paging_tmpl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  31. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32. #ifdef CONFIG_X86_64
  33. #define PT_MAX_FULL_LEVELS 4
  34. #define CMPXCHG cmpxchg
  35. #else
  36. #define CMPXCHG cmpxchg64
  37. #define PT_MAX_FULL_LEVELS 2
  38. #endif
  39. #elif PTTYPE == 32
  40. #define pt_element_t u32
  41. #define guest_walker guest_walker32
  42. #define FNAME(name) paging##32_##name
  43. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  44. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  45. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #define CMPXCHG cmpxchg
  50. #else
  51. #error Invalid PTTYPE value
  52. #endif
  53. #define gpte_to_gfn FNAME(gpte_to_gfn)
  54. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  55. /*
  56. * The guest_walker structure emulates the behavior of the hardware page
  57. * table walker.
  58. */
  59. struct guest_walker {
  60. int level;
  61. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  62. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  63. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  64. unsigned pt_access;
  65. unsigned pte_access;
  66. gfn_t gfn;
  67. u32 error_code;
  68. };
  69. static gfn_t gpte_to_gfn(pt_element_t gpte)
  70. {
  71. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  72. }
  73. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  74. {
  75. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  76. }
  77. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  78. gfn_t table_gfn, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. pt_element_t ret;
  82. pt_element_t *table;
  83. struct page *page;
  84. page = gfn_to_page(kvm, table_gfn);
  85. table = kmap_atomic(page, KM_USER0);
  86. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  87. kunmap_atomic(table, KM_USER0);
  88. kvm_release_page_dirty(page);
  89. return (ret != orig_pte);
  90. }
  91. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  92. {
  93. unsigned access;
  94. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  95. #if PTTYPE == 64
  96. if (is_nx(vcpu))
  97. access &= ~(gpte >> PT64_NX_SHIFT);
  98. #endif
  99. return access;
  100. }
  101. /*
  102. * Fetch a guest pte for a guest virtual address
  103. */
  104. static int FNAME(walk_addr)(struct guest_walker *walker,
  105. struct kvm_vcpu *vcpu, gva_t addr,
  106. int write_fault, int user_fault, int fetch_fault)
  107. {
  108. pt_element_t pte;
  109. gfn_t table_gfn;
  110. unsigned index, pt_access, pte_access;
  111. gpa_t pte_gpa;
  112. int rsvd_fault = 0;
  113. trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
  114. fetch_fault);
  115. walk:
  116. walker->level = vcpu->arch.mmu.root_level;
  117. pte = vcpu->arch.cr3;
  118. #if PTTYPE == 64
  119. if (!is_long_mode(vcpu)) {
  120. pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
  121. trace_kvm_mmu_paging_element(pte, walker->level);
  122. if (!is_present_gpte(pte))
  123. goto not_present;
  124. --walker->level;
  125. }
  126. #endif
  127. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  128. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  129. pt_access = ACC_ALL;
  130. for (;;) {
  131. index = PT_INDEX(addr, walker->level);
  132. table_gfn = gpte_to_gfn(pte);
  133. pte_gpa = gfn_to_gpa(table_gfn);
  134. pte_gpa += index * sizeof(pt_element_t);
  135. walker->table_gfn[walker->level - 1] = table_gfn;
  136. walker->pte_gpa[walker->level - 1] = pte_gpa;
  137. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  138. trace_kvm_mmu_paging_element(pte, walker->level);
  139. if (!is_present_gpte(pte))
  140. goto not_present;
  141. rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
  142. if (rsvd_fault)
  143. goto access_error;
  144. if (write_fault && !is_writeble_pte(pte))
  145. if (user_fault || is_write_protection(vcpu))
  146. goto access_error;
  147. if (user_fault && !(pte & PT_USER_MASK))
  148. goto access_error;
  149. #if PTTYPE == 64
  150. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  151. goto access_error;
  152. #endif
  153. if (!(pte & PT_ACCESSED_MASK)) {
  154. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  155. sizeof(pte));
  156. mark_page_dirty(vcpu->kvm, table_gfn);
  157. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  158. index, pte, pte|PT_ACCESSED_MASK))
  159. goto walk;
  160. pte |= PT_ACCESSED_MASK;
  161. }
  162. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  163. walker->ptes[walker->level - 1] = pte;
  164. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  165. walker->gfn = gpte_to_gfn(pte);
  166. break;
  167. }
  168. if (walker->level == PT_DIRECTORY_LEVEL
  169. && (pte & PT_PAGE_SIZE_MASK)
  170. && (PTTYPE == 64 || is_pse(vcpu))) {
  171. walker->gfn = gpte_to_gfn_pde(pte);
  172. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  173. if (PTTYPE == 32 && is_cpuid_PSE36())
  174. walker->gfn += pse36_gfn_delta(pte);
  175. break;
  176. }
  177. pt_access = pte_access;
  178. --walker->level;
  179. }
  180. if (write_fault && !is_dirty_gpte(pte)) {
  181. bool ret;
  182. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  183. mark_page_dirty(vcpu->kvm, table_gfn);
  184. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  185. pte|PT_DIRTY_MASK);
  186. if (ret)
  187. goto walk;
  188. pte |= PT_DIRTY_MASK;
  189. walker->ptes[walker->level - 1] = pte;
  190. }
  191. walker->pt_access = pt_access;
  192. walker->pte_access = pte_access;
  193. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  194. __func__, (u64)pte, pt_access, pte_access);
  195. return 1;
  196. not_present:
  197. walker->error_code = 0;
  198. goto err;
  199. access_error:
  200. walker->error_code = PFERR_PRESENT_MASK;
  201. err:
  202. if (write_fault)
  203. walker->error_code |= PFERR_WRITE_MASK;
  204. if (user_fault)
  205. walker->error_code |= PFERR_USER_MASK;
  206. if (fetch_fault)
  207. walker->error_code |= PFERR_FETCH_MASK;
  208. if (rsvd_fault)
  209. walker->error_code |= PFERR_RSVD_MASK;
  210. trace_kvm_mmu_walker_error(walker->error_code);
  211. return 0;
  212. }
  213. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  214. u64 *spte, const void *pte)
  215. {
  216. pt_element_t gpte;
  217. unsigned pte_access;
  218. pfn_t pfn;
  219. int level = vcpu->arch.update_pte.level;
  220. gpte = *(const pt_element_t *)pte;
  221. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  222. if (!is_present_gpte(gpte))
  223. __set_spte(spte, shadow_notrap_nonpresent_pte);
  224. return;
  225. }
  226. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  227. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  228. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  229. return;
  230. pfn = vcpu->arch.update_pte.pfn;
  231. if (is_error_pfn(pfn))
  232. return;
  233. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  234. return;
  235. kvm_get_pfn(pfn);
  236. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  237. gpte & PT_DIRTY_MASK, NULL, level,
  238. gpte_to_gfn(gpte), pfn, true);
  239. }
  240. /*
  241. * Fetch a shadow pte for a specific level in the paging hierarchy.
  242. */
  243. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  244. struct guest_walker *gw,
  245. int user_fault, int write_fault, int largepage,
  246. int *ptwrite, pfn_t pfn)
  247. {
  248. unsigned access = gw->pt_access;
  249. struct kvm_mmu_page *shadow_page;
  250. u64 spte, *sptep = NULL;
  251. int direct;
  252. gfn_t table_gfn;
  253. int r;
  254. int level;
  255. pt_element_t curr_pte;
  256. struct kvm_shadow_walk_iterator iterator;
  257. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  258. return NULL;
  259. for_each_shadow_entry(vcpu, addr, iterator) {
  260. level = iterator.level;
  261. sptep = iterator.sptep;
  262. if (level == PT_PAGE_TABLE_LEVEL
  263. || (largepage && level == PT_DIRECTORY_LEVEL)) {
  264. mmu_set_spte(vcpu, sptep, access,
  265. gw->pte_access & access,
  266. user_fault, write_fault,
  267. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  268. ptwrite, level,
  269. gw->gfn, pfn, false);
  270. break;
  271. }
  272. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  273. continue;
  274. if (is_large_pte(*sptep)) {
  275. rmap_remove(vcpu->kvm, sptep);
  276. __set_spte(sptep, shadow_trap_nonpresent_pte);
  277. kvm_flush_remote_tlbs(vcpu->kvm);
  278. }
  279. if (level == PT_DIRECTORY_LEVEL
  280. && gw->level == PT_DIRECTORY_LEVEL) {
  281. direct = 1;
  282. if (!is_dirty_gpte(gw->ptes[level - 1]))
  283. access &= ~ACC_WRITE_MASK;
  284. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  285. } else {
  286. direct = 0;
  287. table_gfn = gw->table_gfn[level - 2];
  288. }
  289. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  290. direct, access, sptep);
  291. if (!direct) {
  292. r = kvm_read_guest_atomic(vcpu->kvm,
  293. gw->pte_gpa[level - 2],
  294. &curr_pte, sizeof(curr_pte));
  295. if (r || curr_pte != gw->ptes[level - 2]) {
  296. kvm_mmu_put_page(shadow_page, sptep);
  297. kvm_release_pfn_clean(pfn);
  298. sptep = NULL;
  299. break;
  300. }
  301. }
  302. spte = __pa(shadow_page->spt)
  303. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  304. | PT_WRITABLE_MASK | PT_USER_MASK;
  305. *sptep = spte;
  306. }
  307. return sptep;
  308. }
  309. /*
  310. * Page fault handler. There are several causes for a page fault:
  311. * - there is no shadow pte for the guest pte
  312. * - write access through a shadow pte marked read only so that we can set
  313. * the dirty bit
  314. * - write access to a shadow pte marked read only so we can update the page
  315. * dirty bitmap, when userspace requests it
  316. * - mmio access; in this case we will never install a present shadow pte
  317. * - normal guest page fault due to the guest pte marked not present, not
  318. * writable, or not executable
  319. *
  320. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  321. * a negative value on error.
  322. */
  323. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  324. u32 error_code)
  325. {
  326. int write_fault = error_code & PFERR_WRITE_MASK;
  327. int user_fault = error_code & PFERR_USER_MASK;
  328. int fetch_fault = error_code & PFERR_FETCH_MASK;
  329. struct guest_walker walker;
  330. u64 *sptep;
  331. int write_pt = 0;
  332. int r;
  333. pfn_t pfn;
  334. int largepage = 0;
  335. unsigned long mmu_seq;
  336. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  337. kvm_mmu_audit(vcpu, "pre page fault");
  338. r = mmu_topup_memory_caches(vcpu);
  339. if (r)
  340. return r;
  341. /*
  342. * Look up the guest pte for the faulting address.
  343. */
  344. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  345. fetch_fault);
  346. /*
  347. * The page is not mapped by the guest. Let the guest handle it.
  348. */
  349. if (!r) {
  350. pgprintk("%s: guest page fault\n", __func__);
  351. inject_page_fault(vcpu, addr, walker.error_code);
  352. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  353. return 0;
  354. }
  355. if (walker.level == PT_DIRECTORY_LEVEL) {
  356. gfn_t large_gfn;
  357. large_gfn = walker.gfn &
  358. ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
  359. if (mapping_level(vcpu, large_gfn) == PT_DIRECTORY_LEVEL) {
  360. walker.gfn = large_gfn;
  361. largepage = 1;
  362. }
  363. }
  364. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  365. smp_rmb();
  366. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  367. /* mmio */
  368. if (is_error_pfn(pfn)) {
  369. pgprintk("gfn %lx is mmio\n", walker.gfn);
  370. kvm_release_pfn_clean(pfn);
  371. return 1;
  372. }
  373. spin_lock(&vcpu->kvm->mmu_lock);
  374. if (mmu_notifier_retry(vcpu, mmu_seq))
  375. goto out_unlock;
  376. kvm_mmu_free_some_pages(vcpu);
  377. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  378. largepage, &write_pt, pfn);
  379. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  380. sptep, *sptep, write_pt);
  381. if (!write_pt)
  382. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  383. ++vcpu->stat.pf_fixed;
  384. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  385. spin_unlock(&vcpu->kvm->mmu_lock);
  386. return write_pt;
  387. out_unlock:
  388. spin_unlock(&vcpu->kvm->mmu_lock);
  389. kvm_release_pfn_clean(pfn);
  390. return 0;
  391. }
  392. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  393. {
  394. struct kvm_shadow_walk_iterator iterator;
  395. pt_element_t gpte;
  396. gpa_t pte_gpa = -1;
  397. int level;
  398. u64 *sptep;
  399. int need_flush = 0;
  400. spin_lock(&vcpu->kvm->mmu_lock);
  401. for_each_shadow_entry(vcpu, gva, iterator) {
  402. level = iterator.level;
  403. sptep = iterator.sptep;
  404. /* FIXME: properly handle invlpg on large guest pages */
  405. if (level == PT_PAGE_TABLE_LEVEL ||
  406. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  407. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  408. pte_gpa = (sp->gfn << PAGE_SHIFT);
  409. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  410. if (is_shadow_present_pte(*sptep)) {
  411. rmap_remove(vcpu->kvm, sptep);
  412. if (is_large_pte(*sptep))
  413. --vcpu->kvm->stat.lpages;
  414. need_flush = 1;
  415. }
  416. __set_spte(sptep, shadow_trap_nonpresent_pte);
  417. break;
  418. }
  419. if (!is_shadow_present_pte(*sptep))
  420. break;
  421. }
  422. if (need_flush)
  423. kvm_flush_remote_tlbs(vcpu->kvm);
  424. spin_unlock(&vcpu->kvm->mmu_lock);
  425. if (pte_gpa == -1)
  426. return;
  427. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  428. sizeof(pt_element_t)))
  429. return;
  430. if (is_present_gpte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  431. if (mmu_topup_memory_caches(vcpu))
  432. return;
  433. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  434. sizeof(pt_element_t), 0);
  435. }
  436. }
  437. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  438. {
  439. struct guest_walker walker;
  440. gpa_t gpa = UNMAPPED_GVA;
  441. int r;
  442. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  443. if (r) {
  444. gpa = gfn_to_gpa(walker.gfn);
  445. gpa |= vaddr & ~PAGE_MASK;
  446. }
  447. return gpa;
  448. }
  449. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  450. struct kvm_mmu_page *sp)
  451. {
  452. int i, j, offset, r;
  453. pt_element_t pt[256 / sizeof(pt_element_t)];
  454. gpa_t pte_gpa;
  455. if (sp->role.direct
  456. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  457. nonpaging_prefetch_page(vcpu, sp);
  458. return;
  459. }
  460. pte_gpa = gfn_to_gpa(sp->gfn);
  461. if (PTTYPE == 32) {
  462. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  463. pte_gpa += offset * sizeof(pt_element_t);
  464. }
  465. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  466. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  467. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  468. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  469. if (r || is_present_gpte(pt[j]))
  470. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  471. else
  472. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  473. }
  474. }
  475. /*
  476. * Using the cached information from sp->gfns is safe because:
  477. * - The spte has a reference to the struct page, so the pfn for a given gfn
  478. * can't change unless all sptes pointing to it are nuked first.
  479. * - Alias changes zap the entire shadow cache.
  480. */
  481. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  482. {
  483. int i, offset, nr_present;
  484. offset = nr_present = 0;
  485. if (PTTYPE == 32)
  486. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  487. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  488. unsigned pte_access;
  489. pt_element_t gpte;
  490. gpa_t pte_gpa;
  491. gfn_t gfn = sp->gfns[i];
  492. if (!is_shadow_present_pte(sp->spt[i]))
  493. continue;
  494. pte_gpa = gfn_to_gpa(sp->gfn);
  495. pte_gpa += (i+offset) * sizeof(pt_element_t);
  496. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  497. sizeof(pt_element_t)))
  498. return -EINVAL;
  499. if (gpte_to_gfn(gpte) != gfn || !is_present_gpte(gpte) ||
  500. !(gpte & PT_ACCESSED_MASK)) {
  501. u64 nonpresent;
  502. rmap_remove(vcpu->kvm, &sp->spt[i]);
  503. if (is_present_gpte(gpte))
  504. nonpresent = shadow_trap_nonpresent_pte;
  505. else
  506. nonpresent = shadow_notrap_nonpresent_pte;
  507. __set_spte(&sp->spt[i], nonpresent);
  508. continue;
  509. }
  510. nr_present++;
  511. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  512. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  513. is_dirty_gpte(gpte), 0, gfn,
  514. spte_to_pfn(sp->spt[i]), true, false);
  515. }
  516. return !nr_present;
  517. }
  518. #undef pt_element_t
  519. #undef guest_walker
  520. #undef FNAME
  521. #undef PT_BASE_ADDR_MASK
  522. #undef PT_INDEX
  523. #undef PT_LEVEL_MASK
  524. #undef PT_DIR_BASE_ADDR_MASK
  525. #undef PT_LEVEL_BITS
  526. #undef PT_MAX_FULL_LEVELS
  527. #undef gpte_to_gfn
  528. #undef gpte_to_gfn_pde
  529. #undef CMPXCHG