mtdpart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. if (from >= mtd->size)
  60. len = 0;
  61. else if (from + len > mtd->size)
  62. len = mtd->size - from;
  63. res = mtd_read(part->master, from + part->offset, len, retlen, buf);
  64. if (unlikely(res)) {
  65. if (mtd_is_bitflip(res))
  66. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  67. if (mtd_is_eccerr(res))
  68. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  69. }
  70. return res;
  71. }
  72. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  73. size_t *retlen, void **virt, resource_size_t *phys)
  74. {
  75. struct mtd_part *part = PART(mtd);
  76. if (from >= mtd->size)
  77. len = 0;
  78. else if (from + len > mtd->size)
  79. len = mtd->size - from;
  80. return mtd_point(part->master, from + part->offset, len, retlen,
  81. virt, phys);
  82. }
  83. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. mtd_unpoint(part->master, from + part->offset, len);
  87. }
  88. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  89. unsigned long len,
  90. unsigned long offset,
  91. unsigned long flags)
  92. {
  93. struct mtd_part *part = PART(mtd);
  94. offset += part->offset;
  95. return mtd_get_unmapped_area(part->master, len, offset, flags);
  96. }
  97. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  98. struct mtd_oob_ops *ops)
  99. {
  100. struct mtd_part *part = PART(mtd);
  101. int res;
  102. if (from >= mtd->size)
  103. return -EINVAL;
  104. if (ops->datbuf && from + ops->len > mtd->size)
  105. return -EINVAL;
  106. /*
  107. * If OOB is also requested, make sure that we do not read past the end
  108. * of this partition.
  109. */
  110. if (ops->oobbuf) {
  111. size_t len, pages;
  112. if (ops->mode == MTD_OPS_AUTO_OOB)
  113. len = mtd->oobavail;
  114. else
  115. len = mtd->oobsize;
  116. pages = mtd_div_by_ws(mtd->size, mtd);
  117. pages -= mtd_div_by_ws(from, mtd);
  118. if (ops->ooboffs + ops->ooblen > pages * len)
  119. return -EINVAL;
  120. }
  121. res = mtd_read_oob(part->master, from + part->offset, ops);
  122. if (unlikely(res)) {
  123. if (mtd_is_bitflip(res))
  124. mtd->ecc_stats.corrected++;
  125. if (mtd_is_eccerr(res))
  126. mtd->ecc_stats.failed++;
  127. }
  128. return res;
  129. }
  130. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  131. size_t len, size_t *retlen, u_char *buf)
  132. {
  133. struct mtd_part *part = PART(mtd);
  134. return part->master->read_user_prot_reg(part->master, from,
  135. len, retlen, buf);
  136. }
  137. static int part_get_user_prot_info(struct mtd_info *mtd,
  138. struct otp_info *buf, size_t len)
  139. {
  140. struct mtd_part *part = PART(mtd);
  141. return mtd_get_user_prot_info(part->master, buf, len);
  142. }
  143. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  144. size_t len, size_t *retlen, u_char *buf)
  145. {
  146. struct mtd_part *part = PART(mtd);
  147. return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf);
  148. }
  149. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  150. size_t len)
  151. {
  152. struct mtd_part *part = PART(mtd);
  153. return mtd_get_fact_prot_info(part->master, buf, len);
  154. }
  155. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  156. size_t *retlen, const u_char *buf)
  157. {
  158. struct mtd_part *part = PART(mtd);
  159. if (!(mtd->flags & MTD_WRITEABLE))
  160. return -EROFS;
  161. if (to >= mtd->size)
  162. len = 0;
  163. else if (to + len > mtd->size)
  164. len = mtd->size - to;
  165. return mtd_write(part->master, to + part->offset, len, retlen, buf);
  166. }
  167. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  168. size_t *retlen, const u_char *buf)
  169. {
  170. struct mtd_part *part = PART(mtd);
  171. if (!(mtd->flags & MTD_WRITEABLE))
  172. return -EROFS;
  173. if (to >= mtd->size)
  174. len = 0;
  175. else if (to + len > mtd->size)
  176. len = mtd->size - to;
  177. return mtd_panic_write(part->master, to + part->offset, len, retlen,
  178. buf);
  179. }
  180. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  181. struct mtd_oob_ops *ops)
  182. {
  183. struct mtd_part *part = PART(mtd);
  184. if (!(mtd->flags & MTD_WRITEABLE))
  185. return -EROFS;
  186. if (to >= mtd->size)
  187. return -EINVAL;
  188. if (ops->datbuf && to + ops->len > mtd->size)
  189. return -EINVAL;
  190. return mtd_write_oob(part->master, to + part->offset, ops);
  191. }
  192. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  193. size_t len, size_t *retlen, u_char *buf)
  194. {
  195. struct mtd_part *part = PART(mtd);
  196. return part->master->write_user_prot_reg(part->master, from,
  197. len, retlen, buf);
  198. }
  199. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  200. size_t len)
  201. {
  202. struct mtd_part *part = PART(mtd);
  203. return part->master->lock_user_prot_reg(part->master, from, len);
  204. }
  205. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  206. unsigned long count, loff_t to, size_t *retlen)
  207. {
  208. struct mtd_part *part = PART(mtd);
  209. if (!(mtd->flags & MTD_WRITEABLE))
  210. return -EROFS;
  211. return part->master->writev(part->master, vecs, count,
  212. to + part->offset, retlen);
  213. }
  214. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  215. {
  216. struct mtd_part *part = PART(mtd);
  217. int ret;
  218. if (!(mtd->flags & MTD_WRITEABLE))
  219. return -EROFS;
  220. if (instr->addr >= mtd->size)
  221. return -EINVAL;
  222. instr->addr += part->offset;
  223. ret = mtd_erase(part->master, instr);
  224. if (ret) {
  225. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  226. instr->fail_addr -= part->offset;
  227. instr->addr -= part->offset;
  228. }
  229. return ret;
  230. }
  231. void mtd_erase_callback(struct erase_info *instr)
  232. {
  233. if (instr->mtd->erase == part_erase) {
  234. struct mtd_part *part = PART(instr->mtd);
  235. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  236. instr->fail_addr -= part->offset;
  237. instr->addr -= part->offset;
  238. }
  239. if (instr->callback)
  240. instr->callback(instr);
  241. }
  242. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  243. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  244. {
  245. struct mtd_part *part = PART(mtd);
  246. if ((len + ofs) > mtd->size)
  247. return -EINVAL;
  248. return part->master->lock(part->master, ofs + part->offset, len);
  249. }
  250. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  251. {
  252. struct mtd_part *part = PART(mtd);
  253. if ((len + ofs) > mtd->size)
  254. return -EINVAL;
  255. return part->master->unlock(part->master, ofs + part->offset, len);
  256. }
  257. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  258. {
  259. struct mtd_part *part = PART(mtd);
  260. if ((len + ofs) > mtd->size)
  261. return -EINVAL;
  262. return part->master->is_locked(part->master, ofs + part->offset, len);
  263. }
  264. static void part_sync(struct mtd_info *mtd)
  265. {
  266. struct mtd_part *part = PART(mtd);
  267. part->master->sync(part->master);
  268. }
  269. static int part_suspend(struct mtd_info *mtd)
  270. {
  271. struct mtd_part *part = PART(mtd);
  272. return part->master->suspend(part->master);
  273. }
  274. static void part_resume(struct mtd_info *mtd)
  275. {
  276. struct mtd_part *part = PART(mtd);
  277. part->master->resume(part->master);
  278. }
  279. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  280. {
  281. struct mtd_part *part = PART(mtd);
  282. if (ofs >= mtd->size)
  283. return -EINVAL;
  284. ofs += part->offset;
  285. return part->master->block_isbad(part->master, ofs);
  286. }
  287. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  288. {
  289. struct mtd_part *part = PART(mtd);
  290. int res;
  291. if (!(mtd->flags & MTD_WRITEABLE))
  292. return -EROFS;
  293. if (ofs >= mtd->size)
  294. return -EINVAL;
  295. ofs += part->offset;
  296. res = part->master->block_markbad(part->master, ofs);
  297. if (!res)
  298. mtd->ecc_stats.badblocks++;
  299. return res;
  300. }
  301. static inline void free_partition(struct mtd_part *p)
  302. {
  303. kfree(p->mtd.name);
  304. kfree(p);
  305. }
  306. /*
  307. * This function unregisters and destroy all slave MTD objects which are
  308. * attached to the given master MTD object.
  309. */
  310. int del_mtd_partitions(struct mtd_info *master)
  311. {
  312. struct mtd_part *slave, *next;
  313. int ret, err = 0;
  314. mutex_lock(&mtd_partitions_mutex);
  315. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  316. if (slave->master == master) {
  317. ret = del_mtd_device(&slave->mtd);
  318. if (ret < 0) {
  319. err = ret;
  320. continue;
  321. }
  322. list_del(&slave->list);
  323. free_partition(slave);
  324. }
  325. mutex_unlock(&mtd_partitions_mutex);
  326. return err;
  327. }
  328. static struct mtd_part *allocate_partition(struct mtd_info *master,
  329. const struct mtd_partition *part, int partno,
  330. uint64_t cur_offset)
  331. {
  332. struct mtd_part *slave;
  333. char *name;
  334. /* allocate the partition structure */
  335. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  336. name = kstrdup(part->name, GFP_KERNEL);
  337. if (!name || !slave) {
  338. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  339. master->name);
  340. kfree(name);
  341. kfree(slave);
  342. return ERR_PTR(-ENOMEM);
  343. }
  344. /* set up the MTD object for this partition */
  345. slave->mtd.type = master->type;
  346. slave->mtd.flags = master->flags & ~part->mask_flags;
  347. slave->mtd.size = part->size;
  348. slave->mtd.writesize = master->writesize;
  349. slave->mtd.writebufsize = master->writebufsize;
  350. slave->mtd.oobsize = master->oobsize;
  351. slave->mtd.oobavail = master->oobavail;
  352. slave->mtd.subpage_sft = master->subpage_sft;
  353. slave->mtd.name = name;
  354. slave->mtd.owner = master->owner;
  355. slave->mtd.backing_dev_info = master->backing_dev_info;
  356. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  357. * to have the same data be in two different partitions.
  358. */
  359. slave->mtd.dev.parent = master->dev.parent;
  360. slave->mtd.read = part_read;
  361. slave->mtd.write = part_write;
  362. if (master->panic_write)
  363. slave->mtd.panic_write = part_panic_write;
  364. if (master->point && master->unpoint) {
  365. slave->mtd.point = part_point;
  366. slave->mtd.unpoint = part_unpoint;
  367. }
  368. if (master->get_unmapped_area)
  369. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  370. if (master->read_oob)
  371. slave->mtd.read_oob = part_read_oob;
  372. if (master->write_oob)
  373. slave->mtd.write_oob = part_write_oob;
  374. if (master->read_user_prot_reg)
  375. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  376. if (master->read_fact_prot_reg)
  377. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  378. if (master->write_user_prot_reg)
  379. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  380. if (master->lock_user_prot_reg)
  381. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  382. if (master->get_user_prot_info)
  383. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  384. if (master->get_fact_prot_info)
  385. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  386. if (master->sync)
  387. slave->mtd.sync = part_sync;
  388. if (!partno && !master->dev.class && master->suspend && master->resume) {
  389. slave->mtd.suspend = part_suspend;
  390. slave->mtd.resume = part_resume;
  391. }
  392. if (master->writev)
  393. slave->mtd.writev = part_writev;
  394. if (master->lock)
  395. slave->mtd.lock = part_lock;
  396. if (master->unlock)
  397. slave->mtd.unlock = part_unlock;
  398. if (master->is_locked)
  399. slave->mtd.is_locked = part_is_locked;
  400. if (master->block_isbad)
  401. slave->mtd.block_isbad = part_block_isbad;
  402. if (master->block_markbad)
  403. slave->mtd.block_markbad = part_block_markbad;
  404. slave->mtd.erase = part_erase;
  405. slave->master = master;
  406. slave->offset = part->offset;
  407. if (slave->offset == MTDPART_OFS_APPEND)
  408. slave->offset = cur_offset;
  409. if (slave->offset == MTDPART_OFS_NXTBLK) {
  410. slave->offset = cur_offset;
  411. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  412. /* Round up to next erasesize */
  413. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  414. printk(KERN_NOTICE "Moving partition %d: "
  415. "0x%012llx -> 0x%012llx\n", partno,
  416. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  417. }
  418. }
  419. if (slave->offset == MTDPART_OFS_RETAIN) {
  420. slave->offset = cur_offset;
  421. if (master->size - slave->offset >= slave->mtd.size) {
  422. slave->mtd.size = master->size - slave->offset
  423. - slave->mtd.size;
  424. } else {
  425. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  426. part->name, master->size - slave->offset,
  427. slave->mtd.size);
  428. /* register to preserve ordering */
  429. goto out_register;
  430. }
  431. }
  432. if (slave->mtd.size == MTDPART_SIZ_FULL)
  433. slave->mtd.size = master->size - slave->offset;
  434. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  435. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  436. /* let's do some sanity checks */
  437. if (slave->offset >= master->size) {
  438. /* let's register it anyway to preserve ordering */
  439. slave->offset = 0;
  440. slave->mtd.size = 0;
  441. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  442. part->name);
  443. goto out_register;
  444. }
  445. if (slave->offset + slave->mtd.size > master->size) {
  446. slave->mtd.size = master->size - slave->offset;
  447. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  448. part->name, master->name, (unsigned long long)slave->mtd.size);
  449. }
  450. if (master->numeraseregions > 1) {
  451. /* Deal with variable erase size stuff */
  452. int i, max = master->numeraseregions;
  453. u64 end = slave->offset + slave->mtd.size;
  454. struct mtd_erase_region_info *regions = master->eraseregions;
  455. /* Find the first erase regions which is part of this
  456. * partition. */
  457. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  458. ;
  459. /* The loop searched for the region _behind_ the first one */
  460. if (i > 0)
  461. i--;
  462. /* Pick biggest erasesize */
  463. for (; i < max && regions[i].offset < end; i++) {
  464. if (slave->mtd.erasesize < regions[i].erasesize) {
  465. slave->mtd.erasesize = regions[i].erasesize;
  466. }
  467. }
  468. BUG_ON(slave->mtd.erasesize == 0);
  469. } else {
  470. /* Single erase size */
  471. slave->mtd.erasesize = master->erasesize;
  472. }
  473. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  474. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  475. /* Doesn't start on a boundary of major erase size */
  476. /* FIXME: Let it be writable if it is on a boundary of
  477. * _minor_ erase size though */
  478. slave->mtd.flags &= ~MTD_WRITEABLE;
  479. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  480. part->name);
  481. }
  482. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  483. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  484. slave->mtd.flags &= ~MTD_WRITEABLE;
  485. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  486. part->name);
  487. }
  488. slave->mtd.ecclayout = master->ecclayout;
  489. if (master->block_isbad) {
  490. uint64_t offs = 0;
  491. while (offs < slave->mtd.size) {
  492. if (master->block_isbad(master,
  493. offs + slave->offset))
  494. slave->mtd.ecc_stats.badblocks++;
  495. offs += slave->mtd.erasesize;
  496. }
  497. }
  498. out_register:
  499. return slave;
  500. }
  501. int mtd_add_partition(struct mtd_info *master, char *name,
  502. long long offset, long long length)
  503. {
  504. struct mtd_partition part;
  505. struct mtd_part *p, *new;
  506. uint64_t start, end;
  507. int ret = 0;
  508. /* the direct offset is expected */
  509. if (offset == MTDPART_OFS_APPEND ||
  510. offset == MTDPART_OFS_NXTBLK)
  511. return -EINVAL;
  512. if (length == MTDPART_SIZ_FULL)
  513. length = master->size - offset;
  514. if (length <= 0)
  515. return -EINVAL;
  516. part.name = name;
  517. part.size = length;
  518. part.offset = offset;
  519. part.mask_flags = 0;
  520. part.ecclayout = NULL;
  521. new = allocate_partition(master, &part, -1, offset);
  522. if (IS_ERR(new))
  523. return PTR_ERR(new);
  524. start = offset;
  525. end = offset + length;
  526. mutex_lock(&mtd_partitions_mutex);
  527. list_for_each_entry(p, &mtd_partitions, list)
  528. if (p->master == master) {
  529. if ((start >= p->offset) &&
  530. (start < (p->offset + p->mtd.size)))
  531. goto err_inv;
  532. if ((end >= p->offset) &&
  533. (end < (p->offset + p->mtd.size)))
  534. goto err_inv;
  535. }
  536. list_add(&new->list, &mtd_partitions);
  537. mutex_unlock(&mtd_partitions_mutex);
  538. add_mtd_device(&new->mtd);
  539. return ret;
  540. err_inv:
  541. mutex_unlock(&mtd_partitions_mutex);
  542. free_partition(new);
  543. return -EINVAL;
  544. }
  545. EXPORT_SYMBOL_GPL(mtd_add_partition);
  546. int mtd_del_partition(struct mtd_info *master, int partno)
  547. {
  548. struct mtd_part *slave, *next;
  549. int ret = -EINVAL;
  550. mutex_lock(&mtd_partitions_mutex);
  551. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  552. if ((slave->master == master) &&
  553. (slave->mtd.index == partno)) {
  554. ret = del_mtd_device(&slave->mtd);
  555. if (ret < 0)
  556. break;
  557. list_del(&slave->list);
  558. free_partition(slave);
  559. break;
  560. }
  561. mutex_unlock(&mtd_partitions_mutex);
  562. return ret;
  563. }
  564. EXPORT_SYMBOL_GPL(mtd_del_partition);
  565. /*
  566. * This function, given a master MTD object and a partition table, creates
  567. * and registers slave MTD objects which are bound to the master according to
  568. * the partition definitions.
  569. *
  570. * We don't register the master, or expect the caller to have done so,
  571. * for reasons of data integrity.
  572. */
  573. int add_mtd_partitions(struct mtd_info *master,
  574. const struct mtd_partition *parts,
  575. int nbparts)
  576. {
  577. struct mtd_part *slave;
  578. uint64_t cur_offset = 0;
  579. int i;
  580. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  581. for (i = 0; i < nbparts; i++) {
  582. slave = allocate_partition(master, parts + i, i, cur_offset);
  583. if (IS_ERR(slave))
  584. return PTR_ERR(slave);
  585. mutex_lock(&mtd_partitions_mutex);
  586. list_add(&slave->list, &mtd_partitions);
  587. mutex_unlock(&mtd_partitions_mutex);
  588. add_mtd_device(&slave->mtd);
  589. cur_offset = slave->offset + slave->mtd.size;
  590. }
  591. return 0;
  592. }
  593. static DEFINE_SPINLOCK(part_parser_lock);
  594. static LIST_HEAD(part_parsers);
  595. static struct mtd_part_parser *get_partition_parser(const char *name)
  596. {
  597. struct mtd_part_parser *p, *ret = NULL;
  598. spin_lock(&part_parser_lock);
  599. list_for_each_entry(p, &part_parsers, list)
  600. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  601. ret = p;
  602. break;
  603. }
  604. spin_unlock(&part_parser_lock);
  605. return ret;
  606. }
  607. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  608. int register_mtd_parser(struct mtd_part_parser *p)
  609. {
  610. spin_lock(&part_parser_lock);
  611. list_add(&p->list, &part_parsers);
  612. spin_unlock(&part_parser_lock);
  613. return 0;
  614. }
  615. EXPORT_SYMBOL_GPL(register_mtd_parser);
  616. int deregister_mtd_parser(struct mtd_part_parser *p)
  617. {
  618. spin_lock(&part_parser_lock);
  619. list_del(&p->list);
  620. spin_unlock(&part_parser_lock);
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  624. /*
  625. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  626. * are changing this array!
  627. */
  628. static const char *default_mtd_part_types[] = {
  629. "cmdlinepart",
  630. "ofpart",
  631. NULL
  632. };
  633. /**
  634. * parse_mtd_partitions - parse MTD partitions
  635. * @master: the master partition (describes whole MTD device)
  636. * @types: names of partition parsers to try or %NULL
  637. * @pparts: array of partitions found is returned here
  638. * @data: MTD partition parser-specific data
  639. *
  640. * This function tries to find partition on MTD device @master. It uses MTD
  641. * partition parsers, specified in @types. However, if @types is %NULL, then
  642. * the default list of parsers is used. The default list contains only the
  643. * "cmdlinepart" and "ofpart" parsers ATM.
  644. *
  645. * This function may return:
  646. * o a negative error code in case of failure
  647. * o zero if no partitions were found
  648. * o a positive number of found partitions, in which case on exit @pparts will
  649. * point to an array containing this number of &struct mtd_info objects.
  650. */
  651. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  652. struct mtd_partition **pparts,
  653. struct mtd_part_parser_data *data)
  654. {
  655. struct mtd_part_parser *parser;
  656. int ret = 0;
  657. if (!types)
  658. types = default_mtd_part_types;
  659. for ( ; ret <= 0 && *types; types++) {
  660. parser = get_partition_parser(*types);
  661. if (!parser && !request_module("%s", *types))
  662. parser = get_partition_parser(*types);
  663. if (!parser)
  664. continue;
  665. ret = (*parser->parse_fn)(master, pparts, data);
  666. if (ret > 0) {
  667. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  668. ret, parser->name, master->name);
  669. }
  670. put_partition_parser(parser);
  671. }
  672. return ret;
  673. }
  674. int mtd_is_partition(struct mtd_info *mtd)
  675. {
  676. struct mtd_part *part;
  677. int ispart = 0;
  678. mutex_lock(&mtd_partitions_mutex);
  679. list_for_each_entry(part, &mtd_partitions, list)
  680. if (&part->mtd == mtd) {
  681. ispart = 1;
  682. break;
  683. }
  684. mutex_unlock(&mtd_partitions_mutex);
  685. return ispart;
  686. }
  687. EXPORT_SYMBOL_GPL(mtd_is_partition);