cpu_buffer.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /**
  2. * @file cpu_buffer.c
  3. *
  4. * @remark Copyright 2002 OProfile authors
  5. * @remark Read the file COPYING
  6. *
  7. * @author John Levon <levon@movementarian.org>
  8. * @author Barry Kasindorf <barry.kasindorf@amd.com>
  9. *
  10. * Each CPU has a local buffer that stores PC value/event
  11. * pairs. We also log context switches when we notice them.
  12. * Eventually each CPU's buffer is processed into the global
  13. * event buffer by sync_buffer().
  14. *
  15. * We use a local buffer for two reasons: an NMI or similar
  16. * interrupt cannot synchronise, and high sampling rates
  17. * would lead to catastrophic global synchronisation if
  18. * a global buffer was used.
  19. */
  20. #include <linux/sched.h>
  21. #include <linux/oprofile.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/errno.h>
  24. #include "event_buffer.h"
  25. #include "cpu_buffer.h"
  26. #include "buffer_sync.h"
  27. #include "oprof.h"
  28. DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
  29. static void wq_sync_buffer(struct work_struct *work);
  30. #define DEFAULT_TIMER_EXPIRE (HZ / 10)
  31. static int work_enabled;
  32. void free_cpu_buffers(void)
  33. {
  34. int i;
  35. for_each_online_cpu(i)
  36. vfree(per_cpu(cpu_buffer, i).buffer);
  37. }
  38. int alloc_cpu_buffers(void)
  39. {
  40. int i;
  41. unsigned long buffer_size = fs_cpu_buffer_size;
  42. for_each_online_cpu(i) {
  43. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  44. b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
  45. cpu_to_node(i));
  46. if (!b->buffer)
  47. goto fail;
  48. b->last_task = NULL;
  49. b->last_is_kernel = -1;
  50. b->tracing = 0;
  51. b->buffer_size = buffer_size;
  52. b->tail_pos = 0;
  53. b->head_pos = 0;
  54. b->sample_received = 0;
  55. b->sample_lost_overflow = 0;
  56. b->backtrace_aborted = 0;
  57. b->sample_invalid_eip = 0;
  58. b->cpu = i;
  59. INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
  60. }
  61. return 0;
  62. fail:
  63. free_cpu_buffers();
  64. return -ENOMEM;
  65. }
  66. void start_cpu_work(void)
  67. {
  68. int i;
  69. work_enabled = 1;
  70. for_each_online_cpu(i) {
  71. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  72. /*
  73. * Spread the work by 1 jiffy per cpu so they dont all
  74. * fire at once.
  75. */
  76. schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
  77. }
  78. }
  79. void end_cpu_work(void)
  80. {
  81. int i;
  82. work_enabled = 0;
  83. for_each_online_cpu(i) {
  84. struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
  85. cancel_delayed_work(&b->work);
  86. }
  87. flush_scheduled_work();
  88. }
  89. /* Resets the cpu buffer to a sane state. */
  90. void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf)
  91. {
  92. /* reset these to invalid values; the next sample
  93. * collected will populate the buffer with proper
  94. * values to initialize the buffer
  95. */
  96. cpu_buf->last_is_kernel = -1;
  97. cpu_buf->last_task = NULL;
  98. }
  99. /* compute number of available slots in cpu_buffer queue */
  100. static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b)
  101. {
  102. unsigned long head = b->head_pos;
  103. unsigned long tail = b->tail_pos;
  104. if (tail > head)
  105. return (tail - head) - 1;
  106. return tail + (b->buffer_size - head) - 1;
  107. }
  108. static void increment_head(struct oprofile_cpu_buffer * b)
  109. {
  110. unsigned long new_head = b->head_pos + 1;
  111. /* Ensure anything written to the slot before we
  112. * increment is visible */
  113. wmb();
  114. if (new_head < b->buffer_size)
  115. b->head_pos = new_head;
  116. else
  117. b->head_pos = 0;
  118. }
  119. static inline void
  120. add_sample(struct oprofile_cpu_buffer * cpu_buf,
  121. unsigned long pc, unsigned long event)
  122. {
  123. struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos];
  124. entry->eip = pc;
  125. entry->event = event;
  126. increment_head(cpu_buf);
  127. }
  128. static inline void
  129. add_code(struct oprofile_cpu_buffer * buffer, unsigned long value)
  130. {
  131. add_sample(buffer, ESCAPE_CODE, value);
  132. }
  133. /* This must be safe from any context. It's safe writing here
  134. * because of the head/tail separation of the writer and reader
  135. * of the CPU buffer.
  136. *
  137. * is_kernel is needed because on some architectures you cannot
  138. * tell if you are in kernel or user space simply by looking at
  139. * pc. We tag this in the buffer by generating kernel enter/exit
  140. * events whenever is_kernel changes
  141. */
  142. static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc,
  143. int is_kernel, unsigned long event)
  144. {
  145. struct task_struct * task;
  146. cpu_buf->sample_received++;
  147. if (pc == ESCAPE_CODE) {
  148. cpu_buf->sample_invalid_eip++;
  149. return 0;
  150. }
  151. if (nr_available_slots(cpu_buf) < 3) {
  152. cpu_buf->sample_lost_overflow++;
  153. return 0;
  154. }
  155. is_kernel = !!is_kernel;
  156. task = current;
  157. /* notice a switch from user->kernel or vice versa */
  158. if (cpu_buf->last_is_kernel != is_kernel) {
  159. cpu_buf->last_is_kernel = is_kernel;
  160. add_code(cpu_buf, is_kernel);
  161. }
  162. /* notice a task switch */
  163. if (cpu_buf->last_task != task) {
  164. cpu_buf->last_task = task;
  165. add_code(cpu_buf, (unsigned long)task);
  166. }
  167. add_sample(cpu_buf, pc, event);
  168. return 1;
  169. }
  170. static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
  171. {
  172. if (nr_available_slots(cpu_buf) < 4) {
  173. cpu_buf->sample_lost_overflow++;
  174. return 0;
  175. }
  176. add_code(cpu_buf, CPU_TRACE_BEGIN);
  177. cpu_buf->tracing = 1;
  178. return 1;
  179. }
  180. static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)
  181. {
  182. cpu_buf->tracing = 0;
  183. }
  184. void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
  185. unsigned long event, int is_kernel)
  186. {
  187. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  188. if (!backtrace_depth) {
  189. log_sample(cpu_buf, pc, is_kernel, event);
  190. return;
  191. }
  192. if (!oprofile_begin_trace(cpu_buf))
  193. return;
  194. /* if log_sample() fail we can't backtrace since we lost the source
  195. * of this event */
  196. if (log_sample(cpu_buf, pc, is_kernel, event))
  197. oprofile_ops.backtrace(regs, backtrace_depth);
  198. oprofile_end_trace(cpu_buf);
  199. }
  200. void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
  201. {
  202. int is_kernel = !user_mode(regs);
  203. unsigned long pc = profile_pc(regs);
  204. oprofile_add_ext_sample(pc, regs, event, is_kernel);
  205. }
  206. #ifdef CONFIG_OPROFILE_IBS
  207. #define MAX_IBS_SAMPLE_SIZE 14
  208. static int log_ibs_sample(struct oprofile_cpu_buffer *cpu_buf,
  209. unsigned long pc, int is_kernel, unsigned int *ibs, int ibs_code)
  210. {
  211. struct task_struct *task;
  212. cpu_buf->sample_received++;
  213. if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
  214. cpu_buf->sample_lost_overflow++;
  215. return 0;
  216. }
  217. is_kernel = !!is_kernel;
  218. /* notice a switch from user->kernel or vice versa */
  219. if (cpu_buf->last_is_kernel != is_kernel) {
  220. cpu_buf->last_is_kernel = is_kernel;
  221. add_code(cpu_buf, is_kernel);
  222. }
  223. /* notice a task switch */
  224. if (!is_kernel) {
  225. task = current;
  226. if (cpu_buf->last_task != task) {
  227. cpu_buf->last_task = task;
  228. add_code(cpu_buf, (unsigned long)task);
  229. }
  230. }
  231. add_code(cpu_buf, ibs_code);
  232. add_sample(cpu_buf, ibs[0], ibs[1]);
  233. add_sample(cpu_buf, ibs[2], ibs[3]);
  234. add_sample(cpu_buf, ibs[4], ibs[5]);
  235. if (ibs_code == IBS_OP_BEGIN) {
  236. add_sample(cpu_buf, ibs[6], ibs[7]);
  237. add_sample(cpu_buf, ibs[8], ibs[9]);
  238. add_sample(cpu_buf, ibs[10], ibs[11]);
  239. }
  240. return 1;
  241. }
  242. void oprofile_add_ibs_sample(struct pt_regs *const regs,
  243. unsigned int * const ibs_sample, u8 code)
  244. {
  245. int is_kernel = !user_mode(regs);
  246. unsigned long pc = profile_pc(regs);
  247. struct oprofile_cpu_buffer *cpu_buf =
  248. &per_cpu(cpu_buffer, smp_processor_id());
  249. if (!backtrace_depth) {
  250. log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code);
  251. return;
  252. }
  253. /* if log_sample() fails we can't backtrace since we lost the source
  254. * of this event */
  255. if (log_ibs_sample(cpu_buf, pc, is_kernel, ibs_sample, code))
  256. oprofile_ops.backtrace(regs, backtrace_depth);
  257. }
  258. #endif
  259. void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
  260. {
  261. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  262. log_sample(cpu_buf, pc, is_kernel, event);
  263. }
  264. void oprofile_add_trace(unsigned long pc)
  265. {
  266. struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
  267. if (!cpu_buf->tracing)
  268. return;
  269. if (nr_available_slots(cpu_buf) < 1) {
  270. cpu_buf->tracing = 0;
  271. cpu_buf->sample_lost_overflow++;
  272. return;
  273. }
  274. /* broken frame can give an eip with the same value as an escape code,
  275. * abort the trace if we get it */
  276. if (pc == ESCAPE_CODE) {
  277. cpu_buf->tracing = 0;
  278. cpu_buf->backtrace_aborted++;
  279. return;
  280. }
  281. add_sample(cpu_buf, pc, 0);
  282. }
  283. /*
  284. * This serves to avoid cpu buffer overflow, and makes sure
  285. * the task mortuary progresses
  286. *
  287. * By using schedule_delayed_work_on and then schedule_delayed_work
  288. * we guarantee this will stay on the correct cpu
  289. */
  290. static void wq_sync_buffer(struct work_struct *work)
  291. {
  292. struct oprofile_cpu_buffer * b =
  293. container_of(work, struct oprofile_cpu_buffer, work.work);
  294. if (b->cpu != smp_processor_id()) {
  295. printk("WQ on CPU%d, prefer CPU%d\n",
  296. smp_processor_id(), b->cpu);
  297. }
  298. sync_buffer(b->cpu);
  299. /* don't re-add the work if we're shutting down */
  300. if (work_enabled)
  301. schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
  302. }