438. rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
  439. efx_unmap_rx_buffer(efx, rx_buf, rx_buf->len);
  440. }
  441. /* Pipeline receives so that we give time for packet headers to be
  442. * prefetched into cache.
  443. */
  444. efx_rx_flush_packet(channel);
  445. channel->rx_pkt_n_frags = n_frags;
  446. channel->rx_pkt_index = index;
  447. }
  448. static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
  449. struct efx_rx_buffer *rx_buf,
  450. unsigned int n_frags)
  451. {
  452. struct sk_buff *skb;
  453. u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
  454. skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
  455. if (unlikely(skb == NULL)) {
  456. efx_free_rx_buffer(channel->efx, rx_buf);
  457. return;
  458. }
  459. skb_record_rx_queue(skb, channel->rx_queue.core_index);
  460. /* Set the SKB flags */
  461. skb_checksum_none_assert(skb);
  462. if (channel->type->receive_skb)
  463. if (channel->type->receive_skb(channel, skb))
  464. return;
  465. /* Pass the packet up */
  466. netif_receive_skb(skb);
  467. }
  468. /* Handle a received packet. Second half: Touches packet payload. */
  469. void __efx_rx_packet(struct efx_channel *channel)
  470. {
  471. struct efx_nic *efx = channel->efx;
  472. struct efx_rx_buffer *rx_buf =
  473. efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
  474. u8 *eh = efx_rx_buf_va(rx_buf);
  475. /* If we're in loopback test, then pass the packet directly to the
  476. * loopback layer, and free the rx_buf here
  477. */
  478. if (unlikely(efx->loopback_selftest)) {
  479. efx_loopback_rx_packet(efx, eh, rx_buf->len);
  480. efx_free_rx_buffer(efx, rx_buf);
  481. goto out;
  482. }
  483. if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
  484. rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
  485. if (!channel->type->receive_skb)
  486. efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
  487. else
  488. efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
  489. out:
  490. channel->rx_pkt_n_frags = 0;
  491. }
  492. int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
  493. {
  494. struct efx_nic *efx = rx_queue->efx;
  495. unsigned int entries;
  496. int rc;
  497. /* Create the smallest power-of-two aligned ring */
  498. entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
  499. EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  500. rx_queue->ptr_mask = entries - 1;
  501. netif_dbg(efx, probe, efx->net_dev,
  502. "creating RX queue %d size %#x mask %#x\n",
  503. efx_rx_queue_index(rx_queue), efx->rxq_entries,
  504. rx_queue->ptr_mask);
  505. /* Allocate RX buffers */
  506. rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
  507. GFP_KERNEL);
  508. if (!rx_queue->buffer)
  509. return -ENOMEM;
  510. rc = efx_nic_probe_rx(rx_queue);
  511. if (rc) {
  512. kfree(rx_queue->buffer);
  513. rx_queue->buffer = NULL;
  514. }
  515. return rc;
  516. }
  517. void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
  518. {
  519. struct efx_nic *efx = rx_queue->efx;
  520. unsigned int max_fill, trigger, max_trigger;
  521. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  522. "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
  523. /* Initialise ptr fields */
  524. rx_queue->added_count = 0;
  525. rx_queue->notified_count = 0;
  526. rx_queue->removed_count = 0;
  527. rx_queue->min_fill = -1U;
  528. /* Initialise limit fields */
  529. max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
  530. max_trigger = max_fill - EFX_RX_BATCH;
  531. if (rx_refill_threshold != 0) {
  532. trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
  533. if (trigger > max_trigger)
  534. trigger = max_trigger;
  535. } else {
  536. trigger = max_trigger;
  537. }
  538. rx_queue->max_fill = max_fill;
  539. rx_queue->fast_fill_trigger = trigger;
  540. /* Set up RX descriptor ring */
  541. rx_queue->enabled = true;
  542. efx_nic_init_rx(rx_queue);
  543. }
  544. void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
  545. {
  546. int i;
  547. struct efx_rx_buffer *rx_buf;
  548. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  549. "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
  550. /* A flush failure might have left rx_queue->enabled */
  551. rx_queue->enabled = false;
  552. del_timer_sync(&rx_queue->slow_fill);
  553. efx_nic_fini_rx(rx_queue);
  554. /* Release RX buffers NB start at index 0 not current HW ptr */
  555. if (rx_queue->buffer) {
  556. for (i = 0; i <= rx_queue->ptr_mask; i++) {
  557. rx_buf = efx_rx_buffer(rx_queue, i);
  558. efx_fini_rx_buffer(rx_queue, rx_buf);
  559. }
  560. }
  561. }
  562. void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
  563. {
  564. netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
  565. "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
  566. efx_nic_remove_rx(rx_queue);
  567. kfree(rx_queue->buffer);
  568. rx_queue->buffer = NULL;
  569. }
  570. module_param(rx_refill_threshold, uint, 0444);
  571. MODULE_PARM_DESC(rx_refill_threshold,
  572. "RX descriptor ring refill threshold (%)");