mct.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <asm/hardware/gic.h>
  22. #include <plat/cpu.h>
  23. #include <mach/map.h>
  24. #include <mach/irqs.h>
  25. #include <mach/regs-mct.h>
  26. #include <asm/mach/time.h>
  27. #define TICK_BASE_CNT 1
  28. enum {
  29. MCT_INT_SPI,
  30. MCT_INT_PPI
  31. };
  32. static unsigned long clk_rate;
  33. static unsigned int mct_int_type;
  34. struct mct_clock_event_device {
  35. struct clock_event_device *evt;
  36. void __iomem *base;
  37. char name[10];
  38. };
  39. static void exynos4_mct_write(unsigned int value, void *addr)
  40. {
  41. void __iomem *stat_addr;
  42. u32 mask;
  43. u32 i;
  44. __raw_writel(value, addr);
  45. if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
  46. u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
  47. switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
  48. case (u32) MCT_L_TCON_OFFSET:
  49. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  50. mask = 1 << 3; /* L_TCON write status */
  51. break;
  52. case (u32) MCT_L_ICNTB_OFFSET:
  53. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  54. mask = 1 << 1; /* L_ICNTB write status */
  55. break;
  56. case (u32) MCT_L_TCNTB_OFFSET:
  57. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  58. mask = 1 << 0; /* L_TCNTB write status */
  59. break;
  60. default:
  61. return;
  62. }
  63. } else {
  64. switch ((u32) addr) {
  65. case (u32) EXYNOS4_MCT_G_TCON:
  66. stat_addr = EXYNOS4_MCT_G_WSTAT;
  67. mask = 1 << 16; /* G_TCON write status */
  68. break;
  69. case (u32) EXYNOS4_MCT_G_COMP0_L:
  70. stat_addr = EXYNOS4_MCT_G_WSTAT;
  71. mask = 1 << 0; /* G_COMP0_L write status */
  72. break;
  73. case (u32) EXYNOS4_MCT_G_COMP0_U:
  74. stat_addr = EXYNOS4_MCT_G_WSTAT;
  75. mask = 1 << 1; /* G_COMP0_U write status */
  76. break;
  77. case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
  78. stat_addr = EXYNOS4_MCT_G_WSTAT;
  79. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  80. break;
  81. case (u32) EXYNOS4_MCT_G_CNT_L:
  82. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  83. mask = 1 << 0; /* G_CNT_L write status */
  84. break;
  85. case (u32) EXYNOS4_MCT_G_CNT_U:
  86. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  87. mask = 1 << 1; /* G_CNT_U write status */
  88. break;
  89. default:
  90. return;
  91. }
  92. }
  93. /* Wait maximum 1 ms until written values are applied */
  94. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  95. if (__raw_readl(stat_addr) & mask) {
  96. __raw_writel(mask, stat_addr);
  97. return;
  98. }
  99. panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
  100. }
  101. /* Clocksource handling */
  102. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  103. {
  104. u32 reg;
  105. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  106. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  107. reg = __raw_readl(EXYNOS4_MCT_G_TCON);
  108. reg |= MCT_G_TCON_START;
  109. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  110. }
  111. static cycle_t exynos4_frc_read(struct clocksource *cs)
  112. {
  113. unsigned int lo, hi;
  114. u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  115. do {
  116. hi = hi2;
  117. lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
  118. hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  119. } while (hi != hi2);
  120. return ((cycle_t)hi << 32) | lo;
  121. }
  122. static void exynos4_frc_resume(struct clocksource *cs)
  123. {
  124. exynos4_mct_frc_start(0, 0);
  125. }
  126. struct clocksource mct_frc = {
  127. .name = "mct-frc",
  128. .rating = 400,
  129. .read = exynos4_frc_read,
  130. .mask = CLOCKSOURCE_MASK(64),
  131. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  132. .resume = exynos4_frc_resume,
  133. };
  134. static void __init exynos4_clocksource_init(void)
  135. {
  136. exynos4_mct_frc_start(0, 0);
  137. if (clocksource_register_hz(&mct_frc, clk_rate))
  138. panic("%s: can't register clocksource\n", mct_frc.name);
  139. }
  140. static void exynos4_mct_comp0_stop(void)
  141. {
  142. unsigned int tcon;
  143. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  144. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  145. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  146. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  147. }
  148. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  149. unsigned long cycles)
  150. {
  151. unsigned int tcon;
  152. cycle_t comp_cycle;
  153. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  154. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  155. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  156. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  157. }
  158. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  159. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  160. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  161. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  162. tcon |= MCT_G_TCON_COMP0_ENABLE;
  163. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  164. }
  165. static int exynos4_comp_set_next_event(unsigned long cycles,
  166. struct clock_event_device *evt)
  167. {
  168. exynos4_mct_comp0_start(evt->mode, cycles);
  169. return 0;
  170. }
  171. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  172. struct clock_event_device *evt)
  173. {
  174. unsigned long cycles_per_jiffy;
  175. exynos4_mct_comp0_stop();
  176. switch (mode) {
  177. case CLOCK_EVT_MODE_PERIODIC:
  178. cycles_per_jiffy =
  179. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  180. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  181. break;
  182. case CLOCK_EVT_MODE_ONESHOT:
  183. case CLOCK_EVT_MODE_UNUSED:
  184. case CLOCK_EVT_MODE_SHUTDOWN:
  185. case CLOCK_EVT_MODE_RESUME:
  186. break;
  187. }
  188. }
  189. static struct clock_event_device mct_comp_device = {
  190. .name = "mct-comp",
  191. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  192. .rating = 250,
  193. .set_next_event = exynos4_comp_set_next_event,
  194. .set_mode = exynos4_comp_set_mode,
  195. };
  196. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  197. {
  198. struct clock_event_device *evt = dev_id;
  199. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  200. evt->event_handler(evt);
  201. return IRQ_HANDLED;
  202. }
  203. static struct irqaction mct_comp_event_irq = {
  204. .name = "mct_comp_irq",
  205. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  206. .handler = exynos4_mct_comp_isr,
  207. .dev_id = &mct_comp_device,
  208. };
  209. static void exynos4_clockevent_init(void)
  210. {
  211. clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5);
  212. mct_comp_device.max_delta_ns =
  213. clockevent_delta2ns(0xffffffff, &mct_comp_device);
  214. mct_comp_device.min_delta_ns =
  215. clockevent_delta2ns(0xf, &mct_comp_device);
  216. mct_comp_device.cpumask = cpumask_of(0);
  217. clockevents_register_device(&mct_comp_device);
  218. if (soc_is_exynos5250())
  219. setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
  220. else
  221. setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
  222. }
  223. #ifdef CONFIG_LOCAL_TIMERS
  224. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  225. /* Clock event handling */
  226. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  227. {
  228. unsigned long tmp;
  229. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  230. void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
  231. tmp = __raw_readl(addr);
  232. if (tmp & mask) {
  233. tmp &= ~mask;
  234. exynos4_mct_write(tmp, addr);
  235. }
  236. }
  237. static void exynos4_mct_tick_start(unsigned long cycles,
  238. struct mct_clock_event_device *mevt)
  239. {
  240. unsigned long tmp;
  241. exynos4_mct_tick_stop(mevt);
  242. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  243. /* update interrupt count buffer */
  244. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  245. /* enable MCT tick interrupt */
  246. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  247. tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
  248. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  249. MCT_L_TCON_INTERVAL_MODE;
  250. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  251. }
  252. static int exynos4_tick_set_next_event(unsigned long cycles,
  253. struct clock_event_device *evt)
  254. {
  255. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  256. exynos4_mct_tick_start(cycles, mevt);
  257. return 0;
  258. }
  259. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  260. struct clock_event_device *evt)
  261. {
  262. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  263. unsigned long cycles_per_jiffy;
  264. exynos4_mct_tick_stop(mevt);
  265. switch (mode) {
  266. case CLOCK_EVT_MODE_PERIODIC:
  267. cycles_per_jiffy =
  268. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  269. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  270. break;
  271. case CLOCK_EVT_MODE_ONESHOT:
  272. case CLOCK_EVT_MODE_UNUSED:
  273. case CLOCK_EVT_MODE_SHUTDOWN:
  274. case CLOCK_EVT_MODE_RESUME:
  275. break;
  276. }
  277. }
  278. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  279. {
  280. struct clock_event_device *evt = mevt->evt;
  281. /*
  282. * This is for supporting oneshot mode.
  283. * Mct would generate interrupt periodically
  284. * without explicit stopping.
  285. */
  286. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  287. exynos4_mct_tick_stop(mevt);
  288. /* Clear the MCT tick interrupt */
  289. if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  290. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  291. return 1;
  292. } else {
  293. return 0;
  294. }
  295. }
  296. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  297. {
  298. struct mct_clock_event_device *mevt = dev_id;
  299. struct clock_event_device *evt = mevt->evt;
  300. exynos4_mct_tick_clear(mevt);
  301. evt->event_handler(evt);
  302. return IRQ_HANDLED;
  303. }
  304. static struct irqaction mct_tick0_event_irq = {
  305. .name = "mct_tick0_irq",
  306. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  307. .handler = exynos4_mct_tick_isr,
  308. };
  309. static struct irqaction mct_tick1_event_irq = {
  310. .name = "mct_tick1_irq",
  311. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  312. .handler = exynos4_mct_tick_isr,
  313. };
  314. static void exynos4_mct_tick_init(struct clock_event_device *evt)
  315. {
  316. struct mct_clock_event_device *mevt;
  317. unsigned int cpu = smp_processor_id();
  318. mevt = this_cpu_ptr(&percpu_mct_tick);
  319. mevt->evt = evt;
  320. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  321. sprintf(mevt->name, "mct_tick%d", cpu);
  322. evt->name = mevt->name;
  323. evt->cpumask = cpumask_of(cpu);
  324. evt->set_next_event = exynos4_tick_set_next_event;
  325. evt->set_mode = exynos4_tick_set_mode;
  326. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  327. evt->rating = 450;
  328. clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5);
  329. evt->max_delta_ns =
  330. clockevent_delta2ns(0x7fffffff, evt);
  331. evt->min_delta_ns =
  332. clockevent_delta2ns(0xf, evt);
  333. clockevents_register_device(evt);
  334. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  335. if (mct_int_type == MCT_INT_SPI) {
  336. if (cpu == 0) {
  337. mct_tick0_event_irq.dev_id = mevt;
  338. evt->irq = EXYNOS4_IRQ_MCT_L0;
  339. setup_irq(EXYNOS4_IRQ_MCT_L0, &mct_tick0_event_irq);
  340. } else {
  341. mct_tick1_event_irq.dev_id = mevt;
  342. evt->irq = EXYNOS4_IRQ_MCT_L1;
  343. setup_irq(EXYNOS4_IRQ_MCT_L1, &mct_tick1_event_irq);
  344. irq_set_affinity(EXYNOS4_IRQ_MCT_L1, cpumask_of(1));
  345. }
  346. } else {
  347. enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
  348. }
  349. }
  350. /* Setup the local clock events for a CPU */
  351. int __cpuinit local_timer_setup(struct clock_event_device *evt)
  352. {
  353. exynos4_mct_tick_init(evt);
  354. return 0;
  355. }
  356. void local_timer_stop(struct clock_event_device *evt)
  357. {
  358. unsigned int cpu = smp_processor_id();
  359. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  360. if (mct_int_type == MCT_INT_SPI)
  361. if (cpu == 0)
  362. remove_irq(evt->irq, &mct_tick0_event_irq);
  363. else
  364. remove_irq(evt->irq, &mct_tick1_event_irq);
  365. else
  366. disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
  367. }
  368. #endif /* CONFIG_LOCAL_TIMERS */
  369. static void __init exynos4_timer_resources(void)
  370. {
  371. struct clk *mct_clk;
  372. mct_clk = clk_get(NULL, "xtal");
  373. clk_rate = clk_get_rate(mct_clk);
  374. #ifdef CONFIG_LOCAL_TIMERS
  375. if (mct_int_type == MCT_INT_PPI) {
  376. int err;
  377. err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
  378. exynos4_mct_tick_isr, "MCT",
  379. &percpu_mct_tick);
  380. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  381. EXYNOS_IRQ_MCT_LOCALTIMER, err);
  382. }
  383. #endif /* CONFIG_LOCAL_TIMERS */
  384. }
  385. static void __init exynos4_timer_init(void)
  386. {
  387. if (soc_is_exynos4210())
  388. mct_int_type = MCT_INT_SPI;
  389. else
  390. mct_int_type = MCT_INT_PPI;
  391. exynos4_timer_resources();
  392. exynos4_clocksource_init();
  393. exynos4_clockevent_init();
  394. }
  395. struct sys_timer exynos4_timer = {
  396. .init = exynos4_timer_init,
  397. };