mmu.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_INDEX(address, level)\
  87. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  88. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  89. #define PT64_DIR_BASE_ADDR_MASK \
  90. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  91. #define PT32_BASE_ADDR_MASK PAGE_MASK
  92. #define PT32_DIR_BASE_ADDR_MASK \
  93. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  94. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  95. | PT64_NX_MASK)
  96. #define PFERR_PRESENT_MASK (1U << 0)
  97. #define PFERR_WRITE_MASK (1U << 1)
  98. #define PFERR_USER_MASK (1U << 2)
  99. #define PFERR_RSVD_MASK (1U << 3)
  100. #define PFERR_FETCH_MASK (1U << 4)
  101. #define PT_DIRECTORY_LEVEL 2
  102. #define PT_PAGE_TABLE_LEVEL 1
  103. #define RMAP_EXT 4
  104. #define ACC_EXEC_MASK 1
  105. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  106. #define ACC_USER_MASK PT_USER_MASK
  107. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  108. #define CREATE_TRACE_POINTS
  109. #include "mmutrace.h"
  110. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  111. struct kvm_rmap_desc {
  112. u64 *sptes[RMAP_EXT];
  113. struct kvm_rmap_desc *more;
  114. };
  115. struct kvm_shadow_walk_iterator {
  116. u64 addr;
  117. hpa_t shadow_addr;
  118. int level;
  119. u64 *sptep;
  120. unsigned index;
  121. };
  122. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  123. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  124. shadow_walk_okay(&(_walker)); \
  125. shadow_walk_next(&(_walker)))
  126. struct kvm_unsync_walk {
  127. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  128. };
  129. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  130. static struct kmem_cache *pte_chain_cache;
  131. static struct kmem_cache *rmap_desc_cache;
  132. static struct kmem_cache *mmu_page_header_cache;
  133. static u64 __read_mostly shadow_trap_nonpresent_pte;
  134. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  135. static u64 __read_mostly shadow_base_present_pte;
  136. static u64 __read_mostly shadow_nx_mask;
  137. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  138. static u64 __read_mostly shadow_user_mask;
  139. static u64 __read_mostly shadow_accessed_mask;
  140. static u64 __read_mostly shadow_dirty_mask;
  141. static inline u64 rsvd_bits(int s, int e)
  142. {
  143. return ((1ULL << (e - s + 1)) - 1) << s;
  144. }
  145. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  146. {
  147. shadow_trap_nonpresent_pte = trap_pte;
  148. shadow_notrap_nonpresent_pte = notrap_pte;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  151. void kvm_mmu_set_base_ptes(u64 base_pte)
  152. {
  153. shadow_base_present_pte = base_pte;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  156. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  157. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  158. {
  159. shadow_user_mask = user_mask;
  160. shadow_accessed_mask = accessed_mask;
  161. shadow_dirty_mask = dirty_mask;
  162. shadow_nx_mask = nx_mask;
  163. shadow_x_mask = x_mask;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  166. static int is_write_protection(struct kvm_vcpu *vcpu)
  167. {
  168. return vcpu->arch.cr0 & X86_CR0_WP;
  169. }
  170. static int is_cpuid_PSE36(void)
  171. {
  172. return 1;
  173. }
  174. static int is_nx(struct kvm_vcpu *vcpu)
  175. {
  176. return vcpu->arch.shadow_efer & EFER_NX;
  177. }
  178. static int is_shadow_present_pte(u64 pte)
  179. {
  180. return pte != shadow_trap_nonpresent_pte
  181. && pte != shadow_notrap_nonpresent_pte;
  182. }
  183. static int is_large_pte(u64 pte)
  184. {
  185. return pte & PT_PAGE_SIZE_MASK;
  186. }
  187. static int is_writeble_pte(unsigned long pte)
  188. {
  189. return pte & PT_WRITABLE_MASK;
  190. }
  191. static int is_dirty_gpte(unsigned long pte)
  192. {
  193. return pte & PT_DIRTY_MASK;
  194. }
  195. static int is_rmap_spte(u64 pte)
  196. {
  197. return is_shadow_present_pte(pte);
  198. }
  199. static int is_last_spte(u64 pte, int level)
  200. {
  201. if (level == PT_PAGE_TABLE_LEVEL)
  202. return 1;
  203. if (is_large_pte(pte))
  204. return 1;
  205. return 0;
  206. }
  207. static pfn_t spte_to_pfn(u64 pte)
  208. {
  209. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  210. }
  211. static gfn_t pse36_gfn_delta(u32 gpte)
  212. {
  213. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  214. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  215. }
  216. static void __set_spte(u64 *sptep, u64 spte)
  217. {
  218. #ifdef CONFIG_X86_64
  219. set_64bit((unsigned long *)sptep, spte);
  220. #else
  221. set_64bit((unsigned long long *)sptep, spte);
  222. #endif
  223. }
  224. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  225. struct kmem_cache *base_cache, int min)
  226. {
  227. void *obj;
  228. if (cache->nobjs >= min)
  229. return 0;
  230. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  231. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  232. if (!obj)
  233. return -ENOMEM;
  234. cache->objects[cache->nobjs++] = obj;
  235. }
  236. return 0;
  237. }
  238. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  239. {
  240. while (mc->nobjs)
  241. kfree(mc->objects[--mc->nobjs]);
  242. }
  243. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  244. int min)
  245. {
  246. struct page *page;
  247. if (cache->nobjs >= min)
  248. return 0;
  249. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  250. page = alloc_page(GFP_KERNEL);
  251. if (!page)
  252. return -ENOMEM;
  253. set_page_private(page, 0);
  254. cache->objects[cache->nobjs++] = page_address(page);
  255. }
  256. return 0;
  257. }
  258. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  259. {
  260. while (mc->nobjs)
  261. free_page((unsigned long)mc->objects[--mc->nobjs]);
  262. }
  263. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  264. {
  265. int r;
  266. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  267. pte_chain_cache, 4);
  268. if (r)
  269. goto out;
  270. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  271. rmap_desc_cache, 4);
  272. if (r)
  273. goto out;
  274. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  275. if (r)
  276. goto out;
  277. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  278. mmu_page_header_cache, 4);
  279. out:
  280. return r;
  281. }
  282. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  283. {
  284. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  285. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  286. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  287. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  288. }
  289. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  290. size_t size)
  291. {
  292. void *p;
  293. BUG_ON(!mc->nobjs);
  294. p = mc->objects[--mc->nobjs];
  295. return p;
  296. }
  297. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  298. {
  299. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  300. sizeof(struct kvm_pte_chain));
  301. }
  302. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  303. {
  304. kfree(pc);
  305. }
  306. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  307. {
  308. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  309. sizeof(struct kvm_rmap_desc));
  310. }
  311. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  312. {
  313. kfree(rd);
  314. }
  315. /*
  316. * Return the pointer to the largepage write count for a given
  317. * gfn, handling slots that are not large page aligned.
  318. */
  319. static int *slot_largepage_idx(gfn_t gfn,
  320. struct kvm_memory_slot *slot,
  321. int level)
  322. {
  323. unsigned long idx;
  324. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  325. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  326. return &slot->lpage_info[level - 2][idx].write_count;
  327. }
  328. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  329. {
  330. struct kvm_memory_slot *slot;
  331. int *write_count;
  332. int i;
  333. gfn = unalias_gfn(kvm, gfn);
  334. slot = gfn_to_memslot_unaliased(kvm, gfn);
  335. for (i = PT_DIRECTORY_LEVEL;
  336. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  337. write_count = slot_largepage_idx(gfn, slot, i);
  338. *write_count += 1;
  339. }
  340. }
  341. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. int *write_count;
  345. int i;
  346. gfn = unalias_gfn(kvm, gfn);
  347. for (i = PT_DIRECTORY_LEVEL;
  348. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  349. slot = gfn_to_memslot_unaliased(kvm, gfn);
  350. write_count = slot_largepage_idx(gfn, slot, i);
  351. *write_count -= 1;
  352. WARN_ON(*write_count < 0);
  353. }
  354. }
  355. static int has_wrprotected_page(struct kvm *kvm,
  356. gfn_t gfn,
  357. int level)
  358. {
  359. struct kvm_memory_slot *slot;
  360. int *largepage_idx;
  361. gfn = unalias_gfn(kvm, gfn);
  362. slot = gfn_to_memslot_unaliased(kvm, gfn);
  363. if (slot) {
  364. largepage_idx = slot_largepage_idx(gfn, slot, level);
  365. return *largepage_idx;
  366. }
  367. return 1;
  368. }
  369. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  370. {
  371. unsigned long page_size = PAGE_SIZE;
  372. struct vm_area_struct *vma;
  373. unsigned long addr;
  374. int i, ret = 0;
  375. addr = gfn_to_hva(kvm, gfn);
  376. if (kvm_is_error_hva(addr))
  377. return page_size;
  378. down_read(&current->mm->mmap_sem);
  379. vma = find_vma(current->mm, addr);
  380. if (!vma)
  381. goto out;
  382. page_size = vma_kernel_pagesize(vma);
  383. out:
  384. up_read(&current->mm->mmap_sem);
  385. for (i = PT_PAGE_TABLE_LEVEL;
  386. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  387. if (page_size >= KVM_HPAGE_SIZE(i))
  388. ret = i;
  389. else
  390. break;
  391. }
  392. return ret;
  393. }
  394. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  395. {
  396. struct kvm_memory_slot *slot;
  397. int host_level;
  398. int level = PT_PAGE_TABLE_LEVEL;
  399. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  400. if (slot && slot->dirty_bitmap)
  401. return PT_PAGE_TABLE_LEVEL;
  402. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  403. if (host_level == PT_PAGE_TABLE_LEVEL)
  404. return host_level;
  405. for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level) {
  406. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  407. break;
  408. }
  409. return level - 1;
  410. }
  411. /*
  412. * Take gfn and return the reverse mapping to it.
  413. * Note: gfn must be unaliased before this function get called
  414. */
  415. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  416. {
  417. struct kvm_memory_slot *slot;
  418. unsigned long idx;
  419. slot = gfn_to_memslot(kvm, gfn);
  420. if (likely(level == PT_PAGE_TABLE_LEVEL))
  421. return &slot->rmap[gfn - slot->base_gfn];
  422. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  423. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  424. return &slot->lpage_info[level - 2][idx].rmap_pde;
  425. }
  426. /*
  427. * Reverse mapping data structures:
  428. *
  429. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  430. * that points to page_address(page).
  431. *
  432. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  433. * containing more mappings.
  434. *
  435. * Returns the number of rmap entries before the spte was added or zero if
  436. * the spte was not added.
  437. *
  438. */
  439. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  440. {
  441. struct kvm_mmu_page *sp;
  442. struct kvm_rmap_desc *desc;
  443. unsigned long *rmapp;
  444. int i, count = 0;
  445. if (!is_rmap_spte(*spte))
  446. return count;
  447. gfn = unalias_gfn(vcpu->kvm, gfn);
  448. sp = page_header(__pa(spte));
  449. sp->gfns[spte - sp->spt] = gfn;
  450. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  451. if (!*rmapp) {
  452. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  453. *rmapp = (unsigned long)spte;
  454. } else if (!(*rmapp & 1)) {
  455. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  456. desc = mmu_alloc_rmap_desc(vcpu);
  457. desc->sptes[0] = (u64 *)*rmapp;
  458. desc->sptes[1] = spte;
  459. *rmapp = (unsigned long)desc | 1;
  460. } else {
  461. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  462. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  463. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  464. desc = desc->more;
  465. count += RMAP_EXT;
  466. }
  467. if (desc->sptes[RMAP_EXT-1]) {
  468. desc->more = mmu_alloc_rmap_desc(vcpu);
  469. desc = desc->more;
  470. }
  471. for (i = 0; desc->sptes[i]; ++i)
  472. ;
  473. desc->sptes[i] = spte;
  474. }
  475. return count;
  476. }
  477. static void rmap_desc_remove_entry(unsigned long *rmapp,
  478. struct kvm_rmap_desc *desc,
  479. int i,
  480. struct kvm_rmap_desc *prev_desc)
  481. {
  482. int j;
  483. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  484. ;
  485. desc->sptes[i] = desc->sptes[j];
  486. desc->sptes[j] = NULL;
  487. if (j != 0)
  488. return;
  489. if (!prev_desc && !desc->more)
  490. *rmapp = (unsigned long)desc->sptes[0];
  491. else
  492. if (prev_desc)
  493. prev_desc->more = desc->more;
  494. else
  495. *rmapp = (unsigned long)desc->more | 1;
  496. mmu_free_rmap_desc(desc);
  497. }
  498. static void rmap_remove(struct kvm *kvm, u64 *spte)
  499. {
  500. struct kvm_rmap_desc *desc;
  501. struct kvm_rmap_desc *prev_desc;
  502. struct kvm_mmu_page *sp;
  503. pfn_t pfn;
  504. unsigned long *rmapp;
  505. int i;
  506. if (!is_rmap_spte(*spte))
  507. return;
  508. sp = page_header(__pa(spte));
  509. pfn = spte_to_pfn(*spte);
  510. if (*spte & shadow_accessed_mask)
  511. kvm_set_pfn_accessed(pfn);
  512. if (is_writeble_pte(*spte))
  513. kvm_release_pfn_dirty(pfn);
  514. else
  515. kvm_release_pfn_clean(pfn);
  516. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  517. if (!*rmapp) {
  518. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  519. BUG();
  520. } else if (!(*rmapp & 1)) {
  521. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  522. if ((u64 *)*rmapp != spte) {
  523. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  524. spte, *spte);
  525. BUG();
  526. }
  527. *rmapp = 0;
  528. } else {
  529. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  530. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  531. prev_desc = NULL;
  532. while (desc) {
  533. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  534. if (desc->sptes[i] == spte) {
  535. rmap_desc_remove_entry(rmapp,
  536. desc, i,
  537. prev_desc);
  538. return;
  539. }
  540. prev_desc = desc;
  541. desc = desc->more;
  542. }
  543. BUG();
  544. }
  545. }
  546. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  547. {
  548. struct kvm_rmap_desc *desc;
  549. struct kvm_rmap_desc *prev_desc;
  550. u64 *prev_spte;
  551. int i;
  552. if (!*rmapp)
  553. return NULL;
  554. else if (!(*rmapp & 1)) {
  555. if (!spte)
  556. return (u64 *)*rmapp;
  557. return NULL;
  558. }
  559. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  560. prev_desc = NULL;
  561. prev_spte = NULL;
  562. while (desc) {
  563. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  564. if (prev_spte == spte)
  565. return desc->sptes[i];
  566. prev_spte = desc->sptes[i];
  567. }
  568. desc = desc->more;
  569. }
  570. return NULL;
  571. }
  572. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  573. {
  574. unsigned long *rmapp;
  575. u64 *spte;
  576. int i, write_protected = 0;
  577. gfn = unalias_gfn(kvm, gfn);
  578. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  579. spte = rmap_next(kvm, rmapp, NULL);
  580. while (spte) {
  581. BUG_ON(!spte);
  582. BUG_ON(!(*spte & PT_PRESENT_MASK));
  583. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  584. if (is_writeble_pte(*spte)) {
  585. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  586. write_protected = 1;
  587. }
  588. spte = rmap_next(kvm, rmapp, spte);
  589. }
  590. if (write_protected) {
  591. pfn_t pfn;
  592. spte = rmap_next(kvm, rmapp, NULL);
  593. pfn = spte_to_pfn(*spte);
  594. kvm_set_pfn_dirty(pfn);
  595. }
  596. /* check for huge page mappings */
  597. for (i = PT_DIRECTORY_LEVEL;
  598. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  599. rmapp = gfn_to_rmap(kvm, gfn, i);
  600. spte = rmap_next(kvm, rmapp, NULL);
  601. while (spte) {
  602. BUG_ON(!spte);
  603. BUG_ON(!(*spte & PT_PRESENT_MASK));
  604. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  605. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  606. if (is_writeble_pte(*spte)) {
  607. rmap_remove(kvm, spte);
  608. --kvm->stat.lpages;
  609. __set_spte(spte, shadow_trap_nonpresent_pte);
  610. spte = NULL;
  611. write_protected = 1;
  612. }
  613. spte = rmap_next(kvm, rmapp, spte);
  614. }
  615. }
  616. return write_protected;
  617. }
  618. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  619. {
  620. u64 *spte;
  621. int need_tlb_flush = 0;
  622. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  623. BUG_ON(!(*spte & PT_PRESENT_MASK));
  624. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  625. rmap_remove(kvm, spte);
  626. __set_spte(spte, shadow_trap_nonpresent_pte);
  627. need_tlb_flush = 1;
  628. }
  629. return need_tlb_flush;
  630. }
  631. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  632. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  633. {
  634. int i, j;
  635. int retval = 0;
  636. /*
  637. * If mmap_sem isn't taken, we can look the memslots with only
  638. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  639. */
  640. for (i = 0; i < kvm->nmemslots; i++) {
  641. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  642. unsigned long start = memslot->userspace_addr;
  643. unsigned long end;
  644. /* mmu_lock protects userspace_addr */
  645. if (!start)
  646. continue;
  647. end = start + (memslot->npages << PAGE_SHIFT);
  648. if (hva >= start && hva < end) {
  649. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  650. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  651. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  652. int idx = gfn_offset;
  653. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  654. retval |= handler(kvm,
  655. &memslot->lpage_info[j][idx].rmap_pde);
  656. }
  657. }
  658. }
  659. return retval;
  660. }
  661. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  662. {
  663. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  664. }
  665. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  666. {
  667. u64 *spte;
  668. int young = 0;
  669. /* always return old for EPT */
  670. if (!shadow_accessed_mask)
  671. return 0;
  672. spte = rmap_next(kvm, rmapp, NULL);
  673. while (spte) {
  674. int _young;
  675. u64 _spte = *spte;
  676. BUG_ON(!(_spte & PT_PRESENT_MASK));
  677. _young = _spte & PT_ACCESSED_MASK;
  678. if (_young) {
  679. young = 1;
  680. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  681. }
  682. spte = rmap_next(kvm, rmapp, spte);
  683. }
  684. return young;
  685. }
  686. #define RMAP_RECYCLE_THRESHOLD 1000
  687. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  688. {
  689. unsigned long *rmapp;
  690. struct kvm_mmu_page *sp;
  691. sp = page_header(__pa(spte));
  692. gfn = unalias_gfn(vcpu->kvm, gfn);
  693. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  694. kvm_unmap_rmapp(vcpu->kvm, rmapp);
  695. kvm_flush_remote_tlbs(vcpu->kvm);
  696. }
  697. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  698. {
  699. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  700. }
  701. #ifdef MMU_DEBUG
  702. static int is_empty_shadow_page(u64 *spt)
  703. {
  704. u64 *pos;
  705. u64 *end;
  706. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  707. if (is_shadow_present_pte(*pos)) {
  708. printk(KERN_ERR "%s: %p %llx\n", __func__,
  709. pos, *pos);
  710. return 0;
  711. }
  712. return 1;
  713. }
  714. #endif
  715. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  716. {
  717. ASSERT(is_empty_shadow_page(sp->spt));
  718. list_del(&sp->link);
  719. __free_page(virt_to_page(sp->spt));
  720. __free_page(virt_to_page(sp->gfns));
  721. kfree(sp);
  722. ++kvm->arch.n_free_mmu_pages;
  723. }
  724. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  725. {
  726. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  727. }
  728. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  729. u64 *parent_pte)
  730. {
  731. struct kvm_mmu_page *sp;
  732. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  733. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  734. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  735. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  736. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  737. INIT_LIST_HEAD(&sp->oos_link);
  738. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  739. sp->multimapped = 0;
  740. sp->parent_pte = parent_pte;
  741. --vcpu->kvm->arch.n_free_mmu_pages;
  742. return sp;
  743. }
  744. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  745. struct kvm_mmu_page *sp, u64 *parent_pte)
  746. {
  747. struct kvm_pte_chain *pte_chain;
  748. struct hlist_node *node;
  749. int i;
  750. if (!parent_pte)
  751. return;
  752. if (!sp->multimapped) {
  753. u64 *old = sp->parent_pte;
  754. if (!old) {
  755. sp->parent_pte = parent_pte;
  756. return;
  757. }
  758. sp->multimapped = 1;
  759. pte_chain = mmu_alloc_pte_chain(vcpu);
  760. INIT_HLIST_HEAD(&sp->parent_ptes);
  761. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  762. pte_chain->parent_ptes[0] = old;
  763. }
  764. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  765. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  766. continue;
  767. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  768. if (!pte_chain->parent_ptes[i]) {
  769. pte_chain->parent_ptes[i] = parent_pte;
  770. return;
  771. }
  772. }
  773. pte_chain = mmu_alloc_pte_chain(vcpu);
  774. BUG_ON(!pte_chain);
  775. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  776. pte_chain->parent_ptes[0] = parent_pte;
  777. }
  778. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  779. u64 *parent_pte)
  780. {
  781. struct kvm_pte_chain *pte_chain;
  782. struct hlist_node *node;
  783. int i;
  784. if (!sp->multimapped) {
  785. BUG_ON(sp->parent_pte != parent_pte);
  786. sp->parent_pte = NULL;
  787. return;
  788. }
  789. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  790. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  791. if (!pte_chain->parent_ptes[i])
  792. break;
  793. if (pte_chain->parent_ptes[i] != parent_pte)
  794. continue;
  795. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  796. && pte_chain->parent_ptes[i + 1]) {
  797. pte_chain->parent_ptes[i]
  798. = pte_chain->parent_ptes[i + 1];
  799. ++i;
  800. }
  801. pte_chain->parent_ptes[i] = NULL;
  802. if (i == 0) {
  803. hlist_del(&pte_chain->link);
  804. mmu_free_pte_chain(pte_chain);
  805. if (hlist_empty(&sp->parent_ptes)) {
  806. sp->multimapped = 0;
  807. sp->parent_pte = NULL;
  808. }
  809. }
  810. return;
  811. }
  812. BUG();
  813. }
  814. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  815. mmu_parent_walk_fn fn)
  816. {
  817. struct kvm_pte_chain *pte_chain;
  818. struct hlist_node *node;
  819. struct kvm_mmu_page *parent_sp;
  820. int i;
  821. if (!sp->multimapped && sp->parent_pte) {
  822. parent_sp = page_header(__pa(sp->parent_pte));
  823. fn(vcpu, parent_sp);
  824. mmu_parent_walk(vcpu, parent_sp, fn);
  825. return;
  826. }
  827. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  828. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  829. if (!pte_chain->parent_ptes[i])
  830. break;
  831. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  832. fn(vcpu, parent_sp);
  833. mmu_parent_walk(vcpu, parent_sp, fn);
  834. }
  835. }
  836. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  837. {
  838. unsigned int index;
  839. struct kvm_mmu_page *sp = page_header(__pa(spte));
  840. index = spte - sp->spt;
  841. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  842. sp->unsync_children++;
  843. WARN_ON(!sp->unsync_children);
  844. }
  845. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  846. {
  847. struct kvm_pte_chain *pte_chain;
  848. struct hlist_node *node;
  849. int i;
  850. if (!sp->parent_pte)
  851. return;
  852. if (!sp->multimapped) {
  853. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  854. return;
  855. }
  856. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  857. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  858. if (!pte_chain->parent_ptes[i])
  859. break;
  860. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  861. }
  862. }
  863. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  864. {
  865. kvm_mmu_update_parents_unsync(sp);
  866. return 1;
  867. }
  868. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  869. struct kvm_mmu_page *sp)
  870. {
  871. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  872. kvm_mmu_update_parents_unsync(sp);
  873. }
  874. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  875. struct kvm_mmu_page *sp)
  876. {
  877. int i;
  878. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  879. sp->spt[i] = shadow_trap_nonpresent_pte;
  880. }
  881. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  882. struct kvm_mmu_page *sp)
  883. {
  884. return 1;
  885. }
  886. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  887. {
  888. }
  889. #define KVM_PAGE_ARRAY_NR 16
  890. struct kvm_mmu_pages {
  891. struct mmu_page_and_offset {
  892. struct kvm_mmu_page *sp;
  893. unsigned int idx;
  894. } page[KVM_PAGE_ARRAY_NR];
  895. unsigned int nr;
  896. };
  897. #define for_each_unsync_children(bitmap, idx) \
  898. for (idx = find_first_bit(bitmap, 512); \
  899. idx < 512; \
  900. idx = find_next_bit(bitmap, 512, idx+1))
  901. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  902. int idx)
  903. {
  904. int i;
  905. if (sp->unsync)
  906. for (i=0; i < pvec->nr; i++)
  907. if (pvec->page[i].sp == sp)
  908. return 0;
  909. pvec->page[pvec->nr].sp = sp;
  910. pvec->page[pvec->nr].idx = idx;
  911. pvec->nr++;
  912. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  913. }
  914. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  915. struct kvm_mmu_pages *pvec)
  916. {
  917. int i, ret, nr_unsync_leaf = 0;
  918. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  919. u64 ent = sp->spt[i];
  920. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  921. struct kvm_mmu_page *child;
  922. child = page_header(ent & PT64_BASE_ADDR_MASK);
  923. if (child->unsync_children) {
  924. if (mmu_pages_add(pvec, child, i))
  925. return -ENOSPC;
  926. ret = __mmu_unsync_walk(child, pvec);
  927. if (!ret)
  928. __clear_bit(i, sp->unsync_child_bitmap);
  929. else if (ret > 0)
  930. nr_unsync_leaf += ret;
  931. else
  932. return ret;
  933. }
  934. if (child->unsync) {
  935. nr_unsync_leaf++;
  936. if (mmu_pages_add(pvec, child, i))
  937. return -ENOSPC;
  938. }
  939. }
  940. }
  941. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  942. sp->unsync_children = 0;
  943. return nr_unsync_leaf;
  944. }
  945. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  946. struct kvm_mmu_pages *pvec)
  947. {
  948. if (!sp->unsync_children)
  949. return 0;
  950. mmu_pages_add(pvec, sp, 0);
  951. return __mmu_unsync_walk(sp, pvec);
  952. }
  953. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  954. {
  955. unsigned index;
  956. struct hlist_head *bucket;
  957. struct kvm_mmu_page *sp;
  958. struct hlist_node *node;
  959. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  960. index = kvm_page_table_hashfn(gfn);
  961. bucket = &kvm->arch.mmu_page_hash[index];
  962. hlist_for_each_entry(sp, node, bucket, hash_link)
  963. if (sp->gfn == gfn && !sp->role.direct
  964. && !sp->role.invalid) {
  965. pgprintk("%s: found role %x\n",
  966. __func__, sp->role.word);
  967. return sp;
  968. }
  969. return NULL;
  970. }
  971. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  972. {
  973. WARN_ON(!sp->unsync);
  974. sp->unsync = 0;
  975. --kvm->stat.mmu_unsync;
  976. }
  977. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  978. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  979. {
  980. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  981. kvm_mmu_zap_page(vcpu->kvm, sp);
  982. return 1;
  983. }
  984. trace_kvm_mmu_sync_page(sp);
  985. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  986. kvm_flush_remote_tlbs(vcpu->kvm);
  987. kvm_unlink_unsync_page(vcpu->kvm, sp);
  988. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  989. kvm_mmu_zap_page(vcpu->kvm, sp);
  990. return 1;
  991. }
  992. kvm_mmu_flush_tlb(vcpu);
  993. return 0;
  994. }
  995. struct mmu_page_path {
  996. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  997. unsigned int idx[PT64_ROOT_LEVEL-1];
  998. };
  999. #define for_each_sp(pvec, sp, parents, i) \
  1000. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1001. sp = pvec.page[i].sp; \
  1002. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1003. i = mmu_pages_next(&pvec, &parents, i))
  1004. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1005. struct mmu_page_path *parents,
  1006. int i)
  1007. {
  1008. int n;
  1009. for (n = i+1; n < pvec->nr; n++) {
  1010. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1011. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1012. parents->idx[0] = pvec->page[n].idx;
  1013. return n;
  1014. }
  1015. parents->parent[sp->role.level-2] = sp;
  1016. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1017. }
  1018. return n;
  1019. }
  1020. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1021. {
  1022. struct kvm_mmu_page *sp;
  1023. unsigned int level = 0;
  1024. do {
  1025. unsigned int idx = parents->idx[level];
  1026. sp = parents->parent[level];
  1027. if (!sp)
  1028. return;
  1029. --sp->unsync_children;
  1030. WARN_ON((int)sp->unsync_children < 0);
  1031. __clear_bit(idx, sp->unsync_child_bitmap);
  1032. level++;
  1033. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1034. }
  1035. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1036. struct mmu_page_path *parents,
  1037. struct kvm_mmu_pages *pvec)
  1038. {
  1039. parents->parent[parent->role.level-1] = NULL;
  1040. pvec->nr = 0;
  1041. }
  1042. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1043. struct kvm_mmu_page *parent)
  1044. {
  1045. int i;
  1046. struct kvm_mmu_page *sp;
  1047. struct mmu_page_path parents;
  1048. struct kvm_mmu_pages pages;
  1049. kvm_mmu_pages_init(parent, &parents, &pages);
  1050. while (mmu_unsync_walk(parent, &pages)) {
  1051. int protected = 0;
  1052. for_each_sp(pages, sp, parents, i)
  1053. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1054. if (protected)
  1055. kvm_flush_remote_tlbs(vcpu->kvm);
  1056. for_each_sp(pages, sp, parents, i) {
  1057. kvm_sync_page(vcpu, sp);
  1058. mmu_pages_clear_parents(&parents);
  1059. }
  1060. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1061. kvm_mmu_pages_init(parent, &parents, &pages);
  1062. }
  1063. }
  1064. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1065. gfn_t gfn,
  1066. gva_t gaddr,
  1067. unsigned level,
  1068. int direct,
  1069. unsigned access,
  1070. u64 *parent_pte)
  1071. {
  1072. union kvm_mmu_page_role role;
  1073. unsigned index;
  1074. unsigned quadrant;
  1075. struct hlist_head *bucket;
  1076. struct kvm_mmu_page *sp;
  1077. struct hlist_node *node, *tmp;
  1078. role = vcpu->arch.mmu.base_role;
  1079. role.level = level;
  1080. role.direct = direct;
  1081. role.access = access;
  1082. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1083. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1084. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1085. role.quadrant = quadrant;
  1086. }
  1087. index = kvm_page_table_hashfn(gfn);
  1088. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1089. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1090. if (sp->gfn == gfn) {
  1091. if (sp->unsync)
  1092. if (kvm_sync_page(vcpu, sp))
  1093. continue;
  1094. if (sp->role.word != role.word)
  1095. continue;
  1096. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1097. if (sp->unsync_children) {
  1098. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1099. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1100. }
  1101. trace_kvm_mmu_get_page(sp, false);
  1102. return sp;
  1103. }
  1104. ++vcpu->kvm->stat.mmu_cache_miss;
  1105. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1106. if (!sp)
  1107. return sp;
  1108. sp->gfn = gfn;
  1109. sp->role = role;
  1110. hlist_add_head(&sp->hash_link, bucket);
  1111. if (!direct) {
  1112. if (rmap_write_protect(vcpu->kvm, gfn))
  1113. kvm_flush_remote_tlbs(vcpu->kvm);
  1114. account_shadowed(vcpu->kvm, gfn);
  1115. }
  1116. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1117. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1118. else
  1119. nonpaging_prefetch_page(vcpu, sp);
  1120. trace_kvm_mmu_get_page(sp, true);
  1121. return sp;
  1122. }
  1123. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1124. struct kvm_vcpu *vcpu, u64 addr)
  1125. {
  1126. iterator->addr = addr;
  1127. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1128. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1129. if (iterator->level == PT32E_ROOT_LEVEL) {
  1130. iterator->shadow_addr
  1131. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1132. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1133. --iterator->level;
  1134. if (!iterator->shadow_addr)
  1135. iterator->level = 0;
  1136. }
  1137. }
  1138. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1139. {
  1140. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1141. return false;
  1142. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1143. if (is_large_pte(*iterator->sptep))
  1144. return false;
  1145. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1146. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1147. return true;
  1148. }
  1149. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1150. {
  1151. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1152. --iterator->level;
  1153. }
  1154. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1155. struct kvm_mmu_page *sp)
  1156. {
  1157. unsigned i;
  1158. u64 *pt;
  1159. u64 ent;
  1160. pt = sp->spt;
  1161. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1162. ent = pt[i];
  1163. if (is_shadow_present_pte(ent)) {
  1164. if (!is_last_spte(ent, sp->role.level)) {
  1165. ent &= PT64_BASE_ADDR_MASK;
  1166. mmu_page_remove_parent_pte(page_header(ent),
  1167. &pt[i]);
  1168. } else {
  1169. if (is_large_pte(ent))
  1170. --kvm->stat.lpages;
  1171. rmap_remove(kvm, &pt[i]);
  1172. }
  1173. }
  1174. pt[i] = shadow_trap_nonpresent_pte;
  1175. }
  1176. }
  1177. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1178. {
  1179. mmu_page_remove_parent_pte(sp, parent_pte);
  1180. }
  1181. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1182. {
  1183. int i;
  1184. struct kvm_vcpu *vcpu;
  1185. kvm_for_each_vcpu(i, vcpu, kvm)
  1186. vcpu->arch.last_pte_updated = NULL;
  1187. }
  1188. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1189. {
  1190. u64 *parent_pte;
  1191. while (sp->multimapped || sp->parent_pte) {
  1192. if (!sp->multimapped)
  1193. parent_pte = sp->parent_pte;
  1194. else {
  1195. struct kvm_pte_chain *chain;
  1196. chain = container_of(sp->parent_ptes.first,
  1197. struct kvm_pte_chain, link);
  1198. parent_pte = chain->parent_ptes[0];
  1199. }
  1200. BUG_ON(!parent_pte);
  1201. kvm_mmu_put_page(sp, parent_pte);
  1202. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1203. }
  1204. }
  1205. static int mmu_zap_unsync_children(struct kvm *kvm,
  1206. struct kvm_mmu_page *parent)
  1207. {
  1208. int i, zapped = 0;
  1209. struct mmu_page_path parents;
  1210. struct kvm_mmu_pages pages;
  1211. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1212. return 0;
  1213. kvm_mmu_pages_init(parent, &parents, &pages);
  1214. while (mmu_unsync_walk(parent, &pages)) {
  1215. struct kvm_mmu_page *sp;
  1216. for_each_sp(pages, sp, parents, i) {
  1217. kvm_mmu_zap_page(kvm, sp);
  1218. mmu_pages_clear_parents(&parents);
  1219. }
  1220. zapped += pages.nr;
  1221. kvm_mmu_pages_init(parent, &parents, &pages);
  1222. }
  1223. return zapped;
  1224. }
  1225. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1226. {
  1227. int ret;
  1228. trace_kvm_mmu_zap_page(sp);
  1229. ++kvm->stat.mmu_shadow_zapped;
  1230. ret = mmu_zap_unsync_children(kvm, sp);
  1231. kvm_mmu_page_unlink_children(kvm, sp);
  1232. kvm_mmu_unlink_parents(kvm, sp);
  1233. kvm_flush_remote_tlbs(kvm);
  1234. if (!sp->role.invalid && !sp->role.direct)
  1235. unaccount_shadowed(kvm, sp->gfn);
  1236. if (sp->unsync)
  1237. kvm_unlink_unsync_page(kvm, sp);
  1238. if (!sp->root_count) {
  1239. hlist_del(&sp->hash_link);
  1240. kvm_mmu_free_page(kvm, sp);
  1241. } else {
  1242. sp->role.invalid = 1;
  1243. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1244. kvm_reload_remote_mmus(kvm);
  1245. }
  1246. kvm_mmu_reset_last_pte_updated(kvm);
  1247. return ret;
  1248. }
  1249. /*
  1250. * Changing the number of mmu pages allocated to the vm
  1251. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1252. */
  1253. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1254. {
  1255. int used_pages;
  1256. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1257. used_pages = max(0, used_pages);
  1258. /*
  1259. * If we set the number of mmu pages to be smaller be than the
  1260. * number of actived pages , we must to free some mmu pages before we
  1261. * change the value
  1262. */
  1263. if (used_pages > kvm_nr_mmu_pages) {
  1264. while (used_pages > kvm_nr_mmu_pages) {
  1265. struct kvm_mmu_page *page;
  1266. page = container_of(kvm->arch.active_mmu_pages.prev,
  1267. struct kvm_mmu_page, link);
  1268. kvm_mmu_zap_page(kvm, page);
  1269. used_pages--;
  1270. }
  1271. kvm->arch.n_free_mmu_pages = 0;
  1272. }
  1273. else
  1274. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1275. - kvm->arch.n_alloc_mmu_pages;
  1276. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1277. }
  1278. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1279. {
  1280. unsigned index;
  1281. struct hlist_head *bucket;
  1282. struct kvm_mmu_page *sp;
  1283. struct hlist_node *node, *n;
  1284. int r;
  1285. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1286. r = 0;
  1287. index = kvm_page_table_hashfn(gfn);
  1288. bucket = &kvm->arch.mmu_page_hash[index];
  1289. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1290. if (sp->gfn == gfn && !sp->role.direct) {
  1291. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1292. sp->role.word);
  1293. r = 1;
  1294. if (kvm_mmu_zap_page(kvm, sp))
  1295. n = bucket->first;
  1296. }
  1297. return r;
  1298. }
  1299. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1300. {
  1301. unsigned index;
  1302. struct hlist_head *bucket;
  1303. struct kvm_mmu_page *sp;
  1304. struct hlist_node *node, *nn;
  1305. index = kvm_page_table_hashfn(gfn);
  1306. bucket = &kvm->arch.mmu_page_hash[index];
  1307. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1308. if (sp->gfn == gfn && !sp->role.direct
  1309. && !sp->role.invalid) {
  1310. pgprintk("%s: zap %lx %x\n",
  1311. __func__, gfn, sp->role.word);
  1312. kvm_mmu_zap_page(kvm, sp);
  1313. }
  1314. }
  1315. }
  1316. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1317. {
  1318. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1319. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1320. __set_bit(slot, sp->slot_bitmap);
  1321. }
  1322. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1323. {
  1324. int i;
  1325. u64 *pt = sp->spt;
  1326. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1327. return;
  1328. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1329. if (pt[i] == shadow_notrap_nonpresent_pte)
  1330. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1331. }
  1332. }
  1333. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1334. {
  1335. struct page *page;
  1336. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1337. if (gpa == UNMAPPED_GVA)
  1338. return NULL;
  1339. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1340. return page;
  1341. }
  1342. /*
  1343. * The function is based on mtrr_type_lookup() in
  1344. * arch/x86/kernel/cpu/mtrr/generic.c
  1345. */
  1346. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1347. u64 start, u64 end)
  1348. {
  1349. int i;
  1350. u64 base, mask;
  1351. u8 prev_match, curr_match;
  1352. int num_var_ranges = KVM_NR_VAR_MTRR;
  1353. if (!mtrr_state->enabled)
  1354. return 0xFF;
  1355. /* Make end inclusive end, instead of exclusive */
  1356. end--;
  1357. /* Look in fixed ranges. Just return the type as per start */
  1358. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1359. int idx;
  1360. if (start < 0x80000) {
  1361. idx = 0;
  1362. idx += (start >> 16);
  1363. return mtrr_state->fixed_ranges[idx];
  1364. } else if (start < 0xC0000) {
  1365. idx = 1 * 8;
  1366. idx += ((start - 0x80000) >> 14);
  1367. return mtrr_state->fixed_ranges[idx];
  1368. } else if (start < 0x1000000) {
  1369. idx = 3 * 8;
  1370. idx += ((start - 0xC0000) >> 12);
  1371. return mtrr_state->fixed_ranges[idx];
  1372. }
  1373. }
  1374. /*
  1375. * Look in variable ranges
  1376. * Look of multiple ranges matching this address and pick type
  1377. * as per MTRR precedence
  1378. */
  1379. if (!(mtrr_state->enabled & 2))
  1380. return mtrr_state->def_type;
  1381. prev_match = 0xFF;
  1382. for (i = 0; i < num_var_ranges; ++i) {
  1383. unsigned short start_state, end_state;
  1384. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1385. continue;
  1386. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1387. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1388. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1389. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1390. start_state = ((start & mask) == (base & mask));
  1391. end_state = ((end & mask) == (base & mask));
  1392. if (start_state != end_state)
  1393. return 0xFE;
  1394. if ((start & mask) != (base & mask))
  1395. continue;
  1396. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1397. if (prev_match == 0xFF) {
  1398. prev_match = curr_match;
  1399. continue;
  1400. }
  1401. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1402. curr_match == MTRR_TYPE_UNCACHABLE)
  1403. return MTRR_TYPE_UNCACHABLE;
  1404. if ((prev_match == MTRR_TYPE_WRBACK &&
  1405. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1406. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1407. curr_match == MTRR_TYPE_WRBACK)) {
  1408. prev_match = MTRR_TYPE_WRTHROUGH;
  1409. curr_match = MTRR_TYPE_WRTHROUGH;
  1410. }
  1411. if (prev_match != curr_match)
  1412. return MTRR_TYPE_UNCACHABLE;
  1413. }
  1414. if (prev_match != 0xFF)
  1415. return prev_match;
  1416. return mtrr_state->def_type;
  1417. }
  1418. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1419. {
  1420. u8 mtrr;
  1421. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1422. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1423. if (mtrr == 0xfe || mtrr == 0xff)
  1424. mtrr = MTRR_TYPE_WRBACK;
  1425. return mtrr;
  1426. }
  1427. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1428. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1429. {
  1430. unsigned index;
  1431. struct hlist_head *bucket;
  1432. struct kvm_mmu_page *s;
  1433. struct hlist_node *node, *n;
  1434. trace_kvm_mmu_unsync_page(sp);
  1435. index = kvm_page_table_hashfn(sp->gfn);
  1436. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1437. /* don't unsync if pagetable is shadowed with multiple roles */
  1438. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1439. if (s->gfn != sp->gfn || s->role.direct)
  1440. continue;
  1441. if (s->role.word != sp->role.word)
  1442. return 1;
  1443. }
  1444. ++vcpu->kvm->stat.mmu_unsync;
  1445. sp->unsync = 1;
  1446. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1447. mmu_convert_notrap(sp);
  1448. return 0;
  1449. }
  1450. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1451. bool can_unsync)
  1452. {
  1453. struct kvm_mmu_page *shadow;
  1454. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1455. if (shadow) {
  1456. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1457. return 1;
  1458. if (shadow->unsync)
  1459. return 0;
  1460. if (can_unsync && oos_shadow)
  1461. return kvm_unsync_page(vcpu, shadow);
  1462. return 1;
  1463. }
  1464. return 0;
  1465. }
  1466. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1467. unsigned pte_access, int user_fault,
  1468. int write_fault, int dirty, int level,
  1469. gfn_t gfn, pfn_t pfn, bool speculative,
  1470. bool can_unsync)
  1471. {
  1472. u64 spte;
  1473. int ret = 0;
  1474. /*
  1475. * We don't set the accessed bit, since we sometimes want to see
  1476. * whether the guest actually used the pte (in order to detect
  1477. * demand paging).
  1478. */
  1479. spte = shadow_base_present_pte | shadow_dirty_mask;
  1480. if (!speculative)
  1481. spte |= shadow_accessed_mask;
  1482. if (!dirty)
  1483. pte_access &= ~ACC_WRITE_MASK;
  1484. if (pte_access & ACC_EXEC_MASK)
  1485. spte |= shadow_x_mask;
  1486. else
  1487. spte |= shadow_nx_mask;
  1488. if (pte_access & ACC_USER_MASK)
  1489. spte |= shadow_user_mask;
  1490. if (level > PT_PAGE_TABLE_LEVEL)
  1491. spte |= PT_PAGE_SIZE_MASK;
  1492. if (tdp_enabled)
  1493. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1494. kvm_is_mmio_pfn(pfn));
  1495. spte |= (u64)pfn << PAGE_SHIFT;
  1496. if ((pte_access & ACC_WRITE_MASK)
  1497. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1498. if (level > PT_PAGE_TABLE_LEVEL &&
  1499. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1500. ret = 1;
  1501. spte = shadow_trap_nonpresent_pte;
  1502. goto set_pte;
  1503. }
  1504. spte |= PT_WRITABLE_MASK;
  1505. /*
  1506. * Optimization: for pte sync, if spte was writable the hash
  1507. * lookup is unnecessary (and expensive). Write protection
  1508. * is responsibility of mmu_get_page / kvm_sync_page.
  1509. * Same reasoning can be applied to dirty page accounting.
  1510. */
  1511. if (!can_unsync && is_writeble_pte(*sptep))
  1512. goto set_pte;
  1513. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1514. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1515. __func__, gfn);
  1516. ret = 1;
  1517. pte_access &= ~ACC_WRITE_MASK;
  1518. if (is_writeble_pte(spte))
  1519. spte &= ~PT_WRITABLE_MASK;
  1520. }
  1521. }
  1522. if (pte_access & ACC_WRITE_MASK)
  1523. mark_page_dirty(vcpu->kvm, gfn);
  1524. set_pte:
  1525. __set_spte(sptep, spte);
  1526. return ret;
  1527. }
  1528. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1529. unsigned pt_access, unsigned pte_access,
  1530. int user_fault, int write_fault, int dirty,
  1531. int *ptwrite, int level, gfn_t gfn,
  1532. pfn_t pfn, bool speculative)
  1533. {
  1534. int was_rmapped = 0;
  1535. int was_writeble = is_writeble_pte(*sptep);
  1536. int rmap_count;
  1537. pgprintk("%s: spte %llx access %x write_fault %d"
  1538. " user_fault %d gfn %lx\n",
  1539. __func__, *sptep, pt_access,
  1540. write_fault, user_fault, gfn);
  1541. if (is_rmap_spte(*sptep)) {
  1542. /*
  1543. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1544. * the parent of the now unreachable PTE.
  1545. */
  1546. if (level > PT_PAGE_TABLE_LEVEL &&
  1547. !is_large_pte(*sptep)) {
  1548. struct kvm_mmu_page *child;
  1549. u64 pte = *sptep;
  1550. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1551. mmu_page_remove_parent_pte(child, sptep);
  1552. } else if (pfn != spte_to_pfn(*sptep)) {
  1553. pgprintk("hfn old %lx new %lx\n",
  1554. spte_to_pfn(*sptep), pfn);
  1555. rmap_remove(vcpu->kvm, sptep);
  1556. } else
  1557. was_rmapped = 1;
  1558. }
  1559. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1560. dirty, level, gfn, pfn, speculative, true)) {
  1561. if (write_fault)
  1562. *ptwrite = 1;
  1563. kvm_x86_ops->tlb_flush(vcpu);
  1564. }
  1565. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1566. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1567. is_large_pte(*sptep)? "2MB" : "4kB",
  1568. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1569. *sptep, sptep);
  1570. if (!was_rmapped && is_large_pte(*sptep))
  1571. ++vcpu->kvm->stat.lpages;
  1572. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1573. if (!was_rmapped) {
  1574. rmap_count = rmap_add(vcpu, sptep, gfn);
  1575. if (!is_rmap_spte(*sptep))
  1576. kvm_release_pfn_clean(pfn);
  1577. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1578. rmap_recycle(vcpu, sptep, gfn);
  1579. } else {
  1580. if (was_writeble)
  1581. kvm_release_pfn_dirty(pfn);
  1582. else
  1583. kvm_release_pfn_clean(pfn);
  1584. }
  1585. if (speculative) {
  1586. vcpu->arch.last_pte_updated = sptep;
  1587. vcpu->arch.last_pte_gfn = gfn;
  1588. }
  1589. }
  1590. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1591. {
  1592. }
  1593. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1594. int level, gfn_t gfn, pfn_t pfn)
  1595. {
  1596. struct kvm_shadow_walk_iterator iterator;
  1597. struct kvm_mmu_page *sp;
  1598. int pt_write = 0;
  1599. gfn_t pseudo_gfn;
  1600. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1601. if (iterator.level == level) {
  1602. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1603. 0, write, 1, &pt_write,
  1604. level, gfn, pfn, false);
  1605. ++vcpu->stat.pf_fixed;
  1606. break;
  1607. }
  1608. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1609. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1610. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1611. iterator.level - 1,
  1612. 1, ACC_ALL, iterator.sptep);
  1613. if (!sp) {
  1614. pgprintk("nonpaging_map: ENOMEM\n");
  1615. kvm_release_pfn_clean(pfn);
  1616. return -ENOMEM;
  1617. }
  1618. __set_spte(iterator.sptep,
  1619. __pa(sp->spt)
  1620. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1621. | shadow_user_mask | shadow_x_mask);
  1622. }
  1623. }
  1624. return pt_write;
  1625. }
  1626. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1627. {
  1628. int r;
  1629. int level;
  1630. pfn_t pfn;
  1631. unsigned long mmu_seq;
  1632. level = mapping_level(vcpu, gfn);
  1633. /*
  1634. * This path builds a PAE pagetable - so we can map 2mb pages at
  1635. * maximum. Therefore check if the level is larger than that.
  1636. */
  1637. if (level > PT_DIRECTORY_LEVEL)
  1638. level = PT_DIRECTORY_LEVEL;
  1639. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1640. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1641. smp_rmb();
  1642. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1643. /* mmio */
  1644. if (is_error_pfn(pfn)) {
  1645. kvm_release_pfn_clean(pfn);
  1646. return 1;
  1647. }
  1648. spin_lock(&vcpu->kvm->mmu_lock);
  1649. if (mmu_notifier_retry(vcpu, mmu_seq))
  1650. goto out_unlock;
  1651. kvm_mmu_free_some_pages(vcpu);
  1652. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1653. spin_unlock(&vcpu->kvm->mmu_lock);
  1654. return r;
  1655. out_unlock:
  1656. spin_unlock(&vcpu->kvm->mmu_lock);
  1657. kvm_release_pfn_clean(pfn);
  1658. return 0;
  1659. }
  1660. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1661. {
  1662. int i;
  1663. struct kvm_mmu_page *sp;
  1664. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1665. return;
  1666. spin_lock(&vcpu->kvm->mmu_lock);
  1667. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1668. hpa_t root = vcpu->arch.mmu.root_hpa;
  1669. sp = page_header(root);
  1670. --sp->root_count;
  1671. if (!sp->root_count && sp->role.invalid)
  1672. kvm_mmu_zap_page(vcpu->kvm, sp);
  1673. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1674. spin_unlock(&vcpu->kvm->mmu_lock);
  1675. return;
  1676. }
  1677. for (i = 0; i < 4; ++i) {
  1678. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1679. if (root) {
  1680. root &= PT64_BASE_ADDR_MASK;
  1681. sp = page_header(root);
  1682. --sp->root_count;
  1683. if (!sp->root_count && sp->role.invalid)
  1684. kvm_mmu_zap_page(vcpu->kvm, sp);
  1685. }
  1686. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1687. }
  1688. spin_unlock(&vcpu->kvm->mmu_lock);
  1689. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1690. }
  1691. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1692. {
  1693. int ret = 0;
  1694. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1695. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1696. ret = 1;
  1697. }
  1698. return ret;
  1699. }
  1700. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1701. {
  1702. int i;
  1703. gfn_t root_gfn;
  1704. struct kvm_mmu_page *sp;
  1705. int direct = 0;
  1706. u64 pdptr;
  1707. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1708. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1709. hpa_t root = vcpu->arch.mmu.root_hpa;
  1710. ASSERT(!VALID_PAGE(root));
  1711. if (tdp_enabled)
  1712. direct = 1;
  1713. if (mmu_check_root(vcpu, root_gfn))
  1714. return 1;
  1715. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1716. PT64_ROOT_LEVEL, direct,
  1717. ACC_ALL, NULL);
  1718. root = __pa(sp->spt);
  1719. ++sp->root_count;
  1720. vcpu->arch.mmu.root_hpa = root;
  1721. return 0;
  1722. }
  1723. direct = !is_paging(vcpu);
  1724. if (tdp_enabled)
  1725. direct = 1;
  1726. for (i = 0; i < 4; ++i) {
  1727. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1728. ASSERT(!VALID_PAGE(root));
  1729. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1730. pdptr = kvm_pdptr_read(vcpu, i);
  1731. if (!is_present_gpte(pdptr)) {
  1732. vcpu->arch.mmu.pae_root[i] = 0;
  1733. continue;
  1734. }
  1735. root_gfn = pdptr >> PAGE_SHIFT;
  1736. } else if (vcpu->arch.mmu.root_level == 0)
  1737. root_gfn = 0;
  1738. if (mmu_check_root(vcpu, root_gfn))
  1739. return 1;
  1740. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1741. PT32_ROOT_LEVEL, direct,
  1742. ACC_ALL, NULL);
  1743. root = __pa(sp->spt);
  1744. ++sp->root_count;
  1745. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1746. }
  1747. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1748. return 0;
  1749. }
  1750. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1751. {
  1752. int i;
  1753. struct kvm_mmu_page *sp;
  1754. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1755. return;
  1756. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1757. hpa_t root = vcpu->arch.mmu.root_hpa;
  1758. sp = page_header(root);
  1759. mmu_sync_children(vcpu, sp);
  1760. return;
  1761. }
  1762. for (i = 0; i < 4; ++i) {
  1763. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1764. if (root && VALID_PAGE(root)) {
  1765. root &= PT64_BASE_ADDR_MASK;
  1766. sp = page_header(root);
  1767. mmu_sync_children(vcpu, sp);
  1768. }
  1769. }
  1770. }
  1771. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1772. {
  1773. spin_lock(&vcpu->kvm->mmu_lock);
  1774. mmu_sync_roots(vcpu);
  1775. spin_unlock(&vcpu->kvm->mmu_lock);
  1776. }
  1777. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1778. {
  1779. return vaddr;
  1780. }
  1781. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1782. u32 error_code)
  1783. {
  1784. gfn_t gfn;
  1785. int r;
  1786. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1787. r = mmu_topup_memory_caches(vcpu);
  1788. if (r)
  1789. return r;
  1790. ASSERT(vcpu);
  1791. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1792. gfn = gva >> PAGE_SHIFT;
  1793. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1794. error_code & PFERR_WRITE_MASK, gfn);
  1795. }
  1796. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1797. u32 error_code)
  1798. {
  1799. pfn_t pfn;
  1800. int r;
  1801. int level;
  1802. gfn_t gfn = gpa >> PAGE_SHIFT;
  1803. unsigned long mmu_seq;
  1804. ASSERT(vcpu);
  1805. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1806. r = mmu_topup_memory_caches(vcpu);
  1807. if (r)
  1808. return r;
  1809. level = mapping_level(vcpu, gfn);
  1810. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1811. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1812. smp_rmb();
  1813. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1814. if (is_error_pfn(pfn)) {
  1815. kvm_release_pfn_clean(pfn);
  1816. return 1;
  1817. }
  1818. spin_lock(&vcpu->kvm->mmu_lock);
  1819. if (mmu_notifier_retry(vcpu, mmu_seq))
  1820. goto out_unlock;
  1821. kvm_mmu_free_some_pages(vcpu);
  1822. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1823. level, gfn, pfn);
  1824. spin_unlock(&vcpu->kvm->mmu_lock);
  1825. return r;
  1826. out_unlock:
  1827. spin_unlock(&vcpu->kvm->mmu_lock);
  1828. kvm_release_pfn_clean(pfn);
  1829. return 0;
  1830. }
  1831. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1832. {
  1833. mmu_free_roots(vcpu);
  1834. }
  1835. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1836. {
  1837. struct kvm_mmu *context = &vcpu->arch.mmu;
  1838. context->new_cr3 = nonpaging_new_cr3;
  1839. context->page_fault = nonpaging_page_fault;
  1840. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1841. context->free = nonpaging_free;
  1842. context->prefetch_page = nonpaging_prefetch_page;
  1843. context->sync_page = nonpaging_sync_page;
  1844. context->invlpg = nonpaging_invlpg;
  1845. context->root_level = 0;
  1846. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1847. context->root_hpa = INVALID_PAGE;
  1848. return 0;
  1849. }
  1850. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1851. {
  1852. ++vcpu->stat.tlb_flush;
  1853. kvm_x86_ops->tlb_flush(vcpu);
  1854. }
  1855. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1856. {
  1857. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1858. mmu_free_roots(vcpu);
  1859. }
  1860. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1861. u64 addr,
  1862. u32 err_code)
  1863. {
  1864. kvm_inject_page_fault(vcpu, addr, err_code);
  1865. }
  1866. static void paging_free(struct kvm_vcpu *vcpu)
  1867. {
  1868. nonpaging_free(vcpu);
  1869. }
  1870. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1871. {
  1872. int bit7;
  1873. bit7 = (gpte >> 7) & 1;
  1874. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1875. }
  1876. #define PTTYPE 64
  1877. #include "paging_tmpl.h"
  1878. #undef PTTYPE
  1879. #define PTTYPE 32
  1880. #include "paging_tmpl.h"
  1881. #undef PTTYPE
  1882. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1883. {
  1884. struct kvm_mmu *context = &vcpu->arch.mmu;
  1885. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1886. u64 exb_bit_rsvd = 0;
  1887. if (!is_nx(vcpu))
  1888. exb_bit_rsvd = rsvd_bits(63, 63);
  1889. switch (level) {
  1890. case PT32_ROOT_LEVEL:
  1891. /* no rsvd bits for 2 level 4K page table entries */
  1892. context->rsvd_bits_mask[0][1] = 0;
  1893. context->rsvd_bits_mask[0][0] = 0;
  1894. if (is_cpuid_PSE36())
  1895. /* 36bits PSE 4MB page */
  1896. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1897. else
  1898. /* 32 bits PSE 4MB page */
  1899. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1900. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1901. break;
  1902. case PT32E_ROOT_LEVEL:
  1903. context->rsvd_bits_mask[0][2] =
  1904. rsvd_bits(maxphyaddr, 63) |
  1905. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1906. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1907. rsvd_bits(maxphyaddr, 62); /* PDE */
  1908. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1909. rsvd_bits(maxphyaddr, 62); /* PTE */
  1910. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1911. rsvd_bits(maxphyaddr, 62) |
  1912. rsvd_bits(13, 20); /* large page */
  1913. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1914. break;
  1915. case PT64_ROOT_LEVEL:
  1916. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1917. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1918. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1919. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1920. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1921. rsvd_bits(maxphyaddr, 51);
  1922. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1923. rsvd_bits(maxphyaddr, 51);
  1924. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1925. context->rsvd_bits_mask[1][2] = context->rsvd_bits_mask[0][2];
  1926. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1927. rsvd_bits(maxphyaddr, 51) |
  1928. rsvd_bits(13, 20); /* large page */
  1929. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1930. break;
  1931. }
  1932. }
  1933. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1934. {
  1935. struct kvm_mmu *context = &vcpu->arch.mmu;
  1936. ASSERT(is_pae(vcpu));
  1937. context->new_cr3 = paging_new_cr3;
  1938. context->page_fault = paging64_page_fault;
  1939. context->gva_to_gpa = paging64_gva_to_gpa;
  1940. context->prefetch_page = paging64_prefetch_page;
  1941. context->sync_page = paging64_sync_page;
  1942. context->invlpg = paging64_invlpg;
  1943. context->free = paging_free;
  1944. context->root_level = level;
  1945. context->shadow_root_level = level;
  1946. context->root_hpa = INVALID_PAGE;
  1947. return 0;
  1948. }
  1949. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1950. {
  1951. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1952. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1953. }
  1954. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1955. {
  1956. struct kvm_mmu *context = &vcpu->arch.mmu;
  1957. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1958. context->new_cr3 = paging_new_cr3;
  1959. context->page_fault = paging32_page_fault;
  1960. context->gva_to_gpa = paging32_gva_to_gpa;
  1961. context->free = paging_free;
  1962. context->prefetch_page = paging32_prefetch_page;
  1963. context->sync_page = paging32_sync_page;
  1964. context->invlpg = paging32_invlpg;
  1965. context->root_level = PT32_ROOT_LEVEL;
  1966. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1967. context->root_hpa = INVALID_PAGE;
  1968. return 0;
  1969. }
  1970. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1971. {
  1972. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1973. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1974. }
  1975. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1976. {
  1977. struct kvm_mmu *context = &vcpu->arch.mmu;
  1978. context->new_cr3 = nonpaging_new_cr3;
  1979. context->page_fault = tdp_page_fault;
  1980. context->free = nonpaging_free;
  1981. context->prefetch_page = nonpaging_prefetch_page;
  1982. context->sync_page = nonpaging_sync_page;
  1983. context->invlpg = nonpaging_invlpg;
  1984. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1985. context->root_hpa = INVALID_PAGE;
  1986. if (!is_paging(vcpu)) {
  1987. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1988. context->root_level = 0;
  1989. } else if (is_long_mode(vcpu)) {
  1990. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1991. context->gva_to_gpa = paging64_gva_to_gpa;
  1992. context->root_level = PT64_ROOT_LEVEL;
  1993. } else if (is_pae(vcpu)) {
  1994. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1995. context->gva_to_gpa = paging64_gva_to_gpa;
  1996. context->root_level = PT32E_ROOT_LEVEL;
  1997. } else {
  1998. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1999. context->gva_to_gpa = paging32_gva_to_gpa;
  2000. context->root_level = PT32_ROOT_LEVEL;
  2001. }
  2002. return 0;
  2003. }
  2004. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2005. {
  2006. int r;
  2007. ASSERT(vcpu);
  2008. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2009. if (!is_paging(vcpu))
  2010. r = nonpaging_init_context(vcpu);
  2011. else if (is_long_mode(vcpu))
  2012. r = paging64_init_context(vcpu);
  2013. else if (is_pae(vcpu))
  2014. r = paging32E_init_context(vcpu);
  2015. else
  2016. r = paging32_init_context(vcpu);
  2017. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2018. return r;
  2019. }
  2020. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2021. {
  2022. vcpu->arch.update_pte.pfn = bad_pfn;
  2023. if (tdp_enabled)
  2024. return init_kvm_tdp_mmu(vcpu);
  2025. else
  2026. return init_kvm_softmmu(vcpu);
  2027. }
  2028. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2029. {
  2030. ASSERT(vcpu);
  2031. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2032. vcpu->arch.mmu.free(vcpu);
  2033. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2034. }
  2035. }
  2036. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2037. {
  2038. destroy_kvm_mmu(vcpu);
  2039. return init_kvm_mmu(vcpu);
  2040. }
  2041. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2042. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2043. {
  2044. int r;
  2045. r = mmu_topup_memory_caches(vcpu);
  2046. if (r)
  2047. goto out;
  2048. spin_lock(&vcpu->kvm->mmu_lock);
  2049. kvm_mmu_free_some_pages(vcpu);
  2050. r = mmu_alloc_roots(vcpu);
  2051. mmu_sync_roots(vcpu);
  2052. spin_unlock(&vcpu->kvm->mmu_lock);
  2053. if (r)
  2054. goto out;
  2055. /* set_cr3() should ensure TLB has been flushed */
  2056. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2057. out:
  2058. return r;
  2059. }
  2060. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2061. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2062. {
  2063. mmu_free_roots(vcpu);
  2064. }
  2065. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2066. struct kvm_mmu_page *sp,
  2067. u64 *spte)
  2068. {
  2069. u64 pte;
  2070. struct kvm_mmu_page *child;
  2071. pte = *spte;
  2072. if (is_shadow_present_pte(pte)) {
  2073. if (is_last_spte(pte, sp->role.level))
  2074. rmap_remove(vcpu->kvm, spte);
  2075. else {
  2076. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2077. mmu_page_remove_parent_pte(child, spte);
  2078. }
  2079. }
  2080. __set_spte(spte, shadow_trap_nonpresent_pte);
  2081. if (is_large_pte(pte))
  2082. --vcpu->kvm->stat.lpages;
  2083. }
  2084. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2085. struct kvm_mmu_page *sp,
  2086. u64 *spte,
  2087. const void *new)
  2088. {
  2089. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2090. if (vcpu->arch.update_pte.level == PT_PAGE_TABLE_LEVEL ||
  2091. sp->role.glevels == PT32_ROOT_LEVEL) {
  2092. ++vcpu->kvm->stat.mmu_pde_zapped;
  2093. return;
  2094. }
  2095. }
  2096. ++vcpu->kvm->stat.mmu_pte_updated;
  2097. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2098. paging32_update_pte(vcpu, sp, spte, new);
  2099. else
  2100. paging64_update_pte(vcpu, sp, spte, new);
  2101. }
  2102. static bool need_remote_flush(u64 old, u64 new)
  2103. {
  2104. if (!is_shadow_present_pte(old))
  2105. return false;
  2106. if (!is_shadow_present_pte(new))
  2107. return true;
  2108. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2109. return true;
  2110. old ^= PT64_NX_MASK;
  2111. new ^= PT64_NX_MASK;
  2112. return (old & ~new & PT64_PERM_MASK) != 0;
  2113. }
  2114. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2115. {
  2116. if (need_remote_flush(old, new))
  2117. kvm_flush_remote_tlbs(vcpu->kvm);
  2118. else
  2119. kvm_mmu_flush_tlb(vcpu);
  2120. }
  2121. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2122. {
  2123. u64 *spte = vcpu->arch.last_pte_updated;
  2124. return !!(spte && (*spte & shadow_accessed_mask));
  2125. }
  2126. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2127. const u8 *new, int bytes)
  2128. {
  2129. gfn_t gfn;
  2130. int r;
  2131. u64 gpte = 0;
  2132. pfn_t pfn;
  2133. vcpu->arch.update_pte.level = PT_PAGE_TABLE_LEVEL;
  2134. if (bytes != 4 && bytes != 8)
  2135. return;
  2136. /*
  2137. * Assume that the pte write on a page table of the same type
  2138. * as the current vcpu paging mode. This is nearly always true
  2139. * (might be false while changing modes). Note it is verified later
  2140. * by update_pte().
  2141. */
  2142. if (is_pae(vcpu)) {
  2143. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2144. if ((bytes == 4) && (gpa % 4 == 0)) {
  2145. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2146. if (r)
  2147. return;
  2148. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2149. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2150. memcpy((void *)&gpte, new, 8);
  2151. }
  2152. } else {
  2153. if ((bytes == 4) && (gpa % 4 == 0))
  2154. memcpy((void *)&gpte, new, 4);
  2155. }
  2156. if (!is_present_gpte(gpte))
  2157. return;
  2158. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2159. if (is_large_pte(gpte) &&
  2160. (mapping_level(vcpu, gfn) == PT_DIRECTORY_LEVEL)) {
  2161. gfn &= ~(KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL) - 1);
  2162. vcpu->arch.update_pte.level = PT_DIRECTORY_LEVEL;
  2163. }
  2164. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2165. smp_rmb();
  2166. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2167. if (is_error_pfn(pfn)) {
  2168. kvm_release_pfn_clean(pfn);
  2169. return;
  2170. }
  2171. vcpu->arch.update_pte.gfn = gfn;
  2172. vcpu->arch.update_pte.pfn = pfn;
  2173. }
  2174. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2175. {
  2176. u64 *spte = vcpu->arch.last_pte_updated;
  2177. if (spte
  2178. && vcpu->arch.last_pte_gfn == gfn
  2179. && shadow_accessed_mask
  2180. && !(*spte & shadow_accessed_mask)
  2181. && is_shadow_present_pte(*spte))
  2182. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2183. }
  2184. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2185. const u8 *new, int bytes,
  2186. bool guest_initiated)
  2187. {
  2188. gfn_t gfn = gpa >> PAGE_SHIFT;
  2189. struct kvm_mmu_page *sp;
  2190. struct hlist_node *node, *n;
  2191. struct hlist_head *bucket;
  2192. unsigned index;
  2193. u64 entry, gentry;
  2194. u64 *spte;
  2195. unsigned offset = offset_in_page(gpa);
  2196. unsigned pte_size;
  2197. unsigned page_offset;
  2198. unsigned misaligned;
  2199. unsigned quadrant;
  2200. int level;
  2201. int flooded = 0;
  2202. int npte;
  2203. int r;
  2204. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2205. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2206. spin_lock(&vcpu->kvm->mmu_lock);
  2207. kvm_mmu_access_page(vcpu, gfn);
  2208. kvm_mmu_free_some_pages(vcpu);
  2209. ++vcpu->kvm->stat.mmu_pte_write;
  2210. kvm_mmu_audit(vcpu, "pre pte write");
  2211. if (guest_initiated) {
  2212. if (gfn == vcpu->arch.last_pt_write_gfn
  2213. && !last_updated_pte_accessed(vcpu)) {
  2214. ++vcpu->arch.last_pt_write_count;
  2215. if (vcpu->arch.last_pt_write_count >= 3)
  2216. flooded = 1;
  2217. } else {
  2218. vcpu->arch.last_pt_write_gfn = gfn;
  2219. vcpu->arch.last_pt_write_count = 1;
  2220. vcpu->arch.last_pte_updated = NULL;
  2221. }
  2222. }
  2223. index = kvm_page_table_hashfn(gfn);
  2224. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2225. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2226. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2227. continue;
  2228. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2229. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2230. misaligned |= bytes < 4;
  2231. if (misaligned || flooded) {
  2232. /*
  2233. * Misaligned accesses are too much trouble to fix
  2234. * up; also, they usually indicate a page is not used
  2235. * as a page table.
  2236. *
  2237. * If we're seeing too many writes to a page,
  2238. * it may no longer be a page table, or we may be
  2239. * forking, in which case it is better to unmap the
  2240. * page.
  2241. */
  2242. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2243. gpa, bytes, sp->role.word);
  2244. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2245. n = bucket->first;
  2246. ++vcpu->kvm->stat.mmu_flooded;
  2247. continue;
  2248. }
  2249. page_offset = offset;
  2250. level = sp->role.level;
  2251. npte = 1;
  2252. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2253. page_offset <<= 1; /* 32->64 */
  2254. /*
  2255. * A 32-bit pde maps 4MB while the shadow pdes map
  2256. * only 2MB. So we need to double the offset again
  2257. * and zap two pdes instead of one.
  2258. */
  2259. if (level == PT32_ROOT_LEVEL) {
  2260. page_offset &= ~7; /* kill rounding error */
  2261. page_offset <<= 1;
  2262. npte = 2;
  2263. }
  2264. quadrant = page_offset >> PAGE_SHIFT;
  2265. page_offset &= ~PAGE_MASK;
  2266. if (quadrant != sp->role.quadrant)
  2267. continue;
  2268. }
  2269. spte = &sp->spt[page_offset / sizeof(*spte)];
  2270. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2271. gentry = 0;
  2272. r = kvm_read_guest_atomic(vcpu->kvm,
  2273. gpa & ~(u64)(pte_size - 1),
  2274. &gentry, pte_size);
  2275. new = (const void *)&gentry;
  2276. if (r < 0)
  2277. new = NULL;
  2278. }
  2279. while (npte--) {
  2280. entry = *spte;
  2281. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2282. if (new)
  2283. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2284. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2285. ++spte;
  2286. }
  2287. }
  2288. kvm_mmu_audit(vcpu, "post pte write");
  2289. spin_unlock(&vcpu->kvm->mmu_lock);
  2290. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2291. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2292. vcpu->arch.update_pte.pfn = bad_pfn;
  2293. }
  2294. }
  2295. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2296. {
  2297. gpa_t gpa;
  2298. int r;
  2299. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2300. spin_lock(&vcpu->kvm->mmu_lock);
  2301. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2302. spin_unlock(&vcpu->kvm->mmu_lock);
  2303. return r;
  2304. }
  2305. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2306. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2307. {
  2308. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2309. struct kvm_mmu_page *sp;
  2310. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2311. struct kvm_mmu_page, link);
  2312. kvm_mmu_zap_page(vcpu->kvm, sp);
  2313. ++vcpu->kvm->stat.mmu_recycled;
  2314. }
  2315. }
  2316. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2317. {
  2318. int r;
  2319. enum emulation_result er;
  2320. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2321. if (r < 0)
  2322. goto out;
  2323. if (!r) {
  2324. r = 1;
  2325. goto out;
  2326. }
  2327. r = mmu_topup_memory_caches(vcpu);
  2328. if (r)
  2329. goto out;
  2330. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2331. switch (er) {
  2332. case EMULATE_DONE:
  2333. return 1;
  2334. case EMULATE_DO_MMIO:
  2335. ++vcpu->stat.mmio_exits;
  2336. return 0;
  2337. case EMULATE_FAIL:
  2338. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2339. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2340. return 0;
  2341. default:
  2342. BUG();
  2343. }
  2344. out:
  2345. return r;
  2346. }
  2347. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2348. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2349. {
  2350. vcpu->arch.mmu.invlpg(vcpu, gva);
  2351. kvm_mmu_flush_tlb(vcpu);
  2352. ++vcpu->stat.invlpg;
  2353. }
  2354. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2355. void kvm_enable_tdp(void)
  2356. {
  2357. tdp_enabled = true;
  2358. }
  2359. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2360. void kvm_disable_tdp(void)
  2361. {
  2362. tdp_enabled = false;
  2363. }
  2364. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2365. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2366. {
  2367. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2368. }
  2369. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2370. {
  2371. struct page *page;
  2372. int i;
  2373. ASSERT(vcpu);
  2374. spin_lock(&vcpu->kvm->mmu_lock);
  2375. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2376. vcpu->kvm->arch.n_free_mmu_pages =
  2377. vcpu->kvm->arch.n_requested_mmu_pages;
  2378. else
  2379. vcpu->kvm->arch.n_free_mmu_pages =
  2380. vcpu->kvm->arch.n_alloc_mmu_pages;
  2381. spin_unlock(&vcpu->kvm->mmu_lock);
  2382. /*
  2383. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2384. * Therefore we need to allocate shadow page tables in the first
  2385. * 4GB of memory, which happens to fit the DMA32 zone.
  2386. */
  2387. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2388. if (!page)
  2389. goto error_1;
  2390. vcpu->arch.mmu.pae_root = page_address(page);
  2391. for (i = 0; i < 4; ++i)
  2392. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2393. return 0;
  2394. error_1:
  2395. free_mmu_pages(vcpu);
  2396. return -ENOMEM;
  2397. }
  2398. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2399. {
  2400. ASSERT(vcpu);
  2401. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2402. return alloc_mmu_pages(vcpu);
  2403. }
  2404. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2405. {
  2406. ASSERT(vcpu);
  2407. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2408. return init_kvm_mmu(vcpu);
  2409. }
  2410. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2411. {
  2412. ASSERT(vcpu);
  2413. destroy_kvm_mmu(vcpu);
  2414. free_mmu_pages(vcpu);
  2415. mmu_free_memory_caches(vcpu);
  2416. }
  2417. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2418. {
  2419. struct kvm_mmu_page *sp;
  2420. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2421. int i;
  2422. u64 *pt;
  2423. if (!test_bit(slot, sp->slot_bitmap))
  2424. continue;
  2425. pt = sp->spt;
  2426. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2427. /* avoid RMW */
  2428. if (pt[i] & PT_WRITABLE_MASK)
  2429. pt[i] &= ~PT_WRITABLE_MASK;
  2430. }
  2431. kvm_flush_remote_tlbs(kvm);
  2432. }
  2433. void kvm_mmu_zap_all(struct kvm *kvm)
  2434. {
  2435. struct kvm_mmu_page *sp, *node;
  2436. spin_lock(&kvm->mmu_lock);
  2437. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2438. if (kvm_mmu_zap_page(kvm, sp))
  2439. node = container_of(kvm->arch.active_mmu_pages.next,
  2440. struct kvm_mmu_page, link);
  2441. spin_unlock(&kvm->mmu_lock);
  2442. kvm_flush_remote_tlbs(kvm);
  2443. }
  2444. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2445. {
  2446. struct kvm_mmu_page *page;
  2447. page = container_of(kvm->arch.active_mmu_pages.prev,
  2448. struct kvm_mmu_page, link);
  2449. kvm_mmu_zap_page(kvm, page);
  2450. }
  2451. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2452. {
  2453. struct kvm *kvm;
  2454. struct kvm *kvm_freed = NULL;
  2455. int cache_count = 0;
  2456. spin_lock(&kvm_lock);
  2457. list_for_each_entry(kvm, &vm_list, vm_list) {
  2458. int npages;
  2459. if (!down_read_trylock(&kvm->slots_lock))
  2460. continue;
  2461. spin_lock(&kvm->mmu_lock);
  2462. npages = kvm->arch.n_alloc_mmu_pages -
  2463. kvm->arch.n_free_mmu_pages;
  2464. cache_count += npages;
  2465. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2466. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2467. cache_count--;
  2468. kvm_freed = kvm;
  2469. }
  2470. nr_to_scan--;
  2471. spin_unlock(&kvm->mmu_lock);
  2472. up_read(&kvm->slots_lock);
  2473. }
  2474. if (kvm_freed)
  2475. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2476. spin_unlock(&kvm_lock);
  2477. return cache_count;
  2478. }
  2479. static struct shrinker mmu_shrinker = {
  2480. .shrink = mmu_shrink,
  2481. .seeks = DEFAULT_SEEKS * 10,
  2482. };
  2483. static void mmu_destroy_caches(void)
  2484. {
  2485. if (pte_chain_cache)
  2486. kmem_cache_destroy(pte_chain_cache);
  2487. if (rmap_desc_cache)
  2488. kmem_cache_destroy(rmap_desc_cache);
  2489. if (mmu_page_header_cache)
  2490. kmem_cache_destroy(mmu_page_header_cache);
  2491. }
  2492. void kvm_mmu_module_exit(void)
  2493. {
  2494. mmu_destroy_caches();
  2495. unregister_shrinker(&mmu_shrinker);
  2496. }
  2497. int kvm_mmu_module_init(void)
  2498. {
  2499. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2500. sizeof(struct kvm_pte_chain),
  2501. 0, 0, NULL);
  2502. if (!pte_chain_cache)
  2503. goto nomem;
  2504. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2505. sizeof(struct kvm_rmap_desc),
  2506. 0, 0, NULL);
  2507. if (!rmap_desc_cache)
  2508. goto nomem;
  2509. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2510. sizeof(struct kvm_mmu_page),
  2511. 0, 0, NULL);
  2512. if (!mmu_page_header_cache)
  2513. goto nomem;
  2514. register_shrinker(&mmu_shrinker);
  2515. return 0;
  2516. nomem:
  2517. mmu_destroy_caches();
  2518. return -ENOMEM;
  2519. }
  2520. /*
  2521. * Caculate mmu pages needed for kvm.
  2522. */
  2523. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2524. {
  2525. int i;
  2526. unsigned int nr_mmu_pages;
  2527. unsigned int nr_pages = 0;
  2528. for (i = 0; i < kvm->nmemslots; i++)
  2529. nr_pages += kvm->memslots[i].npages;
  2530. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2531. nr_mmu_pages = max(nr_mmu_pages,
  2532. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2533. return nr_mmu_pages;
  2534. }
  2535. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2536. unsigned len)
  2537. {
  2538. if (len > buffer->len)
  2539. return NULL;
  2540. return buffer->ptr;
  2541. }
  2542. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2543. unsigned len)
  2544. {
  2545. void *ret;
  2546. ret = pv_mmu_peek_buffer(buffer, len);
  2547. if (!ret)
  2548. return ret;
  2549. buffer->ptr += len;
  2550. buffer->len -= len;
  2551. buffer->processed += len;
  2552. return ret;
  2553. }
  2554. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2555. gpa_t addr, gpa_t value)
  2556. {
  2557. int bytes = 8;
  2558. int r;
  2559. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2560. bytes = 4;
  2561. r = mmu_topup_memory_caches(vcpu);
  2562. if (r)
  2563. return r;
  2564. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2565. return -EFAULT;
  2566. return 1;
  2567. }
  2568. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2569. {
  2570. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2571. return 1;
  2572. }
  2573. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2574. {
  2575. spin_lock(&vcpu->kvm->mmu_lock);
  2576. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2577. spin_unlock(&vcpu->kvm->mmu_lock);
  2578. return 1;
  2579. }
  2580. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2581. struct kvm_pv_mmu_op_buffer *buffer)
  2582. {
  2583. struct kvm_mmu_op_header *header;
  2584. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2585. if (!header)
  2586. return 0;
  2587. switch (header->op) {
  2588. case KVM_MMU_OP_WRITE_PTE: {
  2589. struct kvm_mmu_op_write_pte *wpte;
  2590. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2591. if (!wpte)
  2592. return 0;
  2593. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2594. wpte->pte_val);
  2595. }
  2596. case KVM_MMU_OP_FLUSH_TLB: {
  2597. struct kvm_mmu_op_flush_tlb *ftlb;
  2598. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2599. if (!ftlb)
  2600. return 0;
  2601. return kvm_pv_mmu_flush_tlb(vcpu);
  2602. }
  2603. case KVM_MMU_OP_RELEASE_PT: {
  2604. struct kvm_mmu_op_release_pt *rpt;
  2605. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2606. if (!rpt)
  2607. return 0;
  2608. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2609. }
  2610. default: return 0;
  2611. }
  2612. }
  2613. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2614. gpa_t addr, unsigned long *ret)
  2615. {
  2616. int r;
  2617. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2618. buffer->ptr = buffer->buf;
  2619. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2620. buffer->processed = 0;
  2621. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2622. if (r)
  2623. goto out;
  2624. while (buffer->len) {
  2625. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2626. if (r < 0)
  2627. goto out;
  2628. if (r == 0)
  2629. break;
  2630. }
  2631. r = 1;
  2632. out:
  2633. *ret = buffer->processed;
  2634. return r;
  2635. }
  2636. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2637. {
  2638. struct kvm_shadow_walk_iterator iterator;
  2639. int nr_sptes = 0;
  2640. spin_lock(&vcpu->kvm->mmu_lock);
  2641. for_each_shadow_entry(vcpu, addr, iterator) {
  2642. sptes[iterator.level-1] = *iterator.sptep;
  2643. nr_sptes++;
  2644. if (!is_shadow_present_pte(*iterator.sptep))
  2645. break;
  2646. }
  2647. spin_unlock(&vcpu->kvm->mmu_lock);
  2648. return nr_sptes;
  2649. }
  2650. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2651. #ifdef AUDIT
  2652. static const char *audit_msg;
  2653. static gva_t canonicalize(gva_t gva)
  2654. {
  2655. #ifdef CONFIG_X86_64
  2656. gva = (long long)(gva << 16) >> 16;
  2657. #endif
  2658. return gva;
  2659. }
  2660. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2661. u64 *sptep);
  2662. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2663. inspect_spte_fn fn)
  2664. {
  2665. int i;
  2666. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2667. u64 ent = sp->spt[i];
  2668. if (is_shadow_present_pte(ent)) {
  2669. if (!is_last_spte(ent, sp->role.level)) {
  2670. struct kvm_mmu_page *child;
  2671. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2672. __mmu_spte_walk(kvm, child, fn);
  2673. } else
  2674. fn(kvm, sp, &sp->spt[i]);
  2675. }
  2676. }
  2677. }
  2678. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2679. {
  2680. int i;
  2681. struct kvm_mmu_page *sp;
  2682. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2683. return;
  2684. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2685. hpa_t root = vcpu->arch.mmu.root_hpa;
  2686. sp = page_header(root);
  2687. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2688. return;
  2689. }
  2690. for (i = 0; i < 4; ++i) {
  2691. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2692. if (root && VALID_PAGE(root)) {
  2693. root &= PT64_BASE_ADDR_MASK;
  2694. sp = page_header(root);
  2695. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2696. }
  2697. }
  2698. return;
  2699. }
  2700. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2701. gva_t va, int level)
  2702. {
  2703. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2704. int i;
  2705. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2706. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2707. u64 ent = pt[i];
  2708. if (ent == shadow_trap_nonpresent_pte)
  2709. continue;
  2710. va = canonicalize(va);
  2711. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2712. audit_mappings_page(vcpu, ent, va, level - 1);
  2713. else {
  2714. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2715. gfn_t gfn = gpa >> PAGE_SHIFT;
  2716. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2717. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2718. if (is_error_pfn(pfn)) {
  2719. kvm_release_pfn_clean(pfn);
  2720. continue;
  2721. }
  2722. if (is_shadow_present_pte(ent)
  2723. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2724. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2725. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2726. audit_msg, vcpu->arch.mmu.root_level,
  2727. va, gpa, hpa, ent,
  2728. is_shadow_present_pte(ent));
  2729. else if (ent == shadow_notrap_nonpresent_pte
  2730. && !is_error_hpa(hpa))
  2731. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2732. " valid guest gva %lx\n", audit_msg, va);
  2733. kvm_release_pfn_clean(pfn);
  2734. }
  2735. }
  2736. }
  2737. static void audit_mappings(struct kvm_vcpu *vcpu)
  2738. {
  2739. unsigned i;
  2740. if (vcpu->arch.mmu.root_level == 4)
  2741. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2742. else
  2743. for (i = 0; i < 4; ++i)
  2744. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2745. audit_mappings_page(vcpu,
  2746. vcpu->arch.mmu.pae_root[i],
  2747. i << 30,
  2748. 2);
  2749. }
  2750. static int count_rmaps(struct kvm_vcpu *vcpu)
  2751. {
  2752. int nmaps = 0;
  2753. int i, j, k;
  2754. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2755. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2756. struct kvm_rmap_desc *d;
  2757. for (j = 0; j < m->npages; ++j) {
  2758. unsigned long *rmapp = &m->rmap[j];
  2759. if (!*rmapp)
  2760. continue;
  2761. if (!(*rmapp & 1)) {
  2762. ++nmaps;
  2763. continue;
  2764. }
  2765. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2766. while (d) {
  2767. for (k = 0; k < RMAP_EXT; ++k)
  2768. if (d->sptes[k])
  2769. ++nmaps;
  2770. else
  2771. break;
  2772. d = d->more;
  2773. }
  2774. }
  2775. }
  2776. return nmaps;
  2777. }
  2778. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2779. {
  2780. unsigned long *rmapp;
  2781. struct kvm_mmu_page *rev_sp;
  2782. gfn_t gfn;
  2783. if (*sptep & PT_WRITABLE_MASK) {
  2784. rev_sp = page_header(__pa(sptep));
  2785. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2786. if (!gfn_to_memslot(kvm, gfn)) {
  2787. if (!printk_ratelimit())
  2788. return;
  2789. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2790. audit_msg, gfn);
  2791. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2792. audit_msg, sptep - rev_sp->spt,
  2793. rev_sp->gfn);
  2794. dump_stack();
  2795. return;
  2796. }
  2797. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2798. is_large_pte(*sptep));
  2799. if (!*rmapp) {
  2800. if (!printk_ratelimit())
  2801. return;
  2802. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2803. audit_msg, *sptep);
  2804. dump_stack();
  2805. }
  2806. }
  2807. }
  2808. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2809. {
  2810. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2811. }
  2812. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2813. {
  2814. struct kvm_mmu_page *sp;
  2815. int i;
  2816. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2817. u64 *pt = sp->spt;
  2818. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2819. continue;
  2820. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2821. u64 ent = pt[i];
  2822. if (!(ent & PT_PRESENT_MASK))
  2823. continue;
  2824. if (!(ent & PT_WRITABLE_MASK))
  2825. continue;
  2826. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2827. }
  2828. }
  2829. return;
  2830. }
  2831. static void audit_rmap(struct kvm_vcpu *vcpu)
  2832. {
  2833. check_writable_mappings_rmap(vcpu);
  2834. count_rmaps(vcpu);
  2835. }
  2836. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2837. {
  2838. struct kvm_mmu_page *sp;
  2839. struct kvm_memory_slot *slot;
  2840. unsigned long *rmapp;
  2841. u64 *spte;
  2842. gfn_t gfn;
  2843. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2844. if (sp->role.direct)
  2845. continue;
  2846. if (sp->unsync)
  2847. continue;
  2848. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2849. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2850. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2851. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2852. while (spte) {
  2853. if (*spte & PT_WRITABLE_MASK)
  2854. printk(KERN_ERR "%s: (%s) shadow page has "
  2855. "writable mappings: gfn %lx role %x\n",
  2856. __func__, audit_msg, sp->gfn,
  2857. sp->role.word);
  2858. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2859. }
  2860. }
  2861. }
  2862. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2863. {
  2864. int olddbg = dbg;
  2865. dbg = 0;
  2866. audit_msg = msg;
  2867. audit_rmap(vcpu);
  2868. audit_write_protection(vcpu);
  2869. if (strcmp("pre pte write", audit_msg) != 0)
  2870. audit_mappings(vcpu);
  2871. audit_writable_sptes_have_rmaps(vcpu);
  2872. dbg = olddbg;
  2873. }
  2874. #endif